
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRADUAL STRUCTURED PRUNING FOR EFFICIENT
NETWORK SCALING IN IMAGE-BASED DEEP REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling neural networks in image-based deep reinforcement learning often fails
to improve performance. While it was shown that unstructured pruning of scaled
networks can unlock performance gains, we find that refining the architecture of
the scaled network yields even greater improvements. However, scaled networks
in deep reinforcement learning present a practical challenge: the increased com-
putational demands can hinder deployment on embedded devices, as commonly
encountered in robotics applications. To address this, we propose a novel gradual
group-structured pruning framework that allows performance gains through scal-
ing while maintaining computational efficiency. Our method preserves the net-
work’s functional integrity of inter-layer dependencies in groups, such as residual
connections, while seamlessly integrating with standard deep reinforcement learn-
ing algorithms. Experiments with PPO and DQN show that our approach sustains
performance while significantly reducing inference time, making it the preferred
approach for resource-limited deployment.

1 INTRODUCTION

Recent works on deep reinforcement learning (DRL) have revealed that apart from algorithmic im-
provements, considerable performance increases can come from the network architecture and train-
ing approach of the used deep neural networks (DNNs) themselves. Notably, Cobbe et al. (2020);
Schwarzer et al. (2023); Obando-Ceron et al. (2024a) have shown that the Impala-CNN model (Es-
peholt et al., 2018), a 15-layer ResNet, outperforms the widely used convolutional neural network
(CNN) model from Mnih et al. (2015) substantially. However, raising the parameter count of DNNs
in DRL does not necessarily lead to improved performance (Schwarzer et al., 2023), as opposed
to other areas in deep learning. Obando-Ceron et al. (2024a) provide a new perspective on scal-
ing1 DNNs in DRL by using unstructured magnitude pruning to increase sparsity gradually during
training, which leads to a performance boost for Q-network-based DRL in Atari games.

Network pruning is a widely used technique in other deep learning fields , e.g., image classification
(Vadera & Ameen, 2022), originally aimed at reducing DNNs’ memory footprint and inference time
but also known to frequently enhance robustness and generalization (Bartoldson et al., 2020). Its
use in DRL may introduce advantageous regularization (Obando-Ceron et al., 2024a) but poses a
unique challenge due to its dynamic training, requiring methods that maintain training stability over
time. Unstructured pruning zeros out individual weight entries without considering their structural
arrangements, such as filters and channels. This is in contrast to structured pruning, where such
structures are entirely removed, directly reducing computational operations (Luo et al., 2017; He &
Xiao, 2023) but leading potentially to high training instability.

We show in the following preliminary experiment that the benefits of network scaling in image-
based DRL can also be unlocked by simple architectural refinements of the Impala-CNN, rendering
the use of unstructured pruning from Obando-Ceron et al. (2024a) for performance increase obsolete.
However, it opens the question of leveraging pruning in image-based DRL for the original motivation
of lowering computational requirements, which is of high practical appeal for scaled DNNs.

1Scaling the width by increasing the number output channels per Conv2D layer by a factor τ .

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0M 5M 10M 15M 20M 25M
Steps

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

Sc
or

e

Training Dense Impala (τ = 1)
Dense Impoola (τ = 1)
Dense Impala (τ = 3)
Dense Impoola (τ = 3)
Unstructured Impala
(τ = 3, ζF = 0.8)
Unstructured Impoola
(τ = 3, ζF = 0.8)

0M 5M 10M 15M 20M 25M
Steps

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

Sc
or

e

Testing Dense Impala (τ = 1)
Dense Impoola (τ = 1)
Dense Impala (τ = 3)
Dense Impoola (τ = 3)
Unstructured Impala
(τ = 3, ζF = 0.8)
Unstructured Impoola
(τ = 3, ζF = 0.8)

Figure 1: Effect of scaling the Impala and Impoola-CNN model’s width from τ = 1 to τ = 3, evaluated on
a subset of four ProcGen environments using PPO. Normalized return scores during training are shown for
training levels (left) and testing levels (right). Gradual unstructured magnitude pruning (Obando-Ceron et al.,
2024a) results are displayed for final target pruning rates ζF of 0.8. Appendix B.1 contains further results.

Preliminary Experiment on Network Scaling: We base this preliminary experiment on the Proc-
gen benchmark (Cobbe et al., 2020), which is considered to challenge generalization better than
Atari games. Figure 1 illustrates that scaling the width of the original Impala-CNN architecture to
τ = 3 does not result in performance improvements. Consistent with the findings of Obando-Ceron
et al. (2024a), we observe that unstructured pruning of scaled Impala-CNNs enhances performance
also for proximal policy optimization (PPO) within the Procgen environment. However, we demon-
strate that scaling gains can also be realized by simply adding a Pooling layer before the Flatten layer
of the Impala-CNN in combination with learning rate scheduling and weight decay–we name this
architecture Impoola-CNN. Note that classical ResNet models (He et al., 2016) also have this Pool-
ing layer; the ablation in Figure B.4 shows that using one is crucial. The Impoola-CNN achieves
significantly greater improvements than the use of unstructured pruning for scaled Impala-CNNs.
Most notably, when using the scaled Impoola-CNN, the benefits of unstructured pruning vanish,
even decreasing performance in training levels. Further results in Appendix B exhibit similar trends
for deep Q-networks (DQNs) and include an additional supervised learning example. Thus, we en-
courage using the Impoola-CNN model for image-based DRL as it unlocks performance gains by
network scaling directly, without the need for unstructured pruning.

Structured Pruning for Efficient Scaling: However, the use of scaled network architectures ren-
ders new practical problems in the form of increased memory footprint and computational require-
ments. This has particular implications for many DRL applications, e.g., robotics (Funk et al.,
2022) or autonomous driving (Trumpp et al., 2023), as such applications are eventually deployed to
resource-limited embedded devices with high control frequency requirements. This situation brings
us back to the original notion of pruning to reduce computation requirements. As unstructured prun-
ing only sets weights to zero, it often does not translate to a reduction in real-world inference times
(Cheng et al., 2024). Structured pruning can be seen as a remedy since complete structures are re-
moved from the DNN, thus reducing run times straight away (Luo et al., 2017). The feasibility of
structured pruning in image-based DRL has been unexplored yet despite its practical appeal.

This paper establishes a framework for gradual group-structured pruning in image-based DRL, de-
signed to reduce the computational requirements of scaled DNNs while closely matching the per-
formance of dense baselines. To this end, we center our work on the Impoola-CNN since it not
only outperforms the Impala architecture but also achieves greater efficiency with a reduced pa-
rameter count. Our study is based on the Procgen Benchmark (Cobbe et al., 2020) as this is the
ideal evaluation platform to assess generalization, but we provide a supplementary experiment for
Atari games. We discuss practical aspects such as fine-tuning capabilities and noise robustness and
measure single-sample inference time, an aspect often overlooked by other works. Our main analy-
sis uses PPO as this is the common baseline algorithm for the Procgen Benchmark but we provide
additional results for DQN to cover a Q-network-based method.

Our main contributions are the following:

• We identify architectural limitations in the original Impala-CNN and propose the improved
Impoola-CNN model that unlocks performance gains through network scaling.

• Our gradual group-structured pruning framework accounts for inter-layer dependencies and
enables performance gains through scaling while maintaining computational efficiency.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We provide extensive experiments comparing various pruning methods, including mea-
sured inference times on diverse platforms. Our analysis makes a strong practical case for
our group-structured method as it meets the performance of other methods while lowering
compute demand substantially.

• The used source code will be made publicly available.

2 RELATED WORK

Neural Network Pruning: Neural network pruning is a technique to reduce compute time and/or
memory size of a DNN by removing its weights, ideally without a substantial loss of accuracy
(Han et al., 2016). Networks can be pruned in single or multiple steps with subsequent fine-tuning
after training or gradually over its course (Cheng et al., 2024). Structured pruning (He & Xiao,
2023) leads to universal speed-ups as complete structures, e.g., filters or neurons, are removed. As
single weights are set to zero in unstructured pruning, inference speed is not necessarily reduced but
only theoretical FLOPS (Luo et al., 2017). Specialized hard- and software, which may improve the
computation of such sparse kernels, e.g., semi-structured (2:4) patterns (Mishra et al., 2021), makes
it slowly into the mainstream. Modern network architectures, e.g., ResNets of Transformers, pose
complex structural dependencies that must be captured for correct pruning (Fang et al., 2023).

Sparsity in Deep Reinforcement Learning: Compared to computer vision (CV), exploring sparsity
and pruning in DRL is a relatively recent effort. Livne & Cohen (2020) demonstrated that it is
feasible to sparsify DRL agents during training without performance degradation. Various methods
that sparsify agents during training are discussed by Yu et al. (2020); Tan et al. (2023); Sokar et al.
(2021); Su et al. (2024). However, it was revealed by Graesser et al. (2022) that magnitude pruning
during training of DRL agent with a gradually increasing target sparsity outperforms such methods.

Scaling in Deep Reinforcement Learning: The subsequent work of Obando-Ceron et al. (2024a)
further investigates the effect of gradual unstructured pruning. When pruning a scaled Impala-CNN,
they discover magnified performance in Atari for Q-network-based DRL. However, performance
stays mostly the same for soft actor-critic (SAC) and PPO with dense networks in Mujoco, assum-
ably because Mujoco is not image-based. It was shown that training can also be stabilized by using
mixtures of experts to scale the Dense layer of the Impala-CNN (Obando-Ceron et al., 2024b), or by
incorporating auxiliary tasks during training (Farebrother et al., 2023).

Generalization in Deep Reinforcement Learning: Zhang et al. (2018) reveal that DRL agents can
memorize a non-trivial number of training levels, even with completely random rewards. Similar
experiments in (Cobbe et al., 2019) quantify that the use of the same environment for both training
and testing results in high overfitting of DRL agents. They show that well-known techniques from
supervised learning, e.g., L2 regularization, batch normalization, and data augmentation, reduce
overfitting. However, only slightly better test performance is achieved when combining them than
using them individually. Overfitting in DRL may be associated with a loss of network plasticity
(Nikishin et al., 2022; Sokar et al., 2023). (Cobbe et al., 2020) introduces the Procgen Benchmark
with various procedurally generated environments to measure sample efficiency and generalization.

3 BACKGROUND

3.1 DEEP REINFORCEMENT LEARNING

The iterative optimization in model-free DRL is formalized by a Markov decision process (MDP)
with tuple (S,A, T ,R, γ). Here, S and A represent the state and action spaces, respectively, while
the transition function T : S × A → P(S) defines the probability distribution over the next state
given the current state and action. The reward function is defined as R : S × A → R and γ is a
discount factor. The mapping π : S → P(A) is called a (stochastic) action policy. A DNN with
weights θ parameterizes the policy πθ in DRL. The optimal policy π∗

θ maximizes the expected return
Vπθ

(s) = Eπθ
[
∑∞

t=0 γ
tR(st, at) | s0 = st].

Q-Network Methods: These DRL methods are typically based on an estimate of the q-value func-
tion Qπ(s, a) := Eπθ

[
∑∞

t=0 γ
tR(st, at) | s0 = st, a0 = a]. This function can be learned itera-

tively by temporal difference learning (Sutton, 1988) and bootstrapping the current q-value esti-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

mate. DQN (Mnih et al., 2015) implements this by training a DNN with loss function L(θ) =

E(s,a,r,s′)∼D

[
(r + γmaxa′ Q(s′, a′; θ−)−Q(s, a; θ))

2
]

where transitions (s, a, r, s′) ∼ D are

sampled from the experience replay buffer D and by using a target network with θ− as delayed
copies of θ. Actions are obtained greedily by a∗ = argmaxa Q(s, a; θ). The performance of vanilla
DQN can be vastly improved by incorporating techniques such as double q-learning (Van Hasselt
et al., 2016), multi-step rewards (Sutton, 1988), prioritized replay buffer (Schaul et al., 2015), and
distributional q-learning (Bellemare et al., 2017), eventually forming Rainbow (Hessel et al., 2018).

Actor-Critic Methods: In addition to a critic network, e.g., V (s;ϕ) that estimates the state value,
the action policy is defined as a dedicated actor network that can be directly optimized towards an
optimization goal. PPO (Schulman et al., 2017) is an on-policy DRL method, where the weights θ
are updated with respect to the advantage function A(s, a) = Q(s, a) − V (s). The generalized ad-
vantage estimate (GAE) (Schulman et al., 2015) is the common choice to estimate A(s, a). The loss
(clip version) of the PPO actor for a transition tuple e = (s, a, r, s′) of a trajectory τ = {e, e′, ...}
is given by L(θ) = Et [min (r(θ)A, clip(r(θ), 1− ϵ, 1 + ϵ)A)]. Here, r(θ) = πθ(a|s)

πθold (a|s)
is the prob-

ability ratio between the old and new policy, where the hyperparameter ϵ limits their deviation.

Impala-CNN: The Impala-CNN was introduced by Espeholt et al. (2018) as a 15-layer ResNet
model for encoding image inputs. The architecture combines two building blocks. ConvSequence
Sj blocks consist first of a Conv2D layer with MaxPooling and ReLU activation and then 2 sub-
sequent ResBlock blocks as Sj : {Cj −→ P −→ R0,j −→ R1,j}; the ResBlock blocks are based
on two Conv2D layers with ReLU activation and a residual connection Ri,j : {C0,i,j −→ C1,i,j}.
The vanilla Impala-CNN stacks three ConvSequence blocks {S0, S1, S2} with each block having
the same amount of convolutional output channels {cout

0 , cout
1 , cout

2 } = {16, 32, 32}; scaled network
versions multiply this configuration by a width scaling factor τ . The original implementation by
Espeholt et al. (2018) uses a Linear layer of 256 neurons as the last encoder layer.

3.2 NEURAL NETWORK PRUNING

Assume an initial DNN fθ with parameters θ = {w1, w2, . . . } of a parameter space H and weight
tensors w ∈ RN×M×.... Let c(f) be a counting function that counts the number of parameters in a
DNN. We then define an arbitrary pruning operation as a function

p : fθ → fθ′ with c(fθ) ≥ c(fθ′) and θ′ ⊆ θ; (1)

This operation leads to the pruned network fθ′ with parameters θ′ and sparsity ζ = 1− c(fθ′)
c(fθ)

.

Importance Score: The selection of which parameters to prune is based on a score function that
estimates the importance of each parameter ι : H → R. This score defines the order of parameters
to be pruned, i.e., w1,1 will be pruned first when ι(w1,2) > ι(w1,1). Various criteria are discussed in
the literature (Cheng et al., 2024), e.g., weight magnitude, saliency, and Taylor expansions; random
weights selection often meets their performance (Li et al., 2022; Liu et al., 2022).

Unstructured Pruning: Specific entries in w are set to zero, but the overall tensor shape is kept.
dim(w′) = dim(w). Inference time is not necessarily reduced.

Structured Pruning: Full structures of the weight matrix w are removed, reducing the size of the
weight matrix. For example, pruning of a single output channel of a Conv2D layer with a weight
tensor shape2 of {48, 32, 3, 3} leads to a new tensor with shape {47, 32, 3, 3}.

Gradual Pruning: Gradual pruning in DRL (Graesser et al., 2022) involves progressively removing
parameters from the network throughout the training process by applying a series of pruning steps
pF (. . . (p2(p1(f)))). Typically, this process follows a predefined schedule with a target sparsity ζt,T
at each pruning step t to define the number of parameters to be pruned. The pruning schedule begins
after a warmup training phase at step tstart and concludes with the final pruning operation at step tend.
The final target sparsity ζF represents the fraction of the remaining parameters. A commonly used
gradual pruning schedule is a third-order polynomial with tstart and tend set to 20% and 80% of the
total training steps, respectively (Graesser et al., 2022; Obando-Ceron et al., 2024a).

2The weight matrix of a Conv2D layer has dimension {Cout, Cin,K,K} with the number of out and in
channels Cout and Cout, respectively, and a kernel of shape K ×K.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Structured Pruning

Group-Structured Pruning

Unstructured Pruning

+ =
9 9 9 4
-5 5 3 5
1 8 7 -3
8 -1 4 4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+ =

+ =

ResBlock0,0

Input

Conv2d 8 2 7 3
0 1 -5 7
3 1 9 -4
1 -7 2 3

1 7 2 1
-5 4 8 -2
-2 7 -2 1
7 6 2 1

1 7 2 1
-5 4 8 -2
-2 7 -2 -4
7 6 2 1

Conv2d Conv2d

x

Output

...

Residual connection

RGB image

ResBlock0,1

1 7 2 1
-5 4 8 -2
-2 7 -2 1
7 6 2 1

Figure 2: Visualization of the effect of pruning techniques on the Impoola/Impala-CNN’s ResNet architecture.
Due to the residual connection, there is a dependency between Conv2D layers. Here, the output channels
(blue) of the last Con2D layer must have the same dimension as the output channels of the Con2D layer (red)
before the ResBlock. Unstructured and naive structured pruning does not account for this when pruning the
first Con2D layer (red). Only group-structured pruning removes the same channels and corresponding filters
correctly, including the following layer’s unnecessary filters (gray).

3.3 DEPENDENCY GRAPH

Weight tensors w in DNNs exhibit inter-layer dependencies, e.g., the output dimension of one layer
defines the input dimension of the next. Consequently, pruning parameters in one layer may neces-
sitate further pruning in the dependent layers. These group-structured parameters form a graph that
models the dependencies between network layers (Fang et al., 2023). While building such a depen-
dency graph for networks composed solely of linear layers is straightforward, modern architectures
with residual connections or attention layers introduce additional complexity, requiring automated
methods. Fang et al. (2023) propose DepGraph, a generic framework that uses graph traversal to
identify the dependency graph D and its dependencies. A parameter group g = {w1, w2, ·} is a
subgraph of D and must be pruned simultaneously to maintain the network’s functional integrity.

4 METHODOLOGY

As outlined in Section 1, our preliminary experiments reveal that our proposed Impoola-CNN model
leads to an overall performance boost, but gains attributed to unstructured pruning vanish. Thus,
we introduce an approach using structured pruning instead with the motivation to reduce compute
time but without degrading performance. Our gradual group-structured pruning framework can be
plugged into existing DRL algorithms easily; we show this for PPO and DQN agents. Our method
accounts for dependencies of the Impoola/Impala-CNN encoders, which is crucial for performance.

4.1 IMPOOLA-CNN

In contrast to the Impala-CNN (Espeholt et al., 2018), the Impoola-CNN simply adds an Average-
Pooling layer after the last Con2D layer as listed in Table E.5. The overview in Appendix E shows
that for the Impala model, 64.19 % of the weights are located in the encoder’s last Linear layer,
while weights in the Impoola-CNN are equally distributed over the network with 10.1 % in the last
layer. We speculate that this balanced distribution, specifically reducing the number of Linear layer
weights, contributes to the significant performance improvements of the Impoola-CNN.

4.2 GRADUAL GROUP-STRUCTURED PRUNING

Dependency Graph: We use a dependency graph (Fang et al., 2023) to correctly identify parameter
groups {g1, g2, . . . } in the DNN that should be pruned simultaneously. Figure 2 visualizes the need
to correctly account for dependency introduced by the residual connection in the Impala/Impoola-
CNN model. Opposed to our used group-structured pruning method, unstructured and naive struc-
tured pruning does not account for such dependencies, altering the nature of the DNN’s residual
connections. We define our pruning approach as the function p(g,N) per group g with N as the
number of structures to be pruned. The pruning operation p process groups g = {w1, w2, . . . } and
assigns importance scores ι(w1, w2, . . .) for the common tensor dimension of the group.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Group Importance Scoring: Following other works (Graesser et al., 2022; Obando-Ceron et al.,
2024a), we define the weight magnitude , i.e., L1-norm, as scoring function ι(w) = ||w||1 to be
used along the common tensor dimension independently for each group. The final importance score
of each structure in g is obtained by normalizing ι(w) first for each structure’s weight tensor. Next,
we take the mean of these local scores in group g as a reduction function to obtain the final scores,
which creates an aggregated score vector for the group’s common tensor dimension. This reduction
means that our method takes a neuron’s intra-layer dependencies into account for its score.

Gradual Pruning Schedule: We utilize the same third-order polynomial pruning scheme with
tstart = 20% and tend = 80% as done in other works (Graesser et al., 2022; Obando-Ceron et al.,
2024a). At each time step during training, the current sparsity of all layers li is measured as ζli . The
number of structures to be pruned is then calculated as

Ni = ⌊(ζt − ζli) · ||wli ||init
0 ⌋, (2)

where Ni represents the number of structures to be pruned, and |wli ||init
0 is the initial number of

structures in layer li. Opposed to unstructured pruning where single weight entries can be removed,
using Equation 2 often results in no structures being pruned at certain steps due to the floor operator.
However, when a structure is pruned, it leads to the removal of many parameters at once. For
example, pruning an output channel of a Conv2D layer with 48 input channels and a 3x3 kernel
results in the simultaneous removal of 432 parameters. Thus, unstructured pruning allows for more
gradual and fine-grained reductions, as illustrated in Figure C.11 and C.13, respectively.

4.3 IMPLEMENTATION DETAILS

Deep Reinforcement Learning Agents: We use PPO and DQN agents in this work. Our im-
plementations are derived from CleanRL (Huang et al., 2022) for PyTorch (Paszke et al., 2017).
Hyperparameters are listed in Appendix D. The used DQN agent is extended by double q-learning
(Van Hasselt et al., 2016), multi-step rewards (Sutton, 1988), and prioritized replay buffer (Schaul
et al., 2015). We use the framework from Fang et al. (2023) to derive the dependency graph D,
allowing us to deploy the correct structured pruning of inter-layer dependencies. The unstructured
and naive structured pruning methods use weight masks from PyTorch (Paszke et al., 2017).

Network Architecture: We deploy the Impala/Impoola-CNN encoders with an output feature di-
mension of 256 in all experiments. We set τ = 3 for all experiments unless otherwise specified,
as suggested by other works (Obando-Ceron et al., 2024a). The CNN encoder is shared between
the actor and critic for PPO. Given an image input of 64x64 pixels, the Impala and Impoola-CNN
consists of 2,450,640 and 976,080 trainable parameters for PPO, respectively.

Regularization: Our Impoola-CNN model uses a weight decay of 1e−5. Linear learning rate an-
nealing rate is used for the PPO agent, which greatly improves performance. It was shown by Li
et al. (2019) that as learning rate annealing may allow for higher initial learning rates, generalization
can be improved. We provide an ablation study on this in Section 5.4. No learning rate schedule is
used for DQN as this reduced performance in environments with sparser reward; see Appendix B.2.

5 EXPERIMENTS

Unless otherwise stated, the results presented are based on the Impoola-CNN model, as we showed
its superiority against the Impala-CNN. The experiments are conducted for a subset of four environ-
ments for the Procgen Benchmark (Cobbe et al., 2020); see Appendix A for their description. Our
evaluation strongly focuses on measuring the generalization of DRL agents, for which Atari games
are unsuitable. To keep compute requirements reasonable, results are based on the easy game setting
with the configuration as recommended by Cobbe et al. (2020). The presented scores are median
results and 95-% confidence intervals, using 5 seeds for each environment per experiment and 2,500
evaluation episodes. We report collected returns as normalized scores S according to Equation A.1,
where 1.0 corresponds to an optimal policy and 0.0 is equivalent to a random one.

Evaluation Tracks: We provide an extensive evaluation by introducing the following tracks:

1. Generalization: The agent is trained for 25M interaction steps on 200 training levels but
then evaluated on the full distribution as testing levels, thus evaluating generalization.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Average final normalized scores (return) to compare pruning methods for PPO with a scaled Impoola-
CNN of scale τ = 3. Total training times for a single NVIDIA A100 PCIe 40GB GPU. An [↑] indicates higher
values mean better performance. We highlight each of the best dense and sparse results in bold font.

ζF Method STraining [↑] SGeneralization [↑] SFine-tuning [↑] S
σ=5|σ=15
Robustness [↑] Training [↓]

- Dense (w/o Impoola) 0.39±
0.02
0.02 0.26±

0.02
0.02 0.37±

0.02
0.02 0.25±

0.03
0.02 | 0.23±

0.01
0.02 3h:04

- Dense 0.82±
0.03
0.02 0.60±

0.03
0.04 0.70±

0.04
0.02 0.60±

0.03
0.04 | 0.56±

0.01
0.03 2h:24

- ReDo 0.85±
0.02
0.01 0.63±

0.02
0.02 0.72±

0.02
0.02 0.59±

0.02
0.03 | 0.59±

0.02
0.03 3h:32

0.8 Distillation BC 0.73±
0.01
0.03 0.51±

0.0
0.01 - 0.50±

0.01
0.01 | 0.50±

0.01
0.01 3h:59

0.8 Unstructured 0.74±
0.04
0.06 0.57±

0.02
0.02 0.61±

0.02
0.06 0.57±

0.02
0.02 | 0.55±

0.01
0.01 2h:25

0.8 Naive Structured 0.59±
0.01
0.02 0.51±

0.01
0.01 0.54±

0.02
0.02 0.51±

0.02
0.01 | 0.51±

0.02
0.02 2h:23

0.8 Group-Structured 0.72±
0.03
0.04 0.57±

0.02
0.02 0.61±

0.02
0.05 0.57±

0.02
0.01 | 0.57±

0.01
0.01 1h:37

0M 5M 10M 15M 20M 25M
Steps

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

Sc
or

e

Training (τ = 3) Dense (w/o Impoola)
Dense
ReDo
Unstructured
(ζF = 0.8)
Naive Structured
(ζF = 0.8)
Group-Structured
(ζF = 0.8)

0M 5M 10M 15M 20M 25M
Steps

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

Sc
or

e

Testing (τ = 3) Dense (w/o Impoola)
Dense
ReDo
Unstructured
(ζF = 0.8)
Naive Structured
(ζF = 0.8)
Group-Structured
(ζF = 0.8)

Figure 3: Normalized score (return) during training PPO using our Impoola-CNN. Evaluated on training (left)
and testing levels (right) every 2.5M steps for 2,500 episodes.

2. Fine-tuning: A similar setting to generalization with 200 initial training levels. After train-
ing for 25M initial steps, the agent is fine-tuned for another 1M steps on 100 additional
levels. Performance is then evaluated only on these 100 additional levels.

3. Noise Robustness: We follow Graesser et al. and use input perturbation with sampled noise
x ∼ N (0, σ) with σ ∈ [5, 15] add to each pixel in the observation space as an integer.

Baseline Methods: We compare our group-structured pruning framework with unstructured prun-
ing (Obando-Ceron et al., 2024a) and naive structured pruning, which does not account for inter-
layer dependencies. Further results are given for a distillation method that uses behavior cloning
(BC) with a dataset of 10M examples collected with the trained dense model to distill it into a
reduced-size network, equivalent to the pruned networks. Additionally, we include results for ReDo
(Sokar et al., 2023), which does not remove but re-invoke neurons that do not contribute to the
model’s output, so it can be interpreted as inverse pruning.

5.1 RESULTS FOR PPO

Training and Generalization: Our first experiment in Figure 3 evaluates our group-structured prun-
ing method for PPO during training for the generalization track. Although both unstructured and
group-structured pruning methods result in some performance loss on training levels, their general-
ization capabilities degrade only slightly compared to the dense baseline. The results on the training
levels indicate that group-structured pruning is more invasive during the active pruning phase (from
5M to 20M steps) than unstructured pruning. However, it recovers the performance loss in the
final 5M steps once pruning is completed. In contrast, the naive structured pruning approach ex-
hibits overall degraded performance, stressing the importance of correctly handling dependencies,
as achieved with our group-structured pruning method. Interestingly, Table 1 shows that the distil-
lation BC method suffers from low generalization performance, proving the advantage or gradual
pruning. The ReDo method exhibits the best final performance for both training and generalization.
This challenges the efficacy of unstructured pruning, suggesting that reinitializing dormant neurons
may be more beneficial than simply removing weights. Similarly, this finding also supports the
case for group-structured pruning: while this method only causes a slight generalization degrada-
tion compared to Dense and ReDo, it offers the significant advantage of reduced training time as

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5M 10M 15M 20M 25M

0.1

0.2

0.3

0.4

bigfish

5M 10M 15M 20M 25M

0.2

0.4

0.6

starpilot

5M 10M 15M 20M 25M

0.0

0.2

0.4

0.6

dodgeball

5M 10M 15M 20M 25M

0.0

0.1

0.2

0.3

0.4

bossfight

Testing (τ = 3)

Steps

N
or

m
al

iz
ed

Sc
or

e

Dense Unstructured (ζF = 0.8) Group-Structured (ζF = 0.8)

Figure 4: Normalized scores (return) per environment during DQN training, evaluated on test levels to measure
generalization. The aggregated scores are visualized in Figure C.12.

Table 2: Latency times in ms across compute devices (see Appendix F) for the presented pruning algorithms
using the Impoola-CNN model (τ = 3). Batch size 1 mimics real-world inference applications of DRL.

Device Batch Size 256 Batch Size 1

Dense Unstructured Group-Structured Dense Unstructured Group-Structured

ζF =0.8 ζF =0.9 ζF =0.8 ζF =0.9 ζF =0.8 ζF =0.9 ζF =0.8 ζF =0.9

High-end GPU 11.4 11.4 11.4 6.3 4.1 1.0 1.0 1.0 0.8 0.8
Workstation CPU 337.4 342.7 342.7 144.7 63.3 3.0 3.2 3.2 2.6 1.4
Embedded GPU 383.9 383.9 383.9 266.5 165.3 6.8 6.8 6.8 6.3 6.3
Embedded CPU - - - - - 32.5 27.6 27.4 14.0 9.6

the network gets gradually pruned during training. Additionally, it can be seen that our Impoola-
CNN accelerates Dense training over the Impala-CNN, making a case for the combined use with
group-structured pruning.

Fine-tuning and Robustness: Additional results for the fine-tuning and robustness tracks are pre-
sented in Table 1. Dense and ReDo methods achieve high fine-tuning scores, likely due to their
strong initial generalization and access to a larger hypothesis space. This confirms that the ar-
chitectural improvements of the Impoola-CNN are effective. Although pruned networks improve
performance when fine-tuned on additional levels, their gains are more limited in comparison. How-
ever, the pruned networks demonstrate superior robustness under noisy observations, outperforming
Dense and ReDo. This increased robustness may result from the reduced parameter count in pruned
networks, which limits flexibility but may control internal activation.

5.2 RESULTS FOR DQN

We provide another study for DQN. As shown in Figure 4, we observe a similar trend to PPO,
where the Dense Impoola-CNN constitutes the consistent performance across environments. No-
tably, group-structured pruning is slightly outperformed by unstructured pruning. This may be at-
tributed to the higher frequency of gradient updates in DQN, which favors the smoother pruning
schedule of unstructured pruning, where single weights are removed incrementally. In contrast,
group-structured pruning involves fewer but larger pruning steps, resulting in a more step-like prun-
ing scheme. Further analysis of Figure 4 reveals that the pruning methods underperform primarily
in the Dodgeball and Bossfight environments. In the Bossfight environment, the DQN agent appears
not to have learned a strong policy by the time pruning starts at 5M steps. We conclude that initiating
pruning when the Dense agent’s performance is still unstable can induce training instability, leading
to further deterioration in performance. Appendix C contains the results on training levels for DQN.

5.3 INFERENCE TIMES

We present the measured inference times for the PPO actor using the Impoola-CNN model in Table
2. For a batch size of 256, our group-structured pruning method results in a significant reduction in
inference times across all devices. This reduction is particularly beneficial for accelerating training
or enabling on-board fine-tuning on embedded devices with batched training samples. In the evalu-
ation for single-sample inference, it can be seen that the reduction on GPU platforms is less than for

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.50 0.55 0.60 0.65
Final Normalized Score

Group-Structured (ζF=0.8, w/o lr)
Group-Structured (ζF=0.8)

Unstructured (ζF=0.8, w/o lr)
Unstructured (ζF=0.8)

Dense (w/o lr)
Dense

Testing (τ = 3)

Figure 5: Ablation on Impoola-CNN without linear
learning rate annealing (w/o lr).

0.525 0.550 0.575 0.600
Final Normalized Score

Group-Structured (ζF=0.9)
Group-Structured (ζF=0.8)
Group-Structured (ζF=0.6)

Unstructured (ζF=0.9)
Unstructured (ζF=0.8)
Unstructured (ζF=0.6)

Testing (τ = 3)

Figure 6: Ablation on different final target pruning
rates ζF using the Impoola-CNN.

0.40 0.48 0.56 0.64
Final Normalized Score

Group-Structured (ζF=0.8, τ=1)
Group-Structured (ζF=0.8, τ=3)

Unstructured (ζF=0.8, τ=1)
Unstructured (ζF=0.8, τ=3)

Dense (τ=1)
Dense (τ=3)

Testing

Figure 7: Ablation on reducing the width scale of the
Impoola-CNN to τ = 1.

0.52 0.54 0.56 0.58 0.60
Final Normalized Score

Random
Taylor

L2-Norm
L1-Norm

Testing (Group-Structured, τ = 3, ζF = 0.8)

Figure 8: Ablation on the importance score function ι
for group-structured pruning with Impoola-CNN.

0.30 0.45 0.60
Final Normalized Score

Group-Structured
(w/o Impoola, ζF=0.8)

Group-Structured (ζF=0.8)
Unstructured (w/o Impoola, ζF=0.8)

Unstructured (ζF=0.8)
Dense (w/o Impoola)

Dense

Testing (τ = 3)

Figure 9: Ablation on using the Impala-CNN (= w/o
Impoola) instead of the Impoola-CNN.

0.48 0.54 0.60 0.66
Final Normalized Score

Group-Structured (ζF=0.8, τ=5)
Group-Structured (ζF=0.8, τ=3)

Unstructured (ζF=0.8, τ=5)
Unstructured (ζF=0.8, τ=3)

Dense (τ=5)
Dense (τ=3)

Testing (Hard Coinrun, 100M Steps)

Figure 10: Additional results for the hard setting in
Coinrun environment using 100M training steps.

CPU. This finding indicates that the used Impoola-CNN with a width scale τ = 3 is under-utilizing
the available GPU resources, limiting the potential gains. As we anticipate further growth in DNN
sizes for image-based DRL, the results for batch size 256 highlight the considerable efficiency gains
achievable with our group-structured approach when available computing power is fully utilized.

5.4 ABLATIONS

Learning Rate Annealing: We examine the influence of linear learning rate annealing on the perfor-
mance of PPO agents. Li et al. (2019) indicate that learning rate annealing improves generalization
performance. However, this could interfere with pruning, as the network may adapt more slowly af-
ter pruning when using a lower learning rate. As shown in Figure 5, learning rate annealing plays a
crucial role in generalization also for pruning methods with PPO. Notably, its use appears to reduce
performance variance across the pruning methods.

Pruning Ratio and Width Reduction: Figure 6 visualizes performance for different target pruning
rates ζF . With a high target ratio ζF = 0.9, both unstructured and group-structured pruning result
in reduced performance. Group-structured pruning seems to be more sensitive to high pruning rates,
positioning ζF = 0.8 as a favorable compromise between maintaining performance and reducing
computation time. As presented in Figure 7, reducing the width scale to τ = 1 decreases overall
performance, but group-structured pruning seems to be more sensitive than unstructured pruning,
i.e., structured grouping appears to require a minimum amount of filters to work well.

Importance Score: We use the L1-norm as importance score function ι to allow for easier compar-
ison with other works (Obando-Ceron et al., 2024a). We ablate using instead L2-norm, a first-order
Taylor expansion of the loss (Molchanov et al., 2019), and random scoring in Figure 8. It can be
seen that the Taylor-based score function may improve performance slightly. However, the overall
influence of the importance score seems minor, as even random selection yields good performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0M 5M 10M 15M 20M 25M

0

500

1000

1500

Breakout-v5

0M 5M 10M 15M 20M 25M

−20

−10

0

10

20

Pong-v5

0M 5M 10M 15M 20M 25M

0

10000

20000

30000

BeamRider-v5

Training (τ = 3)

Steps

Ep
iso

di
c

R
et

ur
n

Dense (w/o Impoola) Dense Unstructured (ζ=0.8) Group-Structured (ζ=0.8)

Figure 11: Episodic return in Atari games, parallelized in EnvPool (Weng et al., 2022), with training PPO for
25M steps using the same hyperparameter as for the Procgen Benchmark.

This finding aligns with recent works on random network pruning (Li et al., 2022; Liu et al., 2022).
Overall, we recommend using L1-norm due to its simplicity.

Impala-CNN: While this work focuses on the Impoola-CNN architecture, we present additional
results for our group-structured method when using Impala-CNN. It can be seen in Figure 9 that
performance for the Impala-CNN can be improved by using both unstructured and group-structured
pruning, but the improvement is higher with unstructured pruning. However, as already discussed,
Impoola-CNN is clearly the preferred architecture.

Long-term Stability: We investigate the effect of prolonged training through experiments on Coin-
run with hard setting and 100M steps. Figure 10 shows that unstructured pruning for τ = 3 outper-
forms the others slightly for training levels after an initial phase of instability. However, the results
on testing levels reveal that this seems to come with some overfitting, as group-structured prun-
ing is the best-performing method for generalization. Increasing the width scale to τ = 5 reduces
performance, though the degradation is least pronounced in group-structured pruning.

Atari Games: To demonstrate that Impoola-CNN and group-structured pruning are not special-
ized to the Procgen Benchmark, we run experiments on three Atari games: Breakout-v5, Pong-v5,
and BeamRider-v5. The results in Figure 11 demonstrate first that the Impoola-CNN outperforms
Impala-CNN significantly, establishing it as a generally applicable improvement. Second, group-
structured pruning matches again the performance of the dense Impoola-CNN and unstructured
pruning, confirming the results for Procgen Benchmark.

6 CONCLUSION AND FUTURE WORK

Following preliminary experiments, this work introduces the scaled Impoola-CNN encoder, which
significantly boosts image-based DRL performance compared to the widely used Impala-CNN. We
present a group-structured pruning framework for the Impoola-CNN that unlocks performance gains
through scaling while maintaining computational efficiency. Our results on the Procgen Benchmark
for PPO and DQN show that this pruning method for image-based DRL maintains performance
comparable to that of networks with unstructured pruning, even outperforming dense DNNs for
generalization in long-term training. Moreover, we show that while pruned networks do not adapt to
fine-tuning levels as high as the dense Impoola-CNN, pruned DNNs show strong noise robustness
instead. Additional results for Atari games demonstrate the broad applicability of our approach.
A final analysis highlights the efficiency of our group-structured pruning method, with significant
reductions in computing time, eventually making the case for group-structured pruning as the pre-
ferred approach for real-world image-based DRL applications with scaled networks.

For future work, evaluation for real-world image-based DRL applications could provide valuable
insights, particularly given the demonstrated noise robustness of group-structured pruning. The fact
that pruning methods seem to not outperform the Dense networks for the Impoola-CNN requires
further analysis but can be related to the finding of (Cobbe et al., 2019) that if some regularization is
already applied, the combination with further regularization technique does not necessarily improve
performance further. Additionally, we see potential for exploring adaptive gradual pruning schedules
and the use of global pruning methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Brian Bartoldson, Ari Morcos, Adrian Barbu, and Gordon Erlebacher. The generalization-stability
tradeoff in neural network pruning. Advances in Neural Information Processing Systems, 33:
20852–20864, 2020.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pp. 449–458. PMLR, 2017.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generaliza-
tion in reinforcement learning. In International conference on machine learning, pp. 1282–1289.
PMLR, 2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In International conference on machine learning, pp. 2048–
2056. PMLR, 2020.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 16091–16101, June 2023.

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin,
Pablo Samuel Castro, and Marc G Bellemare. Proto-value networks: Scaling representation learn-
ing with auxiliary tasks. In The Eleventh International Conference on Learning Representations,
2023.

Niklas Funk, Georgia Chalvatzaki, Boris Belousov, and Jan Peters. Learn2assemble with struc-
tured representations and search for robotic architectural construction. In Conference on Robot
Learning, pp. 1401–1411. PMLR, 2022.

Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of sparse training in
deep reinforcement learning. In International Conference on Machine Learning, pp. 7766–7792.
PMLR, 2022.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. ICLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
IEEE transactions on pattern analysis and machine intelligence, 2023.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Timofte, and Luc Van Gool. Revisit-
ing random channel pruning for neural network compression. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 191–201, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. Advances in neural information processing systems, 32,
2019.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang
Wang, and Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return of the
most naive baseline for sparse training. In International Conference on Learning Representations,
2022.

Dor Livne and Kobi Cohen. Pops: Policy pruning and shrinking for deep reinforcement learning.
IEEE Journal of Selected Topics in Signal Processing, 14(4):789–801, 2020.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11264–11272, 2019.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning,
pp. 16828–16847. PMLR, 2022.

Johan Samir Obando-Ceron, Aaron Courville, and Pablo Samuel Castro. In value-based deep rein-
forcement learning, a pruned network is a good network. In Forty-first International Conference
on Machine Learning, 2024a.

Johan Samir Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Nico-
laus Foerster, Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro. Mixtures of
experts unlock parameter scaling for deep RL. In Forty-first International Conference on Machine
Learning, 2024b.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zach DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
CoRR, abs/1511.05952, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agar-
wal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level effi-
ciency. In International Conference on Machine Learning, pp. 30365–30380. PMLR, 2023.

Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, and Peter Stone.
Dynamic sparse training for deep reinforcement learning. In International Joint Conference on
Artificial Intelligence, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In International Conference on Machine Learning, pp.
32145–32168. PMLR, 2023.

Wensheng Su, Zhenni Li, Minrui Xu, Jiawen Kang, Dusit Niyato, and Shengli Xie. Compressing
deep reinforcement learning networks with a dynamic structured pruning method for autonomous
driving. arXiv preprint arXiv:2402.05146, 2024.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

Yiqin Tan, Pihe Hu, Ling Pan, Jiatai Huang, and Longbo Huang. RLx2: Training a sparse deep re-
inforcement learning model from scratch. In The Eleventh International Conference on Learning
Representations, 2023.

Raphael Trumpp, Martin Büchner, Abhinav Valada, and Marco Caccamo. Efficient learning of urban
driving policies using bird’s eye-view state representations. In 2023 IEEE 26th International
Conference on Intelligent Transportation Systems (ITSC), pp. 4181–4186, 2023.

Sunil Vadera and Salem Ameen. Methods for pruning deep neural networks. IEEE Access, 10:
63280–63300, 2022. doi: 10.1109/ACCESS.2022.3182659.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk, Zichen
Liu, Yufan Song, Ting Luo, Yukun Jiang, et al. Envpool: A highly parallel reinforcement learning
environment execution engine. Advances in Neural Information Processing Systems, 35:22409–
22421, 2022.

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S. Morcos. Playing the lottery with rewards
and multiple languages: lottery tickets in rl and nlp. In International Conference on Learning
Representations, 2020.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

– Supplementary Material –

Gradual Structured Pruning for Efficient Network
Scaling in Image-Based Deep Reinforcement

Learning

A PROCGEN ENVIRONMENTS

The ProcGen environments were developed by Cobbe et al. (2020) to test sample efficiency and
generalization of DRL agents. Unless otherwise stated, our results are based on the easy setting.
For the generalization track, 200 levels are used for training, while all procedurally generated levels
are used for evaluation. Our experiments have shown that the initial set of 200 levels can influence
the agent’s performance. Thus, we fix the level generation to the first 200 levels for all experiments
but always report results for independent runs with different seeds for the training. When the hard
setting is used, 1000 training levels are used. The action space of the ProcGen environments consists
of 15 discrete actions. Observations are RGB images with 3x64x64 pixels. No stacking of images
is required, as we utilize the environments without the setting that requires memory.

Game Selection: We chose Bigfish, Starpilot, Dodgeball, and Bossfight as environments for our
main evaluation using the easy setting. They constitute a set of various game dynamics. While
high performance in Bigfish and Starpilot is commonly achieved, Dodgeball and Bossfight are more
challenging. Especially agents trained for Bossfight experience limited reward signals early in train-
ing. We provide an additional experiment that uses Coinrun and the hard setting; the normalization
constants remain the same.

Figure A.1: Used ProcGen environments: Bigfish, Starpilot, Dodgeball, Bossfight, and Coinrun (left to right).

Normalized Score: As suggested by Cobbe et al. (2020), we report normalized scores S by

S =
R−Rmin

Rmax −Rmin
, (A.1)

where R is the raw return collected by the agent, Rmin is the score for the environment by a random
agent, Rmax is the maximum possible score. The normalization constants are shown in Table A.1.

Table A.1: Normalization constants for Procgen environments in the easy setting Cobbe et al. (2020).

Game Rmin Rmax Game Rmin Rmax

bigfish 1 40 jumper 3 10
bossfight 0.5 13 leaper 3 10
caveflyer 3.5 12 maze 5 10

chaser 0.5 14 miner 1.5 14
climber 2 12 ninja 3.5 10
coinrun 5 10 plunder 4.5 30

dodgeball 1.5 19 starpilot 2.5 64
fruitbot -1.5 27 heist 3.5 10

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B ADDITIONAL MATERIAL FOR PRELIMINARY EXPERIMENTS

We provide additional detailed plots for our preliminary experiments on the Impala and Impoola-
CNN models for PPO and DQN. Moreover, we present a supervised learning experiment to further
study the effect of using the Impoola-CNN encoder.

B.1 PRELIMINARY EXPERIMENTS FOR PPO

5M 10M 15M 20M 25M
0.0

0.2

0.4

0.6

0.8

bigfish

5M 10M 15M 20M 25M
0.2

0.4

0.6

0.8

1.0
starpilot

5M 10M 15M 20M 25M
0.0

0.2

0.4

0.6

0.8

dodgeball

5M 10M 15M 20M 25M
0.0

0.2

0.4

0.6

bossfight

Training

Steps

N
or

m
al

iz
ed

Sc
or

e

Dense Impala (τ = 1) Dense Impoola (τ = 1) Dense Impala (τ = 3) Dense Impoola (τ = 3) Unstructured Impala
(τ = 3, ζF = 0.8)

Unstructured Impoola
(τ = 3, ζF = 0.8)

Figure B.2: Normalized scores (return) per environment of the preliminary experiments for PPO for testing
levels, used to calculate the aggregated normalized scores in Figure 1.

5M 10M 15M 20M 25M
0.0

0.2

0.4

0.6
bigfish

5M 10M 15M 20M 25M

0.2

0.4

0.6

0.8

1.0
starpilot

5M 10M 15M 20M 25M

0.0

0.2

0.4

0.6

dodgeball

5M 10M 15M 20M 25M

0.0

0.2

0.4

0.6

bossfight

Testing

Steps

N
or

m
al

iz
ed

Sc
or

e

Dense Impala (τ = 1) Dense Impoola (τ = 1) Dense Impala (τ = 3) Dense Impoola (τ = 3) Unstructured Impala
(τ = 3, ζF = 0.8)

Unstructured Impoola
(τ = 3, ζF = 0.8)

Figure B.3: Normalized scores (return) per environment of the preliminary experiments for PPO for testing
levels, used to calculate the aggregated normalized scores in Figure 1.

0M 5M 10M 15M 20M 25M
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

Sc
or

e

Testing Impoola
Impala
Impala (w/ wd, w/ lr)

Figure B.4: Ablation for the preliminary experiments using PPO for testing levels showing that the Impoola-
CNN’s pooling layer is crucial as the Impala-CNN model, even when enhanced with learning rate annealing
and weight decay, is not able to meet the performance of Impoola.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.2 PRELIMINARY EXPERIMENTS FOR DQN

Since the results by Obando-Ceron et al. (2024a) are primarily for DQN and Rainbow, we also
provide experiments for DQN. Our DQN implementation uses double networks, multi-step returns,
and a simplified prioritized replay buffer similar to (Obando-Ceron et al., 2024a).

0M 5M 10M 15M 20M 25M
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

Sc
or

e

Training (τ = 3) Dense Impala
Dense Impoola
Dense Impoola (w/o lr)
Unstructured Impoola
(ζF = 0.8 w/o lr)
Unstructured Impoola
(ζF = 0.9, w/o lr)

(a) Evaluation of training levels.

0M 5M 10M 15M 20M 25M
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

Sc
or

e

Testing (τ = 3) Dense Impala
Dense Impoola
Dense Impoola (w/o lr)
Unstructured Impoola
(ζF = 0.8 w/o lr)
Unstructured Impoola
(ζF = 0.9, w/o lr)

(b) Evaluation on test levels.

Figure B.5: Comparison of the Impala and Impoola-CNN models with scale τ = 3 on the subset of four ProcGen
environments for DQN training. Normalized return scores are evaluated for training levels (left) and test levels
(right). Unstructured gradual pruning (Obando-Ceron et al., 2024a) results are displayed for target pruning
rates of 0.8 and 0.9. The Impoola-CNN model incorporates a Pooling layer before the Flatten layer.

5M 10M 15M 20M 25M

0.1

0.2

0.3

0.4

bigfish

5M 10M 15M 20M 25M

0.2

0.4

0.6

starpilot

5M 10M 15M 20M 25M

0.0

0.2

0.4

0.6

dodgeball

5M 10M 15M 20M 25M

0.0

0.2

0.4

bossfight

Testing (τ = 3)

Steps

N
or

m
al

iz
ed

Sc
or

e

Dense Impala Dense Impoola Dense Impoola (w/o lr) Unstructured Impoola
(ζF = 0.8 w/o lr)

Unstructured Impoola
(ζF = 0.9, w/o lr)

Figure B.6: Results per environment on testing levels used to calculate the normalized scores in Figure B.5.

B.3 PRELIMINARY EXPERIMENTS FOR SUPERVISED LEARNING

We provide another experiment by using the Impoola-CNN (τ = 3) for image classification of
TinyImageNet as a supervised learning example. We use the exact same model architecture as for
DRL with a prediction head for the 200 classes. The learning rate is set to 5e4 and linearly annealed.
Weight decay of 1e-5 is used, but no data augmentation. Again, it can be seen in Figure B.7 that the
Impoola-CNN encoder facilitates generalization while the Impala-CNN tends to overfit quickly.

0 10 20 30 40 50
Epochs

20

40

60

80

100

bigfish

A
cc

ur
ac

y

Train Impoola
Validation Impoola

Train Impala
Validation Impala

Figure B.7: Training and validation accuracy for image classification using TinyImageNet.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C ADDITIONAL MATERIAL FOR EXPERIMENTS

We provide additional detailed plots for our main experiments for PPO and DQN and baselines in
comparison to our group-structured pruning method.

C.1 EXPERIMENTS FOR PPO

5M 10M 15M 20M 25M

0.2

0.4

0.6

0.8

bigfish

5M 10M 15M 20M 25M
0.2

0.4

0.6

0.8

1.0

starpilot

5M 10M 15M 20M 25M
0.0

0.2

0.4

0.6

0.8

dodgeball

5M 10M 15M 20M 25M

0.2

0.4

0.6

bossfight

Training (τ = 3)

Steps

N
or

m
al

iz
ed

Sc
or

e

Dense (w/o Impoola) Dense ReDo Unstructured
(ζF = 0.8)

Naive Structured
(ζF = 0.8)

Group-Structured
(ζF = 0.8)

Figure C.8: Results on training levels per environment used to calculate the normalized scores in Figure 3.

5M 10M 15M 20M 25M

0.2

0.4

0.6

bigfish

5M 10M 15M 20M 25M

0.2

0.4

0.6

0.8

1.0

starpilot

5M 10M 15M 20M 25M

0.0

0.2

0.4

0.6

dodgeball

5M 10M 15M 20M 25M

0.0

0.2

0.4

0.6

bossfight

Testing (τ = 3)

Steps

N
or

m
al

iz
ed

Sc
or

e

Dense (w/o Impoola) Dense ReDo Unstructured
(ζF = 0.8)

Naive Structured
(ζF = 0.8)

Group-Structured
(ζF = 0.8)

Figure C.9: Results on test levels per environment used to calculate the normalized scores in Figure 3.

5M 10M 15M 20M

0

1

2

3

4

×10−6 bigfish

5M 10M 15M 20M
0

2

4

6

8

×10−7 starpilot

5M 10M 15M 20M

0

2

4

6
×10−6 dodgeball

5M 10M 15M 20M

0.0

0.2

0.4

0.6

0.8

1.0
×10−5 bossfight

Flatness (τ = 3)

StepsC
ov

ar
ia

nc
e

G
ra

di
en

t
pe

r
Pa

ra
m

et
er

Dense (w/o Impoola) Dense ReDo Unstructured
(ζF = 0.8)

Naive Structured
(ζF = 0.8)

Group-Structured
(ζF = 0.8)

Figure C.10: Flatness of the PPO agent’s DNN, measured as the gradient covariance trace per parameter during
training for the generalization track. According to Bartoldson et al. (2020), flat DNNs are often associated with
high generalization. We estimate flatness by the trace of the gradient’s covariance matrix per parameter, with
lower values suggesting better generalization. Our results reveal that pruning tends to reduce flatness. Despite
this decrease in flatness, our results show that pruned networks can still generalize effectively, indicating that
flatness is not the sole determinant of generalization.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0M 5M 10M 15M 20M 25M
Steps

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

lN
et

wo
rk

Pa
ra

m
et

er

×106 Params

Unstructured ζF = 0.8
Structured ζF = 0.8

Group-Structured ζF = 0.8

Figure C.11: Parameter counts for PPO during training for structured and unstructured pruning with a target
sparsity ζf = 0.8 and Impoola-CNN model (τ = 3). It can be seen that the schedule for structured group
pruning is faster. This is because when one structure, e.g., the input weight of a neuron, also the corresponding
output weights are removed, which Equation 2 cannot account for.

C.2 EXPERIMENTS FOR DQN

5M 10M 15M 20M 25M

0.1

0.2

0.3

0.4

0.5

0.6

bigfish

5M 10M 15M 20M 25M

0.2

0.4

0.6

0.8

starpilot

5M 10M 15M 20M 25M

0.0

0.2

0.4

0.6

dodgeball

5M 10M 15M 20M 25M

0.0

0.1

0.2

0.3

bossfight

Training (τ = 3)

Steps

N
or

m
al

iz
ed

Sc
or

e

Dense Unstructured ζF = 0.8 Group-Structured ζF = 0.8

Figure C.12: Results on training levels per environment used to calculate the normalized scores in Figure 4.

0M 5M 10M 15M 20M 25M
Steps

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

lN
et

wo
rk

Pa
ra

m
et

er

×106 Params
Unstructured ζF = 0.8 Group-Structured ζF = 0.8

Figure C.13: Parameter counts for DQN during training for structured and unstructured pruning with a target
sparsity ζf = 0.8 and Impoola-CNN model (τ = 3). It can be seen that the schedule for structured group
pruning is faster. This is because when one structure, e.g., the input weight of a neuron, also the corresponding
output weights are removed, which Equation 2 cannot account for.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D HYPERPARAMETERS LIST

Table D.2: Hyperparameters for Proximal Policy Optimization (PPO).

Hyperparameter Values
Number Parallel Environments 64
Environment Steps 256
Learning Rate 5× 10−4

Batch Size 2048
Epochs 3
Discount Factor (γ) 0.99
GAE Lambda (λ) 0.95
Clip Range 0.2
Value Function Coefficient 0.5
Entropy Coefficient 0.01
Max Gradient Norm 0.5
Optimizer Adam
Shared Policy and Value Network Yes

Table D.3: Hyperparameters for Deep Q-Network (DQN).

Hyperparameter Values
Number Parallel Environments 64
Learning Rate 5× 10−5

Batch Size 256
Discount Factor (γ) 0.99
Target Network Update Frequency 64,000 steps
Learning Starts 250,000 steps
Train Frequency 1
Replay Buffer Size 1× 106

Exploration Initial ϵ 1.0
Exploration Final ϵ 0.02
Exploration Decay Fractions 0.1
Max Gradient Norm 10.0
Optimizer Adam

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E NETWORK ARCHITECTURE

Table E.4: Model summary of the Impala network (width scale τ = 3), including the Actor and Critic heads for
PPO, with 64 x 64 input images. The overall parameter count is 2,450,640, with a total of 262.33M multi-adds.

Layer (type:depth-idx) Input Output Param # Kernel Param % Multi-Adds

ImpalaPPOActorCritic [3, 64, 64] [15] – – – –
Sequential: 1-1 [3, 64, 64] [256] – – – –

ConvSequence: 2-1 [3, 64, 64] [48, 32, 32] – – – –
Conv2d: 3-1 [3, 64, 64] [48, 64, 64] 1,344 [3, 3] 0.05% 5,505,024
ResidualBlock: 3-2 [48, 32, 32] [48, 32, 32] – – – –

Conv2d: 4-1 [48, 32, 32] [48, 32, 32] 20,784 [3, 3] 0.85% 21,282,816
Conv2d: 4-2 [48, 32, 32] [48, 32, 32] 20,784 [3, 3] 0.85% 21,282,816

ResidualBlock: 3-3 [48, 32, 32] [48, 32, 32] – – – –
Conv2d: 4-3 [48, 32, 32] [48, 32, 32] 20,784 [3, 3] 0.85% 21,282,816
Conv2d: 4-4 [48, 32, 32] [48, 32, 32] 20,784 [3, 3] 0.85% 21,282,816

ConvSequence: 2-2 [48, 32, 32] [96, 16, 16] – – – –
Conv2d: 3-4 [48, 32, 32] [96, 32, 32] 41,568 [3, 3] 1.70% 42,565,632
ResidualBlock: 3-5 [96, 16, 16] [96, 16, 16] – – – –

Conv2d: 4-5 [96, 16, 16] [96, 16, 16] 83,040 [3, 3] 3.39% 21,258,240
Conv2d: 4-6 [96, 16, 16] [96, 16, 16] 83,040 [3, 3] 3.39% 21,258,240

ResidualBlock: 3-6 [96, 16, 16] [96, 16, 16] – – – –
Conv2d: 4-7 [96, 16, 16] [96, 16, 16] 83,040 [3, 3] 3.39% 21,258,240
Conv2d: 4-8 [96, 16, 16] [96, 16, 16] 83,040 [3, 3] 3.39% 21,258,240

ConvSequence: 2-3 [96, 16, 16] [96, 8, 8] – – – –
Conv2d: 3-7 [96, 16, 16] [96, 16, 16] 83,040 [3, 3] 3.39% 21,258,240
ResidualBlock: 3-8 [96, 8, 8] [96, 8, 8] – – – –

Conv2d: 4-9 [96, 8, 8] [96, 8, 8] 83,040 [3, 3] 3.39% 5,314,560
Conv2d: 4-10 [96, 8, 8] [96, 8, 8] 83,040 [3, 3] 3.39% 5,314,560

ResidualBlock: 3-9 [96, 8, 8] [96, 8, 8] – – – –
Conv2d: 4-11 [96, 8, 8] [96, 8, 8] 83,040 [3, 3] 3.39% 5,314,560
Conv2d: 4-12 [96, 8, 8] [96, 8, 8] 83,040 [3, 3] 3.39% 5,314,560

Flatten: 2-4 [96, 8, 8] [6144] – – – –
ReLU: 2-5 [6144] [6144] – – – –
Linear: 2-6 [6144] [256] 1,573,120 – 64.19% 1,573,120
ReLU: 2-7 [256] [256] – – – –

Linear: 1-2 [256] [15] 3,855 – 0.16% 3,855
Linear: 1-3 [256] [1] 257 – 0.01% 257

Table E.5: Model summary of the Impoola network (width scale τ = 3), including the Actor and Critic heads
for PPO, with 64 x 64 input images. The overall parameter count is 976,080, with a total of 260.85M multi-
adds.

Layer (type:depth-idx) Input Output Param # Kernel Param % Multi-Adds

ImpalaPPOActorCritic [3, 64, 64] [15] – – – –
Sequential: 1-1 [3, 64, 64] [256] – – – –

ConvSequence: 2-1 [3, 64, 64] [48, 32, 32] – – – –
Conv2d: 3-1 [3, 64, 64] [48, 64, 64] 1,344 [3, 3] 0.14% 5,505,024
ResidualBlock: 3-2 [48, 32, 32] [48, 32, 32] – – – –

Conv2d: 4-1 [48, 32, 32] [48, 32, 32] 20,784 [3, 3] 2.13% 21,282,816
Conv2d: 4-2 [48, 32, 32] [48, 32, 32] 20,784 [3, 3] 2.13% 21,282,816

ResidualBlock: 3-3 [48, 32, 32] [48, 32, 32] – – – –
Conv2d: 4-3 [48, 32, 32] [48, 32, 32] 20,784 [3, 3] 2.13% 21,282,816
Conv2d: 4-4 [48, 32, 32] [48, 32, 32] 20,784 [3, 3] 2.13% 21,282,816

ConvSequence: 2-2 [48, 32, 32] [96, 16, 16] – – – –
Conv2d: 3-4 [48, 32, 32] [96, 32, 32] 41,568 [3, 3] 4.26% 42,565,632
ResidualBlock: 3-5 [96, 16, 16] [96, 16, 16] – – – –

Conv2d: 4-5 [96, 16, 16] [96, 16, 16] 83,040 [3, 3] 8.51% 21,258,240
Conv2d: 4-6 [96, 16, 16] [96, 16, 16] 83,040 [3, 3] 8.51% 21,258,240

ResidualBlock: 3-6 [96, 16, 16] [96, 16, 16] – – – –
Conv2d: 4-7 [96, 16, 16] [96, 16, 16] 83,040 [3, 3] 8.51% 21,258,240
Conv2d: 4-8 [96, 16, 16] [96, 16, 16] 83,040 [3, 3] 8.51% 21,258,240

ConvSequence: 2-3 [96, 16, 16] [96, 8, 8] – – – –
Conv2d: 3-7 [96, 16, 16] [96, 16, 16] 83,040 [3, 3] 8.51% 21,258,240
ResidualBlock: 3-8 [96, 8, 8] [96, 8, 8] – – – –

Conv2d: 4-9 [96, 8, 8] [96, 8, 8] 83,040 [3, 3] 8.51% 5,314,560
Conv2d: 4-10 [96, 8, 8] [96, 8, 8] 83,040 [3, 3] 8.51% 5,314,560

ResidualBlock: 3-9 [96, 8, 8] [96, 8, 8] – – – –
Conv2d: 4-11 [96, 8, 8] [96, 8, 8] 83,040 [3, 3] 8.51% 5,314,560
Conv2d: 4-12 [96, 8, 8] [96, 8, 8] 83,040 [3, 3] 8.51% 5,314,560

AdaptiveAvgPool2d: 2-4 [96, 8, 8] [96, 2, 2] – – – –
Flatten: 2-5 [96, 2, 2] [384] – – – –
ReLU: 2-6 [384] [384] – – – –
Linear: 2-7 [384] [256] 98,560 – 10.10% 98,560
ReLU: 2-8 [256] [256] – – – –

Linear: 1-2 [256] [15] 3,855 – 0.39% 3,855
Linear: 1-3 [256] [1] 257 – 0.03% 257

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F MEASURED INFERENCE TIMES

We measure the results after a warm-up phase of 100 forward passes as the average of 1000 forward
passes without further soft- or hardware optimizations.

The used devices are :

• High-end GPU: NVIDIA RTX A6000
• Workstation CPU: Intel Xeon W-2295
• Embedded CPU: NVIDIA Jetson Orin Nano 7W
• Embedded GPU: NVIDIA Jetson Orin Nano 7W.

Table F.6: Comparison of latency times in ms across compute devices for the presented pruning algorithms
using the Impoola-CNN model with a width scale of τ = 5.

Compute Device Batch Size 256 Batch Size 1

Unstructured Group-Structured Unstructured Group-Structured

Dense ζF =0.8 ζF =0.9 ζF =0.8 ζF =0.9 Dense ζF =0.8 ζF =0.9 ζF =0.8 ζF =0.9

High-end GPU 21.1 20.7 - 10.1 - 1.0 1.0 - 1.0 -
Workstation CPU 637.6 619.9 - 251.6 - 4.0 4.1 - 2.7 -
Embedded GPU 865.8 865.8 - 506.1 - 8.8 8.8 - 7.1 -
Embedded CPU - - - - - 54.1 54.9 - 23.2 -

21

	Introduction
	Related Work
	Background
	Deep Reinforcement Learning
	Neural Network Pruning
	Dependency Graph

	Methodology
	Impoola-CNN
	Gradual Group-Structured Pruning
	Implementation Details

	Experiments
	Results for PPO
	Results for DQN
	Inference Times
	Ablations

	Conclusion and Future Work
	ProcGen Environments
	Additional Material for Preliminary Experiments
	Preliminary Experiments for PPO
	Preliminary Experiments for DQN
	Preliminary Experiments for Supervised Learning

	Additional Material for Experiments
	Experiments for PPO
	Experiments for DQN

	Hyperparameters List
	Network Architecture
	Measured Inference Times

