
24

Formally Reasoning About Quality

SHAULL ALMAGOR, The Hebrew University
UDI BOKER, The Interdisciplinary Center
ORNA KUPFERMAN, The Hebrew University

In recent years, there has been a growing need and interest in formally reasoning about the quality of
software and hardware systems. As opposed to traditional verification, in which one considers the question
of whether a system satisfies a given specification or not, reasoning about quality addresses the question of
how well the system satisfies the specification. We distinguish between two approaches to specifying quality.
The first, propositional quality, extends the specification formalism with propositional quality operators,
which prioritize and weight different satisfaction possibilities. The second, temporal quality, refines the
“eventually” operators of the specification formalism with discounting operators, whose semantics takes into
an account the delay incurred in their satisfaction.

In this article, we introduce two quantitative extensions of Linear Temporal Logic (LTL), one by proposi-
tional quality operators and one by discounting operators. In both logics, the satisfaction value of a specifi-
cation is a number in [0, 1], which describes the quality of the satisfaction. We demonstrate the usefulness
of both extensions and study the decidability and complexity of the decision and search problems for them
as well as for extensions of LTL that combine both types of operators.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic]: Temporal Logic

General Terms: Verification

Additional Key Words and Phrases: Automata, quality, LTL, model checking, synthesis

ACM Reference Format:
Shaull Almagor, Udi Boker, and Orna Kupferman. 2016. Formally reasoning about quality. J. ACM 63, 3,
Article 24 (June 2016), 56 pages.
DOI: http://dx.doi.org/10.1145/2875421

1. INTRODUCTION

One of the main obstacles to the development of complex hardware and software sys-
tems lies in ensuring their correctness. A successful paradigm addressing this obstacle
is temporal-logic model checking: given a mathematical model of the system and a
temporal-logic formula that specifies a desired behavior of it, decide whether the model
satisfies the formula [Clarke et al. 1999]. Correctness is Boolean: a system can either
satisfy its specification or not satisfy it. The richness of today’s systems, however, jus-
tifies specification formalisms that are quantitative. The quantitative setting arises
directly in systems with quantitative aspects (multivalued/probabilistic/fuzzy) [Moon

The article combines and extends [Almagor et al. 2013] and [Almagor et al. 2014]. The research has received
funding from the European Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement no 278410.
Authors’ addresses: S. Almagor, 18 Hamagid st. Jerusalem, Israel; email: shaull.almagor@mail.huji.ac.il;
U. Boker, School of Computer Science, Interdisciplinary Center, Herzliya, Israel; email: udiboker@idc.ac.il;
O. Kupferman, School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel; email:
orna@cs.huji.ac.il.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0004-5411/2016/06-ART24 $15.00
DOI: http://dx.doi.org/10.1145/2875421

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

http://dx.doi.org/10.1145/2875421
http://dx.doi.org/10.1145/2875421

24:2 S. Almagor et al.

et al. 2004; Kwiatkowska 2007; Faella et al. 2008; Droste and Rahonis 2009; Droste and
Vogler 2012], but is applied also with respect to Boolean systems, in which it origins
from the semantics of the specification formalism itself [De Alfaro et al. 2005; Almagor
et al. 2013b].

When considering the quality of a system, satisfying a specification should no longer
be a yes/no matter. Different ways of satisfying a specification should induce different
levels of quality, which should be reflected in the output of the verification proce-
dure. Consider, for example, the specification ψ = G(request → F(response grant ∨
response deny)); that is, every request is eventually responded to, with either a grant
or a denial. When we evaluate ψ , there should be a difference between a computation
that satisfies it with responses generated soon after requests and one that satisfies
it with long waits. Moreover, there should be a difference between grant and deny
responses, or cases in which no request is issued.

The issue of generating high-quality hardware and software systems attracts a lot of
attention [Kan 2002; Spinellis 2003]. Quality, however, is traditionally viewed as an art
or as an amorphous ideal. In this article, we suggest a framework for formalizing and
reasoning about quality. Our working assumption is that different ways of satisfying
a specification should induce different levels of quality, which should be reflected in
the output of the verification procedure. Using our approach, a user can specify quality
formally, according to the importance the user gives to components such as security,
maintainability, runtime, delays, and more, then can formally reason about the quality
of hardware and software systems.

1.1. Our Contribution

Recall the earlier specification example ψ = G(request → F(response grant ∨
response deny)). As the specification demonstrates, one can distinguish between two
aspects of the quality of satisfaction. The first, which we call “propositional quality,”
concerns prioritizing related components of the specification. The second, which we call
“temporal quality,” concerns the waiting time to satisfaction of eventualities. We study
both aspects, as well as their combination. Here, we describe the two aspects, along
with our contribution in detail.

1.1.1. Propositional Quality. Quality is a rather subjective issue. Technically, we can talk
about the quality of satisfaction of specifications since there are different ways to satisfy
specifications. We introduce and study the linear temporal logic LTL[F], that extends
LTL with an arbitrary set F of functions over [0, 1]. Using the functions in F , a specifier
can formally and easily prioritize the different ways of satisfaction. The logic LTL[F]
is really a family of logics, each parameterized by a set F ⊆ { f : [0, 1]k → [0, 1] | k ∈ N }
of functions (of arbitrary arity) over [0, 1]. For example, F may contain the min {x, y},
max {x, y}, and 1−x functions, which are the standard quantitative analogues of the ∧,
∨, and ¬ operators. As discussed in Section 1.2, such extensions to LTL have already
been studied in the context of quantitative verification [Faella et al. 2008]. The novelty
of LTL[F], beyond its use in the specification of quality, is the ability to manipulate
values by arbitrary functions. For example, F may contain the quantitative operator
�λ, for λ ∈ [0, 1], that tunes down the quality of a subspecification. Formally, the
quality of the satisfaction of the specification �λϕ is the multiplication of the quality
of the satisfaction of ϕ by λ. Another useful operator is the weighted-average function
⊕λ. There, the quality described by the formula ϕ ⊕λ ψ is the weighted (according to λ)
average between the quality of ϕ and that of ψ . This enables the quality of the system
to be an interpolation of different aspects of it. As an example, consider the formula
G(req → (grant ⊕ 3

4
Xgrant)). The formula specifies the fact that we want requests to

be granted immediately and the grant to hold for two transactions. When this always
holds, the satisfaction value is 1, corresponding to full satisfaction. We are quite content

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:3

with grants that are given immediately and last for only one transaction, in which case
the satisfaction value is 3

4 , and less content when grants arrive with a delay, in which
case the satisfaction value is 1

4 .
An LTL[F] formula maps computations to a value in [0, 1]. We accordingly general-

ize classical decision problems—such as model checking, satisfiability, synthesis, and
equivalence—to their quantitative analogues, which are search or optimization prob-
lems. For example, the equivalence problem between two LTL[F] formulas ϕ1 and ϕ2
seeks the supremum of the difference in the satisfaction values of ϕ1 and ϕ2 over all
computations. Of special interest is the extension of the synthesis problem. In conven-
tional synthesis algorithms, we are given a specification to a reactive system, typically
by means of an LTL formula, and we transform it into a system that is guaranteed
to satisfy the specification with respect to all environments [Pnueli and Rosner 1989].
Little attention has been paid to the quality of the systems that are automatically syn-
thesized1. Current efforts to address the quality challenge are based on enriching the
game that corresponds to synthesis to a weighted one [Bloem et al. 2009; Černỳ et al.
2011]. Using LTL[F], we are able to embody quality within the specification, which is
very convenient.

In the Boolean setting, the automata-theoretic approach has proven to be very useful
in reasoning about LTL specifications. The approach is based on translating LTL for-
mulas to nondeterministic Büchi automata on infinite words [Vardi and Wolper 1986].
In the quantitative approach, it seems natural to translate formulas to weighted au-
tomata [Mohri 1997; Droste et al. 2009]. However, these extensively studied models are
complicated and many problems become undecidable for them (e.g., the universality
problem [Krob 1994; Almagor et al. 2011]). We show that we can use the approach taken
in Faella et al. [2008], bound the number of possible satisfaction values of LTL[F] for-
mulas, and use this bound in order to translate LTL[F] formulas to Boolean automata.
From a technical point of view, the big challenge in our setting is to maintain the
simplicity and the complexity of the algorithms for LTL, even though the number of
possible values is exponential. We do so by restricting attention to feasible combina-
tions of values assigned to the different subformulas of the specification. Essentially,
our translation extends the construction of Vardi and Wolper [1986] by associating
states of the automaton with functions that map each subformula to a satisfaction
value. Using the automata-theoretic approach, we solve the verification and synthesis
problems for LTL[F] within the same complexity classes as the corresponding problems
in the Boolean setting (as long as the functions in F are computable within these com-
plexity classes; otherwise, they become the computational bottleneck). Our approach
thus enjoys the fact that traditional automata-based algorithms are susceptible to well-
known optimizations and symbolic implementations. It can also be easily implemented
in existing tools.

1.1.2. Temporal Quality. In temporal quality, we consider delays as the factor that
affects the quality of satisfaction. That is, the delay with which eventualities are
satisfied determines the satisfaction value. One may try to reduce “temporal quality”
to “propositional quality” using the fact that an eventuality involves a repeated choice
between satisfying it in the present or delaying its satisfaction to the strict future.
This attempt, however, requires unboundedly many applications of the propositional
choice, and is similar to a repeated use of the X (“next”) operator rather than a use
of eventuality operators. Repeated use of X is a limited solution, as it partitions the
future into finitely many zones, all of which are in the “near future,” except for a
single, unbounded, “far future.” A more involved approach to distinguish between

1Note that we do not refer here to the challenge of generating optimal (say, in terms of state space) systems,
but rather to quality measures that refer to how the specification is satisfied.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:4 S. Almagor et al.

the “near” and “far” future includes bounded (prompt) eventualities [Bojańczyk and
Colcombet 2006; Almagor et al. 2010]. There, one distinguishes between eventualities
whose waiting time is bounded and ones that have no bound.

The weakness of both approaches is not surprising: correctness of LTL is Boolean,
thus has an inherent dichotomy between satisfaction and dissatisfaction. The distinc-
tion between “near” and “far,” however, is not dichotomous.

This suggests that, in order to formalize temporal quality, one must extend LTL to an
unbounded setting. Realizing this, researchers have suggested augmenting temporal
logics with future discounting [De Alfaro et al. 2003]. In the discounted setting, the
satisfaction value of specifications is a numerical value, and depends, according to
some discounting function, on the time waited for eventualities to get satisfied.

We introduce and study the linear temporal logic LTLdisc[D]—an augmentation by
discounting of LTL. The logic LTLdisc[D] is actually a family of logics, each param-
eterized by an arbitrary set D of discounting functions, namely, by a set of strictly
decreasing functions from N to [0, 1] that tend to 0 (e.g., linear decaying and exponen-
tial decaying). LTLdisc[D] includes a discounting-“until” (Uη) operator, parameterized
by a function η ∈ D. We solve the model-checking threshold problem for LTLdisc[D]:
given a Kripke structure K, an LTLdisc[D] formula ϕ, and a threshold t ∈ [0, 1], the
algorithm decides whether the satisfaction value of ϕ in K is at least t.

Similar to the case of LTL[F], an attempt to handle LTLdisc[D] with weighted au-
tomata involves problems that are, in general, undecidable [Almagor et al. 2011].
Unlike LTL[F], the range of possible satisfaction values of an LTLdisc[D] formula is
infinite. Consequently, the border of decidability is different and the use of Boolean
automata in reasoning about LTLdisc[D] is much more challenging. Nevertheless, we
show that, for threshold problems, we can translate LTLdisc[D] formulas into (Boolean)
nondeterministic Büchi automata (NBA), with the property that the automaton accepts
a lasso computation if and only if the formula attains a value above the threshold on
that computation. Our algorithm relies on the fact that the language of an automaton
is nonempty if and only if there is a lasso witness for the nonemptiness. We cope with
the infinitely many possible satisfaction values by using the discounting behavior of
the eventualities and the given threshold in order to partition the state space into a
finite number of classes. The complexity of our algorithm depends on the discounting
functions used in the formula. We show that, for LTLdisc[D] with standard discount-
ing functions, such as exponential decaying (denoted by LTLdisc[E]), the problem is
PSPACE-complete—not more complex than standard LTL. The fact that our algorithm
uses Boolean automata also enables us to suggest a solution for threshold satisfiability,
and to give a partial solution to threshold synthesis. In addition, it enables an adoption
of heuristics and tools that exist for Boolean automata.

We note that, unlike the case of LTL[F], the fact that in LTLdisc[D] there are infinitely
many satisfaction values implies that solving the threshold decision problems does not
yield a solution to the search problem. A solution for the search problems remains
elusive. As we show, however, the solution for the threshold problems does imply an
approximate solution for the search problems, with every desired accuracy.

1.1.3. Combination of the Two Aspects and Other Extensions. After introducing LTL[F]
and LTLdisc[D] and studying their decision problems, we augment LTLdisc[D] with
propositional quality operators. Beyond the operators min, max, and ¬, which are
already present, two basic propositional quality operators of LTL[F] are the multi-
plication of an LTLdisc[D] formula by a constant in [0, 1], and the averaging between
the satisfaction values of two LTLdisc[D] formulas. We show that, while the first

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:5

extension does not increase the expressive power of LTLdisc[D] or its complexity, the
latter causes the validity and model-checking problems to become undecidable. In fact,
things become undecidable even if we allow averaging in combination with a single
discounting function. Recall that this is in contrast with the extension of discounted
CTL with an average operator, in which the complexity of the model-checking problem
stays polynomial [De Alfaro et al. 2005].

We consider additional extensions of LTLdisc[D]. First, we study a variant of the
discounting-eventually operators, in which we allow the discounting to tend to arbitrary
values in [0, 1] (rather than to 0). This captures the intuition that we are not always
pessimistic about the future, but can be, for example, ambivalent about it, by tending to
1
2 . We show that all our results hold under this extension. Second, we add to LTLdisc[D]
past operators and their discounting versions (specifically, we allow a discounting-
“since” operator, and its dual). In the traditional semantics, past operators enable
clean specifications of many interesting properties, make the logic exponentially more
succinct, and can still be handled within the same complexity bounds [Lichtenstein
et al. 1985; Laroussinie and Schnoebelen 1994]. We show that the same holds for the
discounted setting. Finally, we show how LTLdisc[D] and algorithms for it can also be
used for reasoning about weighted systems.

1.2. Related Work

The quantitative setting has been an active area of research, providing many works
on quantitative logics and automata [Kupferman and Lustig 2007; Droste et al. 2008;
Droste and Rahonis 2009; Almagor and Kupferman 2011; Droste and Vogler 2012].

Conceptually, our work aims at formalizing quality, having a different focus from each
of the other works. Technically, the main difference between our setting and most of
the other approaches is the source of quantitativeness: There, it stems from the nature
of the system (multivalued/quantitative/probabilistic/fuzzy), whereas in our setting it
stems from the richness of the new functional and discounting operators.

The common practice in these works is to give a quantitative interpretation to the
Boolean and temporal operators (e.g., by associating a conjunction with min) [Moon
et al. 2004; Faella et al. 2008], for coping with the quantitative nature of the system.
In our setting, on the other hand, the system may be either Boolean or quantitative,
while the quality measures are obtained by functions that are much richer than the
quantitative interpretation of the Boolean operators—all sets of functions over the
[0, 1] interval are allowed. We elaborate here on some of these works.

—Early work handles multivalued systems, in which the values of atomic propositions
are taken from a finite domain,f or example, “uninitialized,” “unknown,” and “don’t
care” [IEEE 1993]. Beyond richer expressiveness, multivalues, sometimes arranged
in a lattice, are useful in abstraction methods, query checking, and verification of sys-
tems from inconsistent viewpoints, in which multivalues are used to model missing,
hidden, or varying information [Bruns and Godefroid 2004; Kupferman and Lustig
2007]. Satisfaction of formulas is then multivalued, corresponding to the values of
atomic propositions.

—More sophisticated multivalued systems consider real-valued signals [Donzé and
Maler 2010]. The quantitative setting there stems from both time intervals and
predicates over the value of atomic propositions. In particular, signal temporal logic
[Donzé et al. 2012] allows a quantitative reference to the temporal distance between
events. The motivation and type of questions studied in this setting, however, is
different from ours.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:6 S. Almagor et al.

—In fuzzy temporal logic, for example, Moon et al. [2004], formulas are interpreted over
fuzzy systems—ones in which the occurrence of an event or of a state at a certain
point in time gets a value in [0, 1]. Such systems and reasoning about them have also
been studied in the context of quantitative verification [De Alfaro et al. 2004; Faella
et al. 2008]. Formulas are satisfied with a value in [0, 1], following the fuzziness of
events and states.

—Probabilistic temporal logic is interpreted over Markov chains and Markov decision
processes [Hansson and Jonsson 1994; Desharnais et al. 2004; Kwiatkowska 2007].
Each transition in the system has a value in [0, 1], denoting the probability of taking
it. Accordingly, one can talk about the probability of reaching a state or satisfying
a desired property. A formula then gets a value between 0 and 1, indicating the
probability of satisfying it.

In the temporal-quality front, the notion of discounting has been studied in several
fields, such as economy, game-theory, and Markov decision processes [Shapley 1953]. In
the area of formal verification, it was suggested in De Alfaro et al. [2003] to augment
the μ-calculus with discounting operators. The discounting suggested there is expo-
nential; that is, with each iteration, the satisfaction value of the formula decreases
by a multiplicative factor in (0, 1]. Algorithmically, De Alfaro et al. [2003] show how
to evaluate discounted μ-calculus formulas with arbitrary precision. Formulas of LTL
can be translated to the μ-calculus [De Alfaro et al. 2003], thus can be used in or-
der to approximately model-check discounted-LTL formulas. However, the translation
from LTL to the μ-calculus involves an exponential blowup [Dam 1994] (and is compli-
cated), making this approach inefficient. Moreover, our approach allows for arbitrary
discounting functions, and the algorithm returns an exact solution to the threshold
model-checking problem, which is more difficult than the approximation problem.

A different approach to temporal quality is to consider mean-payoff semantics. Then,
the future can have a strong effect on the value of a computation, providing that it is
persistent and small perturbations are averaged out. Works in this direction include
Boker et al. [2014], in which LTL is augmented with Boolean assertions over the sum
and average of quantitative atomic assertions, and Bohy et al. [2013], in which atomic
propositions are assigned weights and the goal is to synthesize, given an LTL formula ϕ,
a transducer that realizes ϕ and such that the mean-payoff of the output letters in every
computation is above some threshold. Bouyer et al. [2014] augment LTL with averaging
temporal operators, and study the related satisfiability and model-checking problems.
It is shown that all variants of the problems become undecidable, and connections are
drawn to our work.

Closer to our work is De Alfaro et al. [2005], in which CTL is augmented with
discounting and weighted-average operators. The motivation in De Alfaro et al. [2005]
is to introduce a logic whose semantics is not too sensitive to small perturbations in the
model. Accordingly, formulas are evaluated on weighted systems or on Markov chains.
Adding discounting and weighted-average operators to CTL preserves its appealing
complexity, and the model-checking problem for the augmented logic can be solved in
polynomial time. As is the case in the traditional Boolean semantics, the expressive
power of discounted CTL is limited.

Perhaps closest to our approach is Mandrali [2012], in which a version of discounted-
LTL was introduced. Semantically, there are two main differences between the logics.
The first is that [Mandrali 2012] uses a discounted sum, while we interpret discounting
without accumulation. The second is that the discounting there replaces the standard
temporal operators; thus, all eventualities are discounted. As discounting functions
tend to 0, this strictly restricts the expressive power of the logic, and one cannot spec-
ify traditional eventualities in it. On the positive side, it enables a clean algebraic

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:7

characterization of the semantics; the contribution in Mandrali [2012] is a comprehen-
sive study of the mathematical properties of the logic. Yet, Mandrali [2012] does not
study algorithmic questions about the logic. We, on the other hand, focus on the algo-
rithmic properties of the logic, specifically on the model-checking problem. In addition,
we are the first to combine the two aspects.

More recently, we see works that use our formalism and approach for reasoning
about quality. Fränzle et al. [2015] suggest an extension of LTLdisc[E] to continuous-
time computations. In the more applicative front, Nakagawa and Hasuo [2015] had
recently used our framework in order to solve the synthesis problem with a near-
optimal quality. The authors cope with the infinite range of satisfaction values of
LTLdisc[D] by partitioning the infinite range into finitely many sections whose number
depends on a given allowed error factor.

Finally, in Almagor et al. [2013a], we automatically generate the factors in LTL�

formulas according to samples of computations and corresponding satisfaction values.
In Almagor and Kupferman [2015], we study LTL[F] synthesis in a stochastic setting,
in which we maximize the expected satisfaction value of a synthesized transducer.

2. FORMALIZING PROPOSITIONAL QUALITY

In this section, we introduce the temporal logic LTL[F] (Section 2.1) and the verification
and synthesis questions that arise once we add quality measures (Section 2.2). We
then provide some observations on LTL[F] (Section 2.3), followed by an algorithm for
translating a given LTL[F] formula into an automaton (Section 2.4). This automata-
theoretic approach will be our main tool in solving decision and search problems for
LTL[F] (Section 2.5).

2.1. The Temporal Logic LTL[F]
The linear temporal logic LTL[F] generalizes LTL by replacing the Boolean operators
of LTL with arbitrary functions over [0, 1]. The logic is actually a family of logics, each
parameterized by a set F of functions.

Syntax. Let AP be a set of Boolean atomic propositions, and let F ⊆ { f : [0, 1]k →
[0, 1] | k ∈ N } be a set of functions over [0, 1]. Note that the functions in F may have
different arities. An LTL[F] formula is one of the following:

—True, False, or p, for p ∈ AP.
— f (ϕ1, . . . , ϕk), Xϕ1, or ϕ1Uϕ2, for LTL[F] formulas ϕ1, . . . , ϕk and a function f ∈ F .

We define the description size |ϕ| of an LTL[F] formula ϕ to be the number of nodes in
the generating tree of ϕ. Note that the function symbols in F are treated as constant-
length symbols.

Semantics. We define the semantics of LTL[F] formulas with respect to infinite com-
putations over AP. In Section 3.2, we also consider LTL[F] over finite computations. A
computation is a word π = π0, π1, . . . ∈ (2AP)ω. We use π i to denote the suffix πi, πi+1,
The semantics maps a computation π and an LTL[F] formula ϕ to the satisfaction value
of ϕ in π , denoted [[π, ϕ]]. The satisfaction value is defined inductively as described in
Table I.2

Note that the satisfaction value of ϕ1Uϕ2 in π is obtained by going over all suffixes of
π , searching for a position i ≥ 0 that maximizes the minimum between the satisfaction

2The observant reader may be concerned by our use of max and min in contexts in which sup and inf are in
order. In Lemma 2.5, we prove that there are only finitely many satisfaction values for a formula ϕ, thus the
semantics is well defined.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:8 S. Almagor et al.

Table I. The Semantics of LTL[F]

Formula Satisfaction value

[[π, True]] 1
[[π, False]] 0

[[π, p]]
1 if p ∈ π0

0 if p /∈ π0

[[π, f (ϕ1, . . . , ϕk)]] f ([[π, ϕ1]], . . . , [[π, ϕk]])
[[π, Xϕ1]] [[π1, ϕ1]]

[[π, ϕ1Uϕ2]] max
i≥0

{min{[[π i, ϕ2]], min
0≤ j<i

[[π j , ϕ1]]}}

value of ϕ2 in π i (i.e., the satisfaction value of the eventuality) and all the satisfaction
values of ϕ1 in π j for 0 ≤ j < i (i.e., the satisfaction value of ϕ1 until the eventuality is
taken into account).

It is not hard to prove by induction on the structure of the formula that, for every
computation π and formula ϕ, it holds that [[π, ϕ]] ∈ [0, 1].

The logic LTL coincides with the logic LTL[F] for F that corresponds to the usual
Boolean operators. For simplicity, we use these operators as an abbreviation for the
corresponding functions, as described later. In addition, we introduce notations for some
useful functions. Let x, y ∈ [0, 1] be satisfaction values and λ ∈ [0, 1] be a parameter.
Then,

• ¬x = 1 − x • x ∨ y = max {x, y} • x ∧ y = min {x, y}
• x → y = max {1 − x, y} • �λx = λ · x • x ⊕λ y = λ · x + (1 − λ) · y

To see that LTL indeed coincides with LTL[F] for F = {¬,∨,∧}, note that, for this F , all
formulas are mapped to {0, 1} in a way that agrees with the semantics of LTL. In par-
ticular, observe that, under these notations, we can write the semantics of [[π, ϕ1Uϕ2]]
as
∨

i≥0([[π i, ϕ2]] ∧∧0≤ j<i[[π
j, ϕ1]]), which coincides with the semantics of LTL.

Other useful abbreviations are the “eventually” and “always” temporal operators,
defined as follows.

—Fϕ1 = TrueUϕ1. Thus, [[π, Fϕ1]] = max
i≥0

{[[π i, ϕ1]]}.
—Gϕ1 = ¬F¬ϕ1. Thus, [[π, Gϕ1]] = min

i≥0
{[[π i, ϕ1]]}.

Kripke Structures and Transducers. We model closed systems by Kripke structures
and open systems by transducers, both generating infinite computations.

A Kripke structure is a tuple K = 〈AP, S, I, ρ, L〉, where AP is a finite set of atomic
propositions, S is a finite set of states, I ⊆ S is the set of initial states, ρ ⊆ S × S is
a total transition relation, and L : S → 2AP is a labeling function. A trace of K is a
sequence s = s0, s1, . . . of states such that s0 ∈ I; for all 0 ≤ j, it holds that 〈sj, sj+1〉 ∈ ρ.
A word π = π0, π1, . . . over 2AP is a computation of K if there exists a trace s of K such
that π j = L(sj) for all 0 ≤ j.

In the Boolean setting of LTL, a Kripke structure satisfies a formula ϕ if all its
computations satisfy the formula. Adopting this universal approach, the satisfaction
value of an LTL[F] formula ϕ in a Kripke structure K, denoted [[K, ϕ]], is induced by
the “worst” computation of K, namely, the one in which ϕ has the minimal satisfaction
value. Formally,3 [[K, ϕ]] = min{[[π, ϕ]] : π is a computation of K}.

3Since a Kripke structure may have infinitely many computations, here, too, we should have a priori used
inf; the use of min is justified by Lemma 2.5.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:9

In the setting of open systems, the set of atomic propositions is partitioned into sets
I and O of input and output signals. An (I, O)-transducer then models the computations
generated (deterministically) by the system when it interacts with an environment
that generates infinite sequences of input signals. Formally, an (I, O)-transducer is a
tuple T = 〈I, O, S, s0, ρ, L〉, where I and O are finite sets of input and output signals,
respectively, S is a finite set of states, s0 ∈ S is an initial state, ρ : S × 2I → S maps
a state and an assignment of the input signals to a successor state, and L : S → 2O

is a labeling function. Every sequence i = i0, i1, . . . ∈ (2I)ω of assignments of the input
signals induces a single trace s = s0, s1, . . . of T , satisfying sj+1 = ρ(sj, i j) for all j ≥ 0,
and induces the computation π = π0, π1, . . . over 2I∪O in which π j = i j ∪ L(sj) for all
j ≥ 0.

Examples. We demonstrate the usefulness of LTL[F] with some examples. In Exam-
ples 2.1 and 2.2, we utilize the ⊕ and � operators. In Examples 2.3 and 2.4, we utilize
more complex functions.

Example 2.1. Consider two servers performing in parallel the same task (e.g., send-
ing messages). Server 1 is twice as fast as Server 2, accordingly sending twice as many
messages. Assume that the LTL[F] formulas ϕ1 and ϕ2 specify the quality of each of
the servers. The quality of the system is then specified by the LTL[F] formula ϕ1 ⊕ 2

3
ϕ2.

Example 2.2. Consider a scheduler that receives requests and generates grants.
Consider the LTL[F] formula G(req → F(grant ⊕ 1

2
Xgrant)) ∧ ¬(� 3

4
G¬req). The satis-

faction value of the formula is 1 if every request is eventually granted; the grant lasts
for two consecutive steps. If a grant holds only for a single step, then the satisfaction
value is reduced to 1

2 . In addition, if there are no requests, then the satisfaction value
is at most 1

4 . This shows how we can embed vacuity tests in the formula.

Example 2.3. Consider a server room, in which k servers perform a task. Every
server emits heat. The function f : [0, 1]k → [0, 1] describes the (normalized to [0, 1])
temperature of the room at a given time, as a function of each server’s heat. Note that
the temperature computation need not be a simple average function. Assume that ψi is
an LTL[F] formula specifying the heat generated by the ith heater. Note that ψi may be
Boolean (indicating whether the heater is on or off) or more accurate, and depends on
the actual value of the heat. The latter can be specified either by nested LTL[F] formu-
las or by weighted propositions4. Then, the LTL[F] formula F(f (ψ1, . . . , ψn)) specifies
the highest heat of the room over the course of the servers’ operation.

Example 2.4. Consider a mechanical arm that is supposed to lift objects from a
surface (e.g., from a conveyor belt). The arm has k joints, and each joint has two possible
angles. The joints determine the configuration of the arm, and the latter determines
the quality of the grab operation – the more extended the arm is, the less accurate the
action gets. Assume that ψi is an LTL[F] formula specifying the configuration of the
ith joint. As in the previous example, ψi need not be Boolean (e.g., it may be its angle,
or it may be a nested LTL[F] formula, such as retracted⊕ 5

6
Xretracted, indicating that,

ideally, the joint is retracted for two time units, with the first time unit being much
more important). The LTL[F] formula G(grab → f (ψ1, ψ2, . . . , ψk)) specifies the quality
(accuracy) of the grab operation, where f is a function that calculates the quality of
the grabbing given the configuration of the k joints.

4As we show in Section 3, it is easy to extend our framework to handle such propositions.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:10 S. Almagor et al.

2.2. The Search and Decision Questions

In the Boolean setting, an LTL formula maps computations to {True, False}. In the
quantitative setting, an LTL[F] formula maps computations to [0, 1]. Classical deci-
sion problems—such as model checking, satisfiability, synthesis, and equivalence—are
accordingly generalized to their quantitative analogues, which are search or optimiza-
tion problems. In this section, we specify these questions with respect to LTL[F]. While
the definition here focuses on LTL[F], the questions can be asked with respect to
arbitrary quantitative specification formalisms, with the expected adjustments.

—Satisfiability and validity. In the Boolean setting, the satisfiability problem asks,
given an LTL formula ϕ, whether ϕ is satisfiable. In the quantitative setting, it
asks what the optimal way to satisfy ϕ is. Thus, the satisfiability problem gets
as input an LTL[F] formula ϕ and returns sup {[[π, ϕ]] : π is a computation}. Si-
multaneoulsy, the validity problem returns, given an LTL[F] formula ϕ, the value
inf {[[π, ϕ]] : π is a computation}, describing the least favorable way to satisfy the
specification. In the case of LTL[F], Lemma 2.5 guarantees that there are only
finitely many possible satisfaction values for ϕ. Accordingly, we can replace the sup
and inf operators discussed earlier with max and min, respectively, and can also
extend the satisfiability and validity problems to ones that return a computation π
with which the maximal or minimal value is obtained.

—Implication and equivalence. In the Boolean setting, the implication problem
asks, given two LTL formulas ϕ1 and ϕ2, whether every computation that satisfies
ϕ1 also satisfies ϕ2. In the quantitative setting, it asks about the difference between
the satisfaction values of ϕ1 and ϕ2. Thus, the implication problem gets as input two
LTL[F] formulas ϕ1 and ϕ2 and returns max {[[π, ϕ1]] − [[π, ϕ2]] : π is a computation}.
As in the Boolean setting, we may consider the symmetric version of implication.
Formally, the equivalence problem gets as input two LTL[F] formulas ϕ1 and ϕ2 and
returns

max {|[[π, ϕ1]] − [[π, ϕ2]]| : π is a computation}.
—Model checking. The model-checking problem is extended from the Boolean setting

to find, given a system K and an LTL[F] formula ϕ, the satisfaction value [[K, ϕ]]. In
the Boolean setting, good model-checking algorithms return a counterexample to the
satisfaction of the specification when it does not hold in the system. The quantitative
counterpart is to return a computation π of K that satisfies ϕ in the least favorable
way.

—Realizability and synthesis. In the Boolean setting, the realizability problem gets
as input an LTL formula over I ∪ O, for sets I and O of input and output signals,
and asks for the existence of an (I, O)-transducer, all of whose computations satisfy
the formula. In the quantitative analogue, we seek the generation of high-quality
systems. Accordingly, given an LTL[F] formula ϕ over I∪O, the realizability problem
is to find max{[[T , ϕ]] : T is an (I, O)-transducer}. The synthesis problem is then to
find a transducer that attains this value.5

Decision Problems. The questions presented earlier are search and optimization prob-
lems. It is sometimes interesting to consider the decision problems that they induce
when referring to a specific threshold. For example, the model-checking decision prob-
lem is to decide, given a system K, a specification ϕ, and a threshold t, whether [[K, ϕ]] ≥
t. For some problems, there are natural thresholds to consider. For example, in the

5The specification of the problem does not require the transducer to be finite. As we shall show, however, as
in the case of LTL, if some transducer that attains the value exists, there is also a finite-state one that does
so.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:11

implication problem, asking whether max {[[π, ϕ1]] − [[π, ϕ2]] : π is a computation} ≥ 0
amounts to asking whether, for all computations π , we have that [[π, ϕ1]] ≥ [[π, ϕ2]],
which indeed captures implication.

Working with strict vs. nonstrict inequality when considering threshold problems
may clearly affect their answer. Moreover, it may also require a completely different
approach for solving the problem. This is demonstrated in Sections 4.3 and 6.1.

2.3. Properties of LTL[F]
Bounding the number of satisfaction values. For an LTL[F] formula ϕ, let
V (ϕ) = {[[π, ϕ]] : π ∈ (2AP)ω}. That is, V (ϕ) is the set of possible satisfaction val-
ues of ϕ in arbitrary computations. We first show that this set is finite for all LTL[F]
formulas.

LEMMA 2.5. For every LTL[F] formula ϕ, we have that |V (ϕ)| ≤ 2|ϕ|.

PROOF. The proof proceeds by induction on the structure of ϕ. The base case has
three possibilities: True, False, and p ∈ AP, in all of which |ϕ| = 1 and |V (ϕ)| ≤ 2. For
the induction step, we consider the following cases.

—Let ϕ = f (ψ1, . . . , ψk) for f ∈ F . The number of possible inputs for f is at most∏k
i=1 |V (ψi)|. By the induction hypothesis, for every 1 ≤ i ≤ k, we have that |V (ψi)| ≤

2|ψi |. Thus, the number of possible inputs for f is at most
∏k

i=1 2|ψi | = 2
∑k

i=1 |ψi | ≤
2|ϕ|−1 < 2|ϕ|.

—Let ϕ = Xψ . Then, V (ϕ) = V (ψ), and the claim follows immediately from the induc-
tion hypothesis.

—Let ϕ = ψ1Uψ2. By the semantics of the operator U, the satisfaction value of ϕ is
defined by means of max and min on the satisfaction values of ψ1 and ψ2. Hence,
V (ϕ) ⊆ V (ψ1) ∪ V (ψ2), implying that |V (ϕ)| ≤ |V (ψ1)| + |V (ψ2)|. By the induction
hypothesis, the latter is at most 2|ψ1| + 2|ψ2| ≤ 2|ψ1|+|ψ2| = 2|ϕ|−1 < 2|ϕ|.

The good news that follows from Lemma 2.5 is that every LTL[F] formula has only
finitely many possible satisfaction values. This enabled us to replace the sup and inf
operators in the semantics by the more friendly max and min. It also implies that
we can point to witnesses that exhibit the satisfaction values. The bad news is that
Lemma 2.5 gives an exponential bound only to the number of satisfaction values. We
now show that this exponential bound is tight.

Example 2.6. Consider the logic LTL[{⊕}], augmenting LTL with the average func-
tion, where, for every x, y ∈ [0, 1], we have that x ⊕ y = 1

2 x + 1
2 y. Let n ∈ N and

consider the formula ϕn = p1 ⊕ (p2 ⊕ (p3 ⊕ (p4 ⊕ . . . pn)) . . .). The length of ϕn is in
O(n) and the nesting depth of ⊕ operators in it is n. For every computation π , it holds
that

[[π, ϕn]] = 1
2

[[π0, p1]] + 1
4

[[π0, p2]] + · · · + 1
2n−1 [[π0, pn−1]] + 1

2n−1 [[π0, pn]].

Hence, every assignment π0 ⊆ {p1, . . . , pn−1} to the first position in π induces a different
satisfaction value for [[π, ϕn]], implying that there are 2n−1 different satisfaction values
for ϕn.

2.3.1. Calculating V (ϕ). Lemma 2.5 provides a way to compute V (ϕ) by traversing the
generating tree of ϕ: for every subformula ψ in the tree, compute V (ψ) recursively, as
in the proof of Lemma 2.5. This algorithm, however, takes exponential time as well as
exponential space for writing all the values. While the exponential time is unavoidable

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:12 S. Almagor et al.

due to the exponential number of values, there is a more efficient procedure, space-wise,
for enumerating V (ϕ) in PSPACE, as follows.

For a formula ϕ, consider its generating tree T . A {0, 1}-labeling of T is an assignment
	 of a label in {0, 1} to every node in T that is either an atomic proposition (i.e., a leaf)
or a node that corresponds to a ψ1Uψ2 formula. Given a {0, 1}-labeling 	 of T , the
evaluation of T and 	 is a value v that is computed recursively for each node ψ in T ,
as follows.

—If ψ = True or ψ = False, then v(ψ) = 1 or v(ψ) = 0, respectively.
—If ψ is an atomic proposition, then v(ψ) = 	(ψ).
—If ψ = f (ϕ1, . . . , ϕk), then v = f (v(ϕ1), . . . , v(ϕk)).
—If ψ = Xϕ, then v(ψ) = v(ϕ).

—If ψ = ϕ1Uϕ2, then v(ψ) =
{
v(ϕ1) if 	(ψ) = 0
v(ϕ2) if 	(ψ) = 1.

It is easy to see (similar to Lemma 2.5) that every possible satisfaction value of ϕ is
obtained as v(ϕ) for some labeling 	 of T . Also, every labeling of T induced a possible
satisfaction value of ϕ. Thus, to iterate through the values in V (ϕ), it is sufficient
to iterate through all the possible labelings of T . Assume that the functions in F are
computable in PSPACE. Then, since the description of a labeling is polynomial (indeed,
linear) in the size of T , and since evaluating v(ϕ) from a given labeling can be done in
PSPACE, we get that iterating through all the values can be done in PSPACE. If the
functions in F are not computable in PSPACE, then their computation becomes the
computational bottleneck.

A Boolean look at LTL[F]. The logic LTL[F] provides means to generalize LTL to a
quantitative setting. Yet, one may consider a Boolean logic whose atoms are Boolean
assertions on the values of LTL[F] formulas. For example, we can define a logic with
atoms of the form ϕ1 ≥ ϕ2 or ϕ1 ≥ v for LTL[F] formulas ϕ1 and ϕ2, and a value v ∈ [0, 1].
It is then natural to compare the expressiveness and succinctness of such a logic with
respect to LTL.

Intuitively, the role the functions in F play in LTL[F] is propositional, in the sense
that the functions do not introduce new temporal operators. We now formalize this
intuition, showing that, for every LTL[F] formula ϕ and predicate P ⊆ [0, 1], there
exists an LTL formula Bool(ϕ, P) asserting that the satisfaction value of ϕ is in P.
Formally, we have the following.

THEOREM 2.7. For every LTL[F] formula ϕ and predicate P ⊆ [0, 1], there exists
an LTL formula Bool(ϕ, P), of length at most exponential in ϕ, such that, for every
computation π ∈ (2AP)ω, it holds that [[π, ϕ]] ∈ P if and only if π |= Bool(ϕ, P).

PROOF. The proof is by induction on the structure of ϕ.

—Bool(True, P) =
{
True if 1 ∈ P
False if 1
∈ P.

—Bool(False, P) =
{
True if 0 ∈ P
False if 0
∈ P.

—For p ∈ AP, we have that Bool(p, P) =

⎧⎪⎨⎪⎩
True if 0 ∈ P and 1 ∈ P
p if 0
∈ P and 1 ∈ P
¬p if 0 ∈ P and 1
∈ P
False if 0
∈ P and 1
∈ P.

—Bool(f (ϕ1, . . . , ϕk), P) =∨
{d1∈V (ϕ1),...,dk∈V (ϕk): f (d1,...,dk)∈P} Bool(ϕ1, d1) ∧ · · · ∧ Bool(ϕk, dk).

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:13

—Bool(Xϕ1, P) = XBool(ϕ1, P).
—If ϕ = ϕ1Uϕ2, we decompose Bool(ϕ, P) to a disjunction of the LTL formulas Bool(ϕ, c)

for c ∈ P ∩ V (ϕ), defined as follows.

Bool(ϕ1Uϕ2, c) = (Bool(ϕ1, [c, 1])UBool(ϕ2, [c, 1])) ∧ ¬(Bool(ϕ1, (c, 1])UBool(ϕ2, (c, 1])).

Intuitively, the first conjunct in Bool(ϕ, c) guarantees that [[π, ϕ]] ≥ c, and the second
part guarantees that [[π, ϕ]]
> c.

We note that, in the construction of Bool(f (ϕ1, . . . , ϕk), P) and Bool(ϕ1Uϕ2, P), it is
often possible to use relations between the different values in P ∩ V (ϕ) and combine
the disjuncts of different values or refrain from the restriction to a singleton P.

The translation described in the proof of Theorem 2.7 may involve an exponential
blowup. It is thus interesting to study whether this blow-up is unavoidable. One needs
to tread carefully when studying the blowup, as there are two aspects to it. First, we can
look at the size of a minimal Boolean formula that is equivalent to Bool(ϕ, P), which we
dub the output complexity. Second, we can consider the complexity of the procedure in
Theorem 2.7, which translates ϕ and P to Bool(ϕ, P), dubbed the translation complexity.

We start by showing that the output complexity can be exponential in |ϕ|. This
stems from the fact that, in LTL[F], we can represent every Boolean function
f : {0, 1}n → {0, 1} with the formula f (p1, . . . , pn), which we have defined to have
length n+ 1, whereas some Boolean functions require exponentially long propositional
formulas [Shannon 1949], thus a formula equivalent to Bool(f (p1, . . . , pn), {1}) may be
exponentially long.

This, however, is an existential argument, and does not imply anything on the trans-
lation complexity. In particular, it is possible that, in order to get an exponential output
complexity, the translation complexity has to increase as well, which weakens the ar-
gument. We now address this issue.

Observe that our translation of a formula f (p1, . . . , pn) to an equivalent Boolean for-
mula with respect to some predicate P ⊆ [0, 1] involves, in the worst case, evaluating
f on every n−tuple of inputs it can take. Thus, the translation complexity is at least
polynomial space for every set F of functions. If the functions in F are themselves
computable in PSPACE, they are not the bottleneck of the translation, and the trans-
lation complexity remains in polynomial space. Thus, our goal is to find a Boolean
function f : {0, 1}n → {0, 1} that witnesses the exponential output complexity and is
still computable in PSPACE.

The class NC1 of Boolean functions for which there is a polynomial-size Boolean
propositional formula is known to be a proper subset of PSPACE (e.g., see Chapter 6
in Arora and Barak [2009]); thus, we can choose the function f presented earlier to be
PSPACE-complete, hence computable in PSPACE and not in NC1.

We conclude that a super-polynomial6 blowup in output complexity is unavoidable
even if we restrict to functions for which the translation complexity is PSPACE. For-
mally, we have the following.

THEOREM 2.8. There exists a set of functions F and LTL[F] formulas ϕn for every
n ∈ N such that the following hold:

(1) Bool(ϕn, {1}) is computable from ϕn in PSPACE.
(2) For every LTL formula ψ such that ψ ≡ Bool(ϕn, {1}), we have that |ψ | is super-

polynomial in |ϕn|.

6In fact, since NC=⋃i∈N NCi is a proper subset of PSPACE, we can strengthen the claim to an output
complexity blowup of 2polylog(n).

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:14 S. Almagor et al.

2.4. Translating LTL[F] to Automata

The automata-theoretic approach uses the theory of automata as a unifying paradigm
for system specification, verification, and synthesis [Thomas 1990; Vardi and Wolper
1994]. By viewing computations as words (over the alphabet of possible assignments to
variables of the system), we can view both the system and its specification as languages.
Decision problems about specifications and systems can then be reduced to problems
about automata, like nonemptiness and containment. Automata-based methods have
been implemented in both academic and industrial automated-verification tools (see
FormalCheck and SPIN) [Kurshan 1998; Holzmann 2004]. In this section, we describe
an automata-theoretic framework for reasoning about LTL[F] specifications.

One approach is to develop a framework that is based on weighted automata. Like
LTL[F] formulas, weighted automata map words to values that are richer than True
and False and, in particular, can map words to values in [0, 1] [Mohri 1997; Droste
et al. 2009]. Reasoning about weighted automata is, however, much more complex than
reasoning about standard Boolean automata. Fundamental problems that have been
solved decades ago for Boolean automata are still open or known to be undecidable in
the weighted setting. This includes the problem of deciding whether a given nondeter-
ministic weighted automaton can be determinized, and the problem of deciding whether
the language of one automaton is contained (in the weighted sense) in the language
of another automaton [Krob 1994]. Moreover, the semantics of weighted automata is
typically simple (e.g., consists of operations on a semiring), whereas in our approach we
need to apply arbitrary functions. Thus, even restricted forms of weighted automata,
for which more problems are decidable (e.g., Kirsten and Lombardy [2009] and Filiot
et al. [2014]), are not suitable. Accordingly, a second approach, which is the one that
we follow, is to try and reduce the quantitative questions about LTL[F] to questions
about Boolean automata. The fact that LTL[F] formulas have finitely many possible
satisfaction values suggests that this is possible. The main challenge is to maintain
the simplicity of the automata-theoretic framework of LTL in spite of the fact that the
number of satisfaction values is exponential. In order to appreciate this challenge, note
that applying the translation from Theorem 2.7 would result in algorithms that are
exponentially more complex than those of LTL.

In order to explain our framework, let us recall first the translation of LTL formulas
to nondeterministic generalized Büchi automata (NGBAs), as introduced in Vardi and
Wolper [1986]. We start with the definition of NBAs and NGBAs. An NGBA is A =
〈
, Q, Q0, δ, α〉, where
 is the input alphabet, Q is a finite set of states, Q0 ⊆ Q is a
set of initial states, δ : Q ×
 → 2Q is a transition function, and α ⊆ 2Q is a set of
sets of accepting states. The number of sets in α is the index of A. When the index
of an NGBA is 1 it is called a (standard) NBA. A run r = r0, r1, · · · of A on a word
w = w1 · w2 · · · ∈
ω is an infinite sequence of states such that r0 ∈ Q0, and, for every
i ≥ 0, we have that ri+1 ∈ δ(ri, wi+1). We denote by inf(r) the set of states that r visits
infinitely often, that is, inf(r) = {q : ri = q for infinitely many i ∈ N }. The run r is
accepting if it visits all the sets in α infinitely often. Formally, for every set F ∈ α, we
have that inf(r) ∩ F
= ∅. An automaton accepts a word if it has an accepting run on it.
The language of an automaton A, denoted L(A), is the set of words that A accepts.

In the Vardi-Wolper translation of LTL formulas to NGBAs [Vardi and Wolper 1986],
each state of the automaton is associated with a set of formulas, and the NGBA ac-
cepts a computation from a state q if and only if the computation satisfies exactly
all the formulas associated with q. The state space of the NGBA contains only states
associated with maximal and consistent sets of formulas, the transitions are defined
so that requirements imposed by temporal formulas are satisfied, and the acceptance
condition is used in order to guarantee that requirements that involve the satisfaction
of eventualities are not delayed forever.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:15

In our construction here, each state of the NGBA assigns a satisfaction value to
every subformula. Consistency then ensures that the satisfaction values agree with the
functions in F . Similar adjustments are made to the transitions and the acceptance
condition. The construction translates an LTL[F] formula ϕ to an NGBA, while setting
its initial states according to a required predicate P ⊆ [0, 1]. We then have that, for
every computation π ∈ (2AP)ω, the resulting NGBA accepts π if and only if [[π, ϕ]] ∈ P.

We note that a similar approach is taken in Faella et al. [2008], in which LTL formulas
are interpreted over quantitative systems. The important difference is that the values
in our construction arise from the formula and the functions that it involves, whereas
in Faella et al. [2008], they are induced by the values of the atomic propositions.

Finally, we remark that, in the case that the input for our construction is a Boolean
LTL formula, the constructed NGBA is almost identical to the one obtained from the
Vardi-Wolper construction, with the only difference being that we do not start by
pushing the negations in the formula to the atomic propositions (as this is generally
not possible in an LTL[F] formula).

THEOREM 2.9. Let ϕ be an LTL[F] formula and P ⊆ [0, 1] be a predicate. There exists
an NGBA Aϕ,P such that, for every computation π ∈ (2AP)ω, it holds that [[π, ϕ]] ∈ P if
and onlyl if Aϕ,P accepts π . Furthermore, Aϕ,P has at most 2(|ϕ|2) states and its index is
at most |ϕ|.

PROOF. We define Aϕ,P = 〈2AP, Q, δ, Q0, α〉 as follows. Let cl(ϕ) be the set of ϕ’s
subformulas. Let Cϕ be the collection of functions g : cl(ϕ) → [0, 1] such that, for all
ψ ∈ cl(ϕ), we have that g(ψ) ∈ V (ψ). Note that, by Lemma 2.5, the set V (ψ) is finite
for every formula ψ , thus so is Cϕ . For a function g ∈ Cϕ , we say that g is consistent if
for every ψ ∈ cl(ϕ), the following hold:

—If ψ = True, then g(ψ) = 1, and if ψ = False, then g(ψ) = 0.
—If ψ = p ∈ AP, then g(ψ) ∈ {0, 1}.
—If ψ = f (ψ1, . . . , ψk), then g(ψ) = f (g(ψ1), . . . , g(ψk)).

The state space Q of Aϕ,P is the set of all consistent functions in Cϕ . Then, Q0 =
{g ∈ Q : g(ϕ) ∈ P} contains all states in which the value assigned to ϕ is in P.

We now define the transition function δ. For functions g, g′ ∈ Q and a letter σ ∈
,
we have that g′ ∈ δ(g, σ) if and only if the following hold:

—σ = {p ∈ AP : g(p) = 1}.
—For all Xψ1 ∈ cl(ϕ), we have that g(Xψ1) = g′(ψ1).
—For all ψ1Uψ2 ∈ cl(ϕ), we have that g(ψ1Uψ2) = max{g(ψ2), min{g(ψ1), g′(ψ1Uψ2)}}.
Finally, every formula ψ1Uψ2∈cl(ϕ) contributes to α the set Fψ1Uψ2 =
{g : g(ψ2) = g(ψ1Uψ2)}.

We proceed to prove the correctness of the construction and to analyze the size of
Aϕ,P . We first prove that if π ∈ (2AP)ω is such that [[π, ϕ]] ∈ P, then Aϕ,P accepts π .
For every i ∈ N , consider the function gi ∈ Cϕ , where, for all ψ ∈ cl(ϕ), we have that
gi(ψ) = [[π i, ψ]]. Clearly, gi is consistent for all i. We claim that r = g0, g1, . . . is an
accepting run of Aϕ,P on π . First, g0 ∈ Q0 as g0(ϕ) ∈ P. As for the transitions between
states, it is easy to see that all the conditions between the transitions are satisfied.
In particular, for formulas of the form ψ1Uψ2, assume that [[π i, ψ1Uψ2]] = x. By the
semantics of U, one of the following holds:

—[[π i, ψ2]] = x and min {[[π i, ψ1]], [[π i+1, ψ1Uψ2]]} ≤ x.
—[[π i, ψ2]] ≤ x and min {[[π i, ψ1]], [[π i+1, ψ1Uψ2]]} = x.

Since this coincides with the condition for a transition between gi and gi+1, the transi-
tion is legal.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:16 S. Almagor et al.

Finally, r visits every set in α infinitely often. Consider a subformula of the form
ψ1Uψ2. If [[π i, ψ1Uψ2]] = y, then, by the semantics of U, there is an index i ≤ j such
that [[π j, ψ1Uψ2]] = [[π j, ψ2]]. Thus, the state gj is in Fψ1Uψ2 . Thus, π is accepted by
Aϕ,P .

The other direction is more complicated. Let π ∈ (2AP)ω be such that π is accepted by
Aϕ,P . We prove that [[π, ϕ]] ∈ P. Let ρ = g1, g2, . . . be an accepting run of Aϕ,P on π , and
let h1, h2, . . . be a sequence of functions in Cϕ such that, for all i ∈ N and ψ ∈ cl(ϕ), we
have that hi(ψ) = [[π i, ψ]]. We claim that hi = gi for all i ∈ N . The proof is by induction
on the structure of the formulas in cl(ϕ). Consider a formula ψ ∈ cl(ϕ).

—Let ψ = True or ψ = False. By consistency, hi(True) = gi(True) = 1 and hi(False) =
gi(False) = 0, and we are done.

—Let ψ = p ∈ AP. Since ρ is a legal run and transitions are labeled by the set of atomic
propositions that are mapped to 1, we have that hi(p) = 1 if and only if [[π i, p]] = 1 if
and only if p ∈ πi if and only if gi(p) = 1, and we are done.

—Let ψ = f (ψ1, . . . , ψk). Since the state space of Aϕ,P contains only consistent func-
tions, the claim follows from the induction hypothesis.

—Let ψ = Xψ1. Since ρ is a legal run and transitions follow the semantics of X, the
claim follows from the induction hypothesis.

—Let ψ = ψ1Uψ2. In Lemma 2.10, we prove that since ρ is an accepting run, then

gi(ψ1Uψ2) = max
i≤ j

{
min

{
gj(ψ2), min

i≤k< j
{gk(ψ1)}

}}
.

By the induction hypothesis, this expression equals

max
i≤ j

{
min

{
[[π j, ψ2]], min

i≤k< j

{
[[πk, ψ1]]

}}}
,

which, by the semantics of LTL[F], is exactly [[π i, ψ]] = hi(ψ).

We conclude that h1 = g1. Since g1 is an initial state, it follows that [[π, ϕ]] ∈ P, and
we are done.

It is left to prove that the number of states in Aϕ,P is at most 2|ϕ|2 . Let n = |ϕ|. Recall
that V (ϕ) is the set of possible satisfaction values of ϕ. Let V +(ϕ) = ⋃

ψ∈cl(ϕ) V (ψ).
Thus, V +(ϕ) includes also the satisfaction values of the subformulas of ϕ. Clearly, the
set of functions Cϕ , and hence the set of states Q, is contained in the set of functions
g : cl(ϕ) → V +(ϕ). We first claim that |V +(ϕ)| ≤ 2n. The proof is similar to the proof
of Lemma 2.5, and proceeds by induction on the structure of ϕ. The induction steps
are similar to the steps there, with the only nontrivial change being the case ϕ =
f (ψ1, . . . , ψk). Here, |V +(ϕ)| = |V (ϕ)| +∑k

i=1 |V +(ψi)|. By the induction hypothesis, we
have that |V +(ψi)| ≤ 2|ψi |, implying that |V +(ϕ)| ≤ 2 · 2

∑k
i=1 |ψi | = 2n; thus, we are done.

Now, since |cl(ϕ)| ≤ n and |V +(ϕ)| ≤ 2n, it follows that Q, which is contained in
(V +(ϕ))cl(ϕ), is of size at most 2n2

. Finally, the index of Aϕ,P is bounded by the number
of subformulas of the form ψ1Uψ2, hence bounded by n.

LEMMA 2.10. Using the notations in the proof of Theorem 2.9, we have that

gi(ψ1Uψ2) = max
i≤ j

{
min

{
gj(ψ2), min

i≤k< j

{
gk(ψ1)

}}}
.

PROOF. Since ρ is a legal run, then, for every i ∈ N , it holds that

gi(ψ1Uψ2) = max
{
gi(ψ2), min

{
gi(ψ1), gi+1(ψ1Uψ2)

}}
. (∗)

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:17

We prove the lemma by proving two inequalities. We start by proving that

gi(ψ1Uψ2) ≤ max
i≤ j

{
min

{
gj(ψ2), min

i≤k< j

{
gk(ψ1)

}}}
.

Let gi be a state in ρ. Since ρ is accepting, there exists an index l such that i ≤ l and
gl ∈ Fψ1Uψ2 . Let l be the minimal such index. We prove the inequality by induction on
l − i. If l = i, then, as gl ∈ Fψ1Uψ2 , we have that gi(ψ2) = gi(ψ1Uψ2). Since gi(ψ2) is the
first element in the max at hand, we conclude the inequality for the base case. Assume
correctness for l − (i + 1); we prove correctness for l − i. Since gi+1 succeeds gi in ρ, we
have that gi(ψ1Uψ2) = max {gi(ψ2), min {gi(ψ1), gi+1(ψ1Uψ2)}}. Plugging the induction
hypothesis for gi+1, we get that

gi(ψ1Uψ2) ≤ max
{

gi(ψ2), min
{

gi(ψ1), max
i+1≤ j

{
min

{
gj(ψ2), min

i+1≤k< j

{
gk(ψ1)

}}}}}
.

It is a simple exercise to verify that the latter equals

max
i≤ j

{
min

{
gj(ψ2), min

i≤k< j

{
gk(ψ1)

}}}
,

and we are done.
For the second direction, we proceed similarly. Let l be the minimal index i ≤ l

such that gl is accepting. The proof is by induction over l − i. If l = i, we have that
gi(ψ2) = gi(ψ1Uψ2) (since gi is accepting). We claim that

gi(ψ2) = gi(ψ1Uψ2) = max
i≤ j

{
min

{
gj(ψ2), min

i≤k< j

{
gk(ψ1)

}}}
.

Assume by way of contradiction that this does not hold. Thus, there exists some k > i
such that gi(ψ2) = gi(ψ1Uψ2) < min {gk(ψ2), mini≤ j<k {gj(ψ1)}}. From (∗), we make two
observations. First, for every state g from which there exists an outgoing edge, we
have that g(ψ1Uψ2) ≥ g(ψ2) (otherwise the max is not met). Second, assume that
there is a transition from g to g′ and that g(ψ1Uψ2) < g′(ψ1Uψ2); then, we have that
g(ψ1Uψ2) ≥ max {g(ψ1), g(ψ2)} (this follows from considering the different ordering
of the elements of (∗)). We call this the stepping-up rule, with the intuition being
that, in order to increase g(ψ1Uψ2), one must “step on” (i.e., be greater than) g(ψ1)
and g(ψ2). Since gi(ψ1) > gi(ψ1Uψ2), then, from the negation of the stepping-up rule,
it follows that gi+1(ψ1Uψ2) ≤ gi(ψ1Uψ2). Applying the same logic inductively, using
the assumption that min {gi(ψ1), . . . , gk−1(ψ1), gk(ψ2)} is greater than gi(ψ1Uψ2), we get
that gi(ψ1Uψ2) ≥ gk(ψ1Uψ2) ≥ gk(ψ2) > gi(ψ1Uψ2), which is a contradiction (this is not
trivial, but it is a simple technical exercise).

Finally, we complete the inductive step exactly as the previous case, by plugging in
≤ instead of ≥ in the induction assumption.

Remark 2.11. Observe that while the size of Aϕ,P described in Theorem 2.9 is at
most 2(|ϕ|2), in order to compute Aϕ,P , we must be able to evaluate the functions in F as
well as test membership in P. Specifically, traversing the successors of a state g in Aϕ,P
can be done in PSPACE, provided that evaluating the functions in F , and that testing
membership in P, can be done in PSPACE. If these assumptions do not hold, then
computing the functions in F or testing membership in P becomes the computational
bottleneck of the computation, as was the case in Section 2.3.1.

Remark 2.12. The construction described in the proof of Theorem 2.9 is such that
selecting the set of initial states allows us to specify any (propositional) condition
regarding the subformulas of ϕ. A simple extension of this idea allows us to consider

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:18 S. Almagor et al.

a set of formulas {ϕ1, . . . , ϕm} = � and a predicate P ⊆ [0, 1]m, as well as to construct
an NGBA that accepts a computation π if and only if 〈[[π, ϕ1]], . . . , [[π, ϕn]]〉 ∈ P. The
state space of the product consists of functions that map all the formulas in � to their
satisfaction values; we only have to choose as the initial states these functions g for
which 〈g(ϕ1), . . . , g(ϕn)〉 ∈ P. As we shall see in Section 2.5, this also allows us to use
the automata-theoretic approach in order to examine relations between the satisfaction
values of different formulas.

2.5. Solving the Questions for LTL[F]
In this section, we solve the search questions defined in Section 2.2. We show that they
all can be solved for LTL[F] with roughly the same complexity as for LTL. When we
analyze complexity, we assume that the functions in F can be computed in a complexity
that is subsumed by the complexity of the problem for LTL (PSPACE, except for 2EXP-
TIME for realizability), which is very reasonable. Otherwise, computing the functions
becomes the computational bottleneck (see Section 2.3.1).

2.5.1. Solving the Search Questions. The verification and synthesis questions in the
quantitative setting are basically search problems, asking for the best or worst value
(see Section 2.2). Since every LTL[F] formula may only have exponentially many sat-
isfaction values, one can reduce a search problem to a set of decision problems with
respect to specific thresholds, remaining in PSPACE. Combining this with the con-
struction of NGBAs described in Theorem 2.9 is the key to our algorithms.

We can now describe the algorithms in detail.

—Satisfiability and validity. We start with satisfiability and solve the decision ver-
sion of the problem: given ϕ and a threshold v ∈ [0, 1] ∩ Q , decide whether there
exists a computation π such that [[π, ϕ]] ≥ v. The latter can be solved by checking the
nonemptiness of the NGBA Aϕ,P with P = [v, 1]. Since the NGBA can be constructed
on-the-fly (i.e., constructing the states as needed during the execution of the algo-
rithm, without keeping the entire structure in memory), this can be done in PSPACE
in the size of |ϕ|. The search version can be solved in PSPACE by iterating over the
set of relevant thresholds.

We proceed to validity. It is not hard to see that, for all ϕ and v, we have that
∀π, [[π, ϕ]] ≥ v if and only if ¬(∃π, [[π, ϕ]] < v). The latter can be solved by checking,
in PSPACE, the nonemptiness of the NGBA Aϕ,P with P = [0, v). Since PSPACE
is closed under complementation, we are done. In both cases, the nonemptiness
algorithm can return a witness, when it exists.

—Implication and equivalence. In the Boolean setting, implication can be reduced
to validity, which is, in turn, reduced to satisfiability. Doing the same here is more
sophisticated, but possible: we add to the given set F the average and negation
operators. It is not hard to verify that, for every computation π , it holds that [[π, ϕ1⊕ 1

2

¬ϕ2]] = 1
2 [[π, ϕ1]]+ 1

2 (1−[[π, ϕ2]]) = 1
2 ([[π, ϕ1]]−[[π, ϕ2]])+ 1

2 . In particular, max{[[π, ϕ1]]−
[[π, ϕ2]]: π is a computation} = 2·max {[[π, ϕ1 ⊕ 1

2
¬ϕ2]] : π is a computation}−1. Thus,

the problem reduces to the satisfiability of ϕ1 ⊕ 1
2

¬ϕ2, which is solvable in PSPACE.
Note that, alternatively, one can proceed as suggested in Remark 2.12 and reason
about the composition of the NGBAs for ϕ1 and ϕ2. The solution to the equivalence
problem is similar, by checking both directions of the implication.

—Model checking. The complement of the problem, namely, whether there exists a
computation π of K such that [[π, ϕ]] < v, can be solved by taking the product of
the NGBA Aϕ,(0,v] from Theorem 2.9 with the system K and checking for emptiness
on-the-fly. As in the Boolean case, this can be done in PSPACE. Moreover, in the case
that the product is not empty, the algorithm returns a witness: a computation of K

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:19

that satisfies ϕ with a low quality. We note that in the case of a single computation,
motivated by multivalued monitoring [Donzé et al. 2012], one can label the compu-
tation in a bottom-up manner, as in CTL model checking, and the problem can be
solved in polynomial time.

—Realizability and synthesis. Several algorithms are suggested in the literature
for solving the LTL realizability problem [Pnueli and Rosner 1989]. Since they are
all based on a translation of specifications to automata, we can adopt them. Here, we
describe an adoption of the Safraless algorithm of Kupferman and Vardi [2005] and
its extension to NGBAs [Kupferman et al. 2006]. Given ϕ and v, the algorithm starts
by constructing the NGBA Aϕ,[0,v) and dualizing it to a universal generalized co-Büchi
automaton (UGCW) Ãϕ,[0,v). Since dualization amounts to complementation, Ãϕ,[0,v)
accepts exactly all computations π with [[π, ϕ]] ≥ v. Being universal, we can expand
Ãϕ,[0,v) to a universal tree automaton U that accepts a tree with directions in 2I and
labels in 2O if all its branches, which correspond to input sequences, are labeled
by output sequences such that the composition of the input and output sequences
is a computation accepted by Ãϕ,[0,v). Realizability then amounts to checking the
nonemptiness of U and synthesis to finding a witness to its nonemptiness. Since ϕ
only has an exponential number of satisfaction values, we can solve the realizability
and synthesis search problems by repeating this procedure for all relevant values.
Since the size of Aϕ,[0,v) is singly exponential in |ϕ|, the complexity is the same as in
the Boolean case, namely, 2EXPTIME-complete.

Remark 2.13. Recall that a solution to search and optimization problems that cor-
respond to the decision problems outlined earlier involves the solution of multiple
decision problems. Observe that, for all the problems described earlier, the solution to
the multiple decision problems involve reasoning on NGBAs that differ only in their
initial states. It is thus possible to combine different searches. The drawback of this
“simultaneous search approach” is that we cannot use the result of earlier searches
in order to direct the search; thus, we are no longer in PSPACE. Several approaches,
however, for checking the nonemptiness prefer to give up on-the-flyness and reason
about the automata in a global way. Such approaches can solve the decision problem
with respect to all values in V (ϕ) simultaneously.

3. EXTENSIONS AND RESTRICTIONS OF PROPOSITIONAL QUALITY

The clean translation of LTL[F] to known Boolean frameworks (e.g., Boolean automata
and LTL) suggests that extending LTL[F] to richer structures (e.g., weighted systems)
or other specification formalism (e.g., branching temporal logics) may be possible. In
Sections 3.1 to 3.3, we study such extensions. Then, in Section 3.4, we study the frag-
ment LTL� of LTL[F]. Beyond a simpler automata-theoretic approach, the importance
of LTL� would become apparent in Section 6.1, in which we consider the combina-
tion of LTL[F] with discounting temporal operators. As we show there, while such a
combination results in an undecidable logic, it is possible to retain decidability when
discounting temporal operators are combined with the fragment LTL�.

3.1. Extending LTL[F] to Weighted Systems

A weighted Kripke structure is a tuple K = 〈AP, S, I, ρ, L〉, where AP, S, I, and ρ are
as in Boolean Kripke structures, and L : S → [0, 1]AP maps each state to a weighted
assignment to the atomic propositions. Thus, the value L(s)(p) of an atomic proposition
p ∈ AP in a state s ∈ S is a value in [0, 1]. The semantics of LTL[F] with respect to
a weighted computation coincides with the one for nonweighted systems, except that,
for an atomic proposition p, we have that [[π, p]] = L(π0)(p).

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:20 S. Almagor et al.

It is not hard to extend the construction of Aϕ,P , as described in the proof of Theo-
rem 2.9, to the case of weighted systems, as we now describe.

Assume that there is a finite set ϒ ⊆ [0, 1]AP such that the values of the weighted
atomic propositions are in ϒ . In particular, in the model-checking problem, we have
that ϒ is such that c ∈ ϒ if and only if there exists a state s ∈ S such that L(s) = c.
The construction of Aϕ,P is then modified as follows. We adjust the transitions so
that there is a transition from state g with letter σ ∈ ϒ only if g agrees with σ on
the values of the atomic propositions. Hence, in settings in which the values for the
atomic propositions are known—in particular, model checking—the solutions to the
search questions are similar to the ones described for LTL[F] with Boolean atomic
propositions. Formally, we have the following theorem.

THEOREM 3.1. Let K be a weighted Kripke structure, ϕ be an LTL[F] formula, and
P ⊆ [0, 1] be a predicate. There exists an NGBA AK,ϕ,P such that, for every computation
π of K, it holds that [[π, ϕ]] ∈ P if and only if AK,ϕ,P accepts π .

We remark that, in the weighted-systems setting, the satisfiability (resp., synthesis)
problem, namely, the problem of finding a weighted path (resp., weighted system) that
maximizes the satisfaction value of a given formula, remains open.

3.2. LTL[F] over Finite Computations

In the Boolean setting, one can interpret LTL over finite computations [Manna and
Pnueli 1995]. The main change in the semantics is the evaluation of the X operator in
the last position in the computation, in which Xϕ can be arbitrarily defined as True or
as False.

Similarly, one can interpret LTL[F] over finite computations. Consider a computation
π = π0, π1, · · · πn ∈ (2AP)∗. The semantics is defined similarly to the semantics for
infinite computations described in Table I, with two exceptions. First, [[π, ϕ1Uϕ2]] =
max0≤i≤n{min{[[π i, ϕ2]], min0≤ j<i[[π j, ϕ1]]}}. Second, [[π, Xϕ]] is [[π1, ϕ]] when n ≥ 1 (i.e.,
when the computation is of length at least 2), and is 0 when n = 0 (i.e., when the
computation is of length 1). Note that the formula Xϕ evaluates to 0 in the last position
in the computation for every formula ϕ, which is known as the strong semantics. One
could also define the X operator to evaluate to 1 in the last position, known as the weak
semantics. It is not hard to see that the two semantics have the same expressive power.

We solve the basic questions for LTL[F] over finite computations via the same ap-
proach that we took in Section 2.4, by translating an LTL[F] formula to an automaton.
The construction is similar to the one presented in Theorem 2.9, with the difference
being that we construct an NFA, rather than an NGBA. Specifically, given an LTL[F]
formula ϕ and a predicate P ⊆ [0, 1], we construct the NFA Aϕ,P = 〈2AP, Q, δ, Q0, α〉
where Q, δ and Q0 are as defined in the proof of Theorem 2.9. Recall that a state of Q is
a function g : cl(ϕ) → [0, 1]. Then, the acceptance condition α ⊆ Q consists of all states
g ∈ Q such that the following hold:

—For all ψ1Uψ2 ∈ cl(ϕ), we have that g(ψ2) = g(ψ1Uψ2).
—For all Xψ ∈ cl(ϕ), we have that g(Xψ) = 0.

The correctness of the construction can be proved similarly to Theorem 2.9.

3.3. Formalizing Quality with Branching Temporal Logics

Formulas of LTL[F] specify ongoing behaviors of linear computations. A Kripke struc-
ture is not linear, and the way we interpret LTL[F] formulas with respect to it
is universal. In branching temporal logic, one can add universal and existential
quantifiers to the syntax of the logic, and specifications can refer to the branching
nature of the system [Emerson and Halpern 1986].

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:21

We define the branching temporal logic CTL�[F] to extend the Boolean branching
temporal logic CTL� by propositional quality operators; Equivalently, CTL�[F] is de-
fined as the extension of LTL[F] with the path quantifiers E and A. Formulas of the
form Eϕ and Aϕ are referred to as state formulas; they are interpreted over states s in
the structure with the semantics [[s, Eϕ]] = max{[[π, ϕ]] : π is a path that starts in s}
and [[s, Aϕ]] = min{[[π, ϕ]] : π is a path that starts in s}.

Emerson and Lei [1985] describe a general technique for extending the scope of LTL
model-checking algorithms to CTL�. The idea is to repeatedly consider an innermost
state subformula, view it as an (existentially or universally quantified) LTL formula,
apply LTL model checking in order to evaluate it in all states, and add a fresh atomic
proposition that replaces this subformula and holds in exactly these states that satisfy
it.

A naı̈ve attempt to use this technique in order to model check CTL�[F] fails, as the
satisfaction value of LTL[F] formulas is not Boolean; hence, they cannot be replaced by
atomic propositions. Fortunately, having solved the LTL[F] model-checking problem for
weighted systems (see Section 3.1), we can still use a variant of this technique: rather
than replacing formulas by Boolean atomic propositions, replace them by weighted
ones, in which the value of a fresh weighted atomic proposition is found by solving
the search variant of the LTL[F] model-checking problem. Hence, the model-checking
problem for CTL�[F] is PSPACE-complete, as are the ones for LTL[F] and for CTL�.
A direction for future research is to study fragments of CTL�[F] for which model
checking is simpler. In particular, our initial results show that, for CTL[F], in which
each temporal operator must be preceded by a path quantifier, it is possible to apply a
variant of the linear-time fixed-point-based model-checking algorithm of CTL [Emerson
and Lei 1986]. Thus, the model-checking problem for CTL[F] is in P.

More challenging is the handling of the other search problems. There, the solution
involves a translation of CTL�[F] formulas to tree automata. Since the automata-
theoretic approach for CTL� satisfiability and synthesis has the Vardi-Wolper con-
struction at its heart [Kupferman et al. 2000], this is possible. We now elaborate on the
solution.

Consider a CTL�[F] formula ϕ and a threshold v. We construct from ϕ an alternating
automaton Aϕ,v over trees, such that Aϕ,v accepts a computation tree τ if and only if
[[τ, ϕ]] ≥ v. The construction is similar to that in Kupferman et al. [2000]. There, the
construction uses the Vardi-Wolper construction to NBAs for inner (path) formulas,
and combines these automata using alternations to obtain Aϕ,v. Then, the synthesis
problem reduces to the emptiness problem for alternating automata, which can be
solved in EXPTIME.

To adapt this construction to the case of CTL�[F], we only need to observe that the
inner NBAs can be obtained with the construction in Theorem 2.9. Moreover, the size
of the obtained NBAs is single exponential in ϕ.

Since the size of Aϕ,v is exponential in the size of ϕ, we end up with a 2EXPTIME
algorithm for the synthesis problem, matching the complexity of CTL� synthesis in the
Boolean case, for which a matching 2-EXPTIME lower bound is known [Kupferman
and Vardi 1997]. We conclude with the following theorem.

THEOREM 3.2. The model-checking and synthesis problems for CTL�[F] are PSPACE-
complete and 2EXPTIME complete, respectively.

3.4. The Fragment LTL�

We define here a fragment of LTL[F] that covers the possible linear approaches of
formalizing quality as a value between true and false. Formally, we define the logic
LTL� as a special case of LTL[F], for which the set of functions F contains the standard

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:22 S. Almagor et al.

Boolean operators and the unary operators �λ, �λ, and ��λ, defined as follows. Let
x ∈ [0, 1]. Then,

• �λ(x) = λ · x • �λ(x) = λx + (1 − λ) • ��λ(x) = λ · x + (1 − λ)/2

The three operators �λ, �λ, and ��λ are designed to capture the competence, necessity,
and confidence of the specifications, as elaborated here.

The semantics of the operator �λ can be thought of as a measure of competence: the
formula � 3

4
ϕ has the property that, even if ϕ is fully satisfied, it is still not competent

enough to increase the satisfaction value beyond 3
4 . This semantics makes an implicit

assumption that True corresponds to “happiness” and False to the lack of happiness.
However, it may be the case that we regard True as contentedness (“no problems”),

and False as “critical problems.” To capture this, we could have defined a different
semantics, denoted [[·, ·]][−1,0], whereby [[π, True]][−1,0] = 0 and [[π, False]][−1,0] = −1.
With this view, we have the operator �λ with the semantics [[π,�λϕ]][−1,0] = λ[[π, ϕ]][−1,0].
The operator �λ can be thought of as a measure of necessity: the closer λ is to 1, the
more necessary it is that ϕ gets a satisfaction value close to True. It should be noted
that, in this semantics, we have [[π,¬ϕ]][−1,0] = −(1 + [[π, ϕ]][−1,0]). It is easy to check
that, in the framework of LTL[F], whereby [[π, True]] = 1 and [[π, False]] = 0, this
operator is translated to �λ(x) = λx + (1 − λ).

The two operators � and � are asymmetric with respect to True and False.
A third, symmetric option is to consider a semantics, denoted [[·, ·]][−1,1], whereby
[[π, True]][−1,1] = 1 and [[π, False]][−1,1] = −1. This captures the intuition that False
is the opposite of True (rather than the lack of True). In this semantics, [[π,¬ϕ]][−1,1] =
−[[π, ϕ]][−1,1] and the operator [[π,��λϕ]][−1,1] = λ[[π, ϕ]]. We use �� to describe con-
fidence: True corresponds to full confidence that a formula holds, whereas False is
full confidence that the formula does not hold. In the framework of LTL[F], whereby
[[π, True]] = 1 and [[π, False]] = 0, we have that ��λ(x) = λ · x + (1 − λ)/2.

The competence and the necessity operators are dual in the sense that, while
the competence operator reduces the truth level, the necessity operator reduces the
falseness level. Then, the confidence operator reduces both the truth and falseness
levels. Together, the three operators cover the possible linear approaches of formalizing
quality as a value between true and false.

The fragment LTL� has several appealing properties. Algorithmically, certain pro-
cedures are simpler for it. In particular, its decision problems can be polynomially
translated to questions about LTL:

Observation 3.3. For LTL� formulas and for predicates of the form [c, 1], the transla-
tion to an equivalent LTL formula, as described in Theorem 2.7, is polynomial. Indeed,
for such predicates we have that Bool(ϕ1Uϕ2, [c, 1]) = Bool(ϕ1, [c, 1])UBool(ϕ2, [c, 1]),
and Bool(�λϕ, [c, 1]) = Bool(ϕ, [c

λ
, 1]) if c

λ
≤ 1 and False otherwise. The translation of

� and �� is similar. Thus, no exponential blowup is involved in the translation, which
means that we can solve the decision problems for LTL� by first converting its formulas
to LTL formulas with no additional computational cost.

As a specification formalism, it provides ways to rank subformulas according to their
necessity, competence or the confidence that we have in them. We demonstrate the
usefulness of this fragment in the following examples.

Example 3.4. Consider the specification G(req → grant ∨ Xgrant), and suppose that
we are happier if the request is granted immediately and less happy if it is done in the
next step (this resembles the example in Section 1.1.1, without the requirement that

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:23

the grant holds for two steps). This can be captured in LTL� using the formula

G(req → (grant ∨ � 3
4
Xgrant)).

In this formula, we are fully happy only when requests are immediately satisfied.
Postponing the satisfaction results in a small penalty, which is set by lowering the
competence of Xgrant to 3

4 .
Next, assume that another desirable property is that we use grants sparingly. In

particular, we do not want two grants to be given to a single request. This can be
formulated by changing the earlier formula to

G(req → ((grant ∧ ¬Xgrant) ∨ �� 3
4
(¬grant ∧ Xgrant) ∨ �� 1

2
(grant ∧ Xgrant))).

Note that, here, (grant ∧ Xgrant) gives satisfaction value of 3
4 (according to the seman-

tics of �� in the [0, 1] range). Moreover, if there is a request that gets no grants, the
satisfaction value is still 1

4 , representing the fact that, even though we failed to grant
the specification, we at least managed to use grants sparingly.

In the following examples, we demonstrate how LTL� can be used for vacuity
testing and coverage, as well as prioritizing safety requirements.

Example 3.5 (Vacuity and Coverage). Vacuity and coverage are two popular sanity
checks in formal verification. They are applied after a successful verification process,
aiming to check that all the components of the specification and the system have played
a role in the satisfaction. Algorithms for measuring vacuity and coverage are based
on model-checking mutations of the system or the specification [Kupferman 2006].
For example, after a system is proven to satisfy the specification G(req → Fgrant),
vacuity-detection algorithms would mutate the specification to G(req → False) or to
G(True → Fgrant) in order to check that all components of the specification affect
the satisfaction. Coverage-measuring algorithms would then mutate the system, say,
by removing some grants, in order to check whether all components of the system
affect the satisfaction. A serious drawback of vacuity and coverage lies in the fact that
it is difficult to distinguish between different cases of vacuous satisfaction and low
coverage. While some cases should alarm the designer, some are a natural part of the
design. In the earlier example, it is more alarming to discover that the specification
has been satisfied in a system in which no requests are issued than to discover that the
specification has been satisfied in a system in which infinitely many grants are issued.
Using LTL�, the designer can model vacuity and coverage in a way that would indicate
the “level of alarm.”

For example, keeping in mind that implications are disjunctions, we can refine the
specification G(req → Fgrant) to G((� 1

3
¬req) ∨ Fgrant), which would get a satisfaction

value 1
3 in computations in which it is satisfied only thanks to the fact that there are

only finitely many requests.

Example 3.6 (Safety). Consider a vending machine that serves drinks. A natural
safety property is to require the machine to always have drinks, say, coffee and tea.
Or should we say “coffee or tea”? The quality of a safety property is closely related to
the necessity operator. The operator allows us to value the level of violating the safety
requirements. For example, we may require that always having some drinks is a must,
while having all drinks is a nice to have, using the formula G((coffee∨ tea)∧� 3

4
(coffee∧

tea)). This example can obviously be generalized to provide the necessity level of each
subset of drinks. Another safety requirement for the machine is to always have coins
for change. Since this is not a critical requirement, we can formalize it by � 1

8
Gcoins.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:24 S. Almagor et al.

4. FORMALIZING TEMPORAL QUALITY

In this section, we introduce the temporal logic LTLdisc[D] (Section 4.1) that provides
formal means for specifying temporal quality. As has been the case of propositional
quality, our algorithms for reasoning about LTLdisc[D] are based on a translation of a
given LTLdisc[D] formula into an automaton (Section 4.2). The translation here, how-
ever, is much more involved, as a given formula might have infinitely many satisfaction
values.

Using the automata-theoretic approach, we solve the decision problems for LTLdisc[D]
(Section 4.3). The fact that a formula may have infinitely many satisfaction values not
only makes the algorithms more complicated, but also means that a solution to the
corresponding search and optimization problems does not follow, and we leave them
open.

The complexity of solving the decision problems depends on the discounting func-
tions in D. For the set of exponential-discounting functions E, we analyze the concrete
complexities and show that they stay in the same complexity classes of standard LTL
(Section 4.4).

4.1. The Logic LTLdisc[D]

The linear temporal logic LTLdisc[D] generalizes LTL by adding discounting temporal
operators. The logic is actually a family of logics, each parameterized by a set D of
discounting functions.

Let N = {0, 1, . . .}. A function η : N → [0, 1] is a discounting function if limi→∞ η(i) =
0, and η is strictly monotonic-decreasing. Examples for natural discounting functions
are η(i) = λi for some λ ∈ (0, 1), and η(i) = 1

i+1 . Note that the strict monotonicity implies
that η(i) > 0 for all i ∈ N .

Given a set of discounting functions D, we define the logic LTLdisc[D] as follows. The
syntax of LTLdisc[D] adds to LTL a discounting-Until operator ϕUηψ for every function
η ∈ D. Thus, a LTLdisc[D] formula is one of the following:

—True, or p, for p ∈ AP.
—¬ϕ1, ϕ1 ∨ ϕ2, Xϕ1, ϕ1Uϕ2, or ϕ1Uηϕ2, for LTLdisc[D] formulas ϕ1 and ϕ2, and a function

η ∈ D.

Recall that a logic in the family LTL[F] need not have functions that correspond to
the usual Boolean operators; in particular, F need not contains negation. On the other
hand, the logic LTLdisc[D] does include the Boolean operators ¬ and ∨.

The semantics of LTLdisc[D] is defined with respect to a computation π = π0, π1, . . . ∈
(2AP)ω. Given a computation π and an LTLdisc[D] formula ϕ, the truth value of ϕ in π
is a value in [0, 1], denoted [[π, ϕ]]. The value is defined by induction on the structure
of ϕ as described in Table II, where π i = πi, πi+1, . . .

The intuition of the discounted-until operator is that events that happen in the future
have a lower influence, and the rate by which this influence decreases depends on the
function η.7 For example, the satisfaction value of a formula ϕUηψ in a computation
π depends on the best (supremum) value that ψ can get along the entire computa-
tion, while considering the discounted satisfaction of ψ at a position i, as a result of
multiplying it by η(i), and the same for the value of ϕ in the prefix leading to the ith
position.

7Observe that, in our semantics, the satisfaction value of future events tends to 0. One may think of
scenarios in which future events are discounted towards another value in [0, 1] (e.g., discounting towards 1

2
as ambivalence regarding the future). We address this in Section 5.3.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:25

Table II. The Semantics of LTLdisc[D]

Formula Satisfaction value

[[π, True]] 1

[[π, p]]
1 if p ∈ π0

0 if p /∈ π0

[[π, ¬ϕ1]] 1 − [[π, ϕ1]]
[[π, ϕ1 ∨ ϕ2]] max{[[π, ϕ1]], [[π, ϕ2]]}

[[π, Xϕ1]] [[π1, ϕ1]]

[[π, ϕ1Uϕ2]] sup
i≥0

{min{[[π i, ϕ2]], min
0≤ j<i

{[[π j , ϕ1]]}}}

[[π, ϕ1Uηϕ2]] sup
i≥0

{min{η(i)[[π i, ϕ2]], min
0≤ j<i

{η(j)[[π j , ϕ1]]}}}

We add the standard abbreviations Fϕ ≡ TrueUϕ and Gϕ = ¬F¬ϕ, as well as their
quantitative counterparts: Fηϕ ≡ TrueUηϕ, and Gηϕ = ¬Fη¬ϕ. Note that [[π, Fηϕ]] =
supi≥0{min{η(i)[[π i, ϕ]], min0≤ j<i{η(j) ·1}}}. Since η is decreasing and i > j, the latter be-
comes supi≥0{η(i)[[π i, ϕ]]}. From this, we also get [[π, Gηϕ]] = inf i≥0{1−η(i)(1− [[π i, ϕ]])}.

Remark 4.1. A more restricted way of future-discounting can be captured with a
discounted X operator Xλ where [[π, Xλϕ]] = λ[[π1, ϕ]]. In Section 6.2, we show how the
Xλ operator can be expressed in LTLdisc[D], without adding it explicitly.

A computation of the form π = u · vω, for u, v ∈ (2AP)∗, with v
= ε, is called a
lasso computation. We observe that, since a specific lasso computation has only finitely
many distinct suffixes, the sup in the semantics of LTLdisc[D] can be replaced with
max when applied to lasso computations. For the semantics of ϕUψ , this is trivial.
For the semantics of ϕUηψ , recall that [[π, ϕ1Uηϕ2]] = supi≥0 H, where H is the term
min{η(i)[[π i, ϕ2]], min0≤ j<i{η(j)[[π j, ϕ1]]}}. Since η is decreasing, it follows that, for a
large enough i0, H is decreasing as a function of i ≥ i0. Thus, the sup is attained within
a finite prefix, therefore is a max.

The semantics of LTLdisc[D] is extended to Kripke structures by taking the path
that admits the lowest satisfaction value. Formally, for a Kripke structure K and an
LTLdisc[D] formula ϕ, we have that [[K, ϕ]] = inf {[[π, ϕ]] : π is a computation of K}.

Example 4.2. Consider a lossy-disk: every moment in time there is a chance that
some bit would flip its value. Fixing flips is done by a global error-correcting procedure.
This procedure manipulates the entire content of the disk, such that, initially, it causes
more errors in the disk; the longer it runs, however, the more bits it fixes.

Let init and terminate be atomic propositions indicating when the error-correcting
procedure is initiated and terminated, respectively. The quality of the disk (i.e., a
measure of the amount of correct bits) can be specified by the formula ϕ = GFη(init ∧
¬Fμterminate) for some appropriate discounting functions η and μ. Intuitively, ϕ gets
a higher satisfaction value the shorter the waiting time is between initiations of the
error-correcting procedure, and the longer the procedure runs (i.e., not terminated) in
between these initiations. Note that the “worst-case” nature of LTLdisc[D] fits here.
For instance, running the procedure for a very short time, even once, will cause many
errors.

4.2. Translating LTLdisc[D] to Automata

We start by translating a given LTLdisc[D] formula ϕ and a threshold v to an alternating
weak automaton Aϕ,v such that L(Aϕ,v)
= ∅ if and only if there exists a computation
π such that [[π, ϕ]] > v. The challenge here is that ϕ has infinitely many satisfaction

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:26 S. Almagor et al.

values, naı̈vely implying an infinite-state automaton. We show that, using the thresh-
old and the discounting behavior of the eventualities, we can restrict attention to a
finite resolution of satisfaction values, enabling the construction of a finite automaton.
Complexity-wise, the size of Aϕ,v depends on the functions in D. In Section 4.4, we
analyze the complexity for the case of exponential-discounting functions.

The second step is to construct a nondeterministic Büchi automaton B that is equiv-
alent to Aϕ,v. In general, alternation removal might involve an exponential blowup in
the state space [Miyano and Hayashi 1984]. We show, by a careful analysis of Aϕ,v, that
we can remove its alternation, ending up with a nondeterministic automaton that is
only exponential in ϕ.

4.2.1. Alternating Weak Automata. For a given set X, let B+(X) be the set of positive
Boolean formulas over X (i.e., Boolean formulas built from elements in X using ∧ and
∨), where we also allow the formulas True and False. For Y ⊆ X, we say that Y
satisfies a formula θ ∈ B+(X) if and only if the truth assignment that assigns true to
the members of Y and assigns false to the members of X\ Y satisfies θ . An alternating
Büchi automaton on infinite words is a tuple A = 〈
, Q, qin, δ, α〉, where
 is the input
alphabet, Q is a finite set of states, qin ∈ Q is an initial state, δ : Q ×
 → B+(Q)
is a transition function, and α ⊆ Q is a set of accepting states. We define runs of A
by means of (possibly) infinite DAGs (directed acyclic graphs). A run of A on a word
w = σ0 · σ1 · · · ∈
ω is a (possibly) infinite DAG G = 〈V, E〉, satisfying the following (note
that there may be several runs of A on w).

—V ⊆ Q×N is as follows. Let Ql ⊆ Q denote all states in level l. Thus, Ql = {q : 〈q, l〉 ∈
V }. Then, Q0 = {qin}, and Ql+1 satisfies

∧
q∈Ql

δ(q, σl).
—For every l ∈ N , Ql is minimal with respect to set containment.
—E ⊆ ⋃

l≥0(Ql × {l}) × (Ql+1 × {l + 1}) is such that, for every state q ∈ Ql, the set
{q′ ∈ Ql+1 : (〈q, l〉, 〈q′, l + 1〉) ∈ E} satisfies δ(q, σl).

Thus, the root of the DAG contains the initial state of the automaton, and the states
associated with nodes in level l + 1 satisfy the transitions from states corresponding
to nodes in level l. The run G accepts the word w if all its infinite paths satisfy the
acceptance condition α. Thus, in the case of Büchi automata, all the infinite paths have
infinitely many nodes 〈q, l〉 such that q ∈ α (it is not hard to prove that every infinite
path in G is part of an infinite path starting in level 0). A word w is accepted by A if
there is a run that accepts it. The language of A, denoted L(A), is the set of infinite
words that A accepts.

When the formulas in the transition function of A contain only disjunctions, then A
is nondeterministic, and its runs are DAGs of width 1, in which, at each level, there is a
single node.

The alternating automaton A is weak, denoted AWA, if its state space Q can be
partitioned into sets Q1, . . . , Qk, such that the following hold. First, for every 1 ≤ i ≤ k
either Qi ⊆ α, in which case we say that Qi is an accepting set, or Qi ∩ α = ∅, in which
case we say that Qi is rejecting. Second, there is a partial-order ≤ over the sets, and for
every 1 ≤ i, j ≤ k, if q ∈ Qi, s ∈ Qj , and s ∈ δ(q, σ) for some σ ∈
, then Qj ≤ Qi. Thus,
transitions can lead only to states that are smaller in the partial order. Consequently,
each run of an AWA eventually gets trapped in a set Qi and is accepting if and only if
this set is accepting.

4.2.2. From LTLdisc[D] to AWA. Intuitively, the states of the AWA that we construct cor-
respond to assertions of the form ψ > t or ψ < t for every subformula ψ of ϕ, and for
certain thresholds t ∈ [0, 1]. A lasso computation π is then accepted from state ψ > t

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:27

if and only if [[π,ψ]] > t. We note that the assumption about the computation being a
lasso is only needed for the “only if” direction.

The AWA is used in our solution to the model-checking problem by setting the initial
state to ϕ > v. There, the assumption about the computation being a lasso does not
influence the solution’s generality since the language of an automaton is nonempty if
and only if there is a lasso witness for its nonemptiness.

Defining the appropriate transition function for the AWA follows the semantics of
LTLdisc[D] in the expected manner. A naı̈ve construction, however, yields an infinite-
state automaton (even if we only expand the state space on-the-fly, as discounting
formulas can take infinitely many satisfaction values). As can be seen in the proof
of Theorem 4.6, the “problematic” transitions are those that involve the discounting
operators. The key observation is that, given a threshold v and a computation π , when
evaluating a discounted operator on π , one can restrict attention to two cases: either
the satisfaction value of the formula goes below v, in which case this happens after
a bounded prefix, or the satisfaction value always remains above v, in which case we
can replace the discounted operator with a Boolean one. This observation allows us to
expand only a finite number of states on-the-fly.

Before describing the construction of the AWA, we need the following lemma, which
reduces an extreme satisfaction of an LTLdisc[D] formula, meaning satisfaction with a
value of either 0 or 1, to a Boolean satisfaction of an LTL formula.

LEMMA 4.3. Given an LTLdisc[D] formula ϕ, there exist LTL formulas ϕ+ and ϕ<1 such
that |ϕ+| and |ϕ<1| are both in O(|ϕ|), and the following hold for every computation π .

(1) If [[π, ϕ]] > 0, then π |= ϕ+, and if [[π, ϕ]] < 1, then π |= ϕ<1.
(2) If π is a lasso, then if π |= ϕ+, then [[π, ϕ]] > 0, and if π |= ϕ<1, then [[π, ϕ]] < 1.

PROOF. We construct ϕ+ and ϕ<1 by induction on the structure of ϕ as follows. In all
cases but the U case, we do not use the assumption that π = u · vω and prove an “if and
only if” criterion.

—If ϕ is of the form True, False, or p, for an atomic proposition p, then ϕ+ = ϕ and
ϕ<1 = ¬ϕ. Correctness is trivial.

—If ϕ is of the form ψ1 ∨ ψ2, then ϕ+ = ψ+
1 ∨ ψ+

2 and ϕ<1 = ψ<1
1 ∧ ψ<1

2 . For every
computation π , we have that [[π, ϕ]] > 0 if and only if either [[π,ψ1]] > 0 or [[π,ψ2]] > 0,
and [[π, ϕ]] < 1 if and only if both [[π,ψ1]] < 1 and [[π,ψ2]] < 1.

—If ϕ is of the form Xψ1, then ϕ+ = X(ψ+
1) and ϕ<1 = X(ψ<1

1). Correctness is trivial.
—If ϕ is of the form ψ1Uψ2, then ϕ+ = ψ+

1 Uψ+
2 and ϕ<1 = ¬((¬(ψ<1

1))U(¬(ψ<1
2))).

We start with ϕ+. For every computation π , we have that [[π, ϕ]] > 0 if and only
if there exists i ≥ 0 such that [[π i, ψ2]] > 0 and for every 0 ≤ j < i it holds that
[[π j, ψ1]] > 0. This happens if and only if π satisfies ψ+

1 Uψ+
2 .

Before we turn to the case of ϕ<1, let us note that readers familiar with the release
(R) operator of LTL may find it clearer to observe that ϕ<1 = ψ<1

1 Rψ<1
2 , which perhaps

gives a clearer intuition for the correctness of the construction.
Now, if [[π, ϕ]] < 1, then, for every i ≥ 0, it holds that either [[π i, ψ2]] < 1 or

[[π j, ψ1]] < 1 for some 0 ≤ j < i. Thus, for every i ≥ 0, either π i |= ψ<1
2 , or

π j |= ψ<1
1 for some 0 ≤ j < i. Thus, for every i ≥ 0, either π i
|= ¬(ψ<1

2), or
π j
|= ¬(ψ<1

1) for some 0 ≤ j < i. It follows that π
|= (¬(ψ<1
1))U(¬(ψ<1

2)). Equiva-
lently, π |= ¬((¬(ψ<1

1))U(¬(ψ<1
2))).

Conversely, if π = u·vω and π |= ¬((¬(ψ<1
1))U(¬(ψ<1

2))), then π
|= (¬(ψ<1
1))U(¬(ψ<1

2));
thus, for every i ≥ 0, either π i |= ψ<1

2 or π j |= ψ<1
1 for some 0 ≤ j < i. By the induction

hypothesis, for every i ≥ 0, either [[π i, ψ2]] < 1 or [[π j, ψ1]] < 1 for some 0 ≤ j < i.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:28 S. Almagor et al.

We now use the assumption that π = u · vω to observe that the sup in the expression
for [[π, ϕ]] is attained as a max, as there are only finitely many distinct suffixes for
π (i.e., π0, . . . , π |u|+|v|−1). Thus, since all the elements in the max are strictly smaller
than 1, we conclude that [[π, ϕ]] < 1.

—If ϕ = ¬ψ , then ϕ+ = ψ<1 and ϕ<1 = ψ+. Again, correctness is trivial.
—If ϕ = ψ1Uηψ2 for η ∈ D, then ϕ+ = ψ+

1 Uψ+
2 . Since η(i) > 0 for all i ≥ 0, then

ϕ+ = ψ1Uψ2
+.

Now, ϕ<1 is defined as follows. First, if η(0) < 1, then ϕ<1 = True. If η(0) = 1, then
ϕ<1 = ψ2

<1. Since η is strictly decreasing, the only chance of ϕ to have [[π, ϕ]] = 1 is
when both η(0) = 1 and [[π0, ψ2]] = 1. Since a satisfaction value cannot exceed 1, the
latter happens if and only if η(0) = 1 and π
|= ψ<1

2 (for which the “only if” direction
is valid when π is a lasso, as is assumed).

Finally, it is easy to see that |ϕ+| and |ϕ<1| are both O(|ϕ|).
Henceforth, given an LTLdisc[D] formula ϕ, we refer to ϕ+ as in Lemma 4.3.

Consider an LTLdisc[D] formula ϕ. By Lemma 4.3, if there exists a computation π such
that [[π, ϕ]] > 0, then ϕ+ is satisfiable. Conversely, since ϕ+ is a Boolean LTL formula,
then, by Vardi [1996], we know that ϕ+ is satisfiable if and only if there exists a lasso
computation π that satisfies it, in which case [[π, ϕ]] > 0. We thus get the following.

COROLLARY 4.4. Consider an LTLdisc[D] formula ϕ. There exists a computation π such
that [[π, ϕ]] > 0 if and only if there exists a lasso computation π ′ such that [[π ′, ϕ]] > 0,
in which case π ′ |= ϕ+ as well.

Remark 4.5. The curious reader may wonder why we do not prove that [[π, ϕ]] > 0
if and only if π |= ϕ+ for every computation π . As it turns out, a translation that is
also valid for computations that are not lasso-shaped (i.e., ones with no period) is not
always possible. For example, as is the case with the prompt-eventuality operator of
Kupferman et al. [2009], the formula ϕ = G(Fη p) is such that the set of computations
π with [[π, ϕ]] > 0 is not ω-regular; thus, one cannot hope to define an LTL formula ϕ+.

Prior to providing the translation, we give some necessary definitions. For a function
f : N → [0, 1] and for k ∈ N , we define the function f +k : N → [0, 1], for which, for
every i ∈ N , we have that f +k(i) = f (i + k).

Let ϕ be an LTLdisc[D] formula over AP. We define the extended closure of ϕ, denoted
xcl(ϕ), to be the set of all the formulas ψ of the following classes:

(1) ψ is a subformula of ϕ.
(2) ψ is a subformula of θ+ or ¬θ+, where θ is a subformula of ϕ.
(3) ψ is of the form θ1Uη+kθ2 for k ∈ N , where θ1Uηθ2 is a subformula of ϕ.

Observe that xcl(ϕ) may be infinite, and that it has both LTLdisc[D] formulas (from
Classes 1 and 3) and LTL formulas (from Class 2).

THEOREM 4.6. Given an LTLdisc[D] formula ϕ and a threshold v ∈ [0, 1], there exists
an AWA Aϕ,v such that, for every computation π , the following hold:

(1) If [[π, ϕ]] > v, then Aϕ,v accepts π .
(2) If Aϕ,v accepts π and π is a lasso computation, then [[π, ϕ]] > v.

PROOF. We construct Aϕ,v = 〈Q, 2AP, Q0, δ, α〉 as follows.
The state space Q consists of two types of states. Type-1 states are assertions of the

form (ψ > t) or (ψ < t), where ψ ∈ xcl(ϕ) is of Class 1 or 3 and t ∈ [0, 1]. Type-2 states
correspond to LTL formulas of Class 2. Let S be the set of Type-1 and Type-2 states

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:29

for all ψ ∈ xcl(ϕ) and thresholds t ∈ [0, 1]. Then, Q is the subset of S that is reachable
from the initial state via the transition function defined later. We later show that Q is
indeed finite.

The initial state of Aϕ,v is the Type-1 state (ϕ > v). We split the definition of the
accepting states and the transition function between Type-2 and Type-1 states. For
Type-2 states, we use the standard translation from LTL to AWA [Vardi 1996]. For
completeness, we describe the construction here. Readers who are familiar with it can
skip to the definitions for Type-1 states.

Type-2 states. Recall that the Type-2 states correspond to subformulas of θ+ or ¬θ+,
where θ is a subformula of ϕ. In particular, we get that, for every Type-2 state ψ , the
state ¬ψ is also a Type-2 state (we identify ¬¬ψ with ψ). Let Q2 be the set of Type-2
states.

Consider a formula ζ ∈ B+(Q2). We obtain the dual formula ζ̃ by switching True and
False, ∧ and ∨, and by negating the atoms in Q2. Formally, we define ζ̃ inductively, as
follows.

—q̃ = ¬q for every q ∈ Q.
—˜True = False and ˜False = True.
—˜α ∧ β = α̃ ∨ β̃ and ˜α ∨ β = α̃ ∧ β̃.

The transition function δ : Q2 × 2AP → B+(Q2) on Type-2 states is defined as follows.
Let σ ∈ 2AP .

—δ(p, σ) = True if p ∈ σ and δ(p, σ) = False if p /∈ σ .
—δ(ψ1 ∨ ψ2, σ) = δ(ψ1, σ) ∨ δ(ψ2, σ).
—δ(¬ψ, σ) = ˜δ(ψ, σ).
—δ(Xψ, σ) = ψ .
—δ(ψ1Uψ2, σ) = δ(ψ2, σ) ∨ (δ(ψ1, σ) ∧ (ψ1Uψ2)).

Finally, the accepting Type-2 states are those that correspond to formulas of the form
¬(ψ1Uψ2). By Vardi [1996], a computation π is accepted from state q ∈ Q2 if and only
if π |= q.

Type-1 states. The accepting Type-1 states are those of the form (ψ1Uψ2 < t). The
transition function for Type-1 states is defined as follows. Let σ ∈ 2AP .

—δ((True > t), σ) =
[
True if t < 1,
False if t = 1.

—δ((False > t), σ) = False.
—δ((True < t), σ) = False.

—δ((False < t), σ) =
[
True if t > 0,
False if t = 0.

—δ((p > t), σ) =
[
True if p ∈ σ and t < 1,
False otherwise.

—δ((p < t), σ) =
[
False if p ∈ σ or t = 0,
True otherwise.

—δ((ψ1 ∨ ψ2 > t), σ) = δ((ψ1 > t), σ) ∨ δ((ψ2 > t), σ).
—δ((ψ1 ∨ ψ2 < t), σ) = δ((ψ1 < t), σ) ∧ δ((ψ2 < t), σ).
—δ((¬ψ1 > t), σ) = δ((ψ1 < 1 − t), σ).
—δ((¬ψ1 < t), σ) = δ((ψ1 > 1 − t), σ).
—δ((Xψ1 > t), σ) = (ψ1 > t).
—δ((Xψ1 < t), σ) = (ψ1 < t).

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:30 S. Almagor et al.

—δ((ψ1Uψ2 > t), σ) =
⎡⎣ δ((ψ2 > t), σ) ∨ [δ((ψ1 > t), σ) ∧ (ψ1Uψ2 > t)] if 0 < t < 1,
False if t = 1,

δ(((ψ1Uψ2)+), σ) if t = 0.

—δ((ψ1Uψ2 < t), σ) =
[

δ((ψ2 < t), σ) ∧ [δ((ψ1 < t), σ) ∨ (ψ1Uψ2 < t)] if 0 < t ≤ 1,
False if t = 0.

—δ((ψ1Uηψ2 > t), σ) =⎡⎣ δ((ψ2 > t
η(0)), σ) ∨ [δ((ψ1 > t

η(0)), σ) ∧ (ψ1Uη+1ψ2 > t)] if 0 < t
η(0) < 1,

False if t
η(0) ≥ 1,

δ(((ψ1Uηψ2)+), σ) if t
η(0) = 0 (i.e., t = 0).

—δ((ψ1Uηψ2 < t), σ) =⎡⎣ δ((ψ2 < t
η(0)), σ) ∧ [δ((ψ1 < t

η(0)), σ) ∨ (ψ1Uη+1ψ2 < t)] if 0 < t
η(0) ≤ 1,

True if t
η(0) > 1,

False if t
η(0) = 0 (i.e., t = 0).

We provide some intuition for the more complex parts of the transition function:
consider, for example, the transition δ((ψ1Uηψ2 > t), σ). Since η is decreasing, the
highest possible satisfaction value for ψ1Uηψ2 is η(0). Thus, if η(0) ≤ t (equivalently,

t
η(0) ≥ 1), then it cannot hold that ψ1Uηψ2 > t; thus, the transition is to False. If
t = 0, then we only need to ensure that the satisfaction value of ψ1Uηψ2 is not 0. To
do so, we require that (ψ1Uηψ2)+ is satisfied. By Corollary 4.4, this is equivalent to
the satisfiability of the former. Thus, the transition is identical to that of the state
(ψ1Uηψ2)+. Finally, if 0 < t < η(0), then (slightly abusing notation) the assertion
ψ1Uηψ2 > t is true if either η(0)ψ2 > t is true, or both η(0)ψ1 > t and ψ1Uη+1ψ2 > t are
true.

Note that each path in the run of Aϕ,v eventually gets trapped in a single state. Thus,
Aϕ,v is indeed an AWA. The intuition behind the acceptance condition is as follows.
Getting trapped in state of the form (ψ1Uψ2 < t) is allowed, as the eventuality is
satisfied with value 0. On the other hand, getting stuck in other states (or Type-1)
is not allowed, as they involve eventualities that are not satisfied in the threshold
promised for them.

This concludes the definition of Aϕ,v.
We now show that Aϕ,v is indeed finite and correct.
Intuitively, we observe that, while the construction as described earlier is infinite

(indeed, uncountable), only finitely many states are reachable from the initial state
(ϕ > v), and we can compute these states in advance. This follows from the fact that
once the proportion between t and η(i) goes above 1, for Type-1 states associated with
threshold t and subformulas with a discounting function η, we do not have to generate
new states.

We start with some notations. For every state (ψ > t) (resp., (ψ < t)) we refer to
ψ and t as the state’s formula and threshold, respectively. If the outermost operator
in ψ is a discounting operator, then we refer to its discounting function as the state’s
discounting function. For states of Type-2, we refer to their formula only (as there is
no threshold).

We continue with a couple of observations regarding the structure of Aϕ,v. First,
observe that the only cycles in Aϕ,v are self-loops. Indeed, consider a transition from
state q to state s
= q. Let ψq, ψs be the formulas of q and s, respectively. Going over the
different transitions, one may see that ψs is a strict subformula of ψq, s is a Type-2 state,
or both ψq and ψs have an outermost discounting operator with discounting functions

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:31

η and η+1, respectively. By induction over the construction of ϕ, this observation proves
that there are only self-cycles in Aϕv

.
Second, observe that, in every run of Aϕ,v on an infinite word w, every infinite branch

(i.e., a branch that does not reach True) must eventually be in a state of the form
ψ1Uψ2 > t, ψ1Uψ2 < t, ψ1Uψ2 or ¬(ψ1Uψ2) (if it is a Type-2 state). Indeed, these states
are the only states that have a self-loop, and the only cycles in the automaton are
self-loops.

We now prove that there are finitely many states in the construction. First, there
are O(|ψ |) Type-2 states for every Boolean formula in xcl(ϕ); thus, there are only
finitely many Type-2 states. This follows immediately from Lemma 4.3 and from the
construction of an AWA from an LTL formula.

Next, observe that the number of possible state formulas, up to differences in the
discounting function, is O(|ϕ|). This is simply the standard closure of ϕ. It remains to
prove that the number of possible thresholds and discounting functions is finite.

We start by claiming that, for every threshold t > 0, there are only finitely many
reachable states with threshold t. For every discounting function η ∈ D (that appears
in ϕ), let it,η = max {i : t

η(i) ≤ 1}. The value of it,η is defined, since the functions tend to
0. Observe that, in every transition from a state with threshold t, if the next state is
also with threshold t, then the discounting function (if relevant) is either some η′ ∈ D,
or η+1. There are only finitely many functions of the former kind. As for the latter kind,
after taking η+1 it,η times, we have that t/η+it,η (0) > 1. By the definition of δ, in this
case, the transitions are to either True or False. We conclude that, for every threshold,
there are only finitely many reachable states with this threshold.

Next, we claim that there are only finitely many reachable thresholds. This follows
immediately from the earlier claim. We start from the state ϕ > v. From this state, there
are only finitely many reachable discounting functions. The next threshold that can be
encountered is either 1 − v or v

η(0) for η that is either in D or one of the η+i for i ≤ iv,η.
Thus, there are only finitely many such thresholds. Further observe that if a different
threshold is encountered, then, by the definition of δ, the state’s formula is deeper in
the generating tree of ϕ. Thus, there are only finitely many times that a threshold can
change along a single path. Thus, by induction over the depth of the generating tree,
we can conclude that there are only finitely many reachable thresholds.

We conclude that the number of states of the automaton is finite.
Next, we prove the correctness of the construction. From Lemma 4.3 and the correct-

ness of the standard translation of LTL to AWA, it remains to prove that for every path
π and for every state (ψ > v) (resp., (ψ < v)):

(1) If [[π,ψ]] > v (resp., [[π,ψ]] < v), then π is accepted from (ψ > v) (resp., (ψ < v)).
(2) If π = u · vω and π is accepted from state (ψ > v) (resp., (ψ < v)), then [[π,ψ]] > v

(resp., [[π,ψ]] < v).

The proof is by induction over the construction of ϕ, and is fairly trivial given the
definition of δ.

Since Aϕ,v is a Boolean automaton, then its language is not empty if and only if it
accepts a lasso computation. Combining this observation with Theorem 4.6, we conclude
with the following.

COROLLARY 4.7. For an LTLdisc[D] formula ϕ and a threshold v ∈ [0, 1], it holds that
L(Aϕ,v)
= ∅ if and only if there exists a computation π such that [[π, ϕ]] > v.

4.2.3. From Aϕ,v to an NBA. Every AWA can be translated to an equivalent NBA, yet
the state blowup might be exponential [Miyano and Hayashi 1984; Boker et al. 2010].

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:32 S. Almagor et al.

By carefully analyzing the AWA Aϕ,v generated in Theorem 4.6, we show that it can
be translated to an NBA ending up with a nondeterministic automaton that is only
exponential in ϕ.

The idea behind our complexity analysis is as follows. Translating an AWA to an
NBA involves alternation removal, which proceeds by keeping track of entire levels in
a run-DAG. Thus, a run of the NBA corresponds to a sequence of subsets of Q. The key
to the reduced state space is that the number of such subsets is only |Q|O(|ϕ|) and not
2|Q|. To see why, consider a subset S of the states of A. We say that S is minimal if it
does not include two states of the form ϕ < t1 and ϕ < t2 for t1 < t2, nor two states of
the form ϕUη+i ψ < t and ϕUη+ j ψ < t for i < j, and similarly for “>”. Intuitively, sets
that are not minimal hold redundant assertions, and can be ignored. Accordingly, we
restrict the state space of the NBA to have only minimal sets.

LEMMA 4.8. For an LTLdisc[D] formula ϕ and v ∈ [0, 1], the AWA Aϕ,v constructed in
Theorem 4.6 with state space Q can be translated to an NBA with |Q|O(|ϕ|) states.

PROOF. Consider the AWA A obtained from ϕ using the construction of Section 4.2.2.
In the translations of AWA to NBA using the method of Gastin and Oddoux [2001],

the AWA is translated to an NGBA (see Section 2.4) whose states are the subset-
construction of the AWA. This gives an exponential blowup in the size of the automaton.
We claim that, in our translation, we can, in a sense, avoid this blowup.

Intuitively, each state in the NGBA corresponds to a conjunction of states of the
AWA. Consider such a conjunction of states of A. If the conjunction contains two states
(ψ < t1) and (ψ < t2), and we have that t1 < t2, then, by the correctness proof of
Theorem 4.6, it holds that a path π is accepted from both states, if and only if π is
accepted from (ψ < t1). Thus, in every conjunction of states from A, there is never a
need to consider a formula with two different “<” thresholds. Dually, every formula can
appear with at most one “>” threshold.

Next, consider conjunctions that contain states of the form (ψ1Uηψ2 < t) and
(ψ1Uη+kψ2 < t). Again, since the former assertion implies the latter, there is never
a need to consider two such formulas. Similar observations hold for the other discount-
ing operators.

Thus, we can restrict the construction of the NGBA to states that are conjunctions
of states from the AWA, such that no discounting operator appears with two different
“offsets.”

Further observe that, by the construction of the AWA, the threshold of a discounting
formula does not change with the transition to the same discounting formula; only
the offset changes. That is, from the state (ψ1Uηψ2 < t), every reachable state whose
formula is ψ1Uη+kψ2 has threshold t as well. Accordingly, the possible number of
thresholds that can appear with the formula ψ1Uηψ2 in the subset construction of A
is the number of times that this formula appears as a subformula of ϕ, which is O(|ϕ|).

We conclude that each state of the obtained NGBA is a function that assigns each
subformula8 of ϕ two thresholds. The number of possible thresholds and offsets is linear
in the number of states of A; thus, the number of states of the NGBA is |A|O(|ϕ|).

Finally, translating the NGBA to an NBA requires multiplying the size of the state
space by |A|; thus, the size of the obtained NBA is also |A|O(|ϕ|).

8Where a subformula may have several occurrences, for example, in the formula p ∧ Xp, we have two
occurrences of the subformula p.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:33

4.3. Solving the Questions for LTLdisc[D]
The verification and synthesis questions in the quantitative setting are search prob-
lems, asking for the best or worst value (see Section 2.2). When referring to a specific
threshold, these questions induce decision problems. For example, the model-checking
decision problem is to decide, given a system K, a specification ϕ, and a threshold v,
whether [[K, ϕ]] ≥ v.

In the case of LTL[F], in which every formula only has exponentially many satisfac-
tion values, solutions to the decision problems imply solutions to the search problems.
On the other hand, an LTLdisc[D] formula might have infinitely many satisfaction val-
ues. Hence, one cannot reduce an LTLdisc[D] search problem to a finite set of decision
problems with respect to specific thresholds. Later, we solve the decision problems for
LTLdisc[D], leaving the search problems open. Moreover, note that, in our construction
in Theorem 4.6, we only consider strict inequalities. Therefore, our solutions to the
threshold problems are often only for strict inequalities, or, in dual problems, only for
nonstrict inequalities. This is reflected also in the solution to the realizability and syn-
thesis problems, when we require a strict inequality to hold in order to infer nonstrict
inequality.

The difficulty in handling nonstrict thresholds stems from the lack of a lasso-witness
(see Remark 4.5). We note that similar problems are known to be notoriously difficult,
and are encountered in other settings: in multiobjective MDPs [Chatterjee et al. 2013],
the need for infinite-memory strategies renders certain problems open, and in Boker
et al. [2015], the discounted-sum problem remains open when considering words that
are not eventually periodic.

—Satisfiability and validity. The NBA obtained in Lemma 4.8 can be directly used
for solving the strict threshold-satisfiability and strict threshold-validity problems:
given an LTLdisc[D] formula ϕ and a threshold v ∈ [0, 1], we can decide whether there
is a computation π such that [[π, ϕ]] ∼ v for ∼ ∈{<,>}, and return such a computation
when the answer is positive. This is done by simply deciding whether there exists a
word that is accepted by the NBA.

The validity problem can also be viewed dually, asking whether [[π, ϕ]] ≥ v for every
computation π ∈ (2AP)ω.

Note that solving the nonstrict version of the problems remains an open problem.
—Implication and equivalence. In Section 2.5, we solve the implication problem for

LTL[F] by combining the given formulas using the average operator. In the context
of LTLdisc[D], introducing the average operator may lead to undecidability (as we
show in Section 6.1). We thus leave this problem open.

—Model checking. We solve the model-checking problem by composing the given
Kripke structure with the automaton that is obtained from the negation of specifi-
cation, as done in the traditional automata-based model-checking procedure [Vardi
and Wolper 1994]. Consider a Kripke structure K, an LTLdisc[D] formula ϕ, and a
threshold v. Let A¬ϕ,1−v be the NBA obtained from ¬ϕ, as defined in Section 4.2. By
checking the emptiness of the intersection of K with A¬ϕ,1−v, we can solve the thresh-
old model-checking problem. Indeed, L(A¬ϕ,1−v) ∩ L(K)
= ∅ if and only if there exists
a lasso computation π that is induced by K such that [[π, ϕ]] < v, which happens if
and only if it is not true that [[K, ϕ]] ≥ v.

The complexity of the model-checking procedure depends on the discounting func-
tions in D. Intuitively, the faster the discounting tends to 0, the fewer states Aϕ,v has.
For the set of exponential-discounting functions E, we provide concrete complexities,
showing that it stays in the same complexity classes of standard LTL model checking
(Section 4.4).

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:34 S. Almagor et al.

Finally, similarly to the case of satisfiability, we leave open the strict model-
checking problem.

—Realizability and synthesis. We provide here a partial solution to the decision
problems induced from the realizability and synthesis questions when referring to a
specific threshold. Consider an LTLdisc[D] formula ϕ, and assume a partition of the
atomic propositions in ϕ to input and output signals. Given a threshold v ≥ 0, we
can use the NBA Aϕ,v in order to address the realizability and synthesis problems,
as stated in the following theorem.

THEOREM 4.9. Consider an LTLdisc[D] formula ϕ over I ∪ O. If there exists an I/O-
transducer, all of whose computations π satisfy [[π, ϕ]] > v, then we can generate a
finite-state I/O-transducer, all of whose computations τ satisfy [[τ, ϕ]] ≥ v.

PROOF. Recall that if π is a computation such that [[π, ϕ]] > v, then Aϕ,v accepts
π . The converse, however, is not true. Still, by carefully examining the construction
in Theorem 4.2.2, we observe that, if Aϕ,v accepts a computation π , then [[π, ϕ]] ≥ v
(note the nonstrict inequality).

Assume a partition of the letters in AP to input and output signals, denoted I and
O, respectively. By following standard (Boolean) procedures for synthesis (see Pnueli
and Rosner [1989]), we can generate from Aϕ,v a deterministic tree automaton D that
accepts a 2O-labeled 2I-tree if and only if all the paths along the tree are accepted in
Aϕ,v. Moreover, it is shown in Gurevich and Harrington [1982] that, if L(D)
= ∅, then
D accepts a regular tree, which is induced by a finite-state transducer. A transducer
that induces an accepted tree realizes ϕ with value at least v. Accordingly, if there
exists a transducer T , all of whose computations satisfy [[π, ϕ]] > v, then the regular
tree induced by it is accepted in D. Thus, the language of D is nonempty, and a
witness to its nonemptiness is a regular tree that induced by a transducer all whose
computations satisfy [[π, ϕ]] ≥ v.

We note that this solution is only partial, as there might be an I/O-transducer, all
of whose computations π satisfy [[π, ϕ]] ≥ v, but we would not find it. For example,
consider the formula ϕ = p ∧ ¬p, where p is an input signal. Since every formula is
realizable with threshold 0, so is ϕ. If, however, we consider the automaton Aϕ,0, we
get that L(Aϕ,0) = ∅. Thus, proceeding to find a transducer from Aϕ,0 results in an
answer that no such transducer exists.

The difficulty in solving the issue is similar to the difficulty in solving the satisfia-
bility threshold problem for the case of nonstrict inequality.

Remark 4.10. While we do not solve the search problems with an exact value,
our solutions do provide an approximation scheme for the search problems, up to any
desired constant: Let ε > 0, and consider, for example, the problem of finding the
maximal satisfaction value of a formula ϕ. We solve the problem by doing a binary
search on [0, 1]; for every threshold v, we check whether L(Aϕ,v)
= ∅. After log(1

ε
)

iterations, we would have two thresholds v1 < v2 such that v2 − v1 ≤ ε, and L(Aϕ,v1)
=
∅ while L(Aϕ,v2) = ∅. This implies that the maximal satisfaction value of ϕ lies in
[v1 −ε, v1 +ε]. Nakagawa and Hasuo [2015] use a similar scheme in order to synthesize
LTLdisc[D] specifications with an approximative maximal satisfaction value.

4.4. LTLdisc[E]: The Instantiation of LTLdisc[D] with Exponential Discounting

The logic LTLdisc[D] provides a general framework for specifying temporal quality and
allows for arbitrary discounting functions within the specification formulas. Thus, the

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:35

complexities of solving the decision problems for LTLdisc[D] depend on the choice of
discounting functions.

The class of exponential-discounting functions is perhaps the most common class of
discounting functions, as it describes what happens in many natural processes (e.g.,
temperature change, capacitor charge, and effective interest rate) [Shapley 1953; De
Alfaro et al. 2003]. Formally, for a parameter λ ∈ (0, 1), we define the exponential-
discounting function expλ : N → [0, 1] by expλ(i) = λi. Let E = {expλ : λ ∈ (0, 1) ∩ Q },
and consider the logic LTLdisc[E].

In this section, we analyze the complexities of solving the decision problems for
LTLdisc[E], and show that they stay in the same complexity classes of standard LTL.

For an LTLdisc[E] formula ϕ, let F(ϕ) be the set {λ : the operator Uexpλ
appears in ϕ}.

That is, F(ϕ) is the set of discounting factors that appear in ϕ. Let |〈ϕ〉| be the length
of the description of ϕ. That is, in addition to |ϕ|, we include in |〈ϕ〉| the length, in bits,
of describing F(ϕ). Let |〈v〉| be the length of the description of a threshold v.

The core step in our solution to the decision problems with respect to an LTLdisc[D]
formula ϕ and a threshold v is the generation of an AWA Aϕ,v (Section 4.2). We will
show later that, for LTLdisc[E] formulas, we can generate Aϕ,v and reason about it in
PSPACE with respect to |〈ϕ〉| and |〈v〉|.

We start by showing that the number of states in Aϕ,v is singly exponential in the
descriptions of ϕ and v (Section 4.4.1). One could have hoped that this will allow
for a polynomial description of the states, using a binary representation. It turns out,
however, that this is not enough, as the values of the thresholds that appear in the states
may be doubly exponential. Nevertheless, we show how to represent and manipulate
the thresholds succinctly, using arithmetic circuits rather than binary representations
(Section 4.4.2). We conclude with the resulting complexities of the decision problems,
among which model checking is shown to be in PSPACE (Section 4.4.3).

4.4.1. The Number of States in Aϕ,v. The number of states in the AWA generated as per
Theorem 4.6 depends on the discounting functions. In the following lemma, we show
that, for LTLdisc[E] formulas, it is singly exponential in |〈ϕ〉| and |〈v〉|.

LEMMA 4.11. Given an LTLdisc[E] formula ϕ and a threshold v ∈ [0, 1] ∩ Q , there
exists an AWA Aϕ,v such that, for every computation π , the following hold:

(1) If [[π, ϕ]] > v, then Aϕ,v accepts π .
(2) If Aϕ,v accepts π and π is a lasso computation, then [[π, ϕ]] > v.

Furthermore, the number of states of Aϕ,v is singly exponential in |〈ϕ〉| and |〈v〉|.
PROOF. We construct an AWA Aϕ,v as per Section 4.2.2, with some changes. Recall

that the “interesting” states in A are those of the form ψ1Uη+i ψ2. Observe that, for the
function expλ, it holds that exp+i

λ = λi · expλ. Accordingly, we can replace a state of the
form ψ1Uexp+i

λ
ψ2 < t with the state ψ1Uexpλ

ψ2 < t
λi , as they express the same assertion.

Note that t
λi may be strictly greater than 1. In order to simplify the transitions, we

identify, for t > 1, every state ϕ > t with False and state ϕ < t with True. Finally,
notice that expλ(0) = 1. Thus, we can simplify the construction ofAϕ,v with the following
transitions:

Let σ ∈ 2AP , then we have that

—δ((ψ1Uexpλ
ψ2 > t), σ) =

⎡⎢⎣
δ((ψ2 > t), σ)∨

[δ((ψ1 > t), σ) ∧ (ψ1Uexpλ
ψ2 > t

λ
)] if 0 < t < 1,

False if t = 1,

δ(((ψ1Uexpλ
ψ2)+), σ) if t = 0.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:36 S. Almagor et al.

—δ((ψ1Uexpλ
ψ2 < t), σ) =

⎡⎣ δ((ψ2 < t), σ)∧
[δ((ψ1 < t), σ) ∨ (ψ1Uexpλ

ψ2 < t
λ
)] if 0 < t ≤ 1,

False if t = 0.

The correctness and finiteness of the construction follows from Theorem 4.6, with
the earlier observation. We now turn to analyze the number of states in Aϕ,v.

For every state (ψ > t) (resp. (ψ < t)) we refer to ψ and t as the state’s formula and
threshold, respectively. Observe that the number of possible state formulas is O(|ϕ|).
The formulas in the states are either in the closure of ϕ or are of the form ψ+, where
ψ is in the closure of ϕ. This is because, in the new transitions, we do not carry the
offset, but rather change the threshold; thus, the state formula does not change. Note
that this includes all Type-2 states as well.

It remains to bound the number of possible thresholds. Consider a state with thresh-
old t and formula ψ . In every succeeding state, the formula can either stay ψ or
proceed to a subformula of ψ . When the formula stays ψ , the threshold can either
stay t or change to t/λ where λ ∈ F(ϕ) (in the case that ψ = ψ1Uexpλ

ψ2), provided that
t/λ < 1. When the formula is replaced by a subformula ψ , the threshold can stay t or
may change to 1− t, in the case that ψ = ¬ψ1, or to a “fresh” threshold, in the case that
ψ is a discounted-until formula with a different discount factor. We do not distinguish
between the two cases, and simply state that the state formula changes to a deeper
subformula. Observe that changing to a deeper subformula can occur at most O(|ϕ|)
times along a run, since this is the maximal nesting depth of formulas in ϕ.

Before going into the technical details, we explain our approach. Recall that the
discounting factors in Fϕ and the threshold t are all rational. We start by bounding the
number of states that are reachable from a state with threshold t0 without changing to
a deeper subformula. We show that this bound depends on the denominator of t0. We
then consider the thresholds of the states that are reached in this manner, and give
a bound on their denominators. We then show that repeating this analysis |ϕ| times,
which is the maximal number of changes to deeper subformulas, results in a singly
exponential number of states.

Without loss of generality, assume that all the discounting factors in Fϕ have the
same denominator q̂. By taking the product of the denominators, we can see that
the description size of q̂ is linear in that of the original denominators. Thus, this
assumption does not change the representation size of ϕ.

Consider a state with threshold t0 = p0
q0

. As we mentioned earlier, as long as the state
does not change to a deeper subformula, the threshold can change only to t0

λ
for λ ∈ Fϕ,

provided that t0
λ

< 1. Thus, the number of thresholds that are reachable in this manner
is the maximal i ∈ N such that t0

λi < 1. By rearranging, we get i ≤ logλ(t0). Since we
want a bound from above on this value, we note that this expression is maximized
when λ is maximal and t0 is minimal, which happens when t0 = 1

t0
(since p0 ≥ 1) and

λ = q̂−1
q̂ (recall that all factors in Fϕ have denominator q̂; thus, the largest possible

factor is q̂−1
q̂). From this, we get that the maximal number of states that are reachable

from threshold t0 without changing to a deeper subformula is at most

log q̂−1
q̂

(
1
q0

)
= log(1) − log(q0)

log(̂q − 1) − log(̂q)
= log(q0)

log(̂q) − log(̂q − 1)
< q̂ log q0.

The last equality follows from the fact log(x) − log(x − 1) > 1
x for all x ≥ 0, which can

be proven by simple analysis.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:37

Next, we consider the threshold of the states that can be reached as described earlier.
These thresholds are of the form t0

λ j = p0q̂ j

q0 pj for j ≤ q̂ log q0, where λ = p
q̂ . Since p < q̂,

we conclude that the denominator of these thresholds is at most

q0 · q̂q̂ log q0 = 2log q0 · 2q̂ log q̂·log q0 = 2log q0·(̂q·log q̂+1) = q(̂q·log q̂+1)
0 .

To recap, we saw that starting from threshold t0 with denominator q0, without chang-
ing to a deeper subformula, we can reach at most q̂ log q0 states, and their denominators
are at most q(̂q·log q̂+1)

0 .
Now, consider the case in which the path changes to a deeper subformula. Then, either

the threshold does not change or it changes from t to 1−t, or we go to a new discounted-
until formula. In all cases, the denominator of the threshold does not change; thus, this
analysis can be repeated. Recall that the number of changes to a deeper formula is
n = O(|ϕ|). Accordingly, the sequence a1, . . . , an of maximal denominators of thresholds
after changing to a deeper subformula is given by a1 = q0 and ai+1 = ai

(̂q·log q̂+1) for all
1 ≤ i < n. It is easy to see that this sequence is increasing, and that ai = q((̂q·log q̂+1)i)

0 .
Hence, the number of states that are reachable from a threshold t0 with denominator

q0 can be bound by

n∏
i=1

q̂ log(ai) ≤ q̂n logn(an) = q̂n logn
(
q((̂q·log q̂+1)n)

0

)
= q̂n (̂q · log q̂ + 1)n2

logn q0.

Finally, assuming a binary encoding of the factors, observe that q̂ = 2log q̂ is singly
exponential in the description of ϕ. Hence, q̂n = 2n log q̂ is also singly exponential. Similar
considerations on the other multiplicands in the product imply that the number of
states of the automaton is singly exponential.

4.4.2. Reasoning on Aϕ,v in PSPACE. The careful reader notices that, while the number
of states in Aϕ,v constructed in Lemma 4.11 is singly exponential in the description of ϕ
and v, the values of the thresholds that appear in the states may be doubly exponential.
Our bound on the maximal denominator of the threshold values is q(̂q log q̂+1)n

0 . This
suggests that describing the thresholds in Aϕ,v in binary results in an exponential
description for each state, exceeding our targeted PSPACE algorithm.

We will show how to represent the thresholds in Aϕ,v succinctly using arithmetic cir-
cuits. Then, using results from Allender et al. [2009], we are able to compare thresholds
to 1 in PSPACE, thus allow on-the-fly construction of Aϕ,v in PSPACE.

An arithmetic circuit is a rooted-DAG whose nodes are labeled by elements in
{−,+, ∗, 1}, such that the leaves are all labeled by 1, and the internal nodes have
fan-in 2 and are labeled by −,+, and ∗. Given an arithmetic circuit, its value is the
value of the root, computed by applying the operation of each internal node on its
inputs.

We start with two simple lemmas on arithmetic circuits that will serve us in the
threshold representation.

LEMMA 4.12. Let k, l ∈ N , and let Cl be an arithmetic circuit of size |Cl| whose value
is l. Then, there exists a circuit of size |Cl| + k that computes l(2k).

PROOF. By multiplying the output of Cl with itself using a chain of k multiplication
gates, we get the result.

LEMMA 4.13. For every i ∈ N , there exists a circuit Ci of size poly(log(i)) that computes
i.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:38 S. Almagor et al.

PROOF. Let the binary expansion of i be brbr−1 . . . b0, where r = �log i�. Then, i =∑r
m=0 bm2m. Using at most r − 1 addition gates, we see that it is enough to construct

circuits of size at most poly(m) for 2m for every 0 ≤ m ≤ r (since the bm are either 0, in
which case we do not need a circuit, or 1, in which case we ignore the bm and just have
2m).

Let 0 ≤ m ≤ r, and consider the binary expansion dtdt−1 . . . d0 of m (where t = �log m�).
We have that 2m = ∏t

s=0 2dt ·2s
. We ignore elements in the product where ds = 0, since

their value is 1. For elements where ds = 1, we can construct by Lemma 4.12 a circuit
for 2(2s) of size s + 1, by first constructing the constant l = 2 (in the notations of
Lemma 4.12) using a single addition gate. By using at most t multiplication gates, we
construct a circuit that computes 2m of size poly(log m), which is less than poly(m), and
we are done.

We are now ready to provide the succinct representation of Aϕ,v.

LEMMA 4.14. There exists a representation of Aϕ,v, the AWA constructed as per the
proof of Lemma 4.11, such that given a state s and a letter σ , we can compute δ(s, σ) in
PSPACE.

PROOF. We start by showing how to succinctly represent the thresholds in the states
of Aϕ,v. Let v = p0

q0
and n = |ϕ|. Recall that a state of Aϕ,v consists of a formula ψ and a

threshold t, and that all the discounting factors in Fϕ have the same denominator q̂.
In a successor state, the threshold can change to either 1 − t or to t/λ, where λ ∈ F(ϕ).

More precisely, by the proof of Lemma 4.11, we can see that every threshold t is
obtained from v by applying at most n compositions of the functions f (t) = 1 − t
and gλi (t) = t

λi for λ ∈ F(ϕ) and i ≤ q̂(̂q log q̂ + 1)n log q0. The functions correspond to
negation and discounting until, respectively. Then, nesting corresponds to a change
to a deeper subformula, which can happen at most n times along a path. Finally,
the maximal number of consecutive applications of discounting without changing to a
deeper formula is bounded by q̂(̂q log q̂ + 1)n log q0.

Observe that i here is singly exponential in |〈ϕ〉| and |〈v〉|; thus, the binary encoding
of i is polynomial. Thus, we can represent every threshold in Aϕ,v in polynomial size
by encoding the composition of functions presented earlier, where encoding f requires
a constant number of bits, and encoding gλi requires encoding λ (which is part of the
encoding of ϕ) and i, which is polynomial.

For example9, suppose that we start with the threshold 1
1000 , then apply negation,

discount with 2
3 for 17 steps, and negate again. This is encoded using the sequence

“ f (g2
3

17 (f (1
1000)).”

It remains to show that, using this encoding, we can compute a successor state in
PSPACE. Clearly, describing a successor threshold can be done in polynomial time:
either by composing another function (i.e., f or gλ) or incrementing the exponent i in
the outermost gλi . The difficult case is when the threshold becomes 1 or greater than
1. Then, we must change the state to a Type-2 formula. However, it is not immediate
that comparison to 1 can be efficiently computed using our representation.

Thus, we now restrict to solving the following problem: given a function h, which
consists of ncompositions of the functions f and gλi for λ ∈ F(ϕ) and polynomial i, decide
whether h(v) ≥ 1. In order to solve the problem, we translate h(v) to a polynomial-size
arithmetic circuit, and check in PSPACE whether the circuit represents a number
greater than 0, using the results of Allender et al. [2009].

9Our example uses a decimal rather than binary encoding. Clearly, one could also use a binary encoding,
which incurs only a polynomial overhead.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:39

Note that the value of an arithmetic circuit is an integer, while our setting uses
rational numbers. Thus, we must first show how to handle rational numbers. We
do so by representing h(v) using two circuits hN(v) and hD(v) for the numerator and
denominator, respectively. Then, we have that h(v) ≥ 1 if and only if hN(v) ≥ hD(v) > 0,
or hN(v) ≤ hD(v) < 0. Thus, checking whether h(v) ≥ 1 can be reduced to two tests: first,
whether hD(v) > 0, and second, whether hN(v) − hD(v) ≥ 0 (if hD(v) > 0) or whether
hN(v) − hD(v) ≤ 0 (if hD(v) < 0).

We construct hN and hD inductively, according to the construction of h. We start with
the denominator hD.

—If h(v) = v, we need to construct hD(v) = q0. This can be done using Lemma 4.13.
—If h(v) = f (h′(v)), then hD(v) = h′

D(v); thus, there is nothing to construct.
—If h(v) = gλi (h′(v)), let λ = p

q . Then, hD(v) = qi · h′
D(v). To construct it, we need only to

construct a circuit of polynomial size for qi, then use a multiplication gate between it
and the circuit Ch′

D
for h′

D(v), which has already been constructed inductively. We start
by constructing a circuit Cq that computes q, as per Lemma 4.13. Next, let brbr−1 . . . b0

be the binary expansion of i, then qi = ∏r
j=0 qbj2 j

. From Lemma 4.12, each term qbj2 j

has a circuit of size at most r + |Cq| that computes it (since bj ∈ {0, 1}). In fact, by
reusing the same circuit Cq, the total size of all the circuits that compute qbj2 j

for
all 0 ≤ j ≤ r is at most |Cq| + r2. By connecting these circuits using r multiplication
gates, we get a circuit of size |Cq| + r2 + r for qi. Thus, a circuit for hD(v) is of size
|Cq| + r2 + r + |Ch′

D
|.

Note that, in each step of the construction, the size of the circuit for hD increases
additively by a factor polynomial in |〈ϕ〉|. Thus, the total size of hD is polynomial in |〈ϕ〉|
and |〈v〉|.

Next, we turn to construct hN(v).

—If h(v) = v, we have that hD(v) = p0, and we construct a circuit similarly to hD(v),
using Lemma 4.13.

—If h(v) = f (h′(v)), then we have that hN(v) = h′
D(v) − h′

N(v). Thus, we simply connect
circuits for h′

D(v) and h′
N(v) using a subtraction gate. Note that, since h′

D(v) is poly-
nomial in |〈ϕ〉| and |〈v〉|, the size of the circuit for hN remains polynomial in |〈ϕ〉| and
|〈v〉|.

—If h(v) = gλi (h′(v)), the construction of a circuit for hN(v) is similar to that of hD(v).

This concludes the construction of hD(v) and hN(v).
In Allender et al. [2009], it is shown that deciding whether the value of a circuit is

nonnegative is in PSPACE. As we showed earier, h(v) ≥ 1 if and only if either hD(v) > 0,
and hN(v) − hD(v) ≥ 0, or hD(v) < 0 and hN(v) − hD(v) ≤ 0. Note that all these tests can
be easily reduced to deciding nonnegativity of a circuit. For example, checking whether
hN(v)−hD(v) ≤ 0 amounts to constructing a circuit for hD(v)−hN(v) using a subtraction
gate and checking nonnegativity. This concludes the proof.

4.4.3. Solving the Decision Problems for LTLdisc[E]. Using the succinct Aϕ,v, as per
Lemmas 4.11 and 4.14, we can construct an equivalent NBA, as per Lemma 4.8, and
solve the satisfiability and model-checking problems in PSPACE.

LEMMA 4.15. For an LTLdisc[E] formula ϕ and v ∈ [0, 1], the AWA Aϕ,v constructed
in Lemma 4.11 with state space Q can be translated to an NBA Bϕ,v with |Q|O(|ϕ|) states.
Moreover, given a state s of Bϕ,v, and a letter σ , we can compute δ(s, σ) in PSPACE.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:40 S. Almagor et al.

PROOF. The construction and size-analysis of Bϕ,v is identical to that described in
Lemma 4.8.

To ensure that transitions are computable in PSPACE, recall that every state s
of Bϕ,v is a subset of the states of Aϕ,v, of size polynomial in |ϕ|. Using the succinct
representation of Aϕ,v described in Lemma 4.14, we can succinctly represent such a
state s, while preserving the ability to compute successors in PSPACE, by computing
the successors of each state q ∈ s. Since s is of polynomial size and the successors of
each state are computable in PSPACE, the total complexity of computing the successors
remains in PSPACE.

THEOREM 4.16. For an LTLdisc[E] formula ϕ and a threshold v ∈ [0, 1]∩Q , the problem
of deciding whether there exists a computation π such that [[π, ϕ]] > v is in PSPACE in
|〈ϕ〉| and |〈v〉|.

PROOF. Analogous to the proof of Theorem 4.17.

THEOREM 4.17. For a Kripke structure K, an LTLdisc[E] formula ϕ, and a threshold
v ∈ [0, 1] ∩ Q , the problem of deciding whether [[K, ϕ]] > v is in NLOGSPACE in the
number of states of K, and in PSPACE in |〈ϕ〉| and |〈v〉|.

PROOF. By Lemma 4.15, we can construct an NBA B corresponding to ϕ in PSPACE
in |〈ϕ〉| and |〈v〉|. Hence, we can check the emptiness of the intersection of K and B via
standard “on-the-fly” procedures, getting the stated complexities.

Note that the complexity in Theorem 4.17 is only NLOGSPACE in the system, since
our solution does not analyze the Kripke structure, but only takes its product with the
specification’s automaton. This is in contrast to the approach of model-checking tempo-
ral logic with (nondiscounting) accumulative values, where, when decidable, involves
a doubly exponential dependency on the size of the system [Boker et al. 2014].

5. EXTENDING TEMPORAL QUALITY

In this section, we consider extensions of the temporal-quality setting. Similar to Sec-
tion 3.1, we start by extending the framework of LTLdisc[D] to handle weighted systems
(Section 5.1). We continue with extensions of particular interest in the case of tempo-
ral quality, namely, adding past operators (Section 5.2), and changing the tendency of
discounting (Section 5.3).

5.1. Weighted Systems

A central property of the logic LTLdisc[D] is that the verified system need not be
weighted in order to get a quantitative satisfaction—the quantitative aspect stems from
taking into account the delays in satisfying the requirements. Nevertheless, LTLdisc[D]
also naturally fits weighted systems, for which the atomic propositions have a value
between 0 and 1. (For the definition of weighted systems, see Section 3.1.)

Consider a weighted Kripke structure K = 〈AP, S, I, ρ, L〉, an LTLdisc[D] formula
ϕ, and a threshold v. It is possible to extend the construction of Aϕ,v, as described in
Section 4.2.2, to an alphabet W AP , where W is a set of possible values for the atomic
propositions. We only have to adjust the transition for states that correspond to atomic
propositions, as follows: for p ∈ AP, v ∈ [0, 1], and σ ∈ W AP , we have that

—δ(p > v, σ) =
{
True if σ (p) > v,
False otherwise. —δ(p < v, σ) =

{
True if σ (p) < v,
False otherwise.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:41

5.2. LTLdisc[D] with Past Operators

One of the well-known augmentations of LTL is the addition of the past operators
Yϕ (Yesterday) and ϕSψ (Since) [Lichtenstein et al. 1985]. These operators enable the
specification of exponentially more succinct formulas, while preserving the PSPACE
complexity of model checking.

The semantics in the Boolean setting are as follows. For formulas ϕ,ψ , a computation
π , and an index i ∈ N , we have that [[π i, Yϕ]] = [[π i−1, ϕ]] if i > 0, and False otherwise,
and [[π i, ϕSψ]] = True if there exists 0 ≤ j ≤ i such that π j |= ψ and πk |= ϕ for every
j < k ≤ i.

In this section, we add discounting-past operators to LTLdisc[D], and show how to
perform model-checking on the obtained logic.

We add the operators Yϕ, ϕSψ , and ϕSηψ (for η ∈ D) to LTLdisc[D], and denote the
extended logic PLTLdisc[D], with the following semantics. For PLTLdisc[D] formulas
ϕ,ψ , a function η ∈ D, a computation π , and an index i ∈ N , we have that

—[[π i, Yϕ]] = [[π i−1, ϕ]] if i > 0, and 0 otherwise.
—[[π i, ϕSψ]] = max0≤ j≤i {min {[[π j, ψ]], min j<k≤i {[[πk, ϕ]]}}}.
—[[π i, ϕSηψ]] = max0≤ j≤i {min {η(i − j)[[π j, ψ]], min j<k≤i {η(i − k)[[πk, ϕ]]}}}.

Observe that, since the past is finite, then the semantics for past operators can use min
and max instead of inf and sup.

As in LTLdisc[D], our solution for the PLTLdisc[D] model-checking problem is by trans-
lating PLTLdisc[D] formulas to automata. The construction extends the construction for
the Boolean case, which uses 2-way weak alternating automata (2AWA). The use of the
obtained automata in decision procedures is similar to that in Section 4.3. In par-
ticular, it follows that the model-checking problem for PLTLdisc[D] with exponential
discounting, namely, PLTLdisc[E], is in PSPACE.

As we now show, the construction that we use when working with the “infinite future”
Uη operator is similar to that of the one that we use for the “finite past” Sη operator. The
key for this somewhat surprising similarity is the fact that our construction is based
on a threshold. Under this threshold, we essentially bound the future that needs to be
considered; thus, the fact that it is technically infinite plays no role.

A 2AWA is a tuple A = 〈
, Q, q0, δ, α〉, where
, Q, q0, α are as in AWA. The transition
function is δ : Q ×
 → B+({−1, 1} × Q), that is, positive Boolean formulas over atoms
of the form {−1, 1} × Q, describing both the state to which the automaton moves and
the direction in which the reading head proceeds.

As in LTLdisc[D], the construction extends the construction for the Boolean case. It
is not hard to extend Lemma 4.3 and generate Boolean PLTL formulas for satisfaction
values in {0, 1}.

Given a PLTLdisc[D] formula ϕ and a threshold t ∈ [0, 1), we construct a 2AWA as in
Theorem 4.6 with the following additional transitions:10

—δ((Yψ > t), σ) = 〈−1, (ψ > t)〉
—δ((Yψ < t), σ) = 〈−1, (ψ < t)〉.
—δ((ψ1Sψ2 > t), σ) = δ((ψ2 > t), σ) ∨ (δ((ψ1 > t), σ) ∧ 〈−1, (ψ1Sψ2 > t)〉).
—δ((ψ1Sψ2 < t), σ) = δ((ψ2 < t), σ) ∧ (δ((ψ1 < t), σ) ∨ 〈−1, (ψ1Sψ2 < t)〉).

10In addition, the atoms in all the transitions in Theorem 4.6 are adjusted to the 2AWA syntax by replacing
each atom q by the atom 〈1, q〉.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:42 S. Almagor et al.

—δ((ψ1Sηψ2 > t), σ) =⎡⎣ δ((ψ2 > t
η(0)), σ) ∨ [δ((ψ1 > t

η(0)), σ) ∧ 〈−1, (ψ1Sη+1ψ2 > t)〉] if 0 < t
η(0) < 1,

False if t
η(0) ≥ 1,

δ(((ψ1Sηψ2)+), σ) if t
η(0) = 0.

—δ((ψ1Sηψ2 < t), σ) =⎡⎢⎣ δ((ψ2 < t
η(0)), σ) ∧ [δ((ψ1 < t

η(0)), σ) ∨ 〈−1, (ψ1Sη+1ψ2 < t)〉] if 0 < t
η(0) ≤ 1,

True if t
η(0) > 1,

False if t
η(0) = 0 .

The correctness of the construction and the analysis of the blowup are similar to
those in Section 4.2.

5.3. Changing the Tendency of Discounting

One may observe that in our discounting scheme, the value of future formulas is
discounted toward 0. This, in a way, reflects an intuition that we are pessimistic about
the future, or at least that we are impatient. While, in some cases, this fits the needs of
the specifier, it may well be the case that we are ambivalent to the future. To capture
this notion, one may want the discounting to tend to 1

2 . Other values are also possible.
For example, it may be that we are optimistic about the future, say, when a system
improves its performance while running and we know that components are likely to
function better in the future. We may then want the discounting to tend, say, to 3

4 .
To capture this notion, we define the operator Oη,z, parameterized by η ∈ D and

z ∈ [0, 1], with the following semantics.

[[π, ϕOη,zψ]] = sup
i≥0

{
min

{
η(i)[[π i, ψ]] + (1 − η(i))z, min

0≤ j<i
η(j)[[π j, ϕ]] + (1 − η(j))z

}}
.

The discounting function η determines the rate of convergence, and z determines the
limit of the discounting. The longer it takes to fulfill the “eventuality,” the closer the
satisfaction value gets to z. We observe that ϕUηψ ≡ ϕOη,0ψ .

Example 5.1. Consider a process scheduler. The scheduler decides which process
to run at any given time. The scheduler may also run a defragment tool, but only if
it is not at the expense of other processes. This can be captured by the formula ϕ =
TrueOη, 1

2
defrag. Thus, the defragment tool is a “bonus”: if it runs, then the satisfaction

value is above 1
2 , but if it does not run, the satisfaction value is 1

2 . Treating 1 as “good”
and 0 as “bad” means that 1

2 is ambivalent.

We claim that Theorem 4.6 holds under the extension of LTLdisc[D] with the operator
O and, accordingly, so do our solutions to the search problems.

The construction of the AWA is augmented as follows. Consider a threshold t ∈ [0, 1]
and a subformula ϕ = ψ1Oη,zψ2. We denote t−(1−η(0))z

η(0) by τ . Recall that, in the automaton
constructed in Theorem 4.6, transitions from the state, for example, (ψ1Uηψ2 < t),
depend on the value of t

η(0) (i.e., if this is above 1, the transition is to True). In the
case of Oη,z, we need to look at τ instead of t

η(0) (as we explain later). Accordingly, the
transitions from the state (ψ1Oη,zψ2 > t) are defined as follows.

First, if t = z, then τ = t and we identify the state (ψ1Oη,zψ2 > t) with the state
(ψ1Uψ2 > t). Otherwise, z
= t and we define:

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:43

—δ((ψ1Oη,zψ2 > t), σ) =

⎡⎢⎣ δ((ψ2 > τ), σ)∨
[δ((ψ1 > τ), σ) ∧ (ψ1Oη+1,zψ2 > t)] if 0 ≤ τ < 1,

False if τ ≥ 1,
True if τ < 0.

—δ((ψ1Oη,zψ2 < t), σ) =

⎡⎢⎢⎢⎢⎣
δ((ψ2 < τ), σ)∧

[δ((ψ1 < τ), σ) ∨ (ψ1Oη+1,zψ2 < t)] if 0 < τ ≤ 1,

True if τ > 1,

False if τ ≤ 0.

We now proceed to show the correctness of the construction. Consider the state
(ψ1Oη,zψ2 > t) (the dual case is similar). We claim that, for every computation π , it
holds that [[π,ψ1Oη,zψ2]] > t if and only if π is accepted from the state (ψ1Oη,zψ2 > t).

First, if z = t, then [[π,ψ1Oη,zψ2]] > t if and only if [[π,ψ1Uψ2]] > t (this follows directly
from the semantics of O). By the definition of these transitions, we identify the state
(ψ1Oη,zψ2 > t) with the state (ψ1Uψ2 > t), and correctness follows as in Theorem 4.6.
Next, assume that z
= t.

If τ < 0, then t < (1 − η(0))z; thus, in particular, it holds that t < η(0)[[π0, ψ2]] + (1 −
η(0))z. Thus, [[π,ψ1Oη,zψ2]] > t; therefore, π should be accepted from (ψ1Oη,zψ2 > t),
and the transition in this case is to True.

If τ ≥ 1, then η(0) + (1 − η(0))z ≤ t; thus, both η(0)[[π0, ψ2]] + (1 − η(0))z ≤ t and
η(0)[[π0, ψ1]] + (1 − η(0))z ≤ t. Thus, every operand in the sup has an element less than
t; therefore, the sup cannot be greater than t, and we get that [[π,ψ1Oη,zψ2]] ≤ t. Thus,
π should not be accepted from (ψ1Oη,zψ2 > t), and the transition in this case is to False.

Finally, if 0 ≤ τ < 1, then similar to the case of Uη, we have that [[π,ψ1Oη,zψ2]] > t
if and only if either [[π,ψ2]] > τ or both [[π,ψ1]] > τ and [[π1, ψ1Oη+1,zψ2]] > t. This
condition is captured by the corresponding transition from (ψ1Oη,zψ2 > t).

It remains to show that there are only finitely many reachable states from the initial
state. Since z
= t, we get that limη(0)→0 τ = {∞ t > z

−∞ t < z. Thus, after a finite number of
transitions, τ takes a value that is not in [0, 1], in which case, the next state is True or
False; thus, the number of states reachable from ϕ > t is finite.

We remark that the latter observation is not true if z = t, which is why we needed to
handle this case separately.

5.4. Approximating LTLdisc[D] Problems

From a practical point of view, a designer may not care about the exact satisfaction
value of a formula, and would settle for an approximate value. To be precise, let ε > 0
and consider a discounting function η. We define a new function η|>ε by η|>ε(n) = η(n) for
all n such that η(n) > ε, and η|>ε = 0 otherwise. Note that η|>ε is not strictly decreasing,
therefore is not a legal discounting function. Still, the semantics of LTLdisc[D] with these
type of discounting functions is well defined. Moreover, consider an LTLdisc[D] formula
ϕ, and let ε > 0. We obtain from ϕ the formula ϕ|>ε by replacing every discounting
function η with η|>ε . It is easy to prove by induction over the structure of ϕ that,
for every computation π , it holds that |[[π, ϕ]] − [[π, ϕ|>ε]]| < ε|ϕ|. Thus, if we are only
interested in the satisfaction value of ϕ up to some δ > 0, it is enough to reason about
ϕ|>ε for some ε such that ε|ϕ| < δ.

Finally, observe that every operator of the form Uη|>ε
can be described by a proposi-

tional quality operator—the value of [[π,ψ1Uη|>ε
ψ2]] is determined after a finite prefix

of π , whose length is bound by the first index n for which η(n) ≤ ε.
Thus, ϕ|>ε can actually be described as an LTL[F] formula, on which we can reason

exactly both for model-checking and synthesis purposes.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:44 S. Almagor et al.

Another approach to approximation of LTLdisc[D] was taken in Nakagawa and Hasuo
[2015], in which the goal is to find a path in a Kripke structure that satisfies a formula
with almost-optimal value.

6. COMBINING TEMPORAL AND PROPOSITIONAL QUALITY

As model checking is decidable for LTLdisc[D], one may wish to push the limit and extend
the expressive power of the logic. In particular, of great interest is the combination of
discounting with propositional quality operators.

In this section, we examine such combinations. Interestingly, as it turns out, adding
certain propositional quality operators (i.e., weighted average) renders the model-
checking problem undecidable, while other, simpler operators (i.e., unary multipli-
cation) do not add expressive power, and do not change the decidability status of the
logic.

6.1. Adding the Average Operator

A well-motivated extension is the introduction of the average operator ⊕, with the
semantics [[π, ϕ ⊕ ψ]] = [[π,ϕ]]+[[π,ψ]]

2 . As we have seen in Section 2, this operator is useful
to express the affect of different components on the overall quality of the system (see
Example 2.1).

We show that adding the ⊕ operator to LTLdisc[D] gives a logic, denoted LTLdisc⊕[D],
for which the satisfiability and model-checking problems are undecidable, both in their
strict and nonstrict versions. That is, for every ∼∈ {<,≤,=,≥,>}, it is undecidable,
given a formula ϕ, a system K, and a threshold v, whether [[K, ϕ]] ∼ v, and whether
there exists a computation π such that [[π, ϕ]] ∼ v.

The proofs are arranged in the following structure. We start by showing that the
validity problem for LTLdisc⊕ [D] is undecidable, then extract ideas from the proof,
which are later used to show that the rest of the problems are undecidable. Our proofs
apply to LTLdisc⊕[D] with every nonempty set of discounting functions D.

The validity problem asks, given an LTLdisc⊕[D] formula ϕ over the atomic proposi-
tions AP and a threshold v ∈ [0, 1], whether [[π, ϕ]] > v for every π ∈ (2AP)ω.

In the first undecidability proof, we show a reduction from the 0-halting problem for
two-counter machines. A two-counter machine M is a sequence (l1, . . . , ln) of commands
involving two counters x and y. We refer to {1, . . . , n} as the locations of the machine.
There are five possible forms of commands:

INC(c), DEC(c), GOTO li, IF c=0 GOTO li ELSE GOTO lj, HALT,

where c ∈ {x, y} is a counter and 1 ≤ i, j ≤ n are locations. A halting run of a two-
counter machine M is a sequence ρ = ρ1, . . . , ρm ∈ (L×N ×N)∗ such that the following
hold:

(1) ρ1 = 〈l1, 0, 0〉.
(2) For all 1 < i ≤ m, let ρi−1 = (lk, α, β) and ρi = (l′, α′, β ′). Then, the following hold:

—If lk is an INC(x) command (resp., INC(y)), then α′ = α + 1, β ′ = β (resp., β ′ = β + 1,
α′ = α), and l′ = lk+1.

—If lk is a DEC(x) command (resp., DEC(y)), then α′ = α − 1, β ′ = β (resp., β ′ = β − 1,
α′ = α), and l′ = lk+1.

—If lk is a GOTO ls command, then α′ = α, β ′ = β, and l′ = ls.
—If lk is an IF x=0 GOTO ls ELSE GOTO lt command, then α′ = α, β ′ = β, and l′ = ls if

α = 0, and l′ = lt otherwise.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:45

—If lk is an IF y=0 GOTO ls ELSE GOTO lt command, then α′ = α, β ′ = β, and l′ = ls if
β = 0, and l′ = lt otherwise.

—If l′ is a HALT command, then i = m. That is, a run does not continue after HALT.
(3) ρm = 〈lk, α, β〉 such that lk is a HALT command.

Observe that the machine M is deterministic. We say that M 0-halts if it halts with
both counters having value 0. That is, M 0-halts if there exists l ∈ L that is a HALT

command, such that the run of M ends in 〈l, 0, 0〉.
We say that a sequence of commands τ ∈ L∗ fits a run ρ if τ is the projection of ρ on

its first component.
Since we can always check whether c = 0 before a DEC(c) command, we assume

that the machine never executes DEC(c) with c = 0. That is, the counters never have
negative values. Given a counter machine M, deciding whether M halts is known to
be undecidable [Minsky 1967]. Given M, deciding whether M 0-halts, termed the 0-
halting problem, is also undecidable: given a counter machine M, we can replace every
HALT command with a code that clears the counters before halting. In fact, from this,
we see that the promise problem, namely, the problem of deciding whether M 0-halts
given the promise that either it 0-halts or it does not halt at all, is also undecidable.

THEOREM 6.1. The validity problem for LTLdisc⊕ [D] is undecidable for every D
= ∅.

PROOF. We start by showing a reduction from the 0-halting problem for two-counter
machines to the following problem: given an LTLdisc⊕[D] formula ϕ over the atomic
propositions AP, whether there exists a computation π ∈ APω such that [[π, ϕ]] ≥ 1

2 . We
dub this the 1

2 -co-validity problem. We will later reduce this problem to the (complement
of the) validity problem.

We construct from M an LTLdisc⊕[D] formula ϕ such that M 0-halts if and only if
there exists a computation π such that [[π, ϕ]] ≥ 1

2 . The idea behind the construction is
as follows. The formula ϕ is interpreted over computations over the atomic propositions
AP = {1, . . . , n, #, x, y}, where 1, . . . , n are the commands of M. The computation over
which ϕ is interpreted corresponds to a description of a run of M, where every triplet
〈li, α, β〉 is encoded as the string ixα yβ#. We ensure that computations that satisfy ϕ with
value greater than 0 are such that, in every position, only a single atomic proposition
is true.

Example 6.2. Consider the following machine M:

l1: INC(x)
l2: IF x=0 GOTO l6 ELSE GOTO l3
l3: INC(y)
l4: DEC(x)
l5: GOTO (l2)
l6: DEC(y)
l7: HALT

The command sequence that represents the run of this machine is

〈l1, 0, 0〉, 〈l2, 1, 0〉, 〈l3, 1, 0〉, 〈l4, 1, 1〉, 〈l5, 0, 1〉, 〈l2, 0, 1〉, 〈l6, 0, 1〉, 〈l7, 0, 0〉
and the encoding of it as a computation is

1#2x#3x#4xy#5y#2y#6y#7#.

The formula ϕ “states” (recall that the setting is quantitative, not Boolean) the
following properties of the computation π :

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:46 S. Almagor et al.

(1) The first configuration in π is the initial configuration of M (〈l1, 0, 0〉, or 1# in our
encoding).

(2) The last configuration in π is 〈l, 0, 0〉 (or k in our encoding), for which l can be any
line whose command is HALT.

(3) π represents a legal run of M, up to the consistency of the counters between
transitions.

(4) The counters are updated correctly between configurations.

As we show later, properties 1 to 3 can easily be specified by LTL formulas, such that
computations that satisfy properties 1 to 3 get satisfaction value 1. Property 4 utilizes
the expressive power of LTLdisc⊕[D], as we now demonstrate. The intuition behind
property 4 is the following. We need to compare the value of a counter before and after
a command, such that the formula takes a low value if a violation is encountered, and
a high value otherwise. Specifically, the formula that we construct takes value 1

2 if no
violation occurred and a lower value if a violation did occur.

We start with a simpler case to demonstrate the point. Let η ∈ D be a discounting
function. Consider the formula CountA := aUη¬a and the computation aibj#ω. It holds
that [[aibj, CountA]] = η(i). Similarly, it holds that [[aibj#ω, aU(bUη¬b)]] = η(j). Denote
the latter by CountB. Let

CompareAB := (CountA⊕ ¬CountB) ∧ (¬CountA⊕ CountB).

We now have that

[[aibj#ω, CompareAB]] = min
{

η(i) + 1 − η(j)
2

,
η(j) + 1 − η(i)

2

}
= 1

2
− |η(i) − η(j)|

2
,

and observe that the latter is 1
2 if and only if i = j, and is less than 1

2 otherwise. This
is because η is strictly decreasing and, in particular, an injection.

Thus, we can compare counters. To apply this technique to the encoding of a compu-
tation, we only need some technical formulas to “parse” the input and find consecutive
occurrences of a counter.

We now dive into the technical definition of ϕ. The atomic propositions are AP =
{1, . . . , n, #, x, y} (where l1, . . . , ln are the commands of M). We let ϕ := CheckCmds ∧
CheckInit ∧ CheckFinal ∧ CheckCounters ∧ ForceSingletons.

ForceSingletons. This formula ensures that for a computation to get a value of more
than 0, every letter in the computation must be a singleton. Formally,

ForceSingletons := G

⎛⎝ ∨
p∈AP

⎛⎝p ∧
∧

q∈AP\{p}
¬q

⎞⎠⎞⎠ .

CheckInit and CheckFinal. These formulas check that the initial and final configura-
tions are correct, that after the final configuration there are only #s, and that the final
configuration is reached eventually.

CheckInit := 1 ∧ X#.

Let I = {i : li = HALT}; we define

CheckFinal := G

((∨
i∈I

i

)
→ XG#

)
∧
(

F

(∨
i∈I

i

))
.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:47

Note that CheckFinal also ensures that the counters are 0.

CheckCmds. This formula verifies that the local transitions follow the instructions in
the counter machine, ignoring the consistency of the counter values, but enforcing that
a jump behaves according to the counters. We start by defining, for every i ∈ {1, . . . , n},
the formula:

waitfor(i) := (x ∨ y)U(# ∧ Xi).

Intuitively, a computation satisfies this formula (i.e., gets value 1) if and only if it reads
counter descriptions until the next delimiter, and the next command is li.

Now, for every i ∈ {1, . . . , n}, we define ψi as follows.

—If li = GOTO lj , then ψi := Xwaitfor(j).
—If li ∈ {INC(c), DEC(c) : c ∈ {x, y}}, then ψi := Xwaitfor(i + 1). 11

—If li = IF x=0 GOTO lj ELSE GOTO lk, then ψi := X((x → waitfor(k))∧((¬x) → waitfor(j))).
—If li = IF y=0 GOTO lj ELSE GOTO lk, then ψi := X((xUy)∧waitfor(k))∨((xU#)∧waitfor(j))).
—If li = HALT we do not really need additional constraints, due to CheckFinal. Thus,

we have that ψi = True.

Finally, we define CheckCmds := G
∧

i∈{1,...,n}(i → ψi).

CheckCounters. This is the heart of the construction. The formula checks whether
consecutive occurrences of the counters match the transition between the commands.
We start by defining countX := xUη¬x and countY := xU(yUη¬y). Similarly, we have
that countX−1 = xUηX¬x and countY −1 = xU(yUηX¬y).

We need to define a formula to handle some edge cases.
Let IHALT = {i : li = HALT}, and similarly define IDEC(x) and IDEC(y). We define

Last :=
∨

i∈IDEC(x)

i ∧ X

⎛⎝x ∧ X

⎛⎝# ∧ X
∨

k∈IHALT

k

⎞⎠⎞⎠∨

∨
i∈IDEC(y)

i ∧ X

⎛⎝y ∧ X

⎛⎝# ∧ X
∨

k∈IHALT

k

⎞⎠⎞⎠∨

∨
i∈{1,...,n}

i ∧ X

⎛⎝# ∧ X
∨

k∈IHALT

k

⎞⎠ .

Intuitively, the formula Last holds exactly in the last transition, that is, before the final
0-halting configuration.

Testing the counters involves six types of comparisons: checking equality, increasing
by 1, and decreasing by 1 for each of the two counters. We define the following formulas
for these tests. To explain the formulas, consider, for example, the formula Comp(x,=).
This formula compares the number of xs in the current configuration, with the number
of xs in the next configuration. The comparison is based on the comparison that we
explained earlier, and is augmented by some parsing, as we need to reach the next
configuration before comparing.

—Comp(x,=) := (countX ⊕ (xU (yU (# ∧ XX¬countX))))
∧ ((¬countX) ⊕ (xU (yU (# ∧ XXcountX)))).

11If i = n, then this line can be omitted from the initial machine, so that without loss of generality this does
not happen.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:48 S. Almagor et al.

—Comp(y,=) := (countY ⊕ (xU(yU(# ∧ XX¬countY))))
∧((¬countY) ⊕ (xU(yU(# ∧ XXcountY)))).

—Comp(x,+1) := (countX ⊕ (xU(yU(# ∧ XX¬countX−1))))
∧((¬countX) ⊕ (xU(yU(# ∧ XXcountX−1)))).

—Comp(y,+1) := (countY ⊕ (xU(yU(# ∧ XX¬countY −1))))
∧((¬countY) ⊕ (xU(yU(# ∧ XXcountY −1)))).

—Comp(x,−1) := (countX−1 ⊕ (xU(yU(# ∧ XX¬countX))))
∧((¬countX−1) ⊕ (xU(yU(# ∧ XXcountX)))).

—Comp(y,−1) := (countY −1 ⊕ (xU(yU(# ∧ XX¬countY))))
∧((¬countY −1) ⊕ (xU(yU(# ∧ XXcountY)))).

Now, for every i ∈ {1, . . . , n}, we define ξi as follows.

—If li ∈ {GOTO lj, IF c=0 GOTO lj ELSE GOTO lk : c ∈ {x, y}}, then we need to make sure that
the values of the counters do not change. Accordingly, we define ξi := (X(comp(x,=)∧
comp(y,=)) ∨ Last.

—If li = INC(x), then we need to make sure that x increases and y does not change.
Accordingly, we define ξi := (X(comp(x,+1) ∧ comp(y,=)) ∨ Last.

—If li = INC(y), then ξi := (X(comp(x,=) ∧ comp(y,+1)) ∨ Last.
—If li = DEC(x), then ξi := (X(comp(x,−1) ∧ comp(y,=)) ∨ Last.
—If li = DEC(y), then ξi := (X(comp(x,=) ∧ comp(y,−1)) ∨ Last.
—If li = HALT, then we do not need additional constraints, due to CheckFinal. Accord-

ingly, we define ξi = True.

Finally, we define CheckCounters := G
∧

i∈{1,...,n}(i → ξi).
In order to establish the correctness of the construction, we first observe that,

if M 0-halts, then the description of its run is a computation π such that
[[π, ϕ]] = 1

2 . The computation satisfies the formulas CheckCmds, CheckInit, CheckFinal,
and ForceSingletons with value 1, and the formula CheckCounters with value 1

2 .
Conversely, consider a computation π such that [[π, ϕ]] = 1

2 . Since CheckCmds,
CheckInit, CheckFinal, and ForceSingletons are all Boolean LTL formulas, we get
that π satisfies each of them with value 1 (otherwise, we would have [[π, ϕ]] = 0). It is
easy to verify that these formulas enforce π to describe a 0-halting computation of M,
which is legal up to counter updates. Finally, it must hold that [[π, CheckCounters]] ≥ 1

2 ,
and by the structure of CheckCoutners we, in fact, have [[π, CheckCounters]] = 1

2 , which
implies that the counter-updates behave according to the commands. We conclude that
π represents a legal 0-halting computation of M, thus M 0-halts.

Finally, we reduce the 1
2 -co-validity problem to the complement of the validity prob-

lem: given a formula ϕ, the reduction outputs 〈¬ϕ, 1
2 〉. Now, there exists a computation

π such that [[π, ϕ]] ≥ 1
2 if and only if there exists a computation π such that [[π,¬ϕ]] ≤ 1

2
if and only if it is not true that [[π,¬ϕ]] > 1

2 for every computation π . Thus, ϕ is 1
2 -

co-valid if and only if ¬ϕ is not valid for threshold 1
2 . We conclude that the validity

problem is undecidable.

The model-checking problem (resp., strict model-checking problem) is to decide, given
a Kripke structureK, a formula ϕ, and a threshold v, whether [[K, ϕ]] ≥ v (resp., [[K, ϕ]] >
v). We now show that both variants of the model-checking problem are undecidable for
LTLdisc⊕[D]. For this, we first pinpoint the essential technical details in the reduction
in the proof of Theorem 6.1. The following are properties of the formula ψ = ¬ϕ, where
ϕ is the formula constructed in the proof of Theorem 6.1.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:49

LEMMA 6.3. Given a two-counter machine M that is promised to either 0-halt or not
to halt at all, there exists, for every D
= ∅, an LTLdisc⊕ [D] formula ψ such that, for every
computation π that represents a computation of M, the following hold:

(1) If π is a legal halting computation of M, then [[π,ψ]] = 1
2 .

(2) If π cheats in a transition between commands, then [[π,ψ]] = 1.
(3) If π cheats in the counter values, then [[π,ψ]] = 1

2 + ε such that ε ≥ 1
2 (η(i) − η(i + 1))

for the maximal difference η(i) − η(i + 1), where i is a counter value in π .

Before turning to the proofs, let us briefly explain why these results are nontrivial.
For the nonstrict model-checking problem, there does not seem to be an immediate
reduction from the validity problem. In the proof of Theorem 6.1, we have that [[K, ϕ]] =
1
2 always (for the system K that generates every computation).

For the strict model-checking problem, it is tempting to say that [[K, ϕ]] > v if and
only if for every computation π of K, it holds that [[π, ϕ]] > v. However, this is incorrect,
since it may be the case that [[π, ϕ]] > v for every computation π , yet these values can
get arbitrarily close to v, then [[K, ϕ]] = v. This convergence of the satisfaction value is
at the heart of the problem; avoiding it is the crux in our proofs.

We now turn to show that the LTLdisc⊕[D] model-checking and strict model-checking
problems are undecidable. The proofs apply to every nonempty set of discounting func-
tions D.

THEOREM 6.4. The strict model-checking problem for LTLdisc⊕ [D] is undecidable for
every D
= ∅.

PROOF. Assume, by way of contradiction, that the strict model-checking problem
is decidable. We show how to decide the 0-halting promise problem for two-counter
machines, thus reaching a contradiction.

Given a two-counter machine M that is promised to either 0-halt or not halt at all,
construct the formula ϕ as per Lemma 6.3, and consider the Kripke structure K that
generates every computation. Observe that, by Lemma 6.3, it holds that [[K, ϕ]] ≥ 1

2 .
Decide whether [[K, ϕ]] > 1

2 . If [[K, ϕ]] > 1
2 , then, for every computation π , it holds

that [[π, ϕ]] > 1
2 , and by Lemma 6.3 we conclude that M does not halt.

If [[K, ϕ]] ≤ 1
2 , then [[K, ϕ]] = 1

2 . We observe that there are now two possible cases:

(1) M halts.
(2) M does not halt, and for every n, there are computations that reach HALT while

cheating in counter values larger than n, and not cheating in the commands.

We show how to distinguish between cases 1 and 2.
Consider the LTLdisc⊕ [D] formula

ψ = True ⊕ (G(xUη¬x) ∧ G(yUη¬y)).

It is not hard to verify that, for every computation π that represents a computation
of M, it holds that [[π,ψ]] = 1

2 + 1
2ε, where ε = inf(η(i) : i is the value of a counter in π).

Let ξ = ϕ ∨ ψ .
If M halts (case 1), then for every computation π , we have one of the following.

a. π describes a legal halting run of M, in which case [[π, ϕ]] = 1
2 and [[π,ψ]] > 1

2 + ε for
some ε > 0 (independent of π), since the counters are bounded. Thus, [[π, ξ]] > 1

2 + ε.
b. π cheats in the commands, in which case [[π, ϕ]] = 1; thus, [[π, ξ]] = 1.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:50 S. Almagor et al.

c. π cheats in the counters, in which case, since the counters are bounded, the first
cheat must occur with small counters. Thus, [[π, ϕ]] > 1

2 + ε for some ε > 0 indepen-
dent of π . Thus, [[π, ξ]] > 1

2 + ε.

In all three cases, we get that [[π, ξ]] > 1
2 + ε; thus, [[K, ξ]] > 1

2 .
If M does not halt (case 2), then, for every n and for every computation π that cheats

with counters larger than n, it holds that [[π, ϕ]] < 1
2 + ε, where ε = ε(n) → 0 as n → ∞.

Since the counters in π are large, it also holds that [[π,ψ]] < 1
2 +ε′, where ε′ = ε′(n) → 0

as n → ∞. We conclude that there exists a sequence of computations whose satisfaction
values in ξ tend to 1

2 ; thus, [[K, ξ]] = 1
2 .

Thus, in order to distinguish between cases 1 and 2, it is enough to decide whether
[[K, ξ]] > 1

2 .
To conclude, the algorithm for deciding whether M 0-halts is as follows. Start by

constructing ϕ. If [[K, ϕ]] > 1
2 , then M does not halt. Otherwise, construct ξ . If [[K, ξ]] >

1
2 , then M halts, and otherwise M does not halt.

THEOREM 6.5. The model-checking problem for LTLdisc⊕ [D] is undecidable for every
D
= ∅.

PROOF. Recall that, for every Kripke structure K and formula ϕ, it holds that [[K, ϕ]] ≥
v if and only if there does not exist a computation π of K such that [[π,¬ϕ]] > 1 − v.

We show that the latter problem is undecidable even if we fix K to be the system that
generates every computation.

We show a reduction from the 0-halting promise problem to the latter problem.
Given a two-counter machine M that is promised to either 0-halt or not halt at all,
construct the formula ϕ as per Lemma 6.3 and the formula ψ such that, for ev-
ery computation π , we have that [[π,ψ]] = 1

2 + 1
2ε, where ε = inf(η(i) − η(i + 1) :

i is the value of a counter in π). The formula ψ can be defined as

ψ = G((xUη¬x) ⊕ ¬((x ∨ Xx)Uη(¬x ∧ ¬Xx)) ∧ (yUη¬y) ⊕ ¬((y ∨ Xy)Uη(¬y ∧ ¬Xy))).

Let θ = (¬ϕ) ⊕ ψ . We claim that M halts if and only if there exists a computation π

such that [[π, θ]] > 1
2 .

If M halts, then, for the computation π that describes the halting run of M, it holds
that [[π, ϕ]] = 1

2 ; thus, [[π,¬ϕ]] = 1
2 . Since the counters in π are bounded (as the run is

halting), then [[π,ψ]] > 1
2 ; thus, [[π, θ]] > 1

2 .
If M does not halt, consider a computation π .

—If π cheats in the commands, then [[π,¬ϕ]] = 0; thus, [[π, θ]] = 0 + 1
2 [[π,ψ]] ≤ 1

2 .
—If π cheats in the counters, then [[π,¬ϕ]] = 1

2 − 1
2ε and [[π,ψ]] = 1

2 + 1
2ε′, where

ε ≥ 1
2 (η(i) − η(i + 1)) = ε′ for the smallest difference η(i) − η(i + 1) in π . Thus,

[[π, θ]] ≤ 1
2 .

Finally, using simple reductions, we can obtain the following.

THEOREM 6.6. For every ∼∈ {<,≤,=,≥,>} and for every D
= ∅, the following problems
are undecidable.

—Model checking: Given an LTLdisc⊕ [D] formula ϕ, a system K, and a threshold v,
whether [[K, ϕ]] ∼ v.

—Satisfiability: Given an LTLdisc⊕ [D] formula ϕ, a system K, and a threshold v, whether
there exists a computation π such that [[π, ϕ]] ∼ v.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:51

—Validity: Given an LTLdisc⊕ [D] formula ϕ, a system K, and a threshold v, whether
[[π, ϕ]] ∼ v for every computation π .

PROOF. We state the main ideas, leaving the technical details to the reader. All the
results are simple reductions, using Theorems 6.4, 6.5, and the following observations:

(1) From Theorem 6.1, we get that the validity problem for the “>” case is undecidable.
(2) Theorem 6.1 also shows that the satisfiability problem for the “=” case is

undecidable.
(3) The proofs of Theorems 6.1, 6.4, and 6.5 use a Kripke structure that generates

every computation.

To demonstrate the ideas in the proof, we show the undecidability of some of the
cases.

—The model-checking problem for the “<” case is undecidable, since it is the comple-
ment of the model checking for the “≥” case.

—The satisfiability problem for the < case is undecidable, since, by Observation 3, it is
equivalent to the model checking for the “<” case.

—The satisfiability problem for the > case is undecidable, since it amounts to deciding
the “<” case of satisfiability for the formula ¬ϕ and the threshold 1 − v.

Similar short arguments prove the undecidability of the other cases.

6.2. Combining LTLdisc[D] and LTL�

As shown in Section 6.1, adding the operator ⊕ to LTLdisc[D] makes model checking
undecidable. One may still want to find propositional quality operators that we can add
to the logic retaining its decidability. We show later that the logic LTL� (see Section 3.4)
consists of such propositional quality operators.

As elaborated in Section 3.4, LTL� is a fragment of LTL[F] that covers the possible
linear approaches of formalizing quality as a value between true and false. It contains
the standard Boolean operators and three propositional quality operators – �λ, �λ, and
��λ—aimed at capturing the competence, necessity, and confidence, respectively, of the
specifications.

We handle these operators by adding the following transitions to the construction in
the proof of Theorem 4.6.

—δ(�λϕ > t, σ) =
{
δ(ϕ > t

λ
, σ) if t

λ
< 1,

False if t
λ

≥ 1,

—δ(�λϕ < t, σ) =
{
δ(ϕ < t

λ
, σ) if t

λ
≤ 1,

True if t
λ

> 1.

—δ(�λϕ > t, σ) =
{

δ(ϕ > t+λ−1
λ

, σ) if t+λ−1
λ

< 1,

False if t+λ−1
λ

≥ 1,

—δ(�λϕ < t, σ) =
{

δ(ϕ < t+λ−1
λ

, σ) if t+λ−1
λ

≤ 1,

True if t+λ−1
λ

> 1.

—δ(��λϕ > t, σ) =
{

δ(ϕ > 2t+λ−1
2λ

, σ) if t
λ

< 1,

False if 2t+λ−1
2λ

≥ 1,

—δ(��λϕ < t, σ) =
{

δ(ϕ < 2t+λ−1
2λ

, σ) if 2t+λ−1
2λ

≤ 1,

True if 2t+λ−1
2λ

> 1.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:52 S. Almagor et al.

One may observe that � and � can actually be defined within the LTLdisc[D] setting.
Indeed, the operator �λ is similar to a one-time application of Uexp+1

λ
; thus, �λϕ is

equivalent to FalseUexp+1
λ

ψ . We can then use the equivalence �λϕ ≡ ¬�λ¬ϕ to express
�. As for the ��λ operator, it can be similarly expressed using the O operators defined
in Section 5.3, as ��λϕ is equivalent to FalseOexp+1

λ , 1
2
ϕ.

Finally, note that by combining � and X, one can define the discounted-next operator
mentioned in Remark 4.1.

7. SUMMARY AND DISCUSSION

7.1. Summary

An ability to specify and to reason about quality would take formal methods a signif-
icant step forward. Beyond much more informative verification and synthesis proce-
dures, designers would be willing to give up manual design only when automatically
synthesized methods would return systems of comparable quality. Quality has many
aspects, some of which are propositional, such as prioritizing one satisfaction scheme
on top of another, and some are temporal, for example, having higher quality for imple-
mentations with shorter delays. In this work, we provided solutions for specifying and
reasoning about both propositional and temporal quality by augmenting the commonly
used linear temporal logic (LTL).

On the propositional-quality front, our scheme, denoted LTL[F], is based on aug-
menting LTL with an arbitrary set of functions. In effect, this enables the designer to
quantitatively combine subformulas in intricate and nested manners. We showed that,
on the one hand, LTL[F] formulas can have exponentially many satisfaction values,
which allows one to succinctly represent and rank many ways of satisfying a specifi-
cation, and on the other hand, model checking LTL[F] can be done in PSPACE, as the
complexity for standard LTL.

On the temporal-quality front, our scheme, denoted LTLdisc[D], is based on aug-
menting the until operator of LTL with an arbitrary set of discounting functions. This
enables one to specify how delays in satisfying a requirement influence the level of sat-
isfaction. Such a satisfaction scheme, which is based on elapsed times, introduces a big
challenge, as it implies infinitely many satisfaction values. Nonetheless, we showed the
decidability of the model-checking problem and, for the natural exponential-decaying
satisfactions, the complexity remains as the one for standard LTL, suggesting the
interesting potential of the new scheme.

As for combining propositional- and temporal-quality operators, we showed that the
problem is, in general, undecidable (even when only simple propositional functions
such as average are allowed), while certain combinations, such as adding priorities,
preserve the decidability and complexity.

7.2. Future Research

The Expressive Power of LTLdisc[D] and PLTLdisc[D]. In Section 5.2, we add discounting
past operators to LTLdisc[D], and show that model-checking can be solved with the
same complexity as model-checking LTLdisc[D]. In the Boolean setting, it is known
that past operators do not add expressive power to LTL (but do allow exponentially
more succinct formulas) [Lichtenstein et al. 1985]. The proof that LTL and PLTL have
the same expressive power is notoriously complicated, and does not offer a direct
translation.

An interesting direction for future research is to compare the expressive power of
LTLdisc[D] and PLTLdisc[D]. We conjecture that PLTLdisc[D] is strictly more expressive

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:53

than LTLdisc[D], specifically, that the formula Fη¬(TrueSη p) over the atomic proposition
AP = {p} does not have an equivalent LTLdisc[D] formula.

Fragments of LTL[F] and LTLdisc[D]. In the Boolean setting, model checking and
synthesis suffer from very high complexity. This renders model checking expensive, and
synthesis impractical. To deal with this high complexity, researchers suggest looking at
fragments of LTL. One particular fragment that is very expressive is GR(1) [Piterman
et al. 2006]. For practical applications, it would be useful to look at this fragment in
the context of LTL[F] and LTLdisc[D].

For LTL[F], handling propositional operators is somewhat orthogonal to the inherent
complexity of model checking. Thus, it would not be hard to reuse techniques that work
with fragments of LTL to LTL[F]. In particular, the LTL[F] analogue of the GR(1)
fragment allows ranking of the Streett conditions. That is, instead of considering a
formula of the form (GFϕ1 ∧ . . .∧GFϕn) → (GFψ1 ∧ . . .∧GFψn), we consider the formula
(GFϕ1 ∧ . . . ∧ GFϕn) → f (GFψ1, . . . , GFψn), where f is a function that ranks different
subsets of its inputs. This allows us to prioritize the importance of the goals ψ1, . . . , ψn.

For LTLdisc[D], it is less clear that standard GR(1) algorithms can readily be adapted;
this is an important direction for future work. The benefit of using LTLdisc[D] in GR(1)
is that we can strengthen the fairness condition as well as the responses, as follows.
Instead of the standard GR(1) formula (GFϕ1 ∧ . . . ∧ GFϕn) → (GFψ1 ∧ . . . ∧ GFψn), we
can use the formula (GFηϕ1 ∧ . . . ∧ GFηϕn) → (GFηψ1 ∧ . . . ∧ GFηψn), which requires the
fairness condition and the responses to hold not only infinitely often, but also in small
intervals, which is often desirable.

Another fragment that is especially relevant for LTLdisc[D] is of formulas with
bounded nesting. In practical settings, the nesting depth of LTL formulas is typically
very low. Assuming a bounded nesting depth in LTLdisc[D] will also entail simplifica-
tions in our constructions. In particular, observe that the construction in Lemma 4.11
is exponential in the nesting depth of the formula (but also in the description of the
discounting factors). Thus, if the nesting depth is bounded, the construction becomes
much smaller.

REFERENCES

Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. 2009. On the complexity
of numerical analysis. SIAM Journal on Computing 38, 5, 1987–2006.

Shaull Almagor, Guy Avni, and Orna Kupferman. 2013a. Automatic generation of quality specifications.
In Proceedings of the 25th International Conference on Computer Aided Verification. Lecture Notes in
Computer Science, Vol. 8044. Springer, Berlin, 479–494.

Shaull Almagor, Udi Boker, and Orna Kupferman. 2011. What’s decidable about weighted automata? In
9th International Symposium on Automated Technology for Verification and Analysis. Lecture Notes in
Computer Science, Vol. 6996. Springer, Berlin, 482–491.

Shaull Almagor, Udi Boker, and Orna Kupferman. 2013b. Formalizing and reasoning about quality. In
Proceedings of the 40th International Colloqium on Automata, Languages, and Programming. Lecture
Notes in Computer Science, Vol. 7966. Springer, Berlin, 15–27.

Shaull Almagor, Udi Boker, and Orna Kupferman. 2014. Discounting in LTL. In Proceedings of the 20th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Lecture
Notes in Computer Science, Vol. 8413. Springer, Berlin 424–439.

Shaull Almagor, Yoram Hirshfeld, and Orna Kupferman. 2010. Promptness in omega-regular automata. In
8th International Symposium on Automated Technology for Verification and Analysis. Lecture Notes in
Computer Science, Vol. 6252. Springer, Berlin, 22–36.

Shaull Almagor and Orna Kupferman. 2011. Max and sum semantics for alternating weighted automata. In
9th International Symposium on Automated Technology for Verification and Analysis. Lecture Notes in
Computer Science, Vol. 6996. Springer, Berlin, 13–27.

Shaull Almagor and Orna Kupferman. 2015. High-quality synthesis against stochastic environments
(Submitted).

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:54 S. Almagor et al.

Sanjeev Arora and Boaz Barak. 2009. Computational Complexity—A Modern Approach. Cambridge Univer-
sity Press, New York, NY.

Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann. 2009. Better quality
in synthesis through quantitative objectives. In Proceedings of the 21st International Conference on
Computer Aided Verification. Lecture Notes in Computer Science, Vol. 5643. Springer, Berlin, 140–156.

A. Bohy, V. Bruyère, E. Filiot, and J.-F. Raskin. 2013. Synthesis from LTL specifications with mean-payoff ob-
jectives. In Proceedings of the 19th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Lecture Notes in Computer Science, Vol. 7795. Springer, Berlin, 169–184.

Mikolaj Bojańczyk and Thomas Colcombet. 2006. Bounds in ω-regularity. In Proceedings of the 21st IEEE
Symposium on Logic in Computer Science. 285–296.

Udi Boker, Krishnendu Chatterjee, Thomas A. Henzinger, and Orna Kupferman. 2014. Temporal specifica-
tions with accumulative values. ACM Transactions on Computational Logic 15, 4, 27:1–27:25.

Udi Boker, Thomas A. Henzinger, and Jan Otop. 2015. The target discounted-sum problem. In 30th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS’15), Kyoto, Japan. 750–761.

Udi Boker, Orna Kupferman, and Adin Rosenberg. 2010. Alternation removal in Büchi automata. In Proceed-
ings of the 37th International Colloquium on Automata, Languages, and Programming. Lecture Notes
in Computer Science, Vol. 6199. Springer, Berlin, 76–87.

Patricia Bouyer, Nicolas Markey, and Raj Mohan Matteplackel. 2014. Averaging in LTL. In Proceedings
of CONCUR 2014 - Concurrency Theory - 25th International Conference (CONCUR’14), Rome, Italy.
266–280.

Glenn Bruns and Patrice Godefroid. 2004. Model checking with multi-valued logics. In Proceedings of the
31st International Colloquium on Automata, Languages, and Programming. Lecture Notes in Computer
Science, Vol. 3142. 281–293.

Pavol Černỳ, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakrishna, and Rohit Singh. 2011.
Quantitative synthesis for concurrent programs. In Proceedings of the 23rd International Conference on
Computer Aided Verification. 243–259.

Krishnendu Chatterjee, Vojtech Forejt, and Dominik Wojtczak. 2013. Multi-objective discounted reward
verification in graphs and MDPs. In Proceedings of the 19th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR’19), Stellenbosch, South Africa. 228–242.

Edmund M. Clarke, Orna Grumberg, and Doron Peled. 1999. Model Checking. MIT Press, Cambridge, MA.
Mads Dam. 1994. CTL� and ECTL� as fragments of the modal μ-calculus. Theoretical Computer Science 126,

77–96.
Luca De Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar, and Mariëlle Stoelinga. 2005. Model

checking discounted temporal properties. Theoretical Computer Science 345, 1, 139–170.
Luca De Alfaro, Marco Faella, and Mariëlle Stoelinga. 2004. Linear and branching metrics for quantitative

transition systems. In Proceedings of the 31st International Colloquium on Automata, Languages, and
Programming. Lecture Notes in Computer Science, Vol. 3142. 97–109.

Luca De Alfaro, Thomas A. Henzinger, and Rupak Majumdar. 2003. Discounting the future in systems
theory. In Proceedings of the 30th International Colloquium on Automata, Languages, and Programming.
Lecture Notes in Computer Science, Vol. 2719. 1022–1037.

Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. 2004. Metrics for labelled
Markov processes. Theoretical Computer Science 318, 3, 323–354.

Alexandre Donzé and Oded Maler. 2010. Robust satisfaction of temporal logic over real-valued signals. In
Proceedings of the 8th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS’10). 92–106.

Alexandre Donzé, Oded Maler, Ezio Bartocci, Dejan Nickovic, Radu Grosu, and Scott Smolka. 2012. On
temporal logic and signal processing. In Proceedings of the 10th International Conference on Automated
Technology for Verification and Analysis (ATVA’12). Springer, Berlin, 92–106.

M. Droste, W. Kuich, and H. Vogler (eds.). 2009. Handbook of Weighted Automata. Springer.
Manfred Droste, Werner Kuich, and George Rahonis. 2008. Multi-valued MSO logics OverWords and trees.

Fundammenta Informaticae 84, 3–4, 305–327.
Manfred Droste and George Rahonis. 2009. Weighted automata and weighted logics with discounting. The-

oretical Computer Science 410, 37, 3481–3494.
Manfred Droste and Heiko Vogler. 2012. Weighted automata and multi-valued logics over arbitrary bounded

lattices. Theoretical Computer Science 418, 14–36.
E. Allen Emerson and Joseph Y. Halpern. 1986. Sometimes and not never revisited: On branching versus

linear time. Journal of the ACM 33, 1, 151–178.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

Formally Reasoning About Quality 24:55

E. Allen Emerson and Chin-Laung Lei. 1985. Modalities for model checking: Branching time logic strikes
back. In Proc. 12th ACM Symp. on Principles of Programming Languages. 84–96.

E. Allen Emerson and Chin-Laung Lei. 1986. Efficient model checking in fragments of the propositional
μ-calculus. In Proceedings of the 1st IEEE Symposium on Logic in Computer Science. 267–278.

Marco Faella, Axel Legay, and Mariëlle Stoelinga. 2008. Model checking quantitative linear time logic.
Electronic Notes in Theoretical Computer Science 220, 3, 61–77.

Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. 2014. Finite-valued weighted automata. In
34th International Conference on Foundation of Software Technology and Theoretical Computer Science,
(FSTTCS’14), New Delhi, India. 133–145.

Martin Fränzle, Michael R. Hansen, and Heinrich Ody. 2015. Discounted duration calculus. In Proceedings
of the 27th Nordic Workshop on Programming Theory. RUTR-SCS16001, 75–77.

Paul Gastin and Denis Oddoux. 2001. Fast LTL to Büchi automata translation. In Proceedings of the 13th
International Conference on Computer Aided Verification. Lecture Notes in Computer Science, Vol. 2102.
Springer, Berlin, 53–65.

Y. Gurevich and L. Harrington. 1982. Trees, automata, and games. In Proceedings of the 14th ACM Sympo-
sium on Theory of Computing. ACM Press, New York, NY, 60–65.

Hans Hansson and Bengt Jonsson. 1994. A logic for reasoning about time and reliability. Formal Aspects of
Computing 6, 102–111.

Gerard J. Holzmann. 2004. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, New
York, NY.

IEEE. 1993. IEEE Standard Multivalue Logic System for VHDL Model Interoperability (Std_logic_1164).
Stephen H. Kan. 2002. Metrics and Models in Software Quality Engineering (2nd ed.). Addison-Wesley

Longman Publishing Co., Inc., New York, NY.
Daniel Kirsten and Sylvain Lombardy. 2009. Deciding unambiguity and sequentiality of polynomially am-

biguous min-plus automata. In Proceedings of the 26th International Symposium on Theoretical Aspects
of Computer Science (STACS’09). Freiburg, Germany, 589–600.

Daniel Krob. 1994. The equality problem for rational series with multiplicities in the tropical semiring is
undecidable. International Journal of Algebra and Computation 4, 3, 405–425.

Orna Kupferman. 2006. Sanity checks in formal verification. In Proceedings of the 17th International Con-
ference on Concurrency Theory. Lecture Notes in Computer Science, Vol. 4137. Springer, Berlin, 37–51.

Orna Kupferman and Yoad Lustig. 2007. Lattice automata. In Proceedings of the 8th International Confer-
ence on Verification, Model Checking, and Abstract Interpretation. Lecture Notes in Computer Science,
Vol. 4349. Springer, Berlin, 199–213.

Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. 2006. Safraless compositional synthesis. In Proceedings
of the 18th International Conference on Computer Aided Verification. Lecture Notes in Computer Science,
Vol. 4144. Springer, Berlin, 31–44.

Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. 2009. From liveness to promptness. Formal Methods
in System Design 34, 2, 83–103.

Orna Kupferman and Moshe Y. Vardi. 1997. Synthesis with incomplete information. In 2nd International
Conference on Temporal Logic. 91–106.

Orna Kupferman and Moshe Y. Vardi. 2005. Safraless decision procedures. In Proceedings of the 46th IEEE
Symposium on Foundations of Computer Science. 531–540.

Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. 2000. An automata-theoretic approach to branching-
time model checking. Journal of the ACM 47, 2, 312–360.

Robert P. Kurshan. 1998. FormalCheck User’s Manual. Cadence Design Systems, Inc. Columbia, MD.
Marta Z. Kwiatkowska. 2007. Quantitative verification: Models techniques and tools. In ESEC/SIGSOFT

FSE. 449–458.
François Laroussinie and Ph Schnoebelen. 1994. A hierarchy of temporal logics with past. In Proceedings of

the 11th Symposium on Theoretical Aspects of Computer Science. 47–58.
Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. 1985. The glory of the past. In Logics of Programs. Lecture

Notes in Computer Science, Vol. 193. Springer, Berlin, 196–218.
Eleni Mandrali. 2012. Weighted LTL with discounting. In CIAA. Lecture Notes in Computer Science,

Vol. 7381. Springer, Berlin, 353–360.
Z. Manna and A. Pnueli. 1995. The Temporal Logic of Reactive and Concurrent Systems: Safety. Springer.
Marvin L. Minsky. 1967. Computation: Finite and Infinite Machines (1 ed.). Prentice Hall, Upper Saddle

River, NJ.

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

24:56 S. Almagor et al.

Satoru Miyano and Takeshi Hayashi. 1984. Alternating finite automata on ω-words. Theoretical Computer
Science 32, 321–330.

Mehryar Mohri. 1997. Finite-state transducers in language and speech processing. Computational Linguis-
tics 23, 2, 269–311.

Seong-ick Moon, Kwang Hyung Lee, and Doheon Lee. 2004. Fuzzy branching temporal logic. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B 34, 2, 1045–1055.

Shota Nakagawa and Ichiro Hasuo. 2015. Near-optimal scheduler synthesis for LTL with future discounting.
In 10th International Symposium on Trustworthy Global Computing.

N. Piterman, A. Pnueli, and Y. Saar. 2006. Synthesis of reactive(1) designs. In Proceedings of the 7th In-
ternational Conference on Verification, Model Checking, and Abstract Interpretation. Lecture Notes in
Computer Science, Vol. 3855. Springer, Berlin, 364–380.

Amir Pnueli and Roni Rosner. 1989. On the synthesis of a reactive module. In Proceedings of the 16th ACM
Symposium on Principles of Programming Languages. 179–190.

Claude E. Shannon. 1949. The synthesis of two terminal switching circuits. 28, 1, 59–98.
Lloyd S. Shapley. 1953. Stochastic games. In Proceedings of the National Academy of Science, Vol. 39. National

Academy of Sciences, 1095.
Diomidis Spinellis. 2003. Code Reading: The Open Source Perspective. Addison-Wesley, New York, NY.
Wolfgang Thomas. 1990. Automata on infinite objects. Handbook of Theoretical Computer Science 2, 133–191.
Moshe Y. Vardi. 1996. An automata-theoretic approach to linear temporal logic. In Logics for Concurrency:

Structure versus Automata. Lecture Notes in Computer Science, F. Moller and G. Birtwistle (Eds.),
Vol. 1043. Springer, Berliln, 238–266.

Moshe Y. Vardi and Pierre Wolper. 1986. An automata-theoretic approach to automatic program verification.
In Proceedings of the 1st IEEE Symposium on Logic in Computer Science. 332–344.

Moshe Y. Vardi and Pierre Wolper. 1994. Reasoning about infinite computations. Information and Computa-
tion 115, 1, 1–37.

Received November 2014; revised November 2015; accepted January 2016

Journal of the ACM, Vol. 63, No. 3, Article 24, Publication date: June 2016.

