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Abstract

We study the effect of width on the dynamics of feature-learning neural networks
across a variety of architectures and datasets. Early in training, wide neural net-
works trained on online data have not only identical loss curves but also agree
in their point-wise test predictions throughout training. For simple tasks such as
CIFAR-5m this holds throughout training for networks of realistic widths. We also
show that structural properties of the models, including internal representations, pre-
activation distributions, edge of stability phenomena, and large learning rate effects
are consistent across large widths. This motivates the hypothesis that phenomena
seen in realistic models can be captured by infinite-width, feature-learning limits.
For harder tasks (such as ImageNet and language modeling), and later training
times, finite-width deviations grow systematically. Two distinct effects cause these
deviations across widths. First, the network output has an initialization-dependent
variance scaling inversely with width, which can be removed by ensembling net-
works. We observe, however, that ensembles of narrower networks perform worse
than a single wide network. We call this the bias of narrower width. We conclude
with a spectral perspective on the origin of this finite-width bias.

1 Introduction

Studies of large-scale language and vision models have shown that models with a larger number of
parameters achieve better performance [1, 2]. Motivated by the success of large-scale models, several
theories of deep learning have been developed, including large-width limits. Infinite width limits
which arise in standard parameterization (SP) or neural tangent parameterization (NTP) considered
in [3, 4] gives rise to a a model with no feature learning (a kernel method). In this limit, the neural
network loses the ability to adapt its internal features. Feature learning is crucial to explain deep
learning’s superior performance to kernels, the emergence of interpretable neurons such as edge-
detecting CNN filters, transfer learning capabilities, and large learning rate effects such as edge of
stability [5–8]. All of these effects are exhibited in modern large-scale networks.

Recently, several works have identified an alternative parameterization of neural networks that
preserves feature-learning even at infinite width [9–14]. In this work, we focus on the maximal update
parameterization (µP), or equivalently the mean field parameterization [12, 15, 14]. The existence of
infinite-width feature-learning limit, suggests that this parameterization is potentially more promising
to explain deep learning phenomena than the previous limits. This motivates us to ask:

Question: Can realistic-width neural networks be accurately described by their infinite-width
feature-learning limits?

∗These authors contributed equally to this work.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



10 100 1000 10000
Train Steps

8

16

32

64

Te
st

 E
rro

r

N=64
N=128
N=256
N=512

(a) CIFAR-5m

150 300 600 1200 2400 4800
Train Steps

4

5

6

7

Lo
ss

384
768
1536

(b) C4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Images seen 1e6

0

20

40

60

80

100

Tr
ue

 lo
gi

t v
al

ue
 o

n 
te

st
 p

oi
nt

N=32
N=64
N=128
N=256
N=512

(c) ImageNet

N = 128 N = 256 N = 512

N = 1024 N = 2048 N = 4096

(d) Wikitext-103

Figure 1: Consistency of large width behavior across tasks, architectures, observables. a) Loss curves
for Resnets on Cifar-5M in µP are nearly to identical at large widths (see also Figure 2). b) For
GPT-2 on the C4 dataset [16] the loss curves agree at early times and deviate at late times, but wider
networks agree for longer (see also Figure 2 and appendices for Wikitext-103) c) The values that
ResNets put on the correct logit for ImageNet appear to converge as the width grows (see also Figure
3). d) The attention matrices for transformers on Wikitext-103 become nearly identical as width
increases (for quantitative metrics see Figure 5.)

We attempt to answer this question by training networks of varying widths on vision and language
tasks for realistic datasets and architectures. Concretely, we focus on on the online setting, where
data is not repeated during SGD, and track the following quantities across widths:

• The losses throughout training.
• The predictions of the networks on individual points throughout training.
• The learned representations, summarized by the feature kernels preactivation distributions and,

for transformers, their attention matrices.
• Dynamical phenomena such as the edge of stability governing the top Hessian eigenvalues, as

well as large learning rate and small batch size effects on the loss.

On each of these metrics, we show that sufficiently wide neural networks converge to consistent
behavior across widths. In Figure 1, we show loss curves, logit predictions, and attention matrices
approach consistent behavior as width is increased across several architectures and datasets. We
further observe that the widths that achieve this consistent behavior are within the range of those
used in practice. We use large-width consistency as a proxy for achieving the limiting infinite-width
behavior. We stress that this observed consistency is a property of networks in mean field/µP
parameterization but is not present in other parameterizations which also give an infinite width limit
like NTK parameterization (See Appendix D for a comparison).

We say that a network property is consistent if, beyond some width, its values all lie within some
small interval with high probability. We measure consistency by showing that a quantity’s deviations
between successive widths decrease as the widths are increased, and that its value for narrower
networks systematically approaches its value for the largest trained network.

Our results show the following:

• For simple vision tasks such as CIFAR-5m [17], ResNets with practical widths achieve near
consistent loss curves across widths (Section 2).

• Beyond the loss curves, the individual predictions of the networks agree pointwise. That is,
the logits agree on test points throughout the training process. We further show that internal
representations as measured by distributions of neuron preactivations and feature kernels in
various layers are consistent across widths (Section 2).

• For harder tasks such as ImageNet and language modeling, loss curves are consistent across
widths early in training. As training progresses, loss curves for narrow networks deviate smoothly
from the loss curves of wider networks. The effective width required to reach infinite-width
behavior thus increases with training time. Conversely, as network size grows we approximate
the infinite width network for a larger number of training steps (Section 2).

• Finite-width neural networks have variance in the learned function due to initialization seed.
This variance depends inversely on the width. We study ensembles of networks over different
initializations to remove this noise. Further, by training ensembles of networks, we can perform
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a bias-variance decomposition over initializations (c.f. Appendix F for details and definitions)
to analyze the effects of finite width. We find that finite-width bias plays an important role.
Equivalently, ensembling narrow networks does not yield infinite-width behavior (Section 3).

• In the setting of offline learning, at late times one can over-fit the training set. We observe that
this leads to larger gaps in network behavior across widths, and can break the trend that wider
networks perform better (Section 3).

• We develop a spectral perspective on the origin of the finite-width bias by analyzing it in a simple
setting of a lazy network learning a simple task. We then apply this perspective to a CNN trained
on CIFAR-5m (Section 4).

The consistency across large widths strongly suggests that the dynamics and predictions of realistic-
scale networks can be effectively captured by their infinite-width feature learning limits. For realistic
tasks, as the width is increased, a larger interval of training can be characterized by this infinite-width
limit. Most importantly, even though quantitative agreement across widths slowly breaks with more
and more training, we observe that wider networks perform better (as in [15]) and preserve qualitative
aspects of the learned features (such as hidden layer kernels and attention matrices) and dynamical
phenomena such as edge of stability. This suggests that infinite width feature-learning networks
are good models to study deep learning.

Our results have implications for interpretability, as the agreement of internal representations suggest
that many other phenomena, such as transfer learning with linear probes or fine-tuning, in-context
learning [18, 19], the emergence of outliers [20], and the emergence of induction heads [21] may be
understood from the perspective of infinite-width feature learning networks.

We plan to have our code made freely available on github to ensure the reproducibility of these results.

1.1 Related Works

Empirically, the scaling of relevant quantities with width in the standard or neural-tangent parameteri-
zations was thoroughly studied in [22]. In the latter parameterization, sufficiently wide networks give
a kernel method with the infinite-width NTK. Several papers have shown that in practice the NTK
limit insufficiently characterizes realistic deep neural networks [5, 23, 6]. Attempts to capture feature
learning and predictor variance from perturbative series around infinite-width dynamics show that
finite-width variance and kernel adaptation scale as 1/N [24–26] for width N . A 1/N scaling of gen-
eralization error with width was empirically verified on many tasks [27, 28]. The effect of width on
generalization in the feature-learning regime was empirically studied in [29] in the relatively limited
setting of multi-layer perceptrons (MLPs) on polynomial tasks. There, the variance of the finite-width
NTK at the end of training adversely affected generalization. Bias-variance decompositions over
dataset, label noise, and initialization parameters were studied in [30] for linear models.

The authors of [31] identified that altering the output scale α of any network could increase or
decrease feature learning in a neural network. Large values of α correspond to the “lazy limit”
where the network’s features don’t evolve. A follow up study noticed that rescaling the output
by α = α0/

√
N for width N networks gave consistent behavior of feature learning and losses in

small scale experiments [10]. Several works have studied this regime of training in the two-layer
limit, known as “mean field” parameterization, where features are still learned even at infinite width
[32, 9, 33, 34]. Extensions of this model to deeper networks were studied in [35–38, 12, 14]. A
theory of finite-width corrections to networks in this parameterization was studied in [39]. A very
general set of parameterization principles, termed µP, was introduced to give a well defined feature
learning limit for a wide range of architectures including RNNs, CNNs, MLPs and transformers [12].
[15] demonstrated that this parameterization nearly fixes optimal hyperparameters across network
widths, allowing for hyperparameter transfer from small to large widths. This work also empirically
noted that wider networks always outperformed narrower networks in this parameterization.

Our paper focuses on networks in µP and attempts to study the consistency of many relevant network
properties across widths. We perform a fine-grained analyses of more realistic models throughout the
dynamics of training. To the best of our knowledge, this is the first such paper to study the consistency
of network outputs, internal representations, and dynamics across widths.
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Figure 2: In the online learning setting, train loss improves as width grows. For sufficiently wide
networks, the training lost is consistent across widths. For Cifar-5m this consistency is observed over
all of training. For harder tasks like Imagenet and Wikitext-103, networks of different widths agree
up until a width-dependent time-step where narrower networks begin performing worse.
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Figure 3: The output logits on a fixed test point diplays stable behavior at large enough widths. a)
Value of network on correct class logit over time as width is varied for CIFAR-5m. Colored errorbars
represent one standard deviation. b) Same plot for Imagenet for a fixed image in the test set c)
Same plot for Wikitext-103 for a fixed masked token. Across the board the widest networks behave
similarly. Next, we use the widest network as a proxy for the infinite-width limit, and compare the
logit predictions of narrower networks against that. d) For CIFAR-5m, the relative root-mean-squared
error over the test set of the distance to the value that the widest network puts on the correct logit.
e) The same for Imagenet. f) The same for Wikitext-103. We see a striking regularity of networks
converging to the widest one as the width grows. In Appendix B, we also compare networks of
successive widths and show the the difference shrinks.

2 Consistency of large-width behavior in online learning

We focus on studying the effect of width in the setting of neural networks learning a task in the online
setting. Online learning is representative of many modern settings of deep learning, and as will be
shown in Section 3, obviates consideration of memorization and over-fitting in offline learning that
can lead to large differences in networks across widths.

In what follows, the variable N will denote the width of a given network. For vision tasks, this
will correspond to the number of channels in each layer. For transformers, in the notation of [40],
N = dmodel = hdk = hdv and dffn = 4N . Here, h is the number of heads, which we will keep
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Figure 4: Analog of the last row of Figure 3 but comparing networks of successive widths rather than
comparing all networks to the widest. Again, we see that as the network width grows, the difference
between successive networks shrinks.

fixed. dmodel is the embedding dimension of the tokens as well as the dimension of the residual stream.
dk is the dimension over which the dot products in the attention are calculated and dv is the dimension
of the values in the attention layers. dffn is the hidden width of the feedforward networks (FFN).

Convergence of loss curves We begin by showing (Fig. 2) that the loss curves for sufficiently
wide networks on a given task achieve consistent behavior across widths. Throughout the paper we
measure train loss in terms of crossentropy. For all tasks, at early times large widths agree, but for
more complicated tasks such as ImageNet or Wikitext-103, learning curves of narrower network
deviate from those of wider ones.

The width beyond which networks emulate infinite-width behavior depends on the complexity of
the task. For more difficult tasks, larger widths are required for the loss curves to converge. For
simple tasks such as CIFAR-5m we find that widths as narrow as 128 are essentially consistent with
infinite width-behavior for an entire pass through the 5 million image dataset. For ImageNet, widths
near 512 are close to consistent for four passes through the dataset with heavy data augmentation.
These widths are well within the range of those practically for images [41, 42]. For transformers
going through a single full pass of Wikitext-103, widths on the order of 4000 are required. Early
transformer models certainly had hidden widths of order 4k [43], and more recent models such as
GPT-3 have widths going up to 12288 [18], so this is also within the regime of realistic width.

Pointwise convergence of predictions Beyond the convergence of the training loss curves, we ob-
serve that the logits of a network on a fixed test point become consistent as width grows. This test point
can be an image in the test set or a masked token in the validation set. In plots a), b), and c) of Figure
3, we show that for a specific held-out test point, the value of the network on the correct logit becomes
consistent as the width grows. In d), e), and f) we plot the root mean squared distance to the widest net-
works logits over the test set. We further study the difference between successive widths in Figure 4.

Convergence of representations In addition to loss and prediction dynamics, we also examine
whether learned representations in these models are consistent across widths. Mean field theories
of neural network dynamics predict that sufficiently wide networks should have identical kernels
(and attention matrices for transformers) and that all neurons in a layer behave as independent draws
from an initialization-independent single-site distribution [9, 12, 14, 46, 47]. To test whether realistic
finite-width feature learning networks are accurately captured by this limit, in Figure 5, we analyze
the feature kernels and preactivation distributions before and after training as well as the attention
matrices in transformer models trained on Wikitext-103. We see qualitative consistency in the plots
of kernels and attention matrices in b) and c) which can be made quantitatively precise by plotting
the distance to the widest networks and showing systematic convergence in c) and f).

Convergence of dynamical phenomena In Figure 6a, we show that the sharpness, defined as the
top eigenvalue of the loss Hessian, grows steadily to a final value that it then fluctuates around. This
is a small-batch analog of the the edge-of-stability phenomenon identified in [7]. We also show in
Figure 6b that on CIFAR-5m task, at early times, the individual variations due to batch noise and
large learning rate effects can be consistently captured across widths for µP networks. In Appendix
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Figure 5: Learned features are consistent across a large range of widths in realistic tasks. (a) The
distribution (over neurons) of preactivation values h in the final block of E = 8 ResNet18 networks
trained on CIFAR-5M. At initialization, the densities are all well approximated by the Gaussian
with matching mean and variance (dashed black). After feature learning, the density has shifted and
become non-Gaussian (poor match with dashed black), yet is still strikingly consistent across widths.
(b) Average (over random init) feature kernels are also consistent across widths. (c) The centered
kernel alignment CKA [44, 45] of the width N and width 512 kernels increases towards 1.0 as N
increases. The 1/

√
N and 1/N trends are plotted for reference. (d) The preactivation histogram for a

transformer on Wikitext-103. At initialization the Gaussian of best fit is the standard normal. After
training the histograms are still quite Gaussian, with different moments. (e) A variant of Figure 1 (d)
at a smaller sequence length. Attention matrices are consistent at large widths. f) Both FFN kernels
and attention matrices converge as width grows. The 1/N and 1/

√
N trends are plotted for reference.
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(b) Small Batch size effects

Figure 6: Convergence of dynamical phenomena across width for CIFAR-5m

E, we further demonstrate sharp agreement of large learning rate and small batch size phenomena for
MLPs learning a simple task. There, we show that while µP leads to strikingly consistent loss curves,
SP does not.

3 Deviations from large-width behavior

The consistency observed in Section 2 may break later during training in either the online or offline
settings. In the online setting, deviations owing to narrow width compound over time and lead to two
sources of error relative to the infinite width limit which we describe in 3.1. In the offline setting,
where data is recycled several times, networks over-fit the training data, which can lead to larger gaps
between widths and can break the trend that wider networks perform better.
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Finite-width effects introduce an initialization dependence to the network, leading to additional
variance in the learned function and hindering generalization [27–29]. This initialization-dependent
variance can be mitigated by averaging the output logits of a sufficiently large ensemble of networks
[48]. Using the bias-variance decomposition terminology, we refer to the discrepancy in performance
between an ensembled network and the expected performance of a single network the variance, and
the gap between an ensembled network and the behavior of infinite-width network as the bias of
narrower width. We elaborate thoroughly on what we mean by this decomposition in Appendix F. By
definition, the expected difference in loss between a single finite-width network and an infinite-width
network is the sum of the bias and the variance. Below, we investigate the behavior of bias and
variance in networks across various vision and language tasks.

3.1 Online training
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Figure 7: Loss curves and their ensembles in the online setting. Ensembling reduces the training loss,
but a large ensemble of narrow networks do not achieve the performance of a single wider network.
Errorbars representing standard deviation over random init are not visible.

Figure 7 shows that at large widths, both single networks and ensembles of networks achieve
comparable error. In this regime, all the networks are consistent and increasing the width has a very
marginal effect, as does ensembling. At narrower widths, variance is nontrivial (i.e. ensembling
helps) but bias is much larger than variance. Single wide networks outperform ensembles of narrower
networks. By comparing a) with b) and c) of Figure 7, we see that harder tasks induce larger bias
gaps. Prior theoretical work [28, 29] has focused mostly on studying the variance term. In Section 4
we study the bias from a theoretical perspective.

3.2 Offline Training

In offline learning, which refers to multi-epoch training, we encounter several unexpected phenomena
that challenge the width consistency observed in the previous section, even at large widths. To
compare offline learning with online learning, we utilize CIFAR-200k, a 200k sized random subset
of CIFAR-5m. Previous studies have demonstrated that label noise contributes to an increase in
overfitting [49]. In order to investigate how width consistency changes with overfitting and double
descent, we conduct experiments on a noisy label version of CIFAR-50k (50k sample from CIFAR-
5m), where 50% of the labels are noisy. Additional ImageNet experiments are presented in Appendix J.
As offline training achieves near-zero error, we need to compare very small quantities. To accomplish
this, we will plot and compare all quantities on a logarithmic scale. The following phenomena are
observed:

• Single network performance on the training set does not converge with width, even at high widths
(Figure 8 (a)). In other words, the combined bias and variance does not reach zero, even with
substantial widths. This is in contrast to the online runs.

• Ensembling (Figure 8 (b)) reveals that both bias and variance terms individually fail to reach zero,
even at high widths.

• Regarding test performance, both bias and variance tend to zero as width increases, demonstrating
an instance of benign overfitting (Figure 8 (d) and (e)).

• When working with the noisy label version of CIFAR-50k, we observe clear overfitting and
stepwise double descent [49] as training progresses (Figure 8 (f)). Notably, we observe significant
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Figure 8: Top Row: Effects of offline training on train metrics. In (a) and (b) we do multi-epoch
training on CIFAR-200k. We see that both bias and variance for train error are magnified by offline
training and do not tend to 0 for the largest widths we could try. (c) we do multi-epoch training on
noisy CIFAR-50k and again observe large bias and variance terms at large widths. Bottom Row:
Effects of offline training on test metrics. In (d) and (e) we do multi-epoch training on CIFAR-200k.
We see that both bias and variance for test error are near 0 at large widths. (f) We train on noisy
CIFAR-50k and observe that “wider is better” is violated for ensembled networks.

deviations in width for single network performance, indicating that the benign overfitting observed
in Figure 8 (d) and (e) is dataset-dependent. Furthermore, variance is found to be much larger
than in the non-noisy experiments.

• Surprisingly, we discover (Figure 8 (f)) that some ensembled narrower width networks out-
perform ensembled wider networks. This presents a counterexample to the “wider is better”
phenomenon [15] for ensembled networks. We hypothesize that such counterexamples can only
exist in the context of offline training.

4 Spectral perspective on finite-width bias

In this last section, we develop a toy model in which the effect of finite-width bias can be clearly
seen. We analyze it first in the simple setting of an MLP fitting a polynomial in the lazy limit. Here,
all the dynamics are well-captured by the finite-width empirical neural tangent kernel (eNTK). By
studying the spectral properties of this kernel across widths, we see that finite widths lead to eNTK’s
with worse bias components in their losses.

Concretely, we see that although the eigenvalue spectrum of the ensembled eNTK is not substantially
affected by finite width, the decomposition of the task into eNTK eigenvectors changes, with narrow-
width eNTK’s putting more of the task into smaller eigenmodes that take longer to be learned. In
practice, applying this analysis to the after-kernel of the trained ResNets on CIFAR-5m reveals similar
behavior. Prior literature has demonstrated that many of the properties of the final learned function
are captured by the after-kernel [50–52].

We consider a model of online learning where a large batch of data from the population dis-
tribution p(x) is sampled at each step. This leads to approximate gradient flow dynamics
d
dtθ = − 1

2∇θEx(f(x,θ) − y(x))2 (Appendix H). To analyze this equation, we choose a fixed
orthonormal basis {ψk(x)} for the space L2(RD, p(x)dx) of square-integrable functions on in-
put space. The function f(x), residual error ∆(x) = y(x) − f(x), and the empirical NTK
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K(x,x′, t) can be expressed in this basis as f(x, t) =
∑

k fk ψk(x), ∆(x, t) =
∑

k ∆kψk(x),
and K(x,x′, t) =

∑
kℓKkℓ(t)ψk(x)ψℓ(x

′), respectively. Their training evolution is given by:

d

dt
f(x, t) = Ex′∼p(x)K(x,x′, t)∆(x′, t) = −

∑
kℓ

Kkℓ(t)∆ℓ(t)ψk(x). (1)

The statistics of the dynamical NTK matrix Kkl(t) summarizes the statistics of the error dynamics
∆(x, t) at any level of feature learning. At infinite width, Kkℓ(t) is deterministic, while at finite
width, it receives a Θ(N−1) mean displacement and a Θ

(
N−1/2

)
fluctuation around its mean

[24, 25, 39]. We consider approximating the dynamics of the ensembled predictor by d
dt ⟨fk(t)⟩θ0 ≈∑

ℓ ⟨Kkℓ(t)⟩ ⟨∆ℓ(t)⟩. Here, ⟨·⟩ denotes averages over initializations. This expression neglects the
contribution from Cov(Kkℓ,∆ℓ). We show that this approximation is accurate in depth-3 MLPs
trained on Gegenbauer polynomial regression tasks in Figure 9 a). For more details see Appendix A.

In the lazy limit, the kernel is static and we choose ψk to diagonalize ⟨Kkℓ⟩ = δkℓλk. This yields
the loss dynamics L(t) =

∑
k ⟨y(x)ψk(x)⟩2 e−2λkt. We can therefore quantify alignment of eigen-

functions to task with the cumulative power distribution C(k) =
∑

ℓ<k ⟨y(x)ψℓ(x)⟩2x /
〈
y(x)2

〉
x

,
which is the proportion of the task that is explained by the first k eigenvectors [53]. If C(k) rises
rapidly with k then the loss falls faster [53]. In this limit, there are two ingredients that could make
the bias dynamics across widths distinct. First, the eigenvalues λk which set the timescales could be
width-dependent. Second, the eigenfunctions ψk(x) that diagonalize ⟨K⟩ can change with width. In
Figures 9 b) and c) we show that the dominant effect is the latter. Finite-width corrections do not
substantially affect the spectrum, but they do increase the proportion of the target function that lies in
the eigenspaces corresponding to modes that are slower to learn.

To test whether these findings continue to hold in more realistic experiments, we computed the final
NTKs (after kernels) of the ResNet-18 models trained on CIFAR-5M (specifically the models from
Figures 3, 5). We ensemble average to get kernel ⟨Kc,c′(x,x

′)⟩ for output channels c, c′ and input
images x,x′. We then compute the kernel gradient flow corresponding to MSE training on the true
target function for CIFAR-5M d

dt∆c(x) = −
∑

c′ Ex′ ⟨Kc,c′(x,x
′)⟩∆c′(x

′) from initial condition
given by the one-hot target labels ∆c(x)|t=0 = yc(x). The convergence rate of this dynamical
system is again set by the eigenvalues and eigenfunction-task alignment. In Figure 9 (d), we find
that the after kernels for wider networks give slightly more rapid convergence. Figures 9 (e) and
(f) show that, similar to the MLP experiment, the spectra are very consistent across widths, but the
eigenfunction task alignments, measured with C(k) are not. Overall, these experiments suggest that
an important aspect of the bias of finite width models compared to their infinite width analogs is the
deformation of their eigenfunctions.

5 Conclusion

We have demonstrated a striking consistency across widths for many quantities of interest to deep
learning practitioners. Our fine-grained studies go beyond simply comparing test losses and have
demonstrated that learned network functions, internal representations, and dynamical large learning
rate phenomena agree for sufficiently large widths on a variety of tasks across vision and language.
At later training times, or after many repetitions of the dataset, we observe systematic deviations
brought on by finite width, and have characterized them in terms of the bias and variance of the
network over initializations. This study motivates the applicability of infinite-width feature-learning
models (and the accumulating finite width deviations from this limit) in reasoning about large scale
models trained on real-world data.

In light of the accumulation of finite-width deviations at later training times, we caution that our
study only exhibits the consistency of the infinite-width limit with the training time held fixed. It
does not make a claim about other possibly limits that vary the training time jointly with the width to
infinity, perhaps along a compute frontier. We leave further inquiry into such limits for future work.

9



0 50 100 150 200 250 300 350 400
t

10 4

10 3

10 2

10 1

100

tr

Losses for online MLP, L=3 k=2, batch size=250
NN
NN ens
K

N=499
N=1118
N=2499

(a) MLP Online training losses

100 101 102 103 104

Eigenvector Index

102

103

104

105

106

107

108

i

i, MLP, L=3, k=2
N=100
N=223
N=499
N=1118
N=2499

(b) MLP Kernel Spectra

100 101 102 103 104

Eigenvector Index

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

1
C(

k)

1 C(k), MLP, L=3, k=2
N=100
N=223
N=499
N=1118
N=2499

(c) MLP unexplained task fraction

100 101 102 103

t

10 2

10 1

100

(t)

Kernel Flow with Final K
N = 32
N = 64
N = 128
N = 256

(d) CIFAR-5M After-Kernel

100 101 102 103

k

10 2

10 1

100

101

102

k

K  Spectra

(e) After-Kernel Spectra

100 101 102 103

k

0.0

0.2

0.4

0.6

0.8

1.0

1
C(

k)

K  Task Alignment

(f) After-Kernel unexplained task
fraction

Figure 9: Spectral properties of the NTK can account for bias gaps across widths. (a) Depth 3 MLPs
in the lazy limit (γ−1

0 = 200) learning a quadratic polynomial from a uniform distribution on the
sphere in D = 5 dimensions online. Wider networks perform better (dots). Even after ensembling
(dashed), wider is better, and the ensembled curves match those of the averaged eNTK (solid). (b)
The spectra of the averaged eNTK across widths do not show substantial variability. (c) However, at
narrower width, the eigen-decomposition of the task has greater weight along higher spectral modes,
consequently leading to a slow-down in training. These results hold across dimensions, batch sizes,
task complexity, and architectures. Strong feature learning can reduce this effect. See Appendix
H (d) We computed the ensemble averaged after kernels from the CIFAR-5M ResNet-18 models
and computed the theoretical kernel flow on the task. Wider models have a slightly better mean
kernel for this task. (e) The eigenvalues of the final NTKs are very consistent across widths. (f)
The eigenfunction-target alignment of the final kernels noticeably differ across widths, evidenced by
the cumulative power distribution C(k) which accounts for the gap in theoretical loss curves under
kernel flow.
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A Experimental Details

A.1 MLPs

In Figure 9 we used a 3-layer MLP learning a Gegenbauer polynomialQ2(β ·x) inD = 5 dimensions.
Here β was a randomly chosen unit vector in RD. We implemented µP parameterization by hand.
The output layer of the network was rescaled by α0/

√
N , consistent with µP. We chose α0 = 1000

to put us in the lazy regime. We set the the learning rate to be 5N/(1 + α2
0). General arguments

based on kernel scale indicate that the learning rate should be scaled as α−2
0 at large α.

In Figure 14 we used a 3-layer MLP learning a Gegenbauer polynomial Q2(β · x) in D = 25
dimensions. We set the learning rate to be nearly as high as possible before a loss explosion.

A.2 Vision

A.2.1 CIFAR-5m

All plots except Figure 6a and 6b: We trained with standard CIFAR data augmentation of random crop
(RandomCrop(32, padding=4) in pytorch) and horizontal flip (RandomHorizontalFlip() in pytorch).
As base network (for µP ) we used ResNet18 where BatchNorm was replaced with LayerNorm (to
maintain the consistency of the neural network between train and test). We used the SGD optimizer
with learning rate of .05 with cosine decay over 20000 steps, .9 momentum and batch size of 250.

For Figure 6a, we used the above setup, but with a learning rate of 0.01 and a much higher batch size
of 2000, so as to replicate the edge of stability phenomenon [7] which only occurs at high batch sizes.
For Figure 6b, we used a learning rate of 0.3 and batch size of 32, so as to show the behavior of high
learning rate and small batch size on train loss.

A.2.2 CIFAR-10 Multiple Passes

In Figure 10, we show the dynamics and representational consistency of ResNets trained on CIFAR-
10 for several epochs. The architecture is a ResNet-18 with base-shape width set at N = 64 channels.
The model is trained with SGD with learning rate 0.1 and cosine annealing schedule. The batch-size
used is 128.

A.2.3 ImageNet

In all ImageNet experiments, we used a training subset of the ImageNet-1k dataset consisting of
220 = 1048576 labeled images and a test subset consisting of 1024 labeled images. Both subsets
were randomly sampled from the full ImageNet-1k training and validation datasets, respectively. To
extend the duration in training in which the network remains in the online regime beyond one epoch,
we heavily augmented the images in the training dataset using PyTorch’s AutoAugment transform
with the default policy, AutoAugmentPolicy.IMAGENET.

We again used the ResNet-18 architecture with µP parameterization relative to the ResNet-18
network with base-shape width N = 64 channel [13]. All architectures and training procedures were
implemented in Jax and used the auxiliary Flax and Optax packages, respectively.

Figures 2(b) and 7(b) were trained using the Adam optimizer with the following learning rate schedule:
linear warm-up for 0.5 epochs from learning rate 8× 10−5 to 8× 10−3, followed by cosine decay
over 49.5 epochs to 8× 10−5.

A.3 Language

A.3.1 Wikitext-103 Language Modeling

For all Wikitext-103 tasks, we adopted the µP transformer as defined in the µP package [13]. In
the plots shown in the main text, we used a depth-4 transformer, with dmodel, dk, dv = N and
dffn = 4N . We performed a single pass through the train set in order to stay in the realistic online
regime. We used a masked language modeling with sequence length S at varying input sequence
lengths S. For Figure 1 d) we used the S × S attention matrix of an S = 128 transformer. In Figure
5 e) we used the attention matrix of an S = 35 transformer. We chose this different length simply to
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illustrate the consistent message across sequence lengths. We used a batch size of B = 32 for all
experiments. The residual stream was thus a tensor of shape (S,B, dmodel).

We used the Adam optimizer with a learning rate of 0.0001. We also ran the same configuration with
SGD and a learning rate of 0.5 and observed the same behavior. See section B for further plots and
details.

For figure 3, we used the Wikitext-103 validation set in order to measure the evolution of the
predictions on masked logits. In 3 f), we averaged the mean squared error from the widest transformer
by using 100 test points.

A.3.2 C4 Language Modelling

Figure 1 (b) we trained with base network being a 125m parameter transformer model on
2.5 billion tokens using the Mosaic ML’s LLM codebase (https://web.archive.org/web/
20230519184343/https://github.com/mosaicml/examples/tree/main/examples/llm).
See https://web.archive.org/web/20230519183813/https://github.com/mosaicml/
examples/blob/main/examples/llm/yamls/mosaic_gpt/125m.yaml for the full hyperpa-
rameter details. We were limited by time and computational resources in our ability to explore further
details of the C4 transformer model.

B Further Plots of Convergence
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Figure 10: Training on CIFAR-10 in a ResNet-18 for multiple epochs generates dynamic preactivation
densities and feature kernels which converge at realistic widths. (a) The test classification error curves
for single models (solid) and ensembled (dashed) converge for realistic widths. (b) At initialization
preactivation distributions in the last hidden layer of the CNN for a randomly chosen data point are
Gaussian (as expected) and are very consistent across model widths N . To obtain histograms we
train an ensemble of E = 8 independently initialized networks concatenate activation patterns across
members of the ensemble. After 20 epochs of training (models are around ∼ 95% accuracy), the
preactivation distributions for the same data point have become non-Gaussian (consistent with infinite
width theory) but are still remarkably consistent for large widths. (c) The final layer’s feature kernel
at initialization shows very little structure, but (d) after training networks of all widths converge to
similar kernels. The plot in (d) compares ensemble averaged kernels with the N = 512 ensembled
kernel.

16

https://web.archive.org/web/20230519184343/https://github.com/mosaicml/examples/tree/main/examples/llm
https://web.archive.org/web/20230519184343/https://github.com/mosaicml/examples/tree/main/examples/llm
https://web.archive.org/web/20230519183813/https://github.com/mosaicml/examples/blob/main/examples/llm/yamls/mosaic_gpt/125m.yaml
https://web.archive.org/web/20230519183813/https://github.com/mosaicml/examples/blob/main/examples/llm/yamls/mosaic_gpt/125m.yaml


N
=

64

= 1 = 2 = 3 = 4

N
=

12
8

N
=

25
6

N
=

51
2

Figure 11: Convergence of layerwise representations in each layer (block) ℓ of the ResNet-18 at large
width N after training on CIFAR-5M.

In this section, we show additional figures illustrating convergence of network quantities across
widths that we did not have space for in the main text.

B.1 Vision

A simple setting in which convergence properties are particularly clear and simple to study is for a
ResNet learning CIFAR-10 and going over multiple passes of the dataset. In Figure 10 we plot a
20-epoch pass over CIFAR 10, and study the generalization error, initial and final preactivations in
the last layer, and final layer kernels across widths. The training error begins to exhibit pathologies
after sufficiently many epochs, related to the discussion in section 3.2.

Next in figure 11, we show a higher-resolution plot of the kernel Gram matrices across widths and
across layers for the CIFAR-5M ResNet after a pass through the data. The larger resolution allows
one to see that even the fine-grained details in the structure of the Gram matrix are consistent across
widths.

B.2 Language

Next, in Figure 12, we create an analog of the language column of Figure 3, this time for µP
transformers of the same architecture and dataset but now optimized with vanilla SGD. The fact that
wider transformers perform better still holds, and one can clearly see narrower networks approaching
wider ones in their output logit values.
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Figure 12: An analog of Figure 3 for µP transformers trained with SGD. a) Training loss. It is
interesting that in µ parameterization the SGD optimized network is competitive with the Adam-
optimized network. b) Value placed on the correct logit for a specific masked token. c) RMSE of
correct logit value from the widest network.

C Defining µP and SP (Standard Parameterization)

There are several detailed discussions about µP vs SP scaling [12, 15, 9, 10, 14]. The aim of this
section is to simply give an accessible and conceptual overview of their distinction, as well as a
motivation for µP from the perspective of keeping features moving in time even at infinite width. .

There are several equivalent ways of parameterizing neural networks that give rise to the same dy-
namical effects, whether in µ-parameterization or standard parameterization. We give the definitions
in the case of a single-output feed-forward network and demonstrate that SP and µP give rise to
Θ(N−1/2),Θ(1) feature movement at initialization, respectively.

Generalizations to other architectures (ResNets, Transformers) are straightforward. For a detailed
discussion see [12] and also [14].

C.1 SP

We assume all hidden layers have equal width N . Let the input space have dimension D. Let µ be
the index of the training point in the dataset. At each layer ℓ, the pre-activation hℓ+1

µ in layer ℓ+ 1 is
given by

hℓ+1
µ =

1√
N

W ℓ · ϕ(hℓ
µ), (2)

where ϕ is an element-wise non-linearity, often taken to be the ReLU function. Here the N−1/2 out
front allows hℓ+1

µ to be Θ(1) at initialization as N → ∞ by the law of large numbers. The output of
the network fµ is then given by:

fµ =
α√
N

wL · ϕ(hℓ
µ). (3)

Here again the N−1/2 scaling again yields that fµ will be Θ(1) as N → ∞. In SP, α is taken to be 1,
but we will keep it explicit as it plays an important role in distinguishing the parameterizations. It is
the laziness parameter identified in [31]. The change in the function is given by

dfµ
dt

= −η
∑
ν

Kµνℓ
′(fν , yν). (4)

Here Kµν = ∇θfµ · ∇θfν is the NTK gram matrix. yν is the true label. ℓ is the loss function (e.g.
MSE or crossentropy) and ℓ′ is its derivative with respect to the first argument. The NTK is easily
seen to be order α2 and ℓ′ is order 1 at small α. In order to have the change in the function be Θ(1)
we set η = η0/α

2.

Using the chain rule, one can directly see that the pre-activations evolve as [10, 3, 32]

dhℓ

dt
∼ η

α√
N

=
η0

α
√
N
. (5)
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Thus, at large N and α = 1 the pre-activations of this network evolve as Θ(N−1/2). Consequently,
at infinite width the feature do not evolve and infinitely wide networks in standard parameterization
become kernel machines with the static and initialization-independent infinite-width NTK.

In many machine learning libraries, the factors of 1/
√
N are not explicitly placed in front of each

multiplication with the weight matrices. Rather, the weight matrices themselves are drawn from a
distribution W ℓ ∼ N (0, 1

N 1). Although this gives identical forward pass, this changes the N scaling
of the gradients in the backward pass. As long as the learning rate is appropriately rescaled to account
for this, the dynamics are equivalent to the SP parameterization discussed above.

C.2 µP

One of the simplest ways to define the µ-parameterization is to take α = 1/
√
N . This implies that

we simply replace the final layer of the network by:

fµ =
1

N
wLϕ(hℓ

µ). (6)

As the prior analysis shows, in order to have dfµ/dt be Θ(1) at initialization, we take η = Nη0, so
the learning rate in this definition scales extensively with N . In this setting, we now have that

dhℓ

dt
∼ Θ(1). (7)

In [12, 15], gives an equivalent definition of µP that gives rise to the same dynamics but keeps the
learning rate to be Θ(1). We use this version of µP in the experiments that we run, simply because
that is what is used in the package [13]. Consequently, our learning rate does not need to be changed
as width grows.

D Importance of Parameterization
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Figure 13: (a-b) An experiment on CIFAR-10 with a depth 4 CNN (no layernorm) showing that the
finite width consistency at the range of widths N considered in this work is special for µP and is
not observed in NTK parameterization. Width-consistent kernel regime behavior requires a much
larger width. Networks are parameterized to agree at N = 128. We see that in NTK parameterization
wider networks train more slowly and their kernels align less to the target function. The reason for
the stronger consistency of µP networks is that feature learning remains Θ(1).

In this section, we aim to illustrate that many of the claims of width consistency at practical widths
are in fact contingent on using the mean field/µ-parameterization. In Figure 13 we compare the early
dynamics of network training on CIFAR-10 between networks in the NTK parameterization (dashed
lines) and in mean field parameterization (solid). The models are initialized in such a way so that
their N = 128 dynamics perfectly coincide. We plot both test error and the kernel alignment between
the NTK and the target function. While both parameterizations will eventually converge to an infinite
width limit, we note the following two differences in width scaling behavior:

1. Wider networks tend to train more slowly in NTK parameterization and perform worse as
the width grows. This is because the rate of feature learning is not held constant across
widths and decreases as width grows. Wider networks in µP train slightly faster.
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2. Mean field networks approach their limit more quickly as width increases in terms of both
test loss and kernel dynamics.

The general theoretical principle behind these observations is that mean field parameterization
generates feature updates which are scale independent, thus eliminating an unnecessary source of
finite size approximation error in the dynamics [39].

E Further Studies of µP versus SP

E.1 MLPs

In figure 14, we show a 3-layer MLP learning a quadratic polynomial. In subfigure a) use a batch
size of 10 and a learning rate going as η = 5N/(1 + α2

0) with α0 = 1. The output layer is scaled
as α0/

√
N , putting us in the rich regime. The learning rate has been picked to be nearly as large

as possible at this batch size in order to maximize the large loss curve fluctuations yielded by large
learning rate effects. In subfigure c) we do not rescale the output layer, and have a width-indepdent
learning rate going as η = 50/(1 + α2

0) with α0 = 1. This puts is in the large-learning rate regime
for a standard parameterized network. See Appendix A for more details.

We plot the learning curves across widths and find striking agreement, even at the fine-grained level
of fluctuations due to small batch size and large learning rate effects. Although this is not exactly the
full-batch edge-of-stability effect reported in [7], the large oscillations may be similar to a small batch
size analog. We plot the absolute difference from the widest network in subfigure b) to highlight the
strong agreement across widths.

In subfigure c), we have the same network but in standard parameterization. The narrower networks
now learn features more quickly, leading to inconsistent dynamics across widths.
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Figure 14: 3-Layer MLP learning a quadratic polynomial y = Q2(β · x) on the sphere. Data is
provided in an online setting in the same order across widths, as in the realistic experiments in the
main text. Large learning rate small batch size effects in MLPs are consistent across large widths. a)
For µP networks, the loss curves match across widths, even accounting for fluctuations due to batch
size or large learning rate edge-of-stability-like effects. b) Plot of the difference in training error from
the widest network. c) The same network but in standard parameterization. Dynamics are no longer
consistent across widths, and wider networks approach a lazy limit.

E.2 Vision

Next, we focus on a vision task and compare the large learning rate small batch size effects in SP to
the µP parameterized network in Figure 6a. By contrast to that figure, we see significantly different
dynamics and batch variation across widths. In Figure 15 a) we plot the early time behavior of a
CIFAR-5m task at large learning rate. The large learning rate effects cause the loss to substantially
oscillate, but the oscillations across widths are inconsistent by contrast to 6a b) . Further, at late
times in Figure 15, the sharp spikes in the loss function due to large learning rate effects become
substantially different across widths. Indeed, in SP some widths converge for a given learning rate
while others do not. This trend has already been well-studied in [15]. We again stress that our
observation is that not only are the final losses similar across widths in µP (as observed in [15]), but
that the individual batch and large learning rate fluctuations agree across widths at early times in µP
as well.
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Figure 15: Different widths have different loss curves. a) Early time dynamics of the loss across
widths is not consistent. b) Dynamics of the loss across widths at later times also does not appear
consistent. There are explosions that happen at different times and scales across widths.

E.3 Language

Finally, we present a complementary set of figures to those in the right columns of Figures 3 and 12
for transformers of the same architecture on Wikitext-103 but in standard parameterization.
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Figure 16: An analog of Figure 3: SP transformers trained with Adam. a) Training loss. At large
widths, the learning rate chosen is too big for the network to properly learn, and the loss is flat. This
is consistent with what is observed in [15] — the optimal learning rate in SP changes with width. b)
Value placed on the correct logit for a specific masked token. c) RMSE of correct logit value from
the widest network. In both of these plots, the monotonic behavior across width evident under the µP
parameterization is violated. Even after discarding the networks that do not converge under SP, the
behavior remains non-monotonic across width.

F Bias-Variance Decompositions over Initializations

In this section we explicitly define what we mean by initilization bias and initialization variance.
Following [30], we consider the trained neural network function fθ∗(x) to depend on the training
set D (including inputs x, outputs y, and possible label noise ϵ) as well as the initial parameters θ0.
Here, θ0 are the initial parameters and θ∗ are the final parameters, which are implicitly functions of
the initial ones.

Classical statistical learning theory often focuses on the variance of the learned function as a function
of the training samples given (xµ, yµ)

P
µ=1. By contrast, our paper focuses on the variance due to

the initial parameters θ0 from which training begins. In the overparameterized regime with more
parameters than data-points and relatively little label noise, this has been shown to be the dominant
source of variance for neural networks [27, 29, 28].

Consequently, our definition of the bias of a neural network is given by

f(x) = Eθ0 [fθ∗(θ0)(x)]. (8)

The bias can be approximated by averaging a sufficiently large ensemble of neural networks over
initialization seeds. Each network in the ensemble is trained on the same dataset in the same batch
order using the same optimizer.
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The variance of the neural network predictor is given by:

Varθ0f = Eθ0 [(fθ∗(θ0)(x)− f̄(x))2]. (9)

The variance of E ensembles of a given network with independent initialization seeds θe is given by

Varθ0

[
1

E

∑
e

fθ∗(θe)(x)

]
= Eθ0

( 1

E

∑
e

fθ∗(θe)(x)− f̄(x)

)2
 . (10)

As E → ∞, the empirical average of E network ensembles approaches the bias, so the variance of
the ensembled networks goes to zero. As long as the errors are uncorrelated, the variance the the
network ensembles decreases as 1/E. In practice, we see that comparable decay rates are achieved.

G Task-Dependent Scaling Laws in Width

For the settings where we observed larger deviations in the dynamics for models of varying widths,
we examined scaling of the training losses with respect to width N after a significant amount of
training (2 epochs for ImageNet and 1 epoch for Wikitext 103). We fit power laws of the form
Loss = CN−β + D where C, β,D are fit to the data using the ‘scipy.optimize‘ function. The
resulting fits are provided in Figure 17. We find an excellent power law fit, with R2 above .99.

102 103

N

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Lo
ss

 - 
D

Loss = CN + D

Data, Wikitext
6.95 × N 0.42

Data, Imagenet
11.2 × N 0.63

Figure 17: Train losses of Wikitext and Ima-
genet models are well-fit by power laws.

The existence of such power law behavior across
widths provides further evidence of the networks ap-
proaching a well-defined inifinite width limit. One
could imagine that the differences between succes-
sive networks might get smaller (as in Figure 4) but
that there is no well-defined limit as N → ∞, similar
to the terms in a harmonic sum. The fact that the
power law fit has exponent much larger than 0 and
does not display logarithmic dependence on N pro-
vides empirical evidence that we expect convergene
as N → ∞.

Additionally, given that the observed power laws
N−β are task-dependent and significantly different
from N−1 suggests that models at late time are not
well described by perturbation theory around the infi-
nite width mean field limit, which predicts a universal
exponent of β = 1 [54, 39]. This motivates novel
theoretical descriptions of finite width mean field
learning networks at late time which can capture task-dependent exponents.

H Overview of Finite Width Corrections to Feature Learning Networks

In this section we review some basic ideas from the mean field theory of feature learning neural
networks. We first describe the predictions that mean field theory makes about infinite width networks
before describing finite size corrections to the dynamics of learning. To eliminate unnecessary
complexity, we will focus on MLP layers, but these arguments can be easily extended to CNN and
self-attention layers as well. We start by defining a MLP in a parameterization equivalent to µP

fµ =
1

N
wL · ϕ(hℓ

µ) , h
ℓ+1
µ =

1√
N

W ℓϕ(hℓ
µ) , h

1
µ =

1√
D
W 0xµ. (11)

We will consider these networks trained from a random Gaussian initialization of the weights so
that θ = Vec{wL, ...,W 0} follows θ ∼ N (0, I) at initialization. This network is then trained with
some gradient based optimizer, leading to dynamical predictions fµ(t) and dynamical preactivations
hℓ
µ(t). Because of the random initialization of weights, the outputs of the network and the precise

preactivations are random variables. However, at infinite width N → ∞, a dramatic simplification of
the dynamics occurs.
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H.1 The Infinite Width/Mean Field Limit

The predictions fµ(t) and internal representations of infinite width limit of neural networks admit a
description in terms of non-random initialization-independent dynamical feature kernels Φℓ

µν(t, s)

and gradient kernels Gℓ
µν(t, s) defined as

Φℓ
µν(t, s) =

1

N
ϕ(hℓ

µ(t)) · ϕ(hℓ
ν(s)) , G

ℓ
µν(t, s) =

1

N
gℓ
µ(t) · gℓ

ν(s), (12)

where µ, ν index data points and t, s index training time and gℓ
µ(t) = N

∂fµ
∂hℓ are back-propagated

gradient signals [12, 14]. Further, all preactivation vectors hℓ
µ(t) ∈ RN have entries that become iid

draws from a (potentially non-Gaussian) single site density p(h), which converges as

1

N

N∑
i=1

δ(h− hi) → p(h), (13)

which should be understood in terms of integration of these densities against test functions. At infinite
width, the sums over neurons in a layer can be replaced by deterministic integrals over this single site
density Φℓ

µν(t, s) =
∫
p(hℓµ(t), h

ℓ
ν(s))ϕ(h

ℓ
µ(t))ϕ(h

ℓ
ν(s))dh

ℓ
µ(t)dh

ℓ
ν(s).

H.2 Finite Width Effects

At finite width, the internal kernels {Φℓ
µν(t, s), G

ℓ
µν(t, s)} and predictions fµ(t) of the model become

initialization and width-dependent and deviate from their mean field dynamics. For Gaussian random
initialization of the weights of the network, the predictions and kernels fluctuate (from init to init)
with variance that scales asymptotically like Θ(1/N) for width N (or 1/dmodel for transformer)
[39]. Further, the ensemble averaged values for the predictions ⟨fµ(t)⟩ and kernels

〈
Φℓ

µν(t, s)
〉

differ
asymptotically from their infinite width values by Θ(N−1). Both of these two leading order effects
can influence the expected (train or test) loss of the model. At fixed width and late training time,
finite size effects beyond leading order can accumulate and become relevant, however theory predicts
that any observable average at width N admits an asymptotic series in powers of N−1 [39].

H.2.1 Trainability at Finite Size

The Θ(N−1) correction to feature and gradient kernels can lead to non-trivial corrections to the
loss dynamics. Working in continuous time, we can define the neural tangent kernel (NTK) as
Kµν(t) =

∑
ℓG

ℓ+1
µν (t, t)Φℓ

µν(t, t), where base cases are Φ0
µν(t, s) =

1
Dxµ ·xν and GL+1

µν (t, s) = 1.
Following the approximation to online dynamics with MSE loss in Section 4, we consider a gradient
flow on the average dynamical NTK

d

dt
∆(t) = −⟨K(t)⟩∆(t) =⇒ ∆(t) = T exp

(
−
∫ t

0

ds ⟨K(s)⟩
)
y, (14)

where T is the time-ordering operator. We now consider the leading correction to the average NTK
around infinite width ⟨K(t)⟩ = K∞(t) + 1

NK1(t) +Θ(N−2). With this correction, we see that the
dynamics of errors ∆

∆(t) = T exp

(
−
∫ t

0

dsK∞(s)− 1

N

∫ t

0

dsK1(s) + Θ(N−2)

)
y. (15)

The fact that the 1
NK1 correction is integrated over time and placed in the matrix exponential

indicates that small corrections to NTK dynamics can lead to large dynamical amplification of logit
corrections. This fact was pointed out in another work [39] which tried to motivate a study of
perturbation theory in logarithms of the transition matrix logT (t) defined as

d

dt
T (t) = −⟨K(t)⟩T (t) , T (0) = I , R(t) = logT (t). (16)

The solution to this can be used to construct the errors at a later time ∆(t) = exp (R(t))y.
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I The empirical sufficiency of ensembling only a few times

Our experiments rely on ensembles of small numbers of neural networks to analyze the bias compo-
nent of the loss as it varies across width. One can show the marginal value of adding a network to
the ensemble decreases with the ensemble size. Figure 18 illustrates this in the setting of ResNets
trained on ImageNet. In Figure 18(a), we show that the reduction in variance over initializations due
to ensembling rapidly plateaus as soon as the ensemble size reaches E = 3. In Figure 18(b), we show
that the loss curves as function of width are very similar for ensemble sizes above 3. Indeed, the
green, orange, and red curves — corresponding to E ∈ {3, 4, 5} — are nearly identical.

Lastly, Figure 18(c) confirms that the initialization variance plays a negligible role in the scaled
RMSE distances between true logits across width, even for single draws of networks trained on a
small number of examples. The dashed lines in this Figure correspond to scaled RMSE distances
between networks of the same widths as their solid-line companions, albeit with weights initialized to
zero. The ordering and scale of the curves are comparable, and in fact nearly identical for the curves
corresponding to N ∈ {128, 256} compared to N = 512.
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(a) Test loss vs. # ensembles
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(b) Test loss vs. width
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(c) Test loss for subtracted networks

Figure 18: ResNet-18/ImageNet loss as a function of a) ensemble size or b) width after 2 epochs of
training with heavy data augmentation. c) Comparing original network with a network whose output
has been set to zero at the start of training.

J Offline Training

Figure 19 depicts the loss curve for a ConvNeXt-T (tiny) model trained on ImageNet in the typical,
offline setting — where data is encountered repeatedly across many epochs. As the networks overfit
the training data — in Figure 19, beyond 40,000 training steps or five epochs — the loss curves
diverge dramatically for different-width networks. Width consistency subsequently erodes.
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Figure 19: Consistency of loss curves across widths in the beginning and separation as loss becomes
sufficiently small in offline learning.
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K Use of Compute

For most experiments, we used Nvidia A100 SXM4 40GB and 80 GB GPUs on an academic cluster.

For the Wikitext-103 tasks, each width included 4 ensembles loaded onto an A100 GPU that ran for
a range between 1 to 3 days. For each sweep over widths this corresponds to about 8 A100-days.
Accounting for sweeps over different sequence lengths, optimizers, and parameterizations, this
corresponds to about 50 A100-days.

All MLP tasks, including the calculation of empirical NTKs and their spectral properties were done
in 15-30 minute Colab sessions using the basic GPUs provided.

The CIFAR-10 ResNet experiments in Figure 10 were done using a total of less than 1 A100-day of
compute across all widths and ensembles.

The ImageNet ResNet experiments vectorize training over between one to four same-width neural
networks on one A100 GPU. Each experiment training a collection of networks for 30 epochs takes
between one to three A100-days. Overall, these experiments expended roughly 30 A100-days.

For the CIFAR-5m experiments in Figure 2 and 3, across all widths, it required a few hours of A100
GPU. For Figure 7 and 8, as these were ensembled across multiple runs, these required close to 1-2
days of A100-GPUs. Figure 6a was just run for a few 100 steps of the training, so didn’t use much
compute power.
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