Under review as a conference paper at ICLR 2025

GRADUAL STRUCTURED PRUNING FOR EFFICIENT
NETWORK SCALING IN IMAGE-BASED DEEP REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling neural networks in image-based deep reinforcement learning often fails
to improve performance. While it was shown that unstructured pruning of scaled
networks can unlock performance gains, we find that refining the architecture of
the scaled network yields even greater improvements. However, scaled networks
in deep reinforcement learning present a practical challenge: the increased com-
putational demands can hinder deployment on embedded devices, as commonly
encountered in robotics applications. To address this, we propose a novel gradual
group-structured pruning framework that allows performance gains through scal-
ing while maintaining computational efficiency. Our method preserves the net-
work’s functional integrity of inter-layer dependencies in groups, such as residual
connections, while seamlessly integrating with standard deep reinforcement learn-
ing algorithms. Experiments with PPO and DQN show that our approach sustains
performance while significantly reducing inference time, making it the preferred
approach for resource-limited deployment.

1 INTRODUCTION

Recent works on deep reinforcement learning (DRL) have revealed that apart from algorithmic im-
provements, considerable performance increases can come from the network architecture and train-
ing approach of the used deep neural networks (DNNs) themselves. Notably, (2020);
Schwarzer et al.| (2023); [Obando-Ceron et al.| (2024d) have shown that the Impala-CNN model

eholt et al., [2018)), a 15-layer ResNet, outperforms the widely used convolutional neural network
(CNN) model from Mnih et al | substantially. However, raising the parameter count of DNNs
in DRL does not necessarily lead to improved performance (Schwarzer et al.l [2023)), as opposed
to other areas in deep learning. [Obando-Ceron et al| (2024a)) provide a new perspective on scal-
ingl_-l DNNs in DRL by using unstructured magnitude pruning to increase sparsity gradually during
training, which leads to a performance boost for Q-network-based DRL in Atari games.

Network pruning is a widely used technique in other deep learning fields , e.g., image classification
(Vadera & Ameen,[2022)), originally aimed at reducing DNNs’ memory footprint and inference time
but also known to frequently enhance robustness and generalization (Bartoldson et all, [2020). Its
use in DRL may introduce advantageous regularization (Obando-Ceron et al., 20244a) but poses a
unique challenge due to its dynamic training, requiring methods that maintain training stability over
time. Unstructured pruning zeros out individual weight entries without considering their structural
arrangements, such as filters and channels. This is in contrast to structured pruning, where such
structures are entirely removed, directly reducing computational operations (Luo et al.,2017; [He &

2023) but leading potentially to high training instability.

We show in the following preliminary experiment that the benefits of network scaling in image-
based DRL can also be unlocked by simple architectural refinements of the Impala-CNN, rendering
the use of unstructured pruning from|Obando-Ceron et al.| (2024d) for performance increase obsolete.
However, it opens the question of leveraging pruning in image-based DRL for the original motivation
of lowering computational requirements, which is of high practical appeal for scaled DNNs.

"'Scaling the width by increasing the number output channels per Conv2D layer by a factor 7.

Under review as a conference paper at ICLR 2025

Training Testing —— Dense Impala (7 = 1)
0.8 0.8 Dense Impoola (7 = 1)

—— Dense Impala (7 = 3)

0.6 —— Dense Impoola (7 = 3)

Unstructured Impala

(r=3,¢r=08)

Unstructured Impoola
P =08)

Normalized Score
Normalized Score

0.0 0.0

oM 5M 10M 15M 20M 25M oM 5M 10M 15M 20M 25M
Steps Steps

Figure 1: Effect of scaling the Impala and Impoola-CNN model’s width from 7 = 1 to 7 = 3, evaluated on
a subset of four ProcGen environments using PPO. Normalized return scores during training are shown for
training levels (left) and testing levels (right). Gradual unstructured magnitude pruning (Obando-Ceron et al.|
results are displayed for final target pruning rates (of 0.8. Appendixcontains further results.

Preliminary Experiment on Network Scaling: We base this preliminary experiment on the Proc-
gen benchmark (Cobbe et al.| [2020), which is considered to challenge generalization better than
Atari games. Figure [[]illustrates that scaling the width of the original Impala-CNN architecture to
7 = 3 does not result in performance improvements. Consistent with the findings of
(20244), we observe that unstructured pruning of scaled Impala-CNNs enhances performance
also for proximal policy optimization (PPO) within the Procgen environment. However, we demon-
strate that scaling gains can also be realized by simply adding a Pooling layer before the Flatten layer
of the Impala-CNN in combination with learning rate scheduling and weight decay—we name this
architecture Impoola-CNN. Note that classical ResNet models also have this Pool-
ing layer; the ablation in Figure [B.4] shows that using one is crucial. The Impoola-CNN achieves
significantly greater improvements than the use of unstructured pruning for scaled Impala-CNNs.
Most notably, when using the scaled Impoola-CNN, the benefits of unstructured pruning vanish,
even decreasing performance in training levels. Further results in Appendix [B]exhibit similar trends
for deep Q-networks (DQNs) and include an additional supervised learning example. Thus, we en-
courage using the Impoola-CNN model for image-based DRL as it unlocks performance gains by
network scaling directly, without the need for unstructured pruning.

Structured Pruning for Efficient Scaling: However, the use of scaled network architectures ren-
ders new practical problems in the form of increased memory footprint and computational require-
ments. This has particular implications for many DRL applications, e.g., robotics
2022)) or autonomous driving (Trumpp et al.,[2023), as such applications are eventually deployed to
resource-limited embedded devices with high control frequency requirements. This situation brings
us back to the original notion of pruning to reduce computation requirements. As unstructured prun-
ing only sets weights to zero, it often does not translate to a reduction in real-world inference times
(Cheng et al}[2024). Structured pruning can be seen as a remedy since complete structures are re-
moved from the DNN, thus reducing run times straight away 2017). The feasibility of
structured pruning in image-based DRL has been unexplored yet despite its practical appeal.

This paper establishes a framework for gradual group-structured pruning in image-based DRL, de-
signed to reduce the computational requirements of scaled DNNs while closely matching the per-
formance of dense baselines. To this end, we center our work on the Impoola-CNN since it not
only outperforms the Impala architecture but also achieves greater efficiency with a reduced pa-
rameter count. Our study is based on the Procgen Benchmark (Cobbe et all, [2020) as this is the
ideal evaluation platform to assess generalization, but we provide a supplementary experiment for
Atari games. We discuss practical aspects such as fine-tuning capabilities and noise robustness and
measure single-sample inference time, an aspect often overlooked by other works. Our main analy-
sis uses PPO as this is the common baseline algorithm for the Procgen Benchmark but we provide
additional results for DQN to cover a Q-network-based method.

Our main contributions are the following:
* We identify architectural limitations in the original Impala-CNN and propose the improved
Impoola-CNN model that unlocks performance gains through network scaling.

* Qur gradual group-structured pruning framework accounts for inter-layer dependencies and
enables performance gains through scaling while maintaining computational efficiency.

Under review as a conference paper at ICLR 2025

* We provide extensive experiments comparing various pruning methods, including mea-
sured inference times on diverse platforms. Our analysis makes a strong practical case for
our group-structured method as it meets the performance of other methods while lowering
compute demand substantially.

* The used source code will be made publicly available.

2 RELATED WORK

Neural Network Pruning: Neural network pruning is a technique to reduce compute time and/or
memory size of a DNN by removing its weights, ideally without a substantial loss of accuracy
(Han et al., 2016). Networks can be pruned in single or multiple steps with subsequent fine-tuning
after training or gradually over its course (Cheng et al. |2024). Structured pruning (He & Xiao,
2023)) leads to universal speed-ups as complete structures, e.g., filters or neurons, are removed. As
single weights are set to zero in unstructured pruning, inference speed is not necessarily reduced but
only theoretical FLOPS (Luo et al.,|2017). Specialized hard- and software, which may improve the
computation of such sparse kernels, e.g., semi-structured (2:4) patterns (Mishra et al.| [2021)), makes
it slowly into the mainstream. Modern network architectures, e.g., ResNets of Transformers, pose
complex structural dependencies that must be captured for correct pruning (Fang et al., [2023)).

Sparsity in Deep Reinforcement Learning: Compared to computer vision (CV), exploring sparsity
and pruning in DRL is a relatively recent effort. [Livne & Cohen| (2020) demonstrated that it is
feasible to sparsify DRL agents during training without performance degradation. Various methods
that sparsify agents during training are discussed by [Yu et al.|(2020); Tan et al.| (2023)); |Sokar et al.
(2021); |Su et al.| (2024). However, it was revealed by |Graesser et al.|(2022) that magnitude pruning
during training of DRL agent with a gradually increasing target sparsity outperforms such methods.

Scaling in Deep Reinforcement Learning: The subsequent work of (Obando-Ceron et al.| (2024a)
further investigates the effect of gradual unstructured pruning. When pruning a scaled Impala-CNN,
they discover magnified performance in Atari for Q-network-based DRL. However, performance
stays mostly the same for soft actor-critic (SAC) and PPO with dense networks in Mujoco, assum-
ably because Mujoco is not image-based. It was shown that training can also be stabilized by using
mixtures of experts to scale the Dense layer of the Impala-CNN (Obando-Ceron et al.,[2024b)), or by
incorporating auxiliary tasks during training (Farebrother et al., [2023).

Generalization in Deep Reinforcement Learning: |Zhang et al.| (2018)) reveal that DRL agents can
memorize a non-trivial number of training levels, even with completely random rewards. Similar
experiments in (Cobbe et al.| 2019) quantify that the use of the same environment for both training
and testing results in high overfitting of DRL agents. They show that well-known techniques from
supervised learning, e.g., Lo regularization, batch normalization, and data augmentation, reduce
overfitting. However, only slightly better test performance is achieved when combining them than
using them individually. Overfitting in DRL may be associated with a loss of network plasticity
(Nikishin et al.l 2022} [Sokar et al.| [2023). (Cobbe et al.| [2020) introduces the Procgen Benchmark
with various procedurally generated environments to measure sample efficiency and generalization.

3 BACKGROUND

3.1 DEEP REINFORCEMENT LEARNING

The iterative optimization in model-free DRL is formalized by a Markov decision process (MDP)
with tuple (S, A, 7, R,). Here, S and A represent the state and action spaces, respectively, while
the transition function 7 : § x A — P(S) defines the probability distribution over the next state
given the current state and action. The reward function is defined as R : S x A — R and 7y is a
discount factor. The mapping 7 : S — P(.A) is called a (stochastic) action policy. A DNN with
weights 6 parameterizes the policy 7y in DRL. The optimal policy 7; maximizes the expected return
VTre (S) = ETFG [Z:io ’Yt,R’(Stvat) | S0 = St]'

Q-Network Methods: These DRL methods are typically based on an estimate of the g-value func-
tion Qr(s,a) := Ex, [Yjoq V' R(st,at) | so = s¢,a0 = a]. This function can be learned itera-
tively by temporal difference learning (Sutton) |1988) and bootstrapping the current g-value esti-

Under review as a conference paper at ICLR 2025

mate. DQN (Mnih et al.l 2015) implements this by training a DNN with loss function L(0) =
E(s,a,r,s)~D [(r + ymax, Q(s',a';07) — Q(s,a;@))z} where transitions (s,a,r,s’) ~ D are

sampled from the experience replay buffer D and by using a target network with 6~ as delayed
copies of . Actions are obtained greedily by a* = arg max, Q(s, a;). The performance of vanilla
DQN can be vastly improved by incorporating techniques such as double g-learning (Van Hasselt
et al., [2016)), multi-step rewards (Sutton, |1988)), prioritized replay buffer (Schaul et al.l [2015)), and
distributional g-learning (Bellemare et al.|[2017), eventually forming Rainbow (Hessel et al.|[2018).

Actor-Critic Methods: In addition to a critic network, e.g., V' (s; ¢) that estimates the state value,
the action policy is defined as a dedicated actor network that can be directly optimized towards an
optimization goal. PPO (Schulman et al., 2017) is an on-policy DRL method, where the weights 6
are updated with respect to the advantage function A(s,a) = Q(s,a) — V(s). The generalized ad-
vantage estimate (GAE) (Schulman et al., 2015 is the common choice to estimate A(s, a). The loss
(clip version) of the PPO actor for a transition tuple e = (s, a,r, s’) of a trajectory 7 = {e, e/, ...}

is given by L(#) = E, [min (r(8) A, clip(r(6),1 — ¢, 1 + €)A)]. Here, r(6) = -4 s the prob-

TOga (als)
ability ratio between the old and new policy, where the hyperparameter e limits their deviation.

Impala-CNN: The Impala-CNN was introduced by [Espeholt et al.| (2018) as a 15-layer ResNet
model for encoding image inputs. The architecture combines two building blocks. ConvSequence
S; blocks consist first of a Conv2D layer with MaxPooling and ReLU activation and then 2 sub-
sequent ResBlock blocks as S; : {C; — P — Ry ,; — Ri;}; the ResBlock blocks are based
on two Conv2D layers with ReLU activation and a residual connection R; ; : {Cop;; — Ci;}
The vanilla Impala-CNN stacks three ConvSequence blocks {So, S1, Sz} with each block having
the same amount of convolutional output channels {c§", ¢§", 3"} = {16, 32, 32}; scaled network
versions multiply this configuration by a width scaling factor 7. The original implementation by
Espeholt et al.[(2018)) uses a Linear layer of 256 neurons as the last encoder layer.

3.2 NEURAL NETWORK PRUNING

Assume an initial DNN fy with parameters § = {w;,ws, ...} of a parameter space H and weight
tensors w € RY*M>-- "Let ¢(f) be a counting function that counts the number of parameters in a
DNN. We then define an arbitrary pruning operation as a function

p: fo — for with C(fg) > C(fgl) and 6’ C o, (D

This operation leads to the pruned network fy with parameters 6’ and sparsity (= 1 — CC((fJ%/)).

Importance Score: The selection of which parameters to prune is based on a score function that
estimates the importance of each parameter ¢ : — R. This score defines the order of parameters
to be pruned, i.e., wy 1 will be pruned first when ¢(w1,2) > ¢(wy 1). Various criteria are discussed in
the literature (Cheng et al., [2024), e.g., weight magnitude, saliency, and Taylor expansions; random
weights selection often meets their performance (Li et al. 2022} [Liu et al.| [2022).

Unstructured Pruning: Specific entries in w are set to zero, but the overall tensor shape is kept.
dim(w’) = dim(w). Inference time is not necessarily reduced.

Structured Pruning: Full structures of the weight matrix w are removed, reducing the size of the
weight matrix. For example, pruning of a single output channel of a Conv2D layer with a weight
tensor shapeE] of {48,32, 3,3} leads to a new tensor with shape {47,32,3, 3}.

Gradual Pruning: Gradual pruning in DRL (Graesser et al.,|2022) involves progressively removing
parameters from the network throughout the training process by applying a series of pruning steps
pr(... (p2(p1(f)))). Typically, this process follows a predefined schedule with a target sparsity ;.
at each pruning step ¢ to define the number of parameters to be pruned. The pruning schedule begins
after a warmup training phase at step ty, and concludes with the final pruning operation at step tepg.
The final target sparsity (r represents the fraction of the remaining parameters. A commonly used
gradual pruning schedule is a third-order polynomial with g, and te,q set to 20% and 80% of the
total training steps, respectively (Graesser et al., 2022} (Obando-Ceron et al.| 2024a).

>The weight matrix of a Conv2D layer has dimension {Cou, Cin, K, K'} with the number of out and in
channels Coy and Cou, respectively, and a kernel of shape K x K.

Under review as a conference paper at ICLR 2025

ResBlockg o 01

Conv2d

NINEIS
)

o =|h|0@

Llolo|o

> ~jwlo

@
=

=

3!
B
3l
3
R
2
a:

1
-2
1
1

INNEN

RGB image

@
g
2
g
ot
g

ed Praning

Residual connection 0utput¢

+ :
Il

Figure 2: Visualization of the effect of pruning techniques on the Impoola/Impala-CNN’s ResNet architecture.
Due to the residual connection, there is a dependency between Conv2D layers. Here, the output channels
(blue) of the last Con2D layer must have the same dimension as the output channels of the Con2D layer (red)
before the ResBlock. Unstructured and naive structured pruning does not account for this when pruning the
first Con2D layer (red). Only group-structured pruning removes the same channels and corresponding filters
correctly, including the following layer’s unnecessary filters (gray).

3.3 DEPENDENCY GRAPH

Weight tensors w in DNNs exhibit inter-layer dependencies, e.g., the output dimension of one layer
defines the input dimension of the next. Consequently, pruning parameters in one layer may neces-
sitate further pruning in the dependent layers. These group-structured parameters form a graph that
models the dependencies between network layers (Fang et al.| [2023). While building such a depen-
dency graph for networks composed solely of linear layers is straightforward, modern architectures
with residual connections or attention layers introduce additional complexity, requiring automated
methods. [Fang et al.| (2023) propose DepGraph, a generic framework that uses graph traversal to
identify the dependency graph D and its dependencies. A parameter group g = {wq,wo,-} is a
subgraph of D and must be pruned simultaneously to maintain the network’s functional integrity.

4 METHODOLOGY

As outlined in Section|[I] our preliminary experiments reveal that our proposed Impoola-CNN model
leads to an overall performance boost, but gains attributed to unstructured pruning vanish. Thus,
we introduce an approach using structured pruning instead with the motivation to reduce compute
time but without degrading performance. Our gradual group-structured pruning framework can be
plugged into existing DRL algorithms easily; we show this for PPO and DQN agents. Our method
accounts for dependencies of the Impoola/Impala-CNN encoders, which is crucial for performance.

4.1 IMPOOLA-CNN

In contrast to the Impala-CNN (Espeholt et al.| 2018)), the Impoola-CNN simply adds an Average-
Pooling layer after the last Con2D layer as listed in Table[E.5] The overview in Appendix [E]shows
that for the Impala model, 64.19 % of the weights are located in the encoder’s last Linear layer,
while weights in the Impoola-CNN are equally distributed over the network with 10.1 % in the last
layer. We speculate that this balanced distribution, specifically reducing the number of Linear layer
weights, contributes to the significant performance improvements of the Impoola-CNN.

4.2 GRADUAL GROUP-STRUCTURED PRUNING

Dependency Graph: We use a dependency graph (Fang et al.,2023)) to correctly identify parameter
groups {g1, g2, . . . } in the DNN that should be pruned simultaneously. Figure visualizes the need
to correctly account for dependency introduced by the residual connection in the Impala/Impoola-
CNN model. Opposed to our used group-structured pruning method, unstructured and naive struc-
tured pruning does not account for such dependencies, altering the nature of the DNN’s residual
connections. We define our pruning approach as the function p(g, N) per group g with N as the
number of structures to be pruned. The pruning operation p process groups g = {wi,wa, ... } and
assigns importance scores ¢(w1, ws, . . .) for the common tensor dimension of the group.

Under review as a conference paper at ICLR 2025

Group Importance Scoring: Following other works (Graesser et al., |2022; |(Obando-Ceron et al.,
2024a), we define the weight magnitude , i.e., L1-norm, as scoring function ¢(w) = ||w||; to be
used along the common tensor dimension independently for each group. The final importance score
of each structure in g is obtained by normalizing ¢(w) first for each structure’s weight tensor. Next,
we take the mean of these local scores in group g as a reduction function to obtain the final scores,
which creates an aggregated score vector for the group’s common tensor dimension. This reduction
means that our method takes a neuron’s intra-layer dependencies into account for its score.

Gradual Pruning Schedule: We utilize the same third-order polynomial pruning scheme with
tsarr = 20% and teng = 80% as done in other works (Graesser et al., |2022; [(Obando-Ceron et al.,
20244a). At each time step during training, the current sparsity of all layers /; is measured as ¢;,. The
number of structures to be pruned is then calculated as

o),)

Ni = [(G = Q) - lw,

where N; represents the number of structures to be pruned, and |wy, ||(™ is the initial number of
structures in layer [;. Opposed to unstructured pruning where single weight entries can be removed,
using Equation 2] often results in no structures being pruned at certain steps due to the floor operator.
However, when a structure is pruned, it leads to the removal of many parameters at once. For
example, pruning an output channel of a Conv2D layer with 48 input channels and a 3x3 kernel
results in the simultaneous removal of 432 parameters. Thus, unstructured pruning allows for more
gradual and fine-grained reductions, as illustrated in Figure and [C.T3] respectively.

4.3 IMPLEMENTATION DETAILS

Deep Reinforcement Learning Agents: We use PPO and DQN agents in this work. Our im-
plementations are derived from CleanRL (Huang et al., |2022) for PyTorch (Paszke et al.| 2017).
Hyperparameters are listed in Appendix [D] The used DQN agent is extended by double g-learning
(Van Hasselt et al., 2016), multi-step rewards (Sutton, |1988)), and prioritized replay buffer (Schaul
et al., 2015). We use the framework from [Fang et al.| (2023)) to derive the dependency graph D,
allowing us to deploy the correct structured pruning of inter-layer dependencies. The unstructured
and naive structured pruning methods use weight masks from PyTorch (Paszke et al.,[2017).

Network Architecture: We deploy the Impala/Impoola-CNN encoders with an output feature di-
mension of 256 in all experiments. We set 7 = 3 for all experiments unless otherwise specified,
as suggested by other works (Obando-Ceron et al.| [2024a). The CNN encoder is shared between
the actor and critic for PPO. Given an image input of 64x64 pixels, the Impala and Impoola-CNN
consists of 2,450,640 and 976,080 trainable parameters for PPO, respectively.

Regularization: Our Impoola-CNN model uses a weight decay of 1e~°. Linear learning rate an-
nealing rate is used for the PPO agent, which greatly improves performance. It was shown by |Li
et al. (2019) that as learning rate annealing may allow for higher initial learning rates, generalization
can be improved. We provide an ablation study on this in Section[5.4] No learning rate schedule is
used for DQN as this reduced performance in environments with sparser reward; see Appendix[B.2]

5 EXPERIMENTS

Unless otherwise stated, the results presented are based on the Impoola-CNN model, as we showed
its superiority against the Impala-CNN. The experiments are conducted for a subset of four environ-
ments for the Procgen Benchmark (Cobbe et al., 2020); see Appendix [A]for their description. Our
evaluation strongly focuses on measuring the generalization of DRL agents, for which Atari games
are unsuitable. To keep compute requirements reasonable, results are based on the easy game setting
with the configuration as recommended by |Cobbe et al.| (2020). The presented scores are median
results and 95-% confidence intervals, using 5 seeds for each environment per experiment and 2,500
evaluation episodes. We report collected returns as normalized scores S according to Equation
where 1.0 corresponds to an optimal policy and 0.0 is equivalent to a random one.

Evaluation Tracks: We provide an extensive evaluation by introducing the following tracks:

1. Generalization: The agent is trained for 25M interaction steps on 200 training levels but
then evaluated on the full distribution as testing levels, thus evaluating generalization.

Under review as a conference paper at ICLR 2025

Table 1: Average final normalized scores (return) to compare pruning methods for PPO with a scaled Impoola-
CNN of scale 7 = 3. Total training times for a single NVIDIA A100 PCle 40GB GPU. An [1] indicates higher
values mean better performance. We highlight each of the best dense and sparse results in bold font.

Group-Structured
(Cr = 0.8)

CF Method ‘ STraiuing [T] SGeneralization [T] SFine-luning [T] S];J;siqleos;:ls [T] Training Hr]
0.02 0.02 0.02 0.03 0.01
Dense (w/o Impoola) | 0.39%0.02 0.26%0.02 0.37%0.02 0.25%002 | 0.23%002 3h:04
40.03 40.03 40.04 40.03 40,01
- Dense 0.82%002 0.60F001 0.70+002 0607004 | 0.56F0.03 2h:24
0.02 0.02 0.02 0.0: 0.02
- ReDo 0.85F001 0.63%0.02 0.72%002 0.59%003 | 0.59%003 3h:32
0.01 0.0 0.0 0.01
0.8 Distillation BC 0.73%0.03 0.51%0.01 - 0.50£601 | 0.50%001 3h:59
40.04 40.02 40.02 40.02 40,01
0.8 Unstructured 0.747-0.06 0.577-0.02 0.617-0.06 0.5770.02 | 0.5570.01 2h:25
. 4001 4001 40.02 40.02 4+0.02
0.8 Naive Structured 0.59%0.02 0.51%001 0.54%002 0.51%667 | 0.51%062 2h:23
0.8 Group-Structured 0.72%084 05706 0611683 0.57081 | 0.5701 1h:37
Training (7 = 3) Testing (7 = 3) —— Dense (w/o Impoola)
0.8 0.8 Dense
= ReDo
£ 06 0.6 ___ Unstructured
g (Cr=08)
&
< _ Naive Structured
S 044 0.4 (Cr=0.8)
z

Normalized Score

o

0.0 004

oM 5M 10M 15M 20M 25M oM 5M 10M 15M 20M 25M
Steps Steps

Figure 3: Normalized score (return) during training PPO using our Impoola-CNN. Evaluated on training (left)
and testing levels (right) every 2.5M steps for 2,500 episodes.

2. Fine-tuning: A similar setting to generalization with 200 initial training levels. After train-
ing for 25M initial steps, the agent is fine-tuned for another 1M steps on 100 additional
levels. Performance is then evaluated only on these 100 additional levels.

3. Noise Robustness: We follow|Graesser et al.| and use input perturbation with sampled noise
x ~ N(0,0) with o € [5,15] add to each pixel in the observation space as an integer.

Baseline Methods: We compare our group-structured pruning framework with unstructured prun-
ing (Obando-Ceron et al., 2024a) and naive structured pruning, which does not account for inter-
layer dependencies. Further results are given for a distillation method that uses behavior cloning
(BC) with a dataset of 10M examples collected with the trained dense model to distill it into a
reduced-size network, equivalent to the pruned networks. Additionally, we include results for ReDo
(Sokar et al., [2023), which does not remove but re-invoke neurons that do not contribute to the
model’s output, so it can be interpreted as inverse pruning.

5.1 RESULTS FOR PPO

Training and Generalization: Our first experiment in Figure[3|evaluates our group-structured prun-
ing method for PPO during training for the generalization track. Although both unstructured and
group-structured pruning methods result in some performance loss on training levels, their general-
ization capabilities degrade only slightly compared to the dense baseline. The results on the training
levels indicate that group-structured pruning is more invasive during the active pruning phase (from
5M to 20M steps) than unstructured pruning. However, it recovers the performance loss in the
final 5M steps once pruning is completed. In contrast, the naive structured pruning approach ex-
hibits overall degraded performance, stressing the importance of correctly handling dependencies,
as achieved with our group-structured pruning method. Interestingly, Table T shows that the distil-
lation BC method suffers from low generalization performance, proving the advantage or gradual
pruning. The ReDo method exhibits the best final performance for both training and generalization.
This challenges the efficacy of unstructured pruning, suggesting that reinitializing dormant neurons
may be more beneficial than simply removing weights. Similarly, this finding also supports the
case for group-structured pruning: while this method only causes a slight generalization degrada-
tion compared to Dense and ReDo, it offers the significant advantage of reduced training time as

Under review as a conference paper at ICLR 2025

Testing (7 = 3)

—— Dense Unstructured ({p = 0.8) — Group-Structured ({p = 0.8)

bigfish starpilot dodgeball bossfight

02 /
) 02
02 o1 //
02
o1 o 00

M 1M 1M 20M %M M 10M 1M 20M 25M M 10M 1M 20M %M M M 1M 20M 25M
Steps

Normalized Score

Figure 4: Normalized scores (return) per environment during DQN training, evaluated on test levels to measure
generalization. The aggregated scores are visualized in Figure[C.12]

Table 2: Latency times in ms across compute devices (see Appendix E]) for the presented pruning algorithms
using the Impoola-CNN model (7 = 3). Batch size 1 mimics real-world inference applications of DRL.

Device | Batch Size 256 Batch Size 1
\ Dense Unstructured Group-Structured Dense Unstructured Group-Structured
| (r=08 (Fp=09 (p=08 (F=0.9 ¢r=0.8 (Fp=09 (Fp=08 (Fp=09
High-end GPU 114 114 114 6.3 4.1 1.0 1.0 1.0 0.8 0.8
Workstation CPU 337.4 342.7 342.7 144.7 63.3 3.0 32 32 2.6 14
Embedded GPU 383.9 383.9 383.9 266.5 165.3 6.8 6.8 6.8 6.3 6.3
Embedded CPU - - - - - 325 27.6 274 14.0 9.6

the network gets gradually pruned during training. Additionally, it can be seen that our Impoola-
CNN accelerates Dense training over the Impala-CNN, making a case for the combined use with
group-structured pruning.

Fine-tuning and Robustness: Additional results for the fine-tuning and robustness tracks are pre-
sented in Table [I| Dense and ReDo methods achieve high fine-tuning scores, likely due to their
strong initial generalization and access to a larger hypothesis space. This confirms that the ar-
chitectural improvements of the Impoola-CNN are effective. Although pruned networks improve
performance when fine-tuned on additional levels, their gains are more limited in comparison. How-
ever, the pruned networks demonstrate superior robustness under noisy observations, outperforming
Dense and ReDo. This increased robustness may result from the reduced parameter count in pruned
networks, which limits flexibility but may control internal activation.

5.2 RESULTS FOR DQN

We provide another study for DQN. As shown in Figure 4] we observe a similar trend to PPO,
where the Dense Impoola-CNN constitutes the consistent performance across environments. No-
tably, group-structured pruning is slightly outperformed by unstructured pruning. This may be at-
tributed to the higher frequency of gradient updates in DQN, which favors the smoother pruning
schedule of unstructured pruning, where single weights are removed incrementally. In contrast,
group-structured pruning involves fewer but larger pruning steps, resulting in a more step-like prun-
ing scheme. Further analysis of Figure] reveals that the pruning methods underperform primarily
in the Dodgeball and Bossfight environments. In the Bossfight environment, the DQN agent appears
not to have learned a strong policy by the time pruning starts at SM steps. We conclude that initiating
pruning when the Dense agent’s performance is still unstable can induce training instability, leading
to further deterioration in performance. Appendix [C|contains the results on training levels for DQN.

5.3 INFERENCE TIMES

We present the measured inference times for the PPO actor using the Impoola-CNN model in Table
For a batch size of 256, our group-structured pruning method results in a significant reduction in
inference times across all devices. This reduction is particularly beneficial for accelerating training
or enabling on-board fine-tuning on embedded devices with batched training samples. In the evalu-
ation for single-sample inference, it can be seen that the reduction on GPU platforms is less than for

Under review as a conference paper at ICLR 2025

Testing (7 = 3)
Dense -]
Dense (w/o Ir) - |
Unstructured ((p=0.8) - |
Unstructured ((p=0.8, w/o Ir) - |]

)
)
Group-Structured ((r=0.8) - |
Group-Structured ((#=0.8, w/o Ir) - |

0,:'35 0,‘80
Final Normalized Score
Figure 5: Ablation on Impoola-CNN without linear
learning rate annealing (w/o Ir).

0.50 0.65

Testing
|

Dense (7=

3) -

Dense (7=1) - |
Unstructured ((r=0.8, 7=3) -

Unstructured ((z=0.8, 7=1) - |]
Group-Structured ((=0.8, 7=3) - |
(¢r=0.8, 7=1) - Il

0.40

Group-Structured

T T T
0.48 0.56 0.64

Final Normalized Score
Figure 7: Ablation on reducing the width scale of the
Impoola-CNN to 7 = 1.

Testing (7 = 3)
Dense -
Dense (w/o Impoola) - |
Unstructured (¢p=0.8) - |
|

Group-Structured ((r=0.8) - |
Group-Structured _ |
(w/o Impoola, (p=0.8)

Unstructured (w/o Impoola, (p=0.8) -

0.30 0.45 0.60

Final Normalized Score

Figure 9: Ablation on using the Impala-CNN (= w/o
Impoola) instead of the Impoola-CNN.

Testing (7 = 3)

Unstructured (¢»=0.6) -]

Unstructured ((r=0.8) - |

Unstructured ((p=0.9) - |
Group-Structured ((r=0.6) - |
Group-Structured ((r=0.8) - |
Group-Structured ((#=0.9) - |

0.550 0.575 0.600

Final Normalized Score

Figure 6: Ablation on different final target pruning
rates (r using the Impoola-CNN.

0“)25

Testing (Group-Structured, 7 = 3, (p = 0.8)
Ly-Norm - _
Ly-Norm - |

Taylor - [
I

Random -
r

T T T
0.54 0.56 0.58
Final Normalized Score

0.52

Figure 8: Ablation on the importance score function ¢
for group-structured pruning with Impoola-CNN.

Testing (Hard Coinrun, 100M Steps)

Dense (7=3

Dense (7=5

Unstructured ((p=0.8,

Unstructured ((p=0.8,

Group-Structured ((r=0.8,
(G

Group-Structured ((p=0.8,

0.54 0.60 0.66.

Final Normalized Score
Figure 10: Additional results for the hard setting in
Coinrun environment using 100M training steps.

CPU. This finding indicates that the used Impoola-CNN with a width scale 7 = 3 is under-utilizing
the available GPU resources, limiting the potential gains. As we anticipate further growth in DNN
sizes for image-based DRL, the results for batch size 256 highlight the considerable efficiency gains
achievable with our group-structured approach when available computing power is fully utilized.

5.4 ABLATIONS

Learning Rate Annealing: We examine the influence of linear learning rate annealing on the perfor-
mance of PPO agents. indicate that learning rate annealing improves generalization
performance. However, this could interfere with pruning, as the network may adapt more slowly af-
ter pruning when using a lower learning rate. As shown in Figure[5] learning rate annealing plays a
crucial role in generalization also for pruning methods with PPO. Notably, its use appears to reduce
performance variance across the pruning methods.

Pruning Ratio and Width Reduction: Figure[6| visualizes performance for different target pruning
rates (. With a high target ratio (z = 0.9, both unstructured and group-structured pruning result
in reduced performance. Group-structured pruning seems to be more sensitive to high pruning rates,
positioning (r = 0.8 as a favorable compromise between maintaining performance and reducing
computation time. As presented in Figure [7] reducing the width scale to 7 = 1 decreases overall
performance, but group-structured pruning seems to be more sensitive than unstructured pruning,
i.e., structured grouping appears to require a minimum amount of filters to work well.

Importance Score: We use the L;-norm as importance score function ¢ to allow for easier compar-
ison with other works (Obando-Ceron et al.| 2024a)). We ablate using instead Lo-norm, a first-order
Taylor expansion of the loss (Molchanov et al., 2019), and random scoring in Figure 8] It can be
seen that the Taylor-based score function may improve performance slightly. However, the overall
influence of the importance score seems minor, as even random selection yields good performance.

Under review as a conference paper at ICLR 2025

Training (7 = 3)
—— Dense (w/o Impoola) Dense —— Unstructured (¢=0.8) —— Group-Structured (¢=0.8)
Breakout-v5 Pong-vh BeamRider-vh

2 30000
1500

20000
1000

500 10000

Episodic Return

0 -20 o
T T T T T T T T T T u T T T T u T
oM 5M 10M 15M 20M 25M oM 5M 10M 15M 20M 25M oM 5M 10M 15M 20M 25M

Steps
Figure 11: Episodic return in Atari games, parallelized in EnvPool (Weng et al., [2022)), with training PPO for
25M steps using the same hyperparameter as for the Procgen Benchmark.

This finding aligns with recent works on random network pruning (L1 et al., 2022} |Liu et al., [2022)).
Overall, we recommend using L;-norm due to its simplicity.

Impala-CNN: While this work focuses on the Impoola-CNN architecture, we present additional
results for our group-structured method when using Impala-CNN. It can be seen in Figure [] that
performance for the Impala-CNN can be improved by using both unstructured and group-structured
pruning, but the improvement is higher with unstructured pruning. However, as already discussed,
Impoola-CNN is clearly the preferred architecture.

Long-term Stability: We investigate the effect of prolonged training through experiments on Coin-
run with hard setting and 100M steps. Figure[I0]shows that unstructured pruning for 7 = 3 outper-
forms the others slightly for training levels after an initial phase of instability. However, the results
on testing levels reveal that this seems to come with some overfitting, as group-structured prun-
ing is the best-performing method for generalization. Increasing the width scale to 7 = 5 reduces
performance, though the degradation is least pronounced in group-structured pruning.

Atari Games: To demonstrate that Impoola-CNN and group-structured pruning are not special-
ized to the Procgen Benchmark, we run experiments on three Atari games: Breakout-v5, Pong-v5,
and BeamRider-v5. The results in Figure [TT] demonstrate first that the Impoola-CNN outperforms
Impala-CNN significantly, establishing it as a generally applicable improvement. Second, group-
structured pruning matches again the performance of the dense Impoola-CNN and unstructured
pruning, confirming the results for Procgen Benchmark.

6 CONCLUSION AND FUTURE WORK

Following preliminary experiments, this work introduces the scaled Impoola-CNN encoder, which
significantly boosts image-based DRL performance compared to the widely used Impala-CNN. We
present a group-structured pruning framework for the Impoola-CNN that unlocks performance gains
through scaling while maintaining computational efficiency. Our results on the Procgen Benchmark
for PPO and DQN show that this pruning method for image-based DRL maintains performance
comparable to that of networks with unstructured pruning, even outperforming dense DNNs for
generalization in long-term training. Moreover, we show that while pruned networks do not adapt to
fine-tuning levels as high as the dense Impoola-CNN, pruned DNNs show strong noise robustness
instead. Additional results for Atari games demonstrate the broad applicability of our approach.
A final analysis highlights the efficiency of our group-structured pruning method, with significant
reductions in computing time, eventually making the case for group-structured pruning as the pre-
ferred approach for real-world image-based DRL applications with scaled networks.

For future work, evaluation for real-world image-based DRL applications could provide valuable
insights, particularly given the demonstrated noise robustness of group-structured pruning. The fact
that pruning methods seem to not outperform the Dense networks for the Impoola-CNN requires
further analysis but can be related to the finding of (Cobbe et al., 2019) that if some regularization is
already applied, the combination with further regularization technique does not necessarily improve
performance further. Additionally, we see potential for exploring adaptive gradual pruning schedules
and the use of global pruning methods.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Brian Bartoldson, Ari Morcos, Adrian Barbu, and Gordon Erlebacher. The generalization-stability
tradeoff in neural network pruning. Advances in Neural Information Processing Systems, 33:
20852-20864, 2020.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pp. 449-458. PMLR, 2017.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Karl Cobbe, Oleg Klimov, Chris Hesse, Tachoon Kim, and John Schulman. Quantifying generaliza-
tion in reinforcement learning. In International conference on machine learning, pp. 1282—1289.
PMLR, 2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In International conference on machine learning, pp. 2048—

2056. PMLR, 2020.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Tain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International conference on machine learning,

pp. 1407-1416. PMLR, 2018.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 16091-16101, June 2023.

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin,
Pablo Samuel Castro, and Marc G Bellemare. Proto-value networks: Scaling representation learn-
ing with auxiliary tasks. In The Eleventh International Conference on Learning Representations,
2023.

Niklas Funk, Georgia Chalvatzaki, Boris Belousov, and Jan Peters. Learn2assemble with struc-
tured representations and search for robotic architectural construction. In Conference on Robot
Learning, pp. 1401-1411. PMLR, 2022.

Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of sparse training in
deep reinforcement learning. In International Conference on Machine Learning, pp. 7766—7792.
PMLR, 2022.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. ICLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
IEEE transactions on pattern analysis and machine intelligence, 2023.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and Jodo G.M. Aradjo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1-18, 2022.

Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Timofte, and Luc Van Gool. Revisit-
ing random channel pruning for neural network compression. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 191-201, 2022.

11

Under review as a conference paper at ICLR 2025

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. Advances in neural information processing systems, 32,
2019.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang
Wang, and Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return of the
most naive baseline for sparse training. In International Conference on Learning Representations,
2022.

Dor Livne and Kobi Cohen. Pops: Policy pruning and shrinking for deep reinforcement learning.
IEEE Journal of Selected Topics in Signal Processing, 14(4):789-801, 2020.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,

pp. 5058-5066, 2017.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11264-11272, 2019.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning,

pp. 16828-16847. PMLR, 2022.

Johan Samir Obando-Ceron, Aaron Courville, and Pablo Samuel Castro. In value-based deep rein-
forcement learning, a pruned network is a good network. In Forty-first International Conference
on Machine Learning, 2024a.

Johan Samir Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Nico-
laus Foerster, Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro. Mixtures of
experts unlock parameter scaling for deep RL. In Forty-first International Conference on Machine
Learning, 2024b.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zach DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
CoRR, abs/1511.05952, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agar-
wal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level effi-
ciency. In International Conference on Machine Learning, pp. 30365-30380. PMLR, 2023.

Ghada Sokar, Flena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, and Peter Stone.

Dynamic sparse training for deep reinforcement learning. In International Joint Conference on
Artificial Intelligence, 2021.

12

Under review as a conference paper at ICLR 2025

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In International Conference on Machine Learning, pp.
32145-32168. PMLR, 2023.

Wensheng Su, Zhenni Li, Minrui Xu, Jiawen Kang, Dusit Niyato, and Shengli Xie. Compressing
deep reinforcement learning networks with a dynamic structured pruning method for autonomous
driving. arXiv preprint arXiv:2402.05146, 2024.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9-44, 1988.

Yiqin Tan, Pihe Hu, Ling Pan, Jiatai Huang, and Longbo Huang. RLx2: Training a sparse deep re-
inforcement learning model from scratch. In The Eleventh International Conference on Learning
Representations, 2023.

Raphael Trumpp, Martin Biichner, Abhinav Valada, and Marco Caccamo. Efficient learning of urban
driving policies using bird’s eye-view state representations. In 2023 IEEE 26th International
Conference on Intelligent Transportation Systems (ITSC), pp. 4181-4186, 2023.

Sunil Vadera and Salem Ameen. Methods for pruning deep neural networks. IEEE Access, 10:
63280-63300, 2022. doi: 10.1109/ACCESS.2022.3182659.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk, Zichen
Liu, Yufan Song, Ting Luo, Yukun Jiang, et al. Envpool: A highly parallel reinforcement learning
environment execution engine. Advances in Neural Information Processing Systems, 35:22409—
22421, 2022.

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S. Morcos. Playing the lottery with rewards
and multiple languages: lottery tickets in rl and nlp. In International Conference on Learning
Representations, 2020.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018.

13

Under review as a conference paper at ICLR 2025

— Supplementary Material —

Gradual Structured Pruning for Efficient Network
Scaling in Image-Based Deep Reinforcement
Learning

A PROCGEN ENVIRONMENTS

The ProcGen environments were developed by |Cobbe et al.| (2020) to test sample efficiency and
generalization of DRL agents. Unless otherwise stated, our results are based on the easy setting.
For the generalization track, 200 levels are used for training, while all procedurally generated levels
are used for evaluation. Our experiments have shown that the initial set of 200 levels can influence
the agent’s performance. Thus, we fix the level generation to the first 200 levels for all experiments
but always report results for independent runs with different seeds for the training. When the hard
setting is used, 1000 training levels are used. The action space of the ProcGen environments consists
of 15 discrete actions. Observations are RGB images with 3x64x64 pixels. No stacking of images
is required, as we utilize the environments without the setting that requires memory.

Game Selection: We chose Bigfish, Starpilot, Dodgeball, and Bossfight as environments for our
main evaluation using the easy setting. They constitute a set of various game dynamics. While
high performance in Bigfish and Starpilot is commonly achieved, Dodgeball and Bossfight are more
challenging. Especially agents trained for Bossfight experience limited reward signals early in train-
ing. We provide an additional experiment that uses Coinrun and the hard setting; the normalization
constants remain the same.

_ " .
. i
oo o : _
] - TR By

Figure A.1: Used ProcGen environments: Bigfish, Starpilot, Dodgeball, Bossfight, and Coinrun (left to right).

Normalized Score: As suggested by (Cobbe et al|(2020), we report normalized scores S by

R — Ry
S =27 (A.])
Rmax - Rmin
where R is the raw return collected by the agent, R, is the score for the environment by a random
agent, R« is the maximum possible score. The normalization constants are shown in Table@

Table A.1: Normalization constants for Procgen environments in the easy setting (Cobbe et al.| (2020).

Game Rmin Rmax ‘ Game Rmin Rmax

bigfish 1 40 jumper 3 10
bossfight 0.5 13 leaper 3 10
caveflyer 3.5 12 maze 5 10

chaser 0.5 14 miner 1.5 14
climber 2 12 ninja 35 10
coinrun 5 10 plunder 4.5 30
dodgeball 1.5 19 starpilot 2.5 64
fruitbot -1.5 27 heist 35 10

14

Under review as a conference paper at ICLR 2025

B ADDITIONAL MATERIAL FOR PRELIMINARY EXPERIMENTS

We provide additional detailed plots for our preliminary experiments on the Impala and Impoola-
CNN models for PPO and DQN. Moreover, we present a supervised learning experiment to further
study the effect of using the Impoola-CNN encoder.

B.1 PRELIMINARY EXPERIMENTS FOR PPO

Training
. . Unstructured Impala Unstructured Tmpoola
—— Dense Impala (7 =1) —— Dense Impoola (7 =1) —— Dense Impala (- =3) —— Dense Impoola (7 =3) —— (22307005 — (r=3, (r08)
bigfish starpilot dodgeball bossfight
10
05
08 0.6
£ 058
g oo 06
z 04
|
= 0.2
5 02 04 02
Z
00 T T T T — 02 T T T T — 00 T T T T — 00 T T T T T
5M 10M 15M 20M 25M 5M 10M 15M 20M 25M 5M 10M 15M 20M 25M 5M 10M 15M 20M 25M
Steps.

Figure B.2: Normalized scores (return) per environment of the preliminary experiments for PPO for testing
levels, used to calculate the aggregated normalized scores in Figurem

Testing
Unstructured Tmpala Unstructured Tmpoola
—— Dense lmpala (7 = 1) —— Dense Impoola (r = 1) —— Dense lmpala (7 =3) —— Dense Impoola (r =3) —— ("2} (F:M)p — e e P
bigfish starpilot dodgeball bossfight
0.6 10
06 06
o
g 0s
2 04
i 04 04
2 0.6
5
S 02
] 04 02 02
s
“ /&
0.0 T T T T T o2 T T T T T o0 T T T T T 00 T T T T T
5M 10M 15M 20M 25M 5M 10M 15M 20M 25M 5M 10M 15M 20M 25M 5M 10M 15M 20M 25M
Steps.

Figure B.3: Normalized scores (return) per environment of the preliminary experiments for PPO for testing
levels, used to calculate the aggregated normalized scores in Figurem

Testing —— Impoola
0.6 1 ~— Tmpala
——— Impala (w/ wd, w/ Ir)
0.54
2
S
3 04
9
54
S 0.3
=
£ 024
4
0.14
0.04
oM 5M 10M 15M 20M 25M
Steps

Figure B.4: Ablation for the preliminary experiments using PPO for testing levels showing that the Impoola-
CNN’s pooling layer is crucial as the Impala-CNN model, even when enhanced with learning rate annealing
and weight decay, is not able to meet the performance of Impoola.

15

Under review as a conference paper at ICLR 2025

B.2 PRELIMINARY EXPERIMENTS FOR DQN

Since the results by [Obando-Ceron et al.| (2024a) are primarily for DQN and Rainbow, we also
provide experiments for DQN. Our DQN implementation uses double networks, multi-step returns,
and a simplified prioritized replay buffer similar to (Obando-Ceron et al.,[2024a)).

Training (7 = 3) Testing (7 = 3) —

Dense Impala
0.6 0.6 ~—— Dense Impoola
—— Dense Impoola (w/o Ir)
o 00 o 09 Unstructured Impoola
(; 0.4 c; 0.4 (Cr=08w/olr)
= = Unstructured Impoola
So3 503 (Cr =09, w/oIr)
Fi Fi
Z02 502
Z Z
0.1 0.1
0.0 0.0
oM 5M 10M 15M 20M 25M oM 5M 10M 15M 20M 25M
Steps Steps
(a) Evaluation of training levels. (b) Evaluation on test levels.

Figure B.5: Comparison of the Impala and Impoola-CNN models with scale 7 = 3 on the subset of four ProcGen
environments for DQN training. Normalized return scores are evaluated for training levels (left) and test levels
(right). Unstructured gradual pruning (Obando-Ceron et al} [2024d) results are displayed for target pruning
rates of 0.8 and 0.9. The Impoola-CNN model incorporates a Pooling layer before the Flatten layer.

Testing (v = 3)

Unstructured Impoola Unstructured Impoola
— Dense Impala —— Dense Impoola —— Dense Impoola (w/o lt) —— "L\ T qPo (R e
bigfish starpilot dodgeball bossfight
06 04
04
0
04
03 0.2

00

Normalized Score

0.0

5M 10M 15M 20M 25M 5M 10M 15M 20M 25M 5M 10M 15M 20M 25M 5M 10M 15M 20M 25M
Steps

Figure B.6: Results per environment on testing levels used to calculate the normalized scores in Figure

B.3 PRELIMINARY EXPERIMENTS FOR SUPERVISED LEARNING

We provide another experiment by using the Impoola-CNN (7 = 3) for image classification of
TinyImageNet as a supervised learning example. We use the exact same model architecture as for
DRL with a prediction head for the 200 classes. The learning rate is set to 5e* and linearly annealed.
Weight decay of le-5 is used, but no data augmentation. Again, it can be seen in Figure [B.7] that the
Impoola-CNN encoder facilitates generalization while the Impala-CNN tends to overfit quickly.

—— Train Impoola —— Train Impala

—-==Validation Impoola —-==Validation Impala

bigfish

Accuracy

0 10 20 30 40 50
Epochs

Figure B.7: Training and validation accuracy for image classification using TinyImageNet.

16

Under review as a conference paper at ICLR 2025

C ADDITIONAL MATERIAL FOR EXPERIMENTS

We provide additional detailed plots for our main experiments for PPO and DQN and baselines in
comparison to our group-structured pruning method.

C.1 EXPERIMENTS FOR PPO

Training (7 = 3)

Unstructured Naive Structured Group-Structured
Dense (/o Impoola) Dense ReDo 08) o) o208
bigfish starpilot dodgeball bossfight
08 10
08 06
06 08 06
S 04
S o4 06 04
02
02 /__/———- 04 02 /_/_
T T T T — 02 T T T T — 00 T T T T T T T T T T
M 10M 1M 20M 25M A M 1M 20M 25M sM 10M 1M 20M %M M M 1M 20M 25M
Steps

Figure C.8: Results on training levels per environment used to calculate the normalized scores in Figure

Testing (7 = 3)

Unstructured Naive Structured Group-Structured
Dense (w/o Impoola) Dense ReDo (Cr0.8) (Cr = 08) Cr08)
bigfish starpilot dodgeball bossfight
06 10
06
06
08
04 04
06
02 02 //
04 =
/,— " 00 00
M 10M 15M 20M 25M 5M 10M 15M 20M 26M M 10M 15M 20M 25M M 10M 15M 20M 26M
Steps

Figure C.9: Results on test levels per environment used to calculate the normalized scores in Figure

Flatness (r = 3)

structured Naive Structured Iroup-Structured
—— Dense (w/o Impoola) Dense ReDo —— &‘_’:"{ S T a0y — &i?‘ij’(,_x‘)““ e

<106 bigfish <10-7 starpilot $10-0 dodgeball ©10-5 bossfight
o

5M 10M 15M 20M 5M 10M 15M 20M 5M 10M 15M 20M 5M 10M 15M 20M

Covariance Gradient per Parameter

Steps
Figure C.10: Flatness of the PPO agent’s DNN, measured as the gradient covariance trace per parameter during
training for the generalization track. According to|Bartoldson et al.|(2020), flat DNNs are often associated with
high generalization. We estimate flatness by the trace of the gradient’s covariance matrix per parameter, with
lower values suggesting better generalization. Our results reveal that pruning tends to reduce flatness. Despite
this decrease in flatness, our results show that pruned networks can still generalize effectively, indicating that
flatness is not the sole determinant of generalization.

17

Under review as a conference paper at ICLR 2025

—— Unstructured (g = 0.8 ~ —— Group-Structured (r = 0.8
Structured (p = 0.8

105 Params

Total Network Parameter

oM 5M 10M 15M 20M 25M
Steps

Figure C.11: Parameter counts for PPO during training for structured and unstructured pruning with a target
sparsity (y = 0.8 and Impoola-CNN model (7 = 3). It can be seen that the schedule for structured group
pruning is faster. This is because when one structure, e.g., the input weight of a neuron, also the corresponding
output weights are removed, which Equation|z|cannot account for.

C.2 EXPERIMENTS FOR DQN

Training (7 = 3)

—— Dense Unstructured ¢ = 0.8 —— Group-Structured ¢r = 0.8
bigfish starpilot dodgeball bossfight

06 08

—_—— 06 i — 03
06

0.4 02
04

02 ot

02 00

00
M 10M 15M 20M 25M 5M 10M BM 20M 25M M 10M 15M 20M 25M M 10M BBM 20M 25M
Steps

Figure C.12: Results on training levels per environment used to calculate the normalized scores in Figure

—— Unstructured ¢ = 0.8 Group-Structured (p = 0.8

a0 Params

g
%
g
Z
Z
]

0.0

oM M 10M 15M 20M 25M
Steps

Figure C.13: Parameter counts for DQN during training for structured and unstructured pruning with a target
sparsity (y = 0.8 and Impoola-CNN model (7 = 3). It can be seen that the schedule for structured group
pruning is faster. This is because when one structure, e.g., the input weight of a neuron, also the corresponding
output weights are removed, which Equation|2|cann0t account for.

18

Under review as a conference paper at ICLR 2025

D HYPERPARAMETERS LIST

Table D.2: Hyperparameters for Proximal Policy Optimization (PPO).

Hyperparameter Values
Number Parallel Environments 64
Environment Steps 256
Learning Rate 5x 1074
Batch Size 2048
Epochs 3
Discount Factor () 0.99
GAE Lambda () 0.95
Clip Range 0.2
Value Function Coefficient 0.5
Entropy Coefficient 0.01
Max Gradient Norm 0.5
Optimizer Adam
Shared Policy and Value Network Yes

Table D.3: Hyperparameters for Deep Q-Network (DQN).

Hyperparameter Values
Number Parallel Environments 64
Learning Rate 5x 107°
Batch Size 256
Discount Factor (v) 0.99

Target Network Update Frequency 64,000 steps
Learning Starts 250,000 steps
Train Frequency 1

Replay Buffer Size 1 x 109
Exploration Initial e 1.0
Exploration Final ¢ 0.02
Exploration Decay Fractions 0.1

Max Gradient Norm 10.0
Optimizer Adam

19

Under review as a conference paper at ICLR 2025

E NETWORK ARCHITECTURE

Table E.4: Model summary of the Impala network (width scale 7 = 3), including the Actor and Critic heads for
PPO, with 64 x 64 input images. The overall parameter count is 2,450,640, with a total of 262.33M multi-adds.

Layer (type:depth-idx) Input Output Param # Kernel Param % Multi-Adds
ImpalaPPOActorCritic [3, 64, 64] [15] - - - -
Sequential: 1-1 [3, 64, 64] [256] - - - -
ConvSequence: 2-1 [3, 64, 64] [48, 32, 32] - - - -
Conv2d: 3-1 [3, 64, 64] [48, 64, 64] 1,344 [3,3] 0.05% 5,505,024
ResidualBlock: 3-2 [48, 32, 32] [48, 32, 32] - - - -
Conv2d: 4-1 [48, 32, 32] [48, 32, 32] 20,784 [3,3] 0.85% 21,282,816
Conv2d: 4-2 [48, 32, 32] [48, 32, 32] 20,784 [3,3] 0.85% 21,282,816
ResidualBlock: 3-3 [48, 32, 32] [48, 32, 32] - - - -
Conv2d: 4-3 [48, 32, 32] [48, 32, 32] 20,784 [3,3] 0.85% 21,282,816
Conv2d: 4-4 [48, 32, 32] [48, 32, 32] 20,784 [3,3] 0.85% 21,282,816
ConvSequence: 2-2 [48, 32, 32] [96, 16, 16] - - - -
Conv2d: 3-4 [48, 32, 32] [96, 32, 32] 41,568 [3,3] 1.70% 42,565,632
ResidualBlock: 3-5 [96, 16, 16] [96, 16, 16] - - - -
Conv2d: 4-5 [96, 16, 16] [96, 16, 16] 83,040 [3,3] 3.39% 21,258,240
Conv2d: 4-6 [96, 16, 16] [96, 16, 16] 83,040 [3,3] 3.39% 21,258,240
ResidualBlock: 3-6 [96, 16, 16] [96, 16, 16] - - - -
Conv2d: 4-7 [96, 16, 16] [96, 16, 16] 83,040 [3,3] 3.39% 21,258,240
Conv2d: 4-8 [96, 16, 16] [96, 16, 16] 83,040 [3,3] 3.39% 21,258,240
ConvSequence: 2-3 [96, 16, 16] [96, 8, 8] - - - -
Conv2d: 3-7 [96, 16, 16] [96, 16, 16] 83,040 [3,3] 3.39% 21,258,240
ResidualBlock: 3-8 [96, 8, 8] [96, 8, 8] - - - -
Conv2d: 4-9 [96, 8, 8] [96, 8, 8] 83,040 [3,3] 3.39% 5,314,560
Conv2d: 4-10 [96, 8, 8] [96, 8, 8] 83,040 [3,3] 3.39% 5,314,560
ResidualBlock: 3-9 [96, 8, 8] [96, 8, 8] - - - -
Conv2d: 4-11 [96, 8, 8] 196, 8, 8] 83,040 [3,3] 3.39% 5,314,560
Conv2d: 4-12 [96, 8, 8] [96, 8, 8] 83,040 [3,3] 3.39% 5,314,560
Flatten: 2-4 [96, 8, 8] [6144] - - - -
ReLU: 2-5 [6144] [6144] - - - -
Linear: 2-6 [6144] [256] 1,573,120 - 64.19% 1,573,120
ReLU: 2-7 [256] [256] - - - -
Linear: 1-2 [256] [15] 3,855 - 0.16% 3,855
Linear: 1-3 [256] [1] 257 - 0.01% 257

Table E.5: Model summary of the Impoola network (width scale 7 = 3), including the Actor and Critic heads
for PPO, with 64 x 64 input images. The overall parameter count is 976,080, with a total of 260.85M multi-

adds.
Layer (type:depth-idx) Input Output Param # Kernel Param % Multi-Adds
ImpalaPPOActorCritic [3, 64, 64] [15] - - - -
Sequential: 1-1 [3, 64, 64] [256] - - - -
ConvSequence: 2-1 [3, 64, 64] [48, 32, 32] - - - -
Conv2d: 3-1 [3, 64, 64] [48, 64, 64] 1,344 3,3] 0.14% 5,505,024
ResidualBlock: 3-2 [48, 32, 32] [48, 32, 32] - - - -
Conv2d: 4-1 [48, 32, 32] [48, 32, 32] 20,784 [3,3] 2.13% 21,282,816
Conv2d: 4-2 [48, 32, 32] [48, 32, 32] 20,784 3,3] 2.13% 21,282,816
ResidualBlock: 3-3 [48, 32, 32] [48, 32, 32] - - - -
Conv2d: 4-3 [48, 32, 32] [48, 32, 32] 20,784 [3,3] 2.13% 21,282,816
Conv2d: 4-4 [48, 32, 32] [48, 32, 32] 20,784 [3,3] 2.13% 21,282,816
ConvSequence: 2-2 48, 32, 32] [96, 16, 16] - - - -
Conv2d: 3-4 [48, 32, 32] [96, 32, 32] 41,568 [3,3] 4.26% 42,565,632
ResidualBlock: 3-5 96, 16, 16] [96, 16, 16] - - - -
Conv2d: 4-5 [96, 16, 16] [96, 16, 16] 83,040 [3,3] 8.51% 21,258,240
Conv2d: 4-6 [96, 16, 16] [96, 16, 16] 83,040 [3,3] 8.51% 21,258,240
ResidualBlock: 3-6 [96, 16, 16] [96, 16, 16] - - - -
Conv2d: 4-7 [96, 16, 16] [96, 16, 16] 83,040 [3,3] 8.51% 21,258,240
Conv2d: 4-8 [96, 16, 16] [96, 16, 16] 83,040 [3,3] 8.51% 21,258,240
ConvSequence: 2-3 [96, 16, 16] [96, 8, 8] - - - -
Conv2d: 3-7 [96, 16, 16] [96, 16, 16] 83,040 [3,3] 8.51% 21,258,240
ResidualBlock: 3-8 [96, 8, 8] [96, 8, 8] - - - -
Conv2d: 4-9 [96, 8, 8] [96, 8, 8] 83,040 [3,3] 8.51% 5,314,560
Conv2d: 4-10 [96, 8, 8] [96, 8, 8] 83,040 [3,3] 8.51% 5,314,560
ResidualBlock: 3-9 [96, 8, 8] [96, 8, 8] - - - -
Conv2d: 4-11 [96, 8, 8] [96, 8, 8] 83,040 [3,3] 8.51% 5,314,560
Conv2d: 4-12 [96, 8, 8] [96, 8, 8] 83,040 [3,3] 8.51% 5,314,560
AdaptiveAvgPool2d: 2-4 (96, 8, 8] [96, 2, 2] - - - -
Flatten: 2-5 96, 2, 2] [384] - - - -
ReLU: 2-6 [384] [384] - - - -
Linear: 2-7 [384] [256] 98,560 - 10.10% 98,560
ReLU: 2-8 [256] [256] - - - -
Linear: 1-2 [256] [15] 3,855 - 0.39% 3,855
Linear: 1-3 [256] [1] 257 - 0.03% 257

20

Under review as a conference paper at ICLR 2025

F MEASURED INFERENCE TIMES

We measure the results after a warm-up phase of 100 forward passes as the average of 1000 forward
passes without further soft- or hardware optimizations.

The used devices are :

* High-end GPU: NVIDIA RTX A6000
¢ Workstation CPU: Intel Xeon W-2295
¢ Embedded CPU: NVIDIA Jetson Orin Nano 7W
¢ Embedded GPU: NVIDIA Jetson Orin Nano 7W.

Table F.6: Comparison of latency times in ms across compute devices for the presented pruning algorithms
using the Impoola-CNN model with a width scale of 7 = 5.

Compute Device | Batch Size 256 Batch Size 1
\ Unstructured Group-Structured Unstructured Group-Structured
| Dense (r=08 (p=09 (r=08 C(p=09 Dense (r=08 (r=09 (r=08 (r=0.9
High-end GPU 21.1 20.7 - 10.1 - 1.0 1.0 - 1.0
Workstation CPU 637.6 619.9 - 251.6 - 4.0 4.1 - 2.7
Embedded GPU 865.8 865.8 - 506.1 - 8.8 8.8 - 7.1
Embedded CPU - - - - - 54.1 54.9 - 232

21

	Introduction
	Related Work
	Background
	Deep Reinforcement Learning
	Neural Network Pruning
	Dependency Graph

	Methodology
	Impoola-CNN
	Gradual Group-Structured Pruning
	Implementation Details

	Experiments
	Results for PPO
	Results for DQN
	Inference Times
	Ablations

	Conclusion and Future Work
	ProcGen Environments
	Additional Material for Preliminary Experiments
	Preliminary Experiments for PPO
	Preliminary Experiments for DQN
	Preliminary Experiments for Supervised Learning

	Additional Material for Experiments
	Experiments for PPO
	Experiments for DQN

	Hyperparameters List
	Network Architecture
	Measured Inference Times

