
Published in Transactions on Machine Learning Research (10/2022)

Symbolic Regression is NP-hard

Marco Virgolin marco.virgolin@cwi.nl
Centrum Wiskunde & Informatica, Amsterdam, the Netherlands

Solon P. Pissis solon.pissis@cwi.nl
Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
Vrije Universiteit, Amsterdam, the Netherlands

Reviewed on OpenReview: https: // openreview. net/ forum? id= LTiaPxqe2e

Abstract

Symbolic regression (SR) is the task of learning a model of data in the form of a mathematical
expression. By their nature, SR models have the potential to be accurate and human-
interpretable at the same time. Unfortunately, finding such models, i.e., performing SR,
appears to be a computationally intensive task. Historically, SR has been tackled with
heuristics such as greedy or genetic algorithms and, while some works have hinted at the
possible hardness of SR, no proof has yet been given that SR is, in fact, NP-hard. This
begs the question: Is there an exact polynomial-time algorithm to compute SR models? We
provide evidence suggesting that the answer is probably negative by showing that SR is
NP-hard.

1 Introduction

Symbolic regression (SR) is a sub-field of machine learning concerned with discovering a model of the given
data in the form of a mathematical expression (or equation) (Koza, 1994; Schmidt & Lipson, 2009). For
example, consider having measurements of planet masses m1 and m2, the distance r between them, and the
respective gravitational force F . Then, an SR algorithm would ideally re-discover the well-known expression
(or an equivalent formulation thereof) F = G × m1m2

r2 , with G = 6.6743 × 10−11, by opportunely combining
the mathematical operations (here, of multiplication and division) with the variables and constant at play.

The appeal of learning models as mathematical expressions goes beyond obtaining predictive power alone, as
is commonplace in machine learning. In fact, SR models are particularly well suited for human interpretability
and in-depth analysis (Otte, 2013; Virgolin et al., 2021b; La Cava et al., 2021). This aspect enables a safe and
responsible use of machine learning models for high-stakes societal applications, as requested in the AI acts
by the European Union and the United States (European Commission, 2021; 117th US Congress, 2022; Jobin
et al., 2019). Moreover, it enables scientists to gain deeper knowledge about the phenomena that underlie the
data. Consequently, SR enjoys wide applicability: SR has successfully been applied to astrophysics (Lemos
et al., 2022), chemistry (Hernandez et al., 2019), control (Derner et al., 2020), economics (Verstyuk &
Douglas, 2022), mechanical engineering (Kronberger et al., 2018), medicine (Virgolin et al., 2020b), space
exploration (Märtens & Izzo, 2022), and more (Matsubara et al., 2022).

As we will describe in Sec. 2, many different algorithms have been proposed to address SR, ranging from
genetic algorithms to deep learning ones. Existing algorithms either lack optimality guarantees or heavily
restrict the space of SR models to consider. In fact, there is a wide belief in the community that SR is an
NP-hard problem1 (Lu et al., 2016; Petersen et al., 2019; Udrescu & Tegmark, 2020; Li et al., 2022). However,
to the best of our knowledge, this belief had yet to be solidified in the form of a proof prior to the advent of
this paper. Indeed, we prove that there exist instances of the SR problem for which one cannot discover the
best-possible mathematical expression in polynomial time unless P=NP. Id est, SR is an NP-hard problem.

1Lu et al. (2016) state that SR is NP-hard but provide no reference nor proof.

1

https://openreview.net/forum?id=LTiaPxqe2e


Published in Transactions on Machine Learning Research (10/2022)

2 Background

We begin with a historical overview of how SR has been attempted from an algorithmic perspective (Sec. 2.1),
and then follow with related work concerning hardness (Sec. 2.2).

2.1 SR algorithms

The introduction of SR is generally attributed to John R. Koza (e.g., Zelinka et al. (2005) make this claim);
however, the problem of finding a mathematical expression or equation that explains empirical measurements
was already considered in earlier works (Gerwin, 1974; Langley, 1981; Falkenhainer & Michalski, 1986). Such
works build mathematical expressions by iterative application of multiple heuristic tests on the data.

Figure 1: Example of a tree that
encodes f(x) = (sin(x1) + x2) ×
x3/x1.

Koza is best known for his pioneering work on genetic programming (GP),
i.e., the form of evolutionary computation where candidate solutions are
variable-sized and represent programs (Koza et al., 1989; Koza, 1990;
1994). Early forms of GP were proposed by Cramer (1985); Hicklin (1986).
Koza showed that GP can be used to discover SR models by encoding
mathematical expressions as computational trees (see Fig. 1). In such trees,
internal nodes represent functions (e.g., +, −, ×, etc.) that are drawn
from a pre-decided set of possibilities, and leaf nodes represent variables
or constants (e.g., x1, x2, . . . , −1, π, etc.). GP evolves a population of
trees by initially sampling random trees, and then conducts the following
steps: (1) stochastic replacement and recombination of their sub-trees; (2)
evaluation of the fitness by executing the trees and assessing their output;
and (3) stochastic survival of the fittest.

Recently, La Cava et al. (2021) proposed SRBench, a benchmarking
platform for SR that includes more than 20 algorithms and more than 250 data sets. SRBench shows
that several state-of-the-art algorithms for SR are GP-based. Among these, at the time of writing, Operon
by Burlacu et al. (2020) was found to perform best in terms of discovering accurate SR models; and GP-
GOMEA by Virgolin et al. (2021a) was found to perform best in terms of discovering decently-accurate and
relatively-simple SR models (i.e., shorter mathematical expressions). Other forms of GP, such as strongly-typed
GP (Montana, 1995), grammar-guided GP (McKay et al., 2010), and grammatical evolution (O’Neill & Ryan,
2001), are often used to tackle dimensionally-aware SR, i.e., the search of mathematical expressions with
constraints to achieve meaningful combinations of units of measurement.

SR has been addressed with other types of algorithms than genetic ones, including, e.g., Monte-Carlo tree
search (Cazenave, 2013; Sun et al., 2022). Moreover, several authors proposed deterministic algorithms. For
example, Worm & Chiu (2013) and Kammerer et al. (2020) proposed enumeration algorithms which make
SR tractable by restricting the space of possible models to consider and including dynamic programming and
pruning strategies. Cozad (2014); Cozad & Sahinidis (2018) showed how SR can be addressed with mixed
integer nonlinear programming. McConaghy (2011) proposed FFX, which generates a linear combination of
many functions that are linearly-independent from each other, and then fits its coefficients with the elastic
net (Zou & Hastie, 2005) to promote sparsity. Olivetti de França (2018) and Rivero et al. (2022) propose
greedy algorithms that start from small mathematical expressions and iteratively expand them, by replacing
existing components with larger ones from a set of possibilities.

Lastly, recent years have seen the proposal of deep learning-based algorithms for SR. Petersen et al. (2020)
cast the SR problem as a reinforcement learning one and train a recurrent neural network to generate
accurate SR models. Udrescu & Tegmark (2020) leverage neural networks in order to test for symmetries and
invariances in the data that are then used to prune the space of possible SR models. An end-to-end approach
is taken by Kamienny et al. (2022) and Vastl et al. (2022), who train deep neural transformers to produce SR
models directly from the data. Li et al. (2022) seek SR models by proposing a convexified formulation of
deep reinforcement learning.

In summary, existing SR algorithms are either heuristics, which do not guarantee optimality (e.g., genetic,
greedy, or deep learning-based algorithms), or they are exact algorithms that achieve optimality but only over
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a small subset of all possible SR models, to bound the runtime (e.g., dynamic programming and mixed-integer
nonlinear programming algorithms). This strongly hints to the fact that SR is NP-hard. As mentioned earlier,
no proof has yet been given.

2.2 Related hardness results

SR is typically posed as an empirical risk minimization (ERM) problem or, when regularization is considered,
a structural risk minimization one (Vapnik, 1999). There exists a multitude of theoretical results in machine
learning posing the problem as an ERM one. For example, Blum & Rivest (1992) famously proved the
NP-completeness of training a three node-neural network to label a given data set correctly. The loss
employed in such situations is commonly the 0-1 loss, i.e., the loss that returns 0 if the output of the model
(or prediction) equals the output that is expected from the data (or label) and 1 otherwise. More recently, it
has been shown that, under the 0-1 loss, it is NP-hard to even train a linear classifier to be ϵ-better than
random (Feldman et al., 2012). In the context of coding theory, ERM with 0-1 loss has been used to prove
the NP-hardness of finding a univariate polynomial of maximum degree k over a finite field (a code) that
maximizes code matching (Guruswami & Vardy, 2005).

Under different types of loss, polynomial-time solutions to ERM exist. A famous example of this is linear
regression under the squared error loss, which can be solved in polynomial time via ordinary least squares.
Recently, Backurs et al. (2017) presented fine-grained complexity results for ERM with kernel-based and
neural network-based approaches.

SR can be set to search in the space of polynomials and one can choose to use the 0-1 loss. Moreover, one can
in principle set SR to work in finite fields rather than on real numbers to operate with polynomials for discrete
codes. For example, Koza (1990) shows how to set GP to learn Boolean circuits by composition of logic gates.
This means that the hardness of SR can follow from linking back to results such as the one by Feldman et al.
(2012) (we sketch how this can be achieved at the end of Sec. 4). The modern connotation of SR is focused
on regression (i.e., we seek a model f : Rd → R with d the number of features) and commonly-used losses
have co-domain in R+

0 , such as the absolute error loss or the squared error loss; rather than the 0-1 loss. We
will provide a proof of NP-hardness that is general to this type of losses (Eq. (2)). In essence, we will show
that when certain basic arithmetic operations are chosen for combining (e.g., addition), SR becomes NP-hard.
This choice of basic operations allows us to reduce from a rather classical variant of the knapsack problem,
namely, the unbounded subset set problem (Kellerer et al., 2004).

3 Preliminaries

We will hereon refer to SR models as functions when appropriate, as this is their fundamental nature.
Functions take variables as arguments. One can use the identity function, i.e., the function that returns the
value of the variable taken as its argument. For simplicity of exposition, we will generically refer to functions
and not make a distinction between (non-identity) functions and variables. Similarly, we will refer to functions
also for constant functions, i.e., functions that can only return a single numerical value, irrespective of their
arguments. This said, let us recall the concept of function composition, which is central to SR.
Definition 1. Function composition

Given two functions f : A → B and g : B → C, function composition, which we denote by g ◦ f , is the
operation that produces a third function h : A → C, such that h(x) = g(f(x)).

Thanks to function composition, we can now define the concept of search space of an SR problem.
Definition 2. Search space of SR

Let P be a set of functions. The search space of SR is the function space F that contains all functions that
can be formed by composition of the elements of P.

To better understand what Def. 2 states, consider that P can be set to contain a mix of functions that perform
basic algebraic operations such as addition, subtraction, multiplication, and division; transcendental functions
such as sin, cos, log, exp; constant functions (or simply constants), such as c42(x) = 42 and cπ(x) = π for
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any x; and identity functions that represent variables of interest for the problem at hand, such as x1, x2, x3.
P is typically referred to as the primitive set, and its elements as primitives (Poli et al., 2008). Once P has
been decided, F is determined. For example, choosing P = {+(·, ·), −(·, ·), ×(·, ·), x1, x2, −1, +1} means that
F will contain a subset of all possible polynomials of arbitrary degree in x1 and x2. In particular, F is a
subset because only some coefficients can be expressed, by composing constants with addition, subtraction,
and multiplication.

Let us clarify a point regarding constants in particular. Normally, one would include constants which are
relevant to the instance of SR at hand. For example, if the unknown phenomenon for which an SR model
is sought is suspected to have sinusoidal components, it may be advisable to include multiples of π in P.
Moreover, P can be set to contain special elements that represent probability distributions from which
constants can be sampled (see the concept of ephemeral random constant described by Koza (1994); Poli et al.
(2008)). We denote one such element by R and, e.g., R can be chosen to represent the uniform distribution
between two numbers, or the normal distribution with a certain mean and variance. When an SR algorithm
picks R from P to compose an SR model, a constant is sampled from the distribution identified by R. Here
(more specifically, in Corollary 1) we will generously assume that any constant can be sampled directly from
R, and therefore that there is no need for a real-valued optimizer to be part of the SR algorithm. For example,
having P = {+(·, ·), −(·, ·), ×(·, ·), x1, x2,R} will mean that F contains all polynomials of arbitrary degree in
x1 and x2.

We can now proceed by providing a definition of the SR problem. While this definition can be extended to
other domains, we focus on handling real-valued numbers as the majority of the works takes place in this
domain, and subsets thereof.
Definition 3. Symbolic Regression (SR) problem

Given a set P of functions, a distance L : R × R → R+
0 , vectors xi = (x1,i, . . . , xd,i) ∈ Rd and scalars yi ∈ R,

for i = 1, . . . , n, the SR problem asks for finding a function f⋆ such that:

f⋆ ∈ arg min
f∈F

1
n

n∑
i=1

L (yi, f(xi)) (1)

where F is the search space that is defined by P.

We provide some remarks concerning the proposed definition of the SR problem. Firstly, let us map the
objects provided in the definition to terms familiar to a machine learning audience. The pair (xi, yi) is
normally what is referred to as observation, data point, example, or sample, where xj,i is the value of the
jth feature or variable for the ith observation, and yi is the value of the label or target variable for the
same observation. The set that contains the observations upon which L is computed, i.e., D = {(xi, yi)}n

i=1,
is called training set. It is commonly assumed that the observations in D were drawn independently and
identically distributed (i.i.d.) from an unknown probability distribution. Moreover, the distance L is called
loss. Losses need not be distances, but in SR they normally are. Popular choices in the literature are the
absolute error loss and the squared error loss. Here, we consider losses of the form:

L(yi, f(xi)) = |yi − f(xi)|r, (2)

with r ∈ N0: for r = 0 one gets the 0-1 loss; for r = 1 one gets the absolute error loss; and for r = 2 one gets
the squared error loss.

The minimization of the loss function across the observations in D makes SR an ERM problem. As is generally
the case for learning, one actually desires f to generalize to new (or also called unseen) observations, i.e.,
observations that come from the same underlying probability distribution but were not available in D. In
other words, it is not sufficient that f⋆ is a best-possible function with respect to the training set, as the loss
should remain minimal also for new observations that are not available to us. To this end, a common practice
is to heuristically use a separate set of data (the validation set) to estimate the generalization to observations
outside the training set. Another approach, which is often used together and not alternative to adopting
a validation set, is to perform structural risk minimization, i.e., account for regularization terms such as
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λ × C(f), where λ ∈ R+
0 controls the regularization strength and C : F → R is a function of the complexity

of f . Typical goals of such regularization terms are improving generalization (by limiting effects akin to
Runge’s phenomenon (Fornberg & Zuev, 2007)) or, particularly for SR, improving the interpretability of f .
Implementations of C range from weighted counting of the number of primitives that constitute f (Ekart &
Nemeth, 2001; Hein et al., 2018) to machine learning models trained from human feedback to predict f ’s
interpretability (Virgolin et al., 2020a; 2021b). Here, for simplicity, we do not consider regularization and
focus on ERM alone. Equivalently put, we consider λ = 0: note that this choice is not limiting because this
step can also be taken when constructing the proof of Theorem 1. We will briefly get back to how λ > 0 and
C may be used to build interesting search spaces for the hardness of SR at the end of Sec. 4.

Still, considering a “pure optimization” formulation (or ERM), as given in Eq. (1), can be considered to be a
pre-requisite for being able to machine-learn accurate models from the data; in fact, it is commonplace for
literature that concerns the hardness of learning to provide results with respect to the training set (see, e.g.,
(Feldman et al., 2012; Hu et al., 2019)). In a similar fashion, here we will consider the case of minimizing the
empirical risk with respect to the training set D and show that this alone already poses a challenge for any
SR algorithm.

Here, we assume that computing f(x) and L(y, f(x)) (see Def. 3) can be done in polynomial time. Regarding
L, our assumption is met for commonly-used losses such as the absolute and squared error ones. In fact,
computing losses of such form takes O(n) operations, i.e., the runtime is linear in the number of observations.
Regarding f , our assumption is met, e.g., for all functions that can be discovered by the SR algorithms
currently in SRBench (La Cava et al., 2021); a notable exception of practical interest are recursive functions
taking exponential time to compute (see, e.g., d’Ascoli et al. (2022)). For non-recursive functions, f can be
implemented as a directed acyclic graph, where nodes represent the functions from P, and edges represent
compositions. To compute f(x), it suffices to visit each node of the graph for each observation, thus requiring
O(ℓ × n) operations, where ℓ is the number of primitives in f . Fig. 1 shows an example of such a graph,
especially in the form of a tree, which is perhaps the most common way of encoding mathematical expressions
in SR (see, e.g., the SR algorithms benchmarked by La Cava et al. (2021)).

We conclude this section with the following important definition.

Definition 4. Decision version of the SR problem (SR-Dec)

Given an SR instance and an ϵ ∈ R+
0 , SR-Dec outputs YES if and only if:

∃f ∈ F : 1
n

n∑
i=1

L (yi, f(xi)) < ϵ. (3)

Essentially, Def. 4 is the problem of deciding whether there exists a function f in the search space such that
its empirical risk is smaller than a chosen threshold ϵ.

4 The result

We proceed directly by providing the main result of this paper.

Theorem 1. The SR problem is NP-hard.

Proof. Let us begin by stating that SR-Dec is in NP. Recall that the computations of f(x) and L(yi, f(xi))
take polynomial time (see Sec. 3). Of course, the check < ϵ takes O(1) time. Thus, if f is guessed by an
oracle, then we can provide an answer to SR-Dec in polynomial time.

We proceed by considering the unbounded subset sum problem (USSP). USSP is a similar problem to the
unbounded knapsack problem, where a same item can be put in the knapsack an arbitrary number of times,
and the weight of an item corresponds exactly to the profit gained by including that item in the knapsack.
The decision version of USSP, USSP-Dec, is defined as follows. Given j = 1, . . . , k (k items), wj ∈ N (weight
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of that item), and t ∈ N (the target), USSP-Dec asks:

∃m :
k∑

j=1
wjmj = t? (4)

where mj ∈ N0 (multiplicity with which an item is picked). USSP-Dec is known to be NP-complete (Kellerer
et al., 2004).

To prove that SR-Dec is NP-complete, we show that any instance of USSP-Dec can be reduced to some
instance of SR-Dec in polynomial time. To this end, we will restrict SR-Dec as follows: (1) We pick the
set of primitives P to be P = {+, x1, . . . , xd}, with d = k; (2) We set ϵ = 1. Next, we craft D to have a
single observation (n = 1) and d = k features. For the only observation in D (dropping the index for the
observation number, since there is only one), we set x1 = w1, x2 = w2, . . . , xk = wk, and y = t.

In other words, we have set the search space F to contain only linear sums of the features in the data set D,
i.e., functions of the form f(x) =

∑d
j=1 xjmj . Importantly, mj ∈ N0 and xi ∈ N, meaning that the co-domain

of any f is N0. Consequently, the smallest non-zero loss that can be achieved is 1. The only functions f that
can achieve an error smaller than ϵ = 1 are those that interpolate the observation exactly, i.e., f(x) = y.

Then, the following holds:

(Eq. (3) with ϵ = 1) ∃f ∈ F : L (y, f(x)) < 1? (5)
(L (y, f(x)) < 1 ⇐⇒ f(x) = y) ∃f ∈ F : f(x) = y? (6)

(Equivalence y = t due to D) ∃f ∈ F : f(x) = t? (7)

(Expanding F based on choice of P) ∃f ∈


d∑

j=1
xjmj : mj ∈ N0

 : f(x) = t? (8)

(Equivalence xj = wj , d = k due to D) ∃f ∈


k∑

j=1
wjmj : mj ∈ N0

 : f(x) = t? (9)

(Re-formulating in terms of m) ∃m :
k∑

j=1
wjmj = t? (10)

In other words, there exist some instances of SR-Dec that can be re-formulated as USSP-Dec (cfr. Eqs. (4)
and (10)). Now, since assembling P as stated above takes linear time in k, picking ϵ = 1 takes O(1) time,
and constructing D as stated above takes linear time in k, then any instance of USSB-Dec can be reduced to
some instance of SR-Dec in polynomial time: SR-Dec is NP-complete.

We conclude the proof with a reductio ab absurdum. Let us assume that there exists an algorithm to compute
an optimal f⋆ for the SR problem (Def. 3) in polynomial time. An optimal f⋆ is the one for which the loss is
minimal, which means that using f⋆ in Eq. (3) allows us to immediately answer SR-Dec. Since verifying that
L(y, f⋆(x)) < ϵ takes polynomial time, we conclude that if the SR problem can be solved in polynomial time,
then we can also solve SR-Dec in polynomial time. Therefore, the SR problem is NP-hard.

We remark that, in the proof of Theorem 1, we construct P so as not to contain R (nor any constant). Some
readers might disagree with this quite broad definition of SR. In fact, some SR algorithms heavily rely on
the presence of constants as well as on their optimization (e.g., FFX by McConaghy (2011) and FEAT
by La Cava et al. (2018)). Not allowing for arbitrary constants to be present in the functions of the search
space might be seen as a violation of the very definition of SR. In other words, some might think that P
must contain R. We next show that SR remains NP-hard in this special case.
Corollary 1. The SR problem is NP-hard even when P must include R.
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Proof. We follow a similar construction of the proof of Theorem 1. This time, we set P to additionally
contain R, i.e., P = {+, x1, x2, . . . , xd,R}, with d = k. This means that the function space F now
contains functions of the form f(x) = c +

∑d
j=1 xjmj with mj ∈ N0 and c ∈ R (sampled from R).

As to D, we will now include two observations instead of a single one. The first observation is set as
before, i.e., x1,1 = w1, x2,1 = w2, . . . , xk,1 = wk (d = k) and y1 = t. For the second observation, we set
x1,2 = 0, x2,2 = 0, . . . , xk,2 = 0 and y2 = 0, i.e., the value of all features and of the label are set to zero. It
now remains to determine how we should set ϵ.

Because of our construction of D, an f for which SR-Dec answered YES in the situation considered in
Theorem 1, i.e., with c = 0, would still make SR-Dec answers YES for a c with sufficiently small magnitude.
Note that those functions interpolate D exactly if c = 0. Thus, the magnitude of c must be such that
|c|r < ϵ, with r the degree of the loss (Eq. (2)), because the corresponding empirical risk for those functions
is 1

2 |c|r + 1
2 |c|r = |c|r, where the two summands on the left side of the equation are respective to the two

observations in D.

Now the question becomes whether using c ̸= 0 allows to answer YES to more functions than those that
would interpolate D when c = 0. If that would be true, then we can no longer apply the strategy used in the
proof of Theorem 1 to reduce from USSP-Dec. To be able to still use that strategy, we will now show that
there exist instances of SR-Dec, in particular by picking a different ϵ, such that even if P must include R,
then only functions with c = 0 are candidates for a YES answer. This would allow us to reduce once again
from USSP-Dec (by appropriately picking ϵ), because f(x) = 0 +

∑d
j=1 xjmj =

∑d
j=1 xjmj , as in Eq. (8).

For c ≠ 0 to allow SR-Dec to answer YES to more functions than those for when c = 0, c must contribute to
lower the empirical risk.

For the second observation, c can only increase the risk, because the loss is:

L(y2, f(x2)) = |y2 − f(x2)|r =

∣∣∣∣∣∣0 −

c +
d∑

j=1
0 × mj

∣∣∣∣∣∣
r

= |c|r. (11)

For the first observation, however, using c ≠ 0 can lower the respective loss and thus contribute to lowering
the empirical error. In particular, consider that the first functions that are candidates to receive a YES answer
thanks to c ̸= 0 are those that had a loss of 1 when c = 0 (see the proof of Theorem 1, where we set ϵ = 1).
If we can have SR-Dec answer NO to these functions, then it will necessarily answer NO also to all other
functions that have a loss larger than 1 on the first observation when c = 0. We thus proceed by considering
that the smallest, non-zero loss that can be obtained on the first observation for c ̸= 0, is |1 − c|r. This leads
to the following empirical risk over our D:

1
2

2∑
i=1

L(yi, f(xi)) = 1
2 (|1 − c|r + |0 − c|r) . (12)

For any integer r ≥ 0, the minimum is 1
2 × 1

2r−1 = 2−r: this is easy to verify for r = 0 and r = 1, while for
r ≥ 2 Eq. (12) describes a U-shaped curve that is symmetric around, and has minimum in c = 1

2 . Therefore,
it suffices to pick ϵ = 2−r: even if c is optimal, one cannot lower the empirical risk below 2−r for any function
whose loss (on the first observation) is not zero. In other words, imposing ϵ = 2−r ensures that SR-Dec will
answer YES iff SR-Dec answers YES also for c = 0. This means that one can set c = 0 and proceed with a
reduction from USSP-Dec as in the proof of Theorem 1.

Finally, we provide the following remark.
Remark. One can consider the structural risk minimization setting whereby the following minimization is
sought:

1
n

n∑
i=1

L(yi, f(xi)) + λC(f), with λ > 0. (13)

Then, SR-Dec can be restricted to automatically answer NO for any f that does not satisfy certain conditions,
such as linearity. For example, one can pick P = {+, ×, x1, . . . , xd,R} to search in the space of arbitrary
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polynomials, and pick C such that C(f) = ∞ if deg f ≥ k else 0, for an arbitrary integer k ≥ 0. Combining
this with the use of the 0-1 loss function enables to reduce SR-Dec from existing results in literature that
consider linear classifiers (Feldman et al., 2012) or coding polynomials in finite fields (Guruswami & Vardy,
2005).

5 Conclusion

Our main contribution here was to prove that symbolic regression (SR), i.e., the problem of discovering an
accurate model of data in the form of a mathematical expression, is in fact NP-hard. In particular, we have
provided formal definitions of what SR entails, and showed how the decision version of the unbounded subset
sum problem can be reduced to a decision version of the SR problem. Except for the general definition of
SR we considered, we have additionally shown that SR remains NP-hard even when the set of primitives
must contain distributions from which constants can be sampled, and provided a sketch of how an alternative
proof can be constructed by using the 0-1 loss and previous results from the literature.

Having settled the matter on the hardness of SR, we hope that this note inspires further works on lower and
upper bounds of different SR variants. In fact, while we have shown that hardness holds in principle (by picking
a search space suitable for reduction from USSP-Dec), there might exist specific variants of SR (e.g., different
search spaces, specific regularization terms, or specific type of data) that are more commonly encountered
in practical applications. For such more specific variants, proving hardness or designing polynomial-time
algorithms would complement the SR status quo, which mostly focuses on heuristic algorithmic design.
Ultimately, theoretical advances may greatly help advancing our knowledge of what is possible with SR.
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