ToolReAGt: Tool Retrieval for LLM-based Complex Task Solution via
Retrieval Augmented Generation

Norbert Braunschweiler, Rama Doddipatla, Tudor-Catalin Zorila
Toshiba Europe, Cambridge, Cambridgeshire, UK
{norbert.braunschweiler, rama.doddipatla, catalin.zorila}@toshiba.eu

Abstract

Artificial intelligence agents when deployed
to solve complex problems, need to first de-
compose the task into smaller manageable sub-
tasks, and further associate tools if one is re-
quired to solve the sub-task. If the size of the
set of tools to chose from is large, a retrieval
system is usually employed to narrow down the
tool choices before the LLM can proceed with
associating tools to the sub-tasks. This paper
focuses on the retrieval problem to identify the
set of relevant tools to solve a complex task
given a large pool of tools to chose from us-
ing retrieval augmented generation (RAG) and
we refer to it as ToolReAGT. The proposed ap-
proach employs ReAct prompting to perform
the retrieval in an iterative fashion to first iden-
tify if a tool is required and then associate one
or more tools for each intermediate step, also
referred to as a sub-task. This deviates from
conventional RAG where an n-best list of tools
are identified given the complex task directly.
Experiments are presented on the UltraTool
benchmark corpus with 1000 complex tasks
and over 2000 tools to select from. A conven-
tional RAG-system is established as baseline
and compared to the ToolReAGt approach, re-
sulting in an 8.9% improved retrieval accuracy
score recall@5.

1 Introduction

The ability of current Al systems utilizing the lan-
guage understanding and reasoning capabilities of
LLMs in combination with individual tools de-
signed for solving specific tasks, has greatly ex-
panded the application range and capacity of these
systems (Parisi et al., 2022; Qin et al., 2023b;
Schick et al., 2023; Qin et al., 2023a; Patil et al.,
2023; Li et al., 2024; Wang et al., 2024; Kong et al.,
2024; Qu et al., 2025). Tools which can provide
tailored information such as up-to-date temperature
measurements, compute mathematical equations or
identify objects in images can each contribute to

Tool selection

lutie

LD |- ¢ -

N v
Task Retriever &%
decomposition T
- —_
v

Complex
task
@
a
User

Figure 1: Importance of tool selection quality in com-
plex task solution Al system.

solve an overarching complex task and result in
powerful Al agents. However, the efficacy of these
systems in completing complex tasks heavily re-
lies on their ability to accurately select appropriate
tools for solving individual sub-tasks.

Figure 1 illustrates the flow diagram of a sys-
tem that can solve a complex task. The Planner
is internally made of a Task Decomposition mod-
ule that decomposes the complex task into smaller
manageable sub-tasks, the Tool Selection module
can dive into a database of tools and retrieve the
relevant tools that can solve the sub-tasks and a
Tool Calling module that can compose and call the
retrieved tools in a specific order to solve the com-
plex task, which we refer to as a solution. Every
module can introduce dependencies that the other
modules need to adhere to in deriving a solution
to solve the complex task. In this paper, we fo-
cus on the Tool Selection module and investigate
tool retrieval in depth, with the aim to support the
planner in solving complex tasks. The main chal-
lenges in tool retrieval are: a) understanding the
requirements of the task to be solved and formu-
lating an adequate query to find a suitable tool, b)
comprehending the functionality of a tool from its
description, and c) ability to distinguish between
similar tools to choose the most suitable one.

In this paper, we introduce a training-free
Retrieval-Augmented Generation (Lewis et al.,

2021) architecture called ToolReAGt. The proposed
approach employs ReAct prompting to enhance re-
trieval using iterative refinement of the prompts.
We will also present investigations on the impor-
tance of context information when solving a com-
plex task. We present our investigations using the
UltraTool (Huang et al., 2024) benchmark corpus
that has over 2000 tools to choose from and com-
pare with traditional RAG approaches as well as
more recent iterative based approaches that also
involve training the retriever. We show through
experiments on the UltraTool corpus that the pro-
posed training free approach can outperform exist-
ing methods. The rest of the paper is organised as
follows: An overview of related work is presented
in the next section, followed by the description of
the conventional RAG system and the ToolReAGt
model. Then, the benchmark corpus is described
and the set-up of the evaluation which is followed
by the presentation of results and their discussion,
and finally conclusions.

2 Related work

A simple and straight forward approach to selecting
the relevant tools is to provide all the tool descrip-
tion in the prompt (Yuan et al., 2024; Mu et al.,
2024; Du et al., 2024), which can be further com-
bined with fine-tuned retrieval systems (Qin et al.,
2023b; Hao et al., 2023; Gao et al., 2023). But a
major limitation of these methods is when the pool
size of the tools to chose from increases drastically,
that limits to include all the tool descriptions into
the prompts. A potential solution is to first build a
smaller pool of relevant tools using RAG and then
proceed to solving the complex task, which is one
of the motivations for the method presented in this
paper.

In Zhang et al. (2024), the authors propose to
leverage reinforcement learning to enhance the
alignment between user queries and tools in LLMs.
This method focuses on retrieving n-best tools re-
lated to the query using query re-writing. It also
requires training the retriever using reinforcement
learning. In contrast the proposed method follows
an iterative prompt refinement and is more focused
on solving a complex task, where tools are retrieved
in a step-by-step fashion. Also, we follow a train-
ing free approach.

An adaptive truncation of retrieval results is pre-
sented in Zheng et al. (2024) which treats seen
and unseen tools differently to ensure more rele-

e~

~

Generation !
! (LLm)

(

}

I

{ Retrieval

[l Embedding based |

: Emmﬂ
I

|

2.Tool18
3.Tool99
\ Vector index

Task

‘ Task: tool18 ‘

Figure 2: Conventional RAG architecture for tool selec-
tion.

vant tools are prioritized. Additionally, it intro-
duces a hierarchy-aware reranking which refines re-
trieval results by concentrating them for single-tool
queries and diversifying them for multi-tool queries.
While the adaptive truncation method effectively
manages unseen tools, our method explores the use
of the ReAct framework that inherently performs
re-ranking of the relevant tools, but also explores
the use of a varied context during retrieval at (a
more fine-grained) sub-task level.

An approach in which fine-tuned LLMs are used
to capture relationships between user queries and
tool descriptions is introduced in Qu et al. (2024).
The method constructs bipartite graphs among
queries, scenes, and tools, and it uses a dual-view
graph collaborative learning framework to capture
intricate collaborative relationships among tools.
In this work, we assume that the planner is look-
ing into the relations between tools, where the tool
retriever is one of the components of the planner.
This is done in a training free fashion and it should
generalise to unseen tasks.

In Xu et al. (2024), authors propose iterative
LLM feedback to improve tool selection, but use
a trained dense retriever without the RAG-specific
generation part. In our method we avoid training
the retriever and the iterative refinement is done
through a ReAct-agent.

3 Methods

We will first present the general RAG architecture
and how it can be employed to perform tool re-
trieval, which we will refer to as Conventional RAG
and is used as a baseline in our study. Further we
introduce the proposed 700/ReAGT method and
present the design changes that are introduced con-
trasting with the conventional RAG.

3.1 Conventional RAG

Figure 2 illustrates the basic RAG-architecture for
tool retrieval and includes two main components:
the retriever and generator. Given a task as input

A
Action

[8 I cannot answer the question with the provided tools.]

[| can answer without using any more tools.]

—> Observation

Tool \/

Finally selected
tool(s) for each

retriever T
task

—
| 1. Tooloa ‘

"‘2. Tool18
—* 3. Tool99

|4. Toolo1 |

Top-k retrieved tools

Figure 3: Block diagram of proposed ToolReAGt system.

query, the retriever, typically leveraging an embed-
ding based dense retriever, retrieves a subset of
tools. A distance measure (for example the co-
sine similarity) is computed between the query em-
bedding and the tool embeddings to retrieve the
relevant tools from the vector index. The list of
retrieved tools is propagated into the prompt for
the generation module (including the task and in-
structions) to output the final response, i.e. tool(s)
selected for the given query.

3.2 ToolReAGt

Figure 3 illustrates the proposed ToolReAGt ar-
chitecture. Input can consist of a complex task
and optionally task decomposition into sub-tasks
(provided by a planner which is not part of the
ToolReAGt system). The ReAct-agent can flexi-
bly operate with only the complex task as input
and decompose into the intermediate steps by it-
self or, if provided, utilize a given task decompo-
sition from a planner. The ToolReAGt system is
guided by a ReAct-agent leveraging a sequence
of Thought->Action->Observation steps (see Ap-
pendix B). Firstly, the system calls the tool re-
triever with a tailored query for the given sub-task
(or internal decomposition step) and retrieves a
top_k = {t1,ta,...,t;} list of tools. The ReAct-
agent is instructed to always call the retriever as a
mandatory tool, to provide it with a list of relevant
candidates from the set of available tools. The re-
trieved tool list is then inspected in the Observation
step and depending on whether the system decides
that at least one of the retrieved tools is suitable to
solve the sub-task (or internal decomposition step)
it will proceed to give the answer (indicated by the

green tick), i.e. either one tool or multiple tools for
each sub-task, or otherwise enter another iteration
including a new tool retrieval call.

By using the ReAct technique the complex
prompt can be interpreted by the LLM and a more
targeted question is formulated for finding the best
tool for the current sub-task (or intermediate step).
Conversely, the conventional RAG employs the
input prompt only. Then, the Thought->Action-
>Observation loop can be executed until either a
suitable tool has been found or the max number
of iterations (set to 10) is reached. As such, an
iterative refinement can take place which is likely
to be beneficial for both tool retrieval and the final
generation output.

4 Data

For evaluation, we used the UltraTool (Huang et al.,
2024) corpus which provides a rich number of com-
plex tasks (5824) from 22 domains (e.g. finance,
travel, documents, etc.) with a large tool set of
2032 tools. The corpus comes divided into a test
set (1000 tasks) and a development set (4824 tasks).
For evaluation we employ the 1000 tasks test set
which consists of 436 tools (TEST-436). In addi-
tion, we perform evaluation on the same test set
using the full (test+dev) 2032 tool set (TEST-2032).

The test tasks include an average number of 2.4
tools per task with the following distribution: 1:
188, 2: 496, 3: 205, 4: 83 and the remainder re-
quiring >5 tools (up to a maximum of 10 tools).
A major reason to choose Ultralool benchmark
is that, it has annotations with reference solution
plans, i.e. decomposition into sub-tasks, including
tool-requiring sub-tasks and their respective tools,

enabling objective evaluation via retrieval metrics.
This helps us to investigate how the retrieval per-
formance can vary when task decomposition from
planner is available apriori.

Solution plans contain on average 12.1 steps
which means there is a high proportion of tool-free
steps. For brevity, we chose the English version of
the corpus which was originally collected in Chi-
nese. Contrary to UltraTool’s original evaluation
methods which encompass planning, tool creation
and fool usage, we are using the corpus for evalu-
ating tool selection performance of RAG-systems
with and without using the provided sub-tasks.

5 Evaluation setup

The experiments conducted in this study employ
the Llamalndex-framework! for implementing the
RAG pipeline. The basic workflow to create a
RAG-system contains the preparation of source
data from which information will be retrieved (typ-
ically in the form of documents, i.e. tool descrip-
tions here), ingesting this data into a vector index
leveraging an embedding model, defining a query
agent together with an LLM, and formulating input
prompts. These steps will be described next.

5.1 Tool representation

Tools provide specific functionalities such as cur-
rency conversions or getting up to date weather
information and are crucial helpers in a system de-
signed to combine their abilities for solving more
complex tasks. As such, understanding tool func-
tionalities, including their required input param-
eters and their generated output, is essential for
successful tool selection. In UltraTool, tools are
described in the widely used JSON-format and in-
clude "name", "description", "arguments" (type and
format of input(s)) and "results" (type and format
of output(s)). Considering each tool as a separate
entity, each of the 2032 tool descriptions was stored
in a separate file named with the tool name (e.g.
"check_weather.json"). The following shows an ex-
ample of a tool description for the check_weather
tool which provides weather information such as
temperature and precipitation probability, for a
given location and a specific date:

"Check the

weather forecast for a specified date and location",

"name": "check_weather", "description":

argu-

object","properties": {"date": } {"type":

ments": {"type":

non

"string", "description": "Specified date"}, "location": {"type":

"https://docs.1lamaindex.ai/en/stable/

non

"string", "description": "Weather query location"}}}, "re-

non

sults": {"type": "object", "properties": {"weather_status":

string", "description": "Weather condition"},}, "tem-

{"type":
perature": {"type": "

non

string", "description": "Temperature"},

"precipitation": {"type": "string", "description": "Proba-

non

bility of precipitation"}, "weather_info": {"type": "string",
"Weather forecast information"}, "sugges-

non

tions": {"type":

"description":

string", "description": "Suggestions based

on weather conditions"} } }

5.2 Vector index

A vector index is an essential component in a RAG-
system providing an efficient way of retrieving rel-
evant information from a potentially large amount
of data to enhance the responses generated by the
LLM. In the current study, the vector indices were
built on the tool descriptions in JSON-format. Two
different vector indices were built: one based on
all the 2032 tools and another using the subset of
436 tools which appear in the test set. This was
intended to shed some light on the impact of tool
corpus size on retrieval performance. Vector in-
dices were created by converting tool descriptions
into high-dimensional vectors of dimension 768
using the bge-base-en-vl.5 > embedding model.
Additional information in the form of metadata,
such as data classes or file name, can be attached to
each tool description which can support retrieval.
For our vector indices the file name was added as
metadata because it included the unique tool name
which was deemed to be helpful for retrieval. For
ingesting tool descriptions into the vector index,
the text was split with a token text splitter using a
chunk size of 512 tokens and a chunk overlap of
128 tokens.

5.3 Impact of input information

Different prompt types were created to evaluate the
impact of input information on the retrieval perfor-
mance. For the first one, no sub-task decomposition
information is provided, while for the other ones,
the various levels of information from the corpus
are included:

e plain_fulltask: full task without sub-task
decomposition

* subtask: only the sub-task that is annotated
in the corpus without full task decomposition

subtask +
but no full sub-task

* subtask+fulltask:
plain_fulltask ,

2https://huggingface.co/BAAL/bge-base-en-v1.5

https://docs.llamaindex.ai/en/stable/
https://huggingface.co/BAAI/bge-base-en-v1.5

Data Input Retrieval
R@]l R@2 R@5 R@I10
TEST-2032 | plain_fulltask 16.8 292 511 66.6
subtask 4.6 6.8 12.6 18.2
subtask+fulltask | 14.9 284 44.1 57.5
fulltask+decomp | 20.7 365 594 76.8

Table 1: Impact on tool retrieval performance using Conventional RAG with varied contextual information

decomposition

e fulltask+decomp: plain_fulltask with
full sub-task decomposition

Examples for each of the prompts used in the ex-
periments are provided in Appendix A.

The LLMs used for evaluation are the 8-bit quan-
tized GGUF-version of the Mistral-7b-instruct’®
LLM, i.e. mistral-7b-instruct-v0.2.Q8_0 from Hug-
gingface # and the 4-bit quantized GGUF-version
of the Mistral-Large-Instruct-2411° model which
are publicly available for research and provide
a 32k and 128k tokens context window respec-
tively. The LamaCPP® library was employed to run
the LLM. Experiments were run on four NVIDIA
A100 GPUs with 80GB of memory.

6 Results

6.1 Evaluation metrics

Tool retrieval accuracy can be measured either at
the output of the Retriever or at the output of the
Generator stages of RAG-system. UltraTool pro-
vides reference tools for each sub-task, making
evaluation straightforward, by checking if the list
of retrieved tools at different top_k values includes
the reference tools.

To measure the tool retrieval performance at the
output of the Retriever, the recallQN metric was
chosen (see equation 1), where N = 1,2,5,10, 20
indicate whether the required tool was selected in
the top_N retrieved tools.

Number of relevant tools retrieved in top_N

(D
For the Generator stage, we report accuracy, i.e.
how often the searched for tool was actually chosen

Recall@N =
Total number of relevant tools

3https://huggingface.co/mistralai/
Mistral-7B-Instruct-v@.2
4https://huggingface.co/TheBloke/
Mistral-7B-Instruct-v@.2-GGUF
Shttps://huggingface.co/mistralai/
Mistral-Large-Instruct-2411
https://github.com/ggerganov/1lama.cpp

from the list of tools provided by the Retriever. In
our evaluations, we report results where the Gen-
erator was forced to output only one tool for each
tool requiring sub-task or it was given the freedom
to choose multiple tools to be associated with the
same sub-task.

To compare the performance of the proposed
method with the method in (Xu et al., 2024), we
also report the Normalized Discounted Cumulative
Gain (NDCG@k) (Jarvelin and Kekilédinen, 2002)
metric.

We also checked the impact of multiple runs
upon retrieval scores and found that there was no
variation in retrieval scores in the baseline RAG-
system when prompts were kept identical. For the
variation in generation accuracy, the baseline RAG-
system showed no measurable variation and the
ToolReAGt system showed marginal variation in
both retrieval (average StdDev: 0.186) and genera-
tion scores (average StdDev: 0.212).

6.2 Discussion

To remind, the UltraTool corpus comes with anno-
tation of task decomposition for the complex task
and has annotations about which of the sub-tasks
require a tool. We will use this additional knowl-
edge in the prompt to understand the impact on
the retrieval using Conventional RAG and Mistral-
7B model. We measure the retrieval scores by a)
only presenting the full task (plain_fulltask) de-
scription without any sub-task decomposition, b)
only presenting the sub-task (subtask) that requires
a tool without any additional context c) presenting
the full task description along with only a single
sub-task subtask+fulltask, and d) presenting the
full task description along with the complete task
decomposition fulltask+decomp.

The results are presented in Table 1. One
can observe that providing subtask information
in isolation without the complete task decompo-
sition seems to perform inferior than just using the
plain_fulltask as input. On the other hand, when
using the full task along with the complete task

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF
https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF
https://huggingface.co/mistralai/Mistral-Large-Instruct-2411
https://huggingface.co/mistralai/Mistral-Large-Instruct-2411
https://github.com/ggerganov/llama.cpp

Input Output ConvRAG ToolReAGt

R@5 Acc | R@5 Acc
plain_fulltask by full task, single | 742 684 | 774 735
fulltask+decomp | by sub-task, single | 81.7 719 | 90.6 73.7
fulltask+decomp | by sub-task, multi | 81.7 745 | 90.5 874

Table 2: Results for tool selection contrasting Conventional RAG and ToolReAGT on TEST-436

decomposition (fulltask+decomp) it seems to im-
prove the retrieval performance. This indicates that
having access to complete task decomposition on
how to solve the complex task should help the re-
triever identify the correct tools better than when
presented only with the complex task description
as input, which is intuitive. One can also observe
that retrieving more tools at each intermediate step
can also boost the retrieval performance. These ini-
tial investigations were performed on TEST-2032.
Moving forward, all the results will be presented
on the actual test set of the UltraTool corpus and is
referred to as TEST-436.

In Table 2, we contrast the performance of the
Conventional RAG with the proposed ToolReAGt
described in Section 3. We report both the retrieval
(R@5) and generation performance in this table.
Variations in the input prompts and how many tools
the generator should output (either single or multi-
ple) can further influence the retrieval performance.
The plain_fulltask refers to providing only the com-
plex task description as input without any decompo-
sition. By doing so, we can measure how the LLM
will handle the complex task and assign relevant
tools without any additional information. This is
used as a baseline to understand the impact of any
variations that we might introduce either into the
input prompt in the form of additional context or
apply the ReAct prompting or change the output of
the generator, which are all presented in this table.
Comparing the RAG baseline and the ToolReAGt
system for the plain_fulltask input shows that the
ToolReAGt system achieves a 3.4% better R@5 and
an increased accuracy in generation (+5.1%).

System Retrieval

N@1 N@3 N@5
ToolRetriever(Xu et al., 2024) | 48.2 47.7 53.0
Xu-et-al(Xu et al., 2024) 49.3 47.5 54.3
RAGbaseline [plain_fulltask] 54.8 59.2 66.3
ToolReAGt [plain_fulltask] 60.6 63.8 69.3

Table 3: Results using NDCG metric comparing differ-
ent retrieval methods on the UltraTool TEST-436

The addition of contextual information by
adding the decomposition of the complex task
into individual sub-tasks including the information
which sub-tasks require tools, increased both re-
trieval and generation scores for both systems, with
an increase in R@5 of 7.5% for the RAG baseline
and a boost of 13.2% for the ToolReAGt system,
leading to an 8.9% absolute improvement for Tool-
ReAGt, while the increases in generation accuracy
were smaller, indicating that the improved retrieval
scores did not directly propagate into improved gen-
eration accuracy. However, by asking the systems
to select more than one tool in the generation output
("By sub-task, multi") both systems achieve higher
accuracy, but the ToolReAGt system shows a much
higher improvement than the baseline system, i.e.
RAG baseline +2.6% and ToolReAGt +13.7%, in-
dicating that it is capable to transfer more relevant
tools also in the generation output.

Table 3 presents the retrieval results measured
using Normalized Discounted Cumulative Gain
(NDCG@k) (Jarvelin and Kekéldinen, 2002) with
k = {1,3,5}, comparing the retrieval method of
Xu et al. (2024) in literature with the proposed Tool-
ReAGT. ToolRetriever introduces a model that has
been trained on the ToolBench corpus (Qin et al.,
2023b) and corresponds to out-of-domain evalua-
tion on the UltraTool benchmark as reported in Xu
et al. (2024). For fair comparison to the results
presented in Xu et al. (2024), the performance of
ToolReAGT using only the plain_fulltask as input
without sub-task decomposition is presented here.
It is surprising that RAGbaseline already surpasses
the performance of Xu et al. (2024). The Tool-
ReAGt method achieves the highest NDCG scores
across all k-values.

7 Conclusion

The paper presented a training free Retrieval-
Augmented Generation architecture called Tool-
ReAGt to improve tool retrieval performance in the
framework of solving complex tasks. The proposed
approach employed ReAct prompting to perform

an iterative and targeted retrieval of tools, is able to
run with and without given task decomposition and
showed that the retrieval performance improved on
the UltraTool benchmark. It is also clearly evident
that having access to the task decomposition in ad-
vance can greatly benefit the retriever in identifying
the relevant tools. Results showed the advantage of
the proposed approach against Conventional RAG
as well as against other methods in literature that
also followed an iterative approach to solving tool
retrieval.

Limitations

ToolReAGt is motivated to solve complex tasks and
when faced with a large tool set to choose from.
The study in this paper is limited to investigate the
performance of retriever in depth. It will be inter-
esting to evaluate the task completion performance
as a whole where the retriever should support the
planner in deriving the correct solution. We believe
this will be a natural extension and will form the
course for our future work.

In terms of run time, ToolReAGT is slower than
conventional RAG architectures due to its iterative
design and reliance on a 123B-parameter LLM,
which demands significantly more computational
resources which might have to be taken into ac-
count for practical use cases. Investigating the re-
liance on a smaller LLM and efficiently terminating
the iterative loop of ReAcT is something that has
not been explored in the current work.

References

Yu Du, Fangyun Wei, and Hongyang Zhang. 2024. Any-
tool: Self-reflective, hierarchical agents for large-
scale api calls. ArXiv, abs/2402.04253.

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang,
Xin Xin, Pengjie Ren, Zhumin Chen, and Jun Ma.
2023. Confucius: Iterative tool learning from intro-
spection feedback by easy-to-difficult curriculum. In
AAAI Conference on Artificial Intelligence.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting
Hu. 2023. Toolkengpt: Augmenting frozen lan-
guage models with massive tools via tool embeddings.
ArXiv, abs/2305.11554.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Ji-
ahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng,
Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng
Xu, and Qun Liu. 2024. Planning, creation, us-
age: Benchmarking llms for comprehensive tool
utilization in real-world complex scenarios. ArXiv,
abs/2401.17167.

Kalervo Jirvelin and Jaana Kekéldinen. 2002. Cumu-
lated gain-based evaluation of ir techniques. ACM
Trans. Inf. Syst., 20:422-446.

Yilun Kong, Jingqing Ruan, YiHong Chen, Bin Zhang,
Tianpeng Bao, Shi Shiwei, du Guo Qing, Xiaoru Hu,
Hangyu Mao, Ziyue Li, Xingyu Zeng, Rui Zhao, and
Xueqgian Wang. 2024. TPTU-v2: Boosting task plan-
ning and tool usage of large language model-based
agents in real-world industry systems. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing: Industry Track, pages
371-385, Miami, Florida, US. Association for Com-
putational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks. Preprint, arXiv:2005.11401.

Zhi Li, Yicheng Li, Hequan Ye, and Yin Zhang. 2024.
Towards autonomous tool utilization in language
models: A unified, efficient and scalable framework.
In International Conference on Language Resources
and Evaluation.

Feiteng Mu, Yong Jiang, Liwen Zhang, Chu Liu, Wenjie
Li, Pengjun Xie, and Fei Huang. 2024. Query routing
for homogeneous tools: An instantiation in the rag
scenario. Preprint, arXiv:2406.12429.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022.
Talm: Tool augmented language models. ArXiv,
abs/2205.12255.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large lan-
guage model connected with massive apis. ArXiv,
abs/2305.15334.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shi Liang, Xingyu Shen, Bokai Xu, and 22
others. 2023a. Tool learning with foundation models.
ArXiv, abs/2304.08354.

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan,
Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,
Jie Zhou, Marc H. Gerstein, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2023b. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
ArXiv, abs/2307.16789.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaigiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024. Towards completeness-oriented tool re-
trieval for large language models. In Proceedings of
the 33rd ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’24, page
1930-1940, New York, NY, USA. Association for
Computing Machinery.

https://api.semanticscholar.org/CorpusID:267500288
https://api.semanticscholar.org/CorpusID:267500288
https://api.semanticscholar.org/CorpusID:267500288
https://api.semanticscholar.org/CorpusID:261243312
https://api.semanticscholar.org/CorpusID:261243312
https://api.semanticscholar.org/CorpusID:258823133
https://api.semanticscholar.org/CorpusID:258823133
https://api.semanticscholar.org/CorpusID:267320882
https://api.semanticscholar.org/CorpusID:267320882
https://api.semanticscholar.org/CorpusID:267320882
https://api.semanticscholar.org/CorpusID:1981391
https://api.semanticscholar.org/CorpusID:1981391
https://doi.org/10.18653/v1/2024.emnlp-industry.27
https://doi.org/10.18653/v1/2024.emnlp-industry.27
https://doi.org/10.18653/v1/2024.emnlp-industry.27
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://api.semanticscholar.org/CorpusID:269804232
https://api.semanticscholar.org/CorpusID:269804232
https://arxiv.org/abs/2406.12429
https://arxiv.org/abs/2406.12429
https://arxiv.org/abs/2406.12429
https://api.semanticscholar.org/CorpusID:249017698
https://api.semanticscholar.org/CorpusID:258865184
https://api.semanticscholar.org/CorpusID:258865184
https://api.semanticscholar.org/CorpusID:258179336
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759
https://doi.org/10.1145/3627673.3679847
https://doi.org/10.1145/3627673.3679847

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaigiang Wang, Dawei Yin, Jun Xu, and Ji-rong
Wen. 2025. Tool learning with large language mod-
els: a survey. Frontiers of Computer Science, 19(8).

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
ArXiv, abs/2302.04761.

Hongru Wang, Yujia Qin, Yankai Lin, Jeff Z. Pan, and
Kam-Fai Wong. 2024. Empowering large language
models: Tool learning for real-world interaction. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR *24, page 2983-2986, New
York, NY, USA. Association for Computing Machin-
ery.

Qiancheng Xu, Yongqing Li, Heming Xia, and Wen-
jie Li. 2024. Enhancing tool retrieval with itera-
tive feedback from large language models. ArXiv,
abs/2406.17465.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,
Yongliang Shen, Ren Kan, Dongsheng Li, and
Deqing Yang. 2024. Easytool: Enhancing llm-
based agents with concise tool instruction. ArXiv,
abs/2401.06201.

Yuxiang Zhang, Xin Fan, Junjie Wang, Chongxian Chen,
Fan Mo, Tetsuya Sakai, and Hayato Yamana. 2024.
Data-efficient massive tool retrieval: A reinforcement
learning approach for query-tool alignment with lan-
guage models. In Proceedings of the 2024 Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval in the Asia
Pacific Region, SIGIR-AP 2024, page 226-235, New
York, NY, USA. Association for Computing Machin-
ery.

Yuanhang Zheng, Peng Li, Wei Liu, Yang Liu, Jian
Luan, and Bin Wang. 2024. ToolRerank: Adaptive
and hierarchy-aware reranking for tool retrieval. In
Proceedings of the 2024 Joint International Con-
ference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 16263—-16273, Torino, Italia. ELRA and ICCL.

A Prompts

The following lists examples of prompts used as
input to the RAG-systems evaluated in this paper:

plain_fulltask Only the full task for which tools
had to be retrieved and no other information. Ex-
ample: "Given the following complex task: "I need you to
help me create a file called *"Work_Tasks.txt’ on the desktop,
and then write ’'Preparation for Tomorrow’s Meeting’ into it."
and the list of tools in the context, select the best tools to solve

the complex task."

sub-task Only the sub-task for which a tool had
to be retrieved. Example: "Given the following task:
"step": "1.2 Use file writing tool to create and write con-
tent" , select the best tool provided in the context to solve
the task. For an example this could be step "1.2 Query the
current exchange rate", and the response format would then
be: [{"step": "1.2 Query the current exchange rate", "tool":
"currency_exchange_rate"}]}. Provide your answer exactly
in the same format as in the example and do not add anything

else."

+fulltask sub-task plus full task, but no task de-
composition. Example: "Given the following task: "I
need you to help me create a file called *Work_Tasks.txt” on
the desktop, and then write ’Preparation for Tomorrow’s Meet-
ing’ into it.", select the best tool provided in the context to
solve the following substep: ["step": "1.2 Use file writing tool
to create and write content”]. For an example this could be
step "1.2 Query the current exchange rate", and the response
format would then be: [{"step": "1.2 Query the current ex-
change rate", "tool": "currency_exchange_rate"}]}. Provide
your answer exactly in the same format as in the example and

do not add anything else."

(fulltask)+decomp, single sub-task, full task,
and task decomposition; single tool output in gen-
eration. Example: "Given the following task: "I need
you to help me create a file called *Work_Tasks.txt’ on the
desktop, and then write *Preparation for Tomorrow’s Meeting’
into it." and its decomposition into sub-tasks here: [{"step":
"1. Create file"}, {"step": "1.1 Get file creation information
(File path: Desktop/Work_Tasks.txt, File content: Preparation
for Tomorrow’s Meeting)"}, {"step": "1.2 Use file writing
tool to create and write content”, "tool": ""}, {"step": "1.3
Confirm file creation and content writing success"}] , select
the best tool provided in the context to solve the following
substep: ["step": "1.2 Use file writing tool to create and write
content”]. For an example this could be step "1.2 Query the
current exchange rate", and the response format would then
be: [{"step": "1.2 Query the current exchange rate", "tool":
"currency_exchange_rate"}]}. Provide your answer exactly
in the same format as in the example and do not add anything

else."

fulltask+decomp, multi sub-task, full task, task
decomposition; allowing multiple tools in gener-
ation. Example: "You are an expert in selecting tools
to solve a given task. The task is typically a sub-task of a
more complex task and you are given the complex task, its
decomposition into sub-tasks and the sub-task you are asked
to select tools for by calling the "ultratools_json_tools" tool
with a suitable query. So here is the complex task: "I need

you to help me create a file called *Work_Tasks.txt’ on the

https://doi.org/10.1007/s11704-024-40678-2
https://doi.org/10.1007/s11704-024-40678-2
https://api.semanticscholar.org/CorpusID:256697342
https://api.semanticscholar.org/CorpusID:256697342
https://doi.org/10.1145/3626772.3661381
https://doi.org/10.1145/3626772.3661381
https://api.semanticscholar.org/CorpusID:270711291
https://api.semanticscholar.org/CorpusID:270711291
https://api.semanticscholar.org/CorpusID:266977201
https://api.semanticscholar.org/CorpusID:266977201
https://doi.org/10.1145/3673791.3698429
https://doi.org/10.1145/3673791.3698429
https://doi.org/10.1145/3673791.3698429
https://aclanthology.org/2024.lrec-main.1413/
https://aclanthology.org/2024.lrec-main.1413/

desktop, and then write ’Preparation for Tomorrow’s Meet-
ing’ into it." and its decomposition into sub-tasks: [{"step":
"1. Create file"}, {"step": "1.1 Get file creation information
(File path: Desktop/Work_Tasks.txt, File content: Preparation
for Tomorrow’s Meeting)"}, {"step": "1.2 Use file writing
tool to create and write content”, "tool": ""}, {"step": "1.3
Confirm file creation and content writing success"}]. Given
this context, and the list of tools provided to you by calling
the "ultratools_json_tools"-tool, select the best tools to solve
the following substep: ["step": "1.2 Use file writing tool to
create and write content”]. For an example this could be
step "1.2 Query the current exchange rate", and the response
format would then be: [{"step": "1.2 Query the current ex-
change rate", "tool1": "currency_exchange_rate"}", "tool2":
"currency_exchange_tool"}]. You can provide multiple tools
ranked by their order of relevance when you think there are
multiple tools capable to solve the task. Provide your answer
exactly in the same format as in the example and do not add

anything else."

B ReAct prompt template

Below is the ReAct prompt template provided in the

Llamalndex’ version utilized in the experiments.

You are designed to help with a variety of tasks, from
answering questions to providing summaries to other types of
analyses.

Tools

You have access to a wide variety of tools. You are respon-
sible for using the tools in any sequence you deem appropriate
to complete the task at hand. This may require breaking the
task into sub-tasks and using different tools to complete each
sub-task.

You have access to the following tools:

{tool_desc}

{context_prompt}

Output Format

Please answer in the same language as the question and use
the following format:

Thought: The current language of the user is: (user’s lan-
guage). I need to use a tool to help me answer the question.
Action: tool name (one of {tool_names}) if using a tool. Ac-
tion Input: the input to the tool, in a JSON format representing
the kwargs (e.g. {{"input": "hello world", "num_beams": 5}})

Please ALWAYS start with a Thought.

NEVER surround your response with markdown code
markers. You may use code markers within your response if
you need to.

Please use a valid JSON format for the Action Input. Do
NOT do this {{’input’: "hello world’, 'num_beams’: 5} }.

If this format is used, the tool will respond in the following
format:

"https://docs.1lamaindex.ai/en/stable/

Observation: tool response

You should keep repeating the above format till you have
enough information to answer the question without using any
more tools. At that point, you MUST respond in one of the
following two formats:

Thought: I can answer without using any more tools. I'll
use the user’s language to answer

Answer: [your answer here (In the same language as the
user’s question)]

Thought: I cannot answer the question with the provided
tools.

Answer: [your answer here (In the same language as the
user’s question)]

Current Conversation
Below is the current conversation consisting of interleaving

human and assistant messages.

https://docs.llamaindex.ai/en/stable/

	Introduction
	Related work
	Methods
	Conventional RAG
	ToolReAGt

	Data
	Evaluation setup
	Tool representation
	Vector index
	Impact of input information

	Results
	Evaluation metrics
	Discussion

	Conclusion
	Prompts
	ReAct prompt template

