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Abstract

Neural models are equivalent to dynamic systems
from a physics-inspired view, implying that com-
putation on neural networks can be interpreted
as the dynamical interactions between neurons.
However, existing work models neuronal interac-
tion as a weight-based linear transformation, and
the nonlinearity comes from the nonlinear activa-
tion functions, which leads to limited nonlinearity
and data-fitting ability of the whole neural model.
Inspired by Riemannian geometry, we interpret
neural structures by projecting neurons onto the
Riemannian neuronal state space and model neu-
ronal interaction with Riemannian metric (RieM ),
which provides a neural representation framework
with higher parameter efficiency. With RieM , we
further design a novel data-free neural compres-
sion mechanism that does not require additional
fine-tuning with real data. Using backbones like
ResNet and Vision Transformer, we conduct ex-
tensive experiments on datasets such as MNIST,
CIFAR-100, ImageNet-1k, and COCO object de-
tection. Empirical results show that, under equal
compression rates and computational complexity,
models compressed with RieM achieve superior
inference accuracy compared to existing data-free
compression methods.

1. Introduction
Integrating neural models with dynamical systems can pro-
vide theoretically solid insights into the learning theory of
neural representation (Liu & Theodorou, 2019; Li et al.,
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2022a; Gu & Dao, 2023; Pei & Wang, 2023). Mathemat-
ically, any weight-based neural architecture can be inter-
preted as neurons in a Euclidean neuronal state space (Pei
& Wang, 2023), which treats the neural weights as the dy-
namic relation between neuronal states in Euclidean neu-
ronal state space. This dynamics-inspired approach trans-
forms a weights-based neural model into a neurons-based
one, which typically requires fewer parameters since a sin-
gle neuron can be associated with many neural weights.
Thus, neurons seem like a more global unit of representa-
tion. However, Euclidean space’s overly simplified nature
results in a lower and underfitted representation capacity for
the neural models. It is necessary to interpret and analyze
neural models using more flexible nonlinear metrics beyond
those accompanied by Euclidean space.

Among various mathematical frameworks, Riemannian ge-
ometry (Petersen, 2006) extends the classical Euclidean
spaces via the Riemannian manifolds dealing with curved
nonlinear spaces (Lee & Lee, 2012). In the context of neural
models, Riemannian geometry excels in depicting nonlinear-
ity, offering greater flexibility in modeling the connections
among neurons compared to Euclidean spaces. Riemannian
metrics can capture interactions between different dimen-
sions of the neuronal state space. They treat these interdi-
mensional relations as additional hidden dimensions without
adding extra trainable parameters. This feature is critical
because we require a highly expressive metric function to de-
fine relations between neurons, enabling the representation
of every weight matrix in neural models in a neuron-centric
manner with fewer parameters. If we were to compute
relations between neurons using Euclidean metrics, the re-
sulting weight matrix would be a low-rank distance matrix.
This would significantly diminish the expressive power in
comparison to weights-based neural models, highlighting
the limitations of Euclidean metrics in this context. There-
fore, it is indispensable to introduce nonlinear Riemannian
metrics to enhance the expressive power of neuron-based
models. Theoretically, the resulting Riemannian neuronal
state space can possess higher representational capacity and
parameter efficiency.

There have been several attempts (Shao et al., 2018; Kaul
& Lall, 2019) to interpret data modeling using Riemannian
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Figure 1: Computing a Neural Riemannian Metric: We interpret an arbitrary weight matrix W ∈ Rm×n of a neural model
as the dynamical interactions between m input neurons and n output neurons. Each neuron is interpreted as Dq-dimensional
dynamical state, i.e., q(in)

x , q
(out)
y ∈ RDq , with x ∈ [1,m], y ∈ [1, n]. We assume Dq = 3 in this figure. Following this,

we interpret each weight value Wxy as the scalar-based relation measured by a Riemannian metric g : RDq × RDq → R
such that Wxy = g(q

(in)
x ,q

(out)
y ). The exact analytical form of this Riemannian metric is as follows. The dimensional

components of q(in)
x and q

(out)
y are mutually operated to generate Dq displacement vectors, i.e., d(s) ∈ RDq , s ∈ [1, Dq].

Then, we merge these displacement vectors via a non-linear summation operation, followed by a RDq 7→ R projection that
results in the scalar-based relation, which is expected to approximate each weight value.

geometry. However, the nonlinear neuronal interactions and
the dynamic neuronal system have not been well studied
from the Riemannian geometry perspective (Udriste & Tevy,
2020). To better integrate Riemannian dynamics with neural
models, we propose a Riemannian metric tailored for neural
models RieM to characterize interactions between neurons.
Unlike Pei & Wang (2023), which interprets a neural weight
linking two neurons as the path integral between the neural
states using Euclidean metrics, we use Riemannian metrics
instead without needing fine-tuning with real data. The only
parameters in the storage are the dynamical states of neu-
rons and the trainable parameters contained by Riemannian
metrics. Recall that the primary advantage of Riemannian
metrics is their ability to measure the relations between
all the dimensional components of two embeddings with-
out adding extra trainable parameters. They support com-
parisons across dimensions, unlike Lp-norms, which only
facilitate comparisons within the same dimension. Thus,
the Riemannian neural interactions can capture more in-
trinsic features comprehensively. To be compatible with
mainstream parallel computing pipelines, we also design
several complementary techniques, e.g., displacement ma-
trix, shared correlation counts, dynamical Merging, etc., to
better integrate Riemannian dynamics with neural models.

The experimental section focuses on how RieM facilitates
more efficient data-free model compression and accelerates
model inference. We apply RieM-based neural compression
to various vision models, including CNN-based models,

Transformer-based models, and the models from the DETR
family. We conduct experiments on public datasets includ-
ing MNIST (Deng, 2012), CIFAR-100 (Krizhevsky et al.,
2009), ImageNet-1k (Deng et al., 2009) and COCO (Lin
et al., 2014). We observe that RieM-based neural com-
pression significantly outperforms existing data-free com-
pression methods and surpasses those requiring additional
fine-tuning with real data. For instance, RieM allows us to
reduce the model size of LeNet-5 by 8.5 times with a 0.18%
accuracy improvement on MNIST. For Swin-Transformer,
RieM achieves a fourfold reduction on the model size with
only a 0.2% accuracy degradation on ImageNet-1k, without
additional fine-tuning using real data. On a ResNet-based
DETR (Carion et al., 2020), RieM also results in a 4.8 times
reduction in model size with 0.1% improvement on APsmall

on the COCO object detection benchmark.

Our method represents an effective attempt to interpret neu-
ral models using more advanced physical architectures. The
core idea is that if we aim to transform neural models into
more reasonable physics-inspired dynamical systems, we
should focus on the interactions between neurons. By ex-
pressing these interactions with more sophisticated physical
notions, such as Riemannian metrics, we can achieve more
parameter-efficient neural representations. Experimental re-
sults further validate the superiority of our method in vision
tasks. Codes are publicly available1.

1https://github.com/pzqpzq/flat-learning
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2. Preliminaries
2.1. Metric-based Neuronal Dynamics

A neural model is composed of neural layers interpreted as
weight matrices. Suppose we have a weight matrix W ∈
Rm×n with m,n ∈ N+, then each neural weight Wxy ≡
W[x, y] ∈ R where x ∈ [1,m] and y ∈ [1, n] can be
interpreted as the dynamical interaction between an input
neuron x and an output neuron y. Each neuron can be
interpreted as a trainable high-dimensional embedding (Pei
& Wang, 2023), e.g., an input neuron x refers to a Dq-
dimensional vector q(in)

x ∈ RDq with Dq ∈ N+, akin to
word embeddings, which are randomly initialized trainable
parameters. Therefore, the interaction between neurons
corresponds to the dynamical relation computed as

Wxy = g(q(in)
x ,q(out)

y ), (1)

where g refers to a metric function that takes two Dq-
dimensional vectors as input and returns a scalar as out-
put. In this setting, we transform traditional weight-based
neural models into neuron-based ones, where the trainable
parameters are the neurons themselves rather than the neural
weights. Apart from interpreting g as a mathematical metric
function, we also endow it with certain physical meaning.
From the theory of dynamics, g describes the interaction
force between two moving objects, i.e., two neurons with
changeable neural states in our research context.

2.2. Riemannian Metrics

Before introducing Riemannian metrics, we briefly intro-
duce two essential notions, i.e., smooth manifolds and tan-
gent space, in Riemannian geometry. Manifolds are a special
class of topological spaces that locally resemble Euclidean
space, and the smooth manifolds allow for the definition
of smooth functions on these spaces, providing a smooth
and differentiable structure for geometric and analytical
considerations. A tangent space to a point on a smooth
manifold is a mathematical concept that captures the idea
of “instantaneous velocity” or “directionality” at that point.

Now, we regard a Riemannian metric as a mathematical
structure that endows smooth manifolds with a notion of
distance and angles, allowing the definition of geometry on
the manifolds. Formally, a Riemannian metric g on a smooth
manifolds M is an inner product g : TxM× TxM → R
on each tangent space TxM of M for each x ∈ M and

g =
∑
i,j

gijdx
i ⊗ dxj

(2)

where ⊗ is the tensor product operation that combines two
tensors to generate a larger tensor. As the scenario of this
paper does not involve sequential data, dx can be simplified
to the static variable x for brevity.

In a machine learning context, one can simply regard
a Riemannian metric as a function that takes two high-
dimensional encodings as input and then returns a scalar that
has considered every dimensional component of these input
encodings. For example, suppose there is a smooth mani-
fold equipped with a Riemannian metric g, then the relation
between two arbitrary d-dimensional points u,v ∈ Rd on
this manifold can be measured via the pre-defined g. In this
case, the metric tensor g is seen as a function that deals with
the interactions between every possible pair of dimensional
components, i.e.,

g(u,v) = G(

d∑
i,j

gij(u[i],v[j])) (3)

where G and {gij} are specific functions. In the following
sections, we will illustrate how to construct computation-
ally efficient functions G and {gij} better suited for neural
models, and apply them to model compression.

3. RieM: Neural Riemannian Metrics
Following Sec. 2.1, we interpret a weight matrix W ∈
Rm×n as the dynamical interactions between the input neu-
rons x ∈ [1,m] and the output neurons y ∈ [1, n]. Each neu-
ron refers to a Dq-dimensional dynamical state qx ∈ RDq

in a neuronal manifolds Q. Our goal is to find a Riemannian
metric g such that g(qx,qy) approximates Wxy. Now we
obtain the general form of a neural Riemannian metric as
g : TqQ× TqQ → R. This form constitutes a group for the
neural Riemannian metric, and their collective objective is
to transform the high-dimensional neuron interactions into
a scalar neural weight. Next, we extend the aforementioned
metric form to the Dµ-dimensional metric space M, where
each dimension of the metric space corresponds to a neu-
ral manifold. As a result, every neural manifold carries an
individualized Riemannian sub-metric g(α), α ∈ [1, Dµ].
Then we can merge them to capture more patterns from each
metric dimension, i.e.,

g(qx,qy) =

Dµ∑
α=1

ρα · g(α)(qx,qy) ∈ R (4)

where ρα is a trainable scalar linked to each metric dimen-
sion. Recall that the essence of the neural Riemannian
metrics lies in the comprehensive interaction between the
dimensions of the two vectors serving as inputs, i.e., every
dimension of qx and qy should exhibit thoroughly mutual
interaction. To achieve this effect, we design two options to
construct the analytical form of the sub-metric g(α).

Option One concatenates qx and qy into a unified vector,
which is then fed into a trainable universal approximator,
e.g., a feed-forward neural network (FFN),

g(α)(qx,qy) = FFN
(
[qx;qy]

)
(5)
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where the FFN maps R2Dq into a scalar R. This operation
can implicitly capture the interactions between the 2Dq

dimensional components of qx and qy , respectively.

Option Two adopts a more explicit approach to capture
the interaction between distinct dimensions (see Figure 1).
We begin by constructing Dq different displacement vectors
d(s) ∈ RDq with displacement steps s = [1, Dq] such that,

d(s)[i] = qx[i]− qy[i+ s] (6)

Note that we assume that q[i] = q[i−Dq] if Dq < i < 2Dq .
Each displacement vector d(s) is projected into the metric
space through a trainable projection U(s) ∈ RDq×Dµ , re-
sulting in Dq distinct Dµ-dimensional metric vectors. Then
we use a non-linear summation operation to collapse them
into a single Dµ-dimensional metric vector, where each
dimension corresponds to a sub-metric,

[g(1), ..., g(Dq)](qx,qy) =

Dq∑
s=1

σ
(
d(s)U(s)

)
(7)

where σ is a nonlinear activation function, e.g., sigmoid
operator. This approach can explicitly capture the relation-
ships between the Dq-dimensional components of qx and
qy . However, the current form of Option Two is not suitable
for large-scale parallel computation. To vectorize Option
Two, we introduce the displacement matrix Φ(s) as follows,

Φ(s)[x, y, i] = qx[i]− qy

[
i+ ⌈s · Dq

Ds
⌉
]

(8)

where Ds ∈ N+ < Dq . Thus, Eq. 7 vectorizes as

g(α)(qx,qy) =

Ds∑
s=1

σ
(
Φ(s)U(s)

)
(9)

We observe that, under the same parameter scale, the hid-
den layer width of the metric model obtained by Option
Two is significantly larger than that of Option One. Fur-
thermore, by utilizing the displacement matrix, Option Two
can incorporate as much complete information as possible
for qx and qy. Consequently, Option Two demonstrates a
stronger capacity to approximate non-linear relationships
than Option One. This conclusion aligns with the mathe-
matical validation (Appendix D) and the empirical results
(Fig. 2 and Table 5), where the fitting error of Option Two is
significantly lower than that of Option One. Therefore, we
choose Option Two as the analytical form of the sub-metric
g(α) in Eq. 4. Substituting Eq. 9 into Eq. 4, we have

g(qx,qy) =

Dµ∑
α=1

ρα ·
Ds∑
s=1

σ
(
Φ(s)U(s)

)
(10)

Unless otherwise noted, we use Eq. 10 as the analytical form
of our proposed Neural Riemannian Metrics, aka., RieM, in
the following sections. By default, each weight matrix is
equipped with an individual metric.

Figure 2: We extract a weight matrix of R128×256 from
the pre-trained ResNet-50. Using 128 + 256 neurons with
40-dimensional dynamical states each, we reconstruct the
matrix based on different metrics, thereby reducing the pa-
rameter count of the matrix to approximately 30% of its
original size. We also employ the SVD method to compress
the matrix at the same compression rate. The loss values
between the compressed matrices obtained by each method
and the original matrix are recorded during iterations.

4. Neural Compression in Metric Space
In Section 3, we introduced a Riemannian metric for neu-
ral manifolds to interpret the neural weights between two
neurons as interactions between their dynamical states. In
line with (Pei & Wang, 2023), this mechanism can signif-
icantly reduce the parameter size of any neural model by
transforming the trainable parameters from neural weights
to neuron states, which are trainable high-dimensional em-
beddings. For an arbitrary weight matrix W ∈ Rm×n, we
expect to obtain a RieM metric g proposed by Eq. 10 and
a set of neuronal dynamical states, such that Wxy can be
approximated as g(q(in)

x ,q
(out)
y ). We denote the currently

reconstructed weight matrix as Ŵ. We then take the original
weight matrix W as the target and backpropagate the error
∥Ŵ −W∥22. We iteratively update the neuronal dynamical
states and the trainable parameters in the Riemannian metric
function. By adjusting the numerical values of the dimen-
sions Dq for each neuron, we can reduce the total number of
parameters to reconstruct the weight matrix W from mn to
Dq ·(m+n)+Dµ ·(1+DsDq), where DµDsDq ≪ m+n,
while preserving its intrinsic patterns as more as possible.

We have discussed how to compress individual neural
weight matrices one by one using the Riemannian metric.
Next, we will explore how to compress multiple neural
weight matrices synchronously. Indeed, we observe that
concatenating multiple neural weight matrices according
to a specific topological relationship and then compressing
them as a whole using the Riemannian metric can effectively
reduce compression losses. This is because weight matrices
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Table 1: Comparison of neural models compressed by different quantization methods on ImageNet classification benchmark.
We abbreviate the numbers of weight/activation bits as W/A-bit. The SIZE indicates the number of bits of full model storage.
We also attempt to replace the proposed RieM metric with a simple Lp-norm, where the specific value of p = {1, 2, 3} is
determined by its performance on the development set.

METHOD DATA-FREE SIZE (MB) W/A-BIT TOP-1 (%)

RESNET-18

ORIGINAL × 46.83 32/32 71.47

DFQ (NAGEL ET AL., 2019)
√

8.36 6/6 66.30
UDFC (BAI ET AL., 2023)

√
8.36 6/6 72.70

RIEM (OURS)
√

8.36 8/16 71.80

DDAQ (LI ET AL., 2022C)
√

5.58 4/4 58.44
DSG (ZHANG ET AL., 2021) × 5.58 4/4 34.33
UDFC (BAI ET AL., 2023)

√
5.58 4/4 63.49

LP-NORM (PEI & WANG, 2023)
√

5.58 8/16 64.52
RIEM (OURS)

√
5.58 8/16 66.30

RESNET-50

ORIGINAL × 102.53 32/32 77.72

OSME (CHOUKROUN ET AL., 2019)
√

12.28 4/32 67.36
GDFQ (XU ET AL., 2020) × 12.28 4/4 55.65

SQUANT (GUO ET AL., 2022)
√

12.28 4/4 70.80
UDFC (BAI ET AL., 2023)

√
12.28 4/4 72.09

LP-NORM (PEI & WANG, 2023)
√

12.28 8/16 72.96
RIEM (OURS)

√
12.28 8/16 73.26

DENSENET-121

ORIGINAL × 32.34 32/32 74.36

OMSE (CHOUKROUN ET AL., 2019)
√

6.00 4/32 64.40
UDFC (BAI ET AL., 2023)

√
6.00 4/32 70.15

LP-NORM (PEI & WANG, 2023)
√

6.00 8/16 71.66
RIEM (OURS)

√
6.00 8/16 73.15

in neural models are low-rank matrices, sharing correlated
features with each other. As the number of concatenated ma-
trices increases, the shared correlated features also increase,
leading to better compression quality. To save time, we
use the SVD method to pre-compress these weight matrices
with different combinations of concatenation methods.

We define the Shared Correlation Counts (SCC) for a weight
matrix W ∈ Rm×n with n ≥ m to estimate the number of
inherent correlated features it may contain, i.e.,

Ω(W) =

n∑
r=1

m

∥S(r)(W)−W∥22
(11)

where S(r)(W) = U[:, : r] ·Σ[: r, : r] ·V⊤[: r, :] refers to
the reduced matrix via the SVD method. Based on SCC, we
are capable of determining a structurally optimal topological
arrangement to reduce the overall compression loss. In
general, a higher SCC value indicates that the matrix is
more challenging to compress.

Given a pre-trained neural model with L neural weight
matrices, denoted as W(1), ...,W(L), we compute their
respective SCC values, obtaining Ω(W(1)), ...,Ω(W(L)).
We then sort these values in ascending order as a sorted se-
quence and label the corresponding sorted weight matrices
as W(S1), ...,W(SL). Subsequently, we concatenate the

matrices W(S1) and W(SL) if they are of similar shapes,
padding with zeros in areas where shapes differ. We cal-
culate the SCC value of the resulting concatenated matrix.
If this value exceeds 1

2 (Ω(W
(S1)) + Ω(W(SL))), we in-

clude this new concatenated matrix in the sorted sequence,
replacing the originial W(S1) and W(SL), which are then
removed from the sequence. Iterating through this process
for each original neural weight matrix yields L∗ matrices,
where L∗ ≤ L. As a result, we only need to apply com-
pression methods based on the neural Riemannian metric to
these L∗ matrices to deal with more shared correlated fea-
tures, thus superior compression efficiency can be achieved.

5. Accelerating Metric-based Neural Inference
While we can significantly reduce the storage size of neural
models, we still need to address how to reduce the computa-
tional complexity. According to Sec. 4, we can equivalently
represent the neural weight matrix W ∈ Rm×n as a dis-
tance matrix composed of m+ n points in Dq dimensions,
using the Riemannian metric g as the distance function.
Utilizing a fast algorithm (Indyk & Silwal, 2022) specifi-
cally designed for distance matrices, the multiplication of
a metric-based weight matrix W ∈ Rm×n with any vector
y ∈ Rm can be performed with a reduced spatial complex-
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Table 2: Comparison of neural models compressed by different pruning methods on ImageNet classification benchmark.
W-bit denotes the bit-width of weights.

METHOD PRUNE-RATIO W-BIT SIZE (MB) FLOPS (G) TOP-1 (%)

RESNET-34

ORIGINAL 0% 32 87.32 73.27

NEURON MERGE (KIM ET AL., 2020) 10% 32 78.8 6.84 67.10
UDFC (BAI ET AL., 2023) 10% 6 14.8 6.84 69.86

RIEM (OURS) 10% 6 14.8 5.30 72.216
NEURON MERGE (KIM ET AL., 2020) 30% 32 61.6 5.30 39.40

UDFC (BAI ET AL., 2023) 30% 6 11.6 5.30 59.25
RIEM (OURS) 30% 6 11.6 5.30 70.144

RESNET-101

ORIGINAL 0% 32 178.81 77.31

NEURON MERGE (KIM ET AL., 2020) 10% 32 154.4 3.24 72.46
UDFC (BAI ET AL., 2023) 10% 6 28.8 3.24 74.69

RIEM (OURS) 10% 6 28.8 2.52 76.032
NEURON MERGE (KIM ET AL., 2020) 30% 32 112.4 2.52 38.44

UDFC (BAI ET AL., 2023) 30% 6 21.2 2.52 65.76
RIEM (OURS) 30% 6 21.2 2.52 73.296

ity of O((m+n)Dq). However, the time complexity of this
computation still remains O(mn).

To further decrease the time complexity of the RieM -based
model structure, we propose to eliminate redundant compu-
tations between the resulting dynamical states of neurons
based on their topological sturctures. The core idea is that if
the dynamical states of some neurons are sufficiently close,
we can merge them into a single neuron, thereby collaps-
ing their respective operations into a single operation. We
name this approach as a dynamical merging mechanism for
neurons, i.e., dyMerge. Recall that we have m input neu-
rons q(in)

1 , ...,q
(in)
m , and n output neurons q(out)

1 , ...,q
(out)
n

to construct a weight matrix W ∈ Rm×n. Given a vector
S(in) ∈ Rm, we define S(out) = W⊤S(in) ∈ Rn to sim-
ulate the inference process. Using our proposed RieM to
interpret each weight value in W, we have

S(out)[x] =

m∑
i=1

g(q
(in)
i ,q(out)

x ) · S(in)
i (12)

where g refers to the Riemannian metric in Eq. 10. For
each weight matrix, we construct an MLP N : RDq ×
RDq → R that maps the dynamic state of two output
neurons to their output correlation coefficient, denoted as
ϵxy = N (q

(out)
x ,q

(out)
y ). It is worth noting that the network

N takes only those neurons as input whose neuronal dissim-
ilarity, calculated as ∥q(out)

x − q
(out)
y ∥2, is smaller than a

specific merging threshold. The network N uses randomly
generated S(in) ∈ Rm as the training input and employs
S(out) obtained from Eq. 12 as the labels, i.e.,

argmin
N

∥∥∥ϵxy − S(out)[x]

S(out)[y]

∥∥∥2
2

(13)

During iterative updating the dynamic states of neurons and
metric functions, training for the network N is randomly

implemented. We obtain the output correlation coefficients
between output neurons once the training is done. At this
point, there is no need to retain the specific parameters of the
network N , since it is sufficient to preserve the output cor-
relation coefficients for each pair of neurons with neuronal
dissimilarity below the merging threshold.

Now we can determine the model storage size, computa-
tional complexity and inference accuracy, by adjusting the
neurons’ dynamical dimension Dq and the merging thresh-
old. Although lower values of Dq or the merging threshold
result in reduced storage size and computational complexity,
they also lead to lower inference accuracy. However, these
factors are not linearly correlated, and it is unnecessary to
simultaneously improve all indicators of the model. Instead,
a specific indicator can be chosen as the global objective,
while other indicators only need to meet specific constraints.
In the experiments, the global objective is to maximize the
model’s inference accuracy on the validation set. We ad-
just the neural dimensions Dq and the merging threshold,
ensuring that the model’s storage size and computational
complexity are equivalent to the baselines for comparison.

6. Experiments
6.1. Summary and Datasets

The experimental section primarily evaluates the data-free
compression effectiveness of our proposed method on vi-
sual models. We first compare our method with existing
data-free compression techniques (Bai et al., 2023) based on
quantization and pruning respectively on the ImageNet-1k
dataset (Deng et al., 2009). Then we compare with compres-
sion methods designed for the Visual Transformer (Liu et al.,
2021). Experiments are also performed on more complex
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Table 3: Comparison of the Vision Transformers compressed by different quantization methods on ImageNet classification
benchmark. We abbreviate bit operations as BOPs, and the numbers of weight/activation bits as W/A-bit. Standard and
Standard V2 are typical quantization methods, whose implementation details are presented in Li et al. (2022b) and Li et al.
(2023), respectively.

METHOD DATA-FREE W/A-BIT SIZE (MB) BOPS (G) TOP-1(%)

SWIN-T

ORIGINAL × 32/32 116 4608 81.35

STANDARD × 4/8 14.5 144 70.16
STANDARD V2 × 4/8 14.5 144 75.51

PSAQ-VIT
√

4/8 14.5 144 71.79
PSAQ-VIT V2

√
4/8 14.5 144 76.28

RIEM (OURS)
√

4/8 14.5 144 76.30
PSAQ-VIT V2

√
8/8 29 288 80.21

RIEM (OURS)
√

8/8 29 288 80.85

SWIN-S

ORIGINAL × 32/32 200 8909 83.20

STANDARD × 4/8 25 278 73.33
STANDARD V2 × 4/8 25 278 78.22

PSAQ-VIT
√

4/8 25 278 75.14
PSAQ-VIT V2

√
4/8 25 278 78.86

RIEM (OURS)
√

4/8 25 278 79.84
PSAQ-VIT V2

√
8/8 50 557 82.13

RIEM (OURS)
√

8/8 50 557 82.96

Table 4: Comparisons with DETR-based methods on the COCO object detection benchmark. We use ResNet-50 as the
backbone model. We report bbox AP (Average Precision) on the validation dataset and present the variation in performance
metrics of various methods compared to the original model. Quant-DETR and SVD-DETR refer to the compression methods
based on typical quantization and Singular Value Decomposition.

METHOD DATA-FREE W-BIT SIZE (MB) AP AP50 AP75 APS APM APL

DETR × 32 159.0 40.1 60.6 42.0 18.3 43.3 59.5

T-DETR (ZHEN ET AL., 2022) × 8 43.6 -0.6 -0.8 -0.4 +0.5 -0.9 -1.5
T-DETR × 4 33.4 -2.2 -2.7 -2.2 -1.0 -2.7 -3.2

QUANT-DETR
√

8 43.6 -2.2 -1.2 -3.1 -2.5 -2.5 -1.8
SVD-DETR

√
8 33.4 -11.5 -14.2 -12.8 -6.1 -15.1 -11.6

RIEM-DETR (OURS)
√

8 43.6 -0.4 -0.6 +0.1 +0.4 -0.3 -1.5
RIEM-DETR (OURS)

√
8 33.4 -0.7 -0.5 -1.2 +0.1 -1.3 -2.1

RIEM-DETR (OURS)
√

8 26.7 -2.8 -2.5 -3.4 -2.4 -4.4 -4.1

model structures focused on the COCO object detection
dataset (Lin et al., 2014). We also conduct preliminary
experiments in non-data-free scenarios, involving training
of randomly initialized neural structures rather than pre-
trained ones, on datasets such as MNIST (Deng, 2012) and
CIFAR-100 (Krizhevsky et al., 2009). Furthermore, infor-
mation retrieval experiments are conducted on the ImageNet
dataset, with comparisons against mainstream dimensional-
ity reduction methods.

6.2. Implementation Details

The implementation of our RieM-based compression is
straightforward: expressing each neural weight matrix
W ∈ Rm×n of a pre-trained model as m + n neural dy-
namic states of dimension Dq through RieM (Eq. 10), i.e.,

q
(in)
1 , ...,q

(in)
m ;q

(out)
1 , ...,q

(out)
n . This allows us to approx-

imate each entry Wxy ∈ R as g(q
(in)
x ,q

(out)
y ) to obtain

a RieM-based model. Then we compress this RieM-based
model using the method elaborated in Sec. 4, followed by
the method proposed in Sec. 5 to reduce the computational
complexity during the inference process. We quantize both
the neuronal dynamical states, e.g., qx ∈ RDq , and the
computed metric, i.e., g(q(in)

x ,q
(out)
y ).

For each pre-trained model to be compressed, we randomly
select ten sets of seeds, yielding ten different randomly
initialized RieM-based models, including trainable neural
dynamics states and the Riemannian metrics for each weight
matrix. We first adjust hyperparameters, such as the neu-
ronal dimension Dq, the internal dimension Dµ of the Rie-
mannian metrics, ensuring that the resulting RieM-based
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models have storage model size and computational com-
plexity (measured in FLOPs or BOPs) consistent with var-
ious baselines. We then implement data-free training on
the neural states and metric functions using the original
weight matrices of the pre-trained model as the target, while
knowing nothing about the real datasets. After this data-free
training, we select the top three performing models based
on their performance on the development set and average
their evaluations on the test set as the final results.

All experiments can be conducted on a single 24GB memory
GeForce RTX 4090 GPU, and the total time required to
convert a pre-trained model, e.g., Swin-T, to a trained RieM-
based model typically ranges from a few hours to several
days, depending on the desired model performance. The
higher the performance requirements for the model, the
more configurations need to be explored, resulting in longer
actual processing times.

6.3. Main Results

For the experiments on ImageNet-1k, we mainly compare
our methods with UDFC (Bai et al., 2023), which is a uni-
fied data-free compression framework that performs data-
free pruning and quantization simultaneously without ad-
ditional fine-tuning on real datasets. We first compare our
method with existing quantization methods (see Table 1).
The empirical results show that converting the pre-trained
visual models to the RieM -based models can significantly
reduce the storage model size while maintaining the infer-
ence accuracy. For example, with an identical storage size
on ResNet-50, our method improves the model’s inference
accuracy by 2.2% compared to the data-free quantization
method SQuant (Guo et al., 2022) and by 1.2% compared
to the UDFC. We also observe that our method even out-
perform the non data-free quantization methods that require
fine-tuning on real-data.

Then we compare our method with existing pruning meth-
ods, with which our main competitors involve Neuron Merg-
ing (NM) (Kim et al., 2020), which is a one-to-one compen-
sation method, and UDFC. Table 2 shows that our data-free
metrics-based compression methods outperforms the prun-
ing baselines. The experimental results demonstrate that
our data-free compression method significantly outperforms
the baselines. It achieves higher inference accuracy with a
lower model storage size. Taking ResNet-101 as an example,
under a 30% pruning ratio, the RieM-based compression
method improves the model’s inference accuracy by 34.8%
compared to the Neuron Merge method and by 7.5% com-
pared to the UDFC method.

To further validate the performance of our approach, we
also conduct experiments specifically targeting the Vision
Transformer architecture. The primary competitor in this
part is a data-free compression method tailored for Vision

Transformer, namely PSQA-ViT (Li et al., 2022b), and its
successor PSQA-ViT V2 (Li et al., 2023). These method
employ a relative value metric called patch similarity to
generate data from pre-trained vision transformers. As pre-
sented in Table 3, we observe that despite our approach
lacking a tailored design for the Vision Transformer, it still
outperforms PSQA-ViT V2 in terms of model inference
accuracy under equivalent storage size and computational
complexity conditions.

We also conduct experiments on the COCO object detection
dataset. We choose the DETR model based on ResNet-50
as the target for compression. Our primary competitor is
T-DETR (Zhen et al., 2022), a tensorized detection trans-
former achieved by reshaping weight matrices into high-
dimensional tensors and employing low-rank tensor factor-
ization. Evaluation metrics include Average Precision (AP)
with different Intersection over Union (IoU) thresholds, and
AP for objects with varying scales, all presented in Table 4.
The experimental results indicate that, under equal storage
sizes, among the six AP metrics, except for APS , data-free
RieM -based models outperform the T-DETR model, which
requires fine-tuning with real data.

Comparison with typical dimensionality reduction methods
is presented in Appendix B. Ablation study is presented in
Table 5 of Appendix A.

6.4. Flexibility in Compressed Model Size

By adjusting the embedding dimension of neurons and con-
structing RieM, our method enables the compression of neu-
ral models to any target size. Moreover, merging adjacent
neurons can further reduce the model’s size.

In order to compress the model to a specific ratio of its
original size, we need to compute the required embedding
dimensions for neurons in each neural layer. Suppose a
neural layer has m input neurons and n output neurons;
then, the parameter count for that layer is m ·n. If we intend
to compress it to one-tenth of its original size, the dimension
d for each neuron’s embedding is approximately mn

10·(m+n) .
Typically, mn ≫ m+ n; otherwise, we can merge adjacent
neurons or adjust the compression ratios of other neural
layers to ensure the expected model compression.

As in Figure 3, we conduct preliminary experiments on
Swin-T using ImageNet-1k. Note that there is still room
for improvement in accuracy here. By employing different
compression strategies and determining which neurons in
which layers should have higher or lower embedding di-
mensions for the target model size, we can obtain different
compressed models with varying performance.
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Figure 3: We convert a pretrained ViT-T model into a RieM-
based form by adjusting the dimensions of individual neu-
rons such that the model size of the RieM-based model
equaled a target value. Notably, for the same target model
size, the dimensions of neurons in different layers can have
varying values, meaning that different configurations, even
with the same model size, may result in different accura-
cies. In this experiment, we randomly select three different
configurations for each target model size and compute the
average of their resulting accuracies as the outcome. We
observe that using lower bit quantization leads to a higher
cost-effectiveness of accuracy versus model size, which also
imposes a lower accuracy ceiling.

6.5. Bilinear and Symmetric Conditions

The original RieM presented in Eq. 6 and 7 is computed
based on the relationships between all dimensions of two
vectors. Even if we exchange the vectors, the dimension-
pairs they generate and the results computed based on RieM
remain unchanged, thus satisfying symmetry. Therefore, the
original RieM satisfies the symmetric property defined in
a typical Riemannian metric. However, if we simplify the
original version of RieM (Eq. 8 and 9) by not computing all
dimension-pairs between the two vectors but only a subset
in a “skipping” manner, then this simplified RieM may not
fully satisfy symmetry.

As presented in Table 5, we observe that both the original
(no-skipping) and simplified RieMs yield consistent per-
formance in model compression tasks. Furthermore, we
replace the activation function σ within RieM with partially
linear functions (e.g., ReLU) and initialize the embedding
appropriately to ensure RieM satisfies bilinearity. Although
the resulting RieM, which satisfies bilinearity and symme-
try, performs equally well in data-free compression tasks
as the simplified RieM, it requires an extra implementa-
tion to guarantee its bilinearity and symmetry. This fact
suggests that the metric used to describe the relationships
between neurons does not necessarily need to satisfy symme-
try and bilinearity when placing neural models in neuronal

space. Introducing specific specialized metrics (such as a
skew-symmetric or anti-symmetric form used in theoretical
physics) can lead to more efficient neural state spaces.

7. Related Work
In the realm of accelerating model inference, researchers
have explored network pruning (Liu et al., 2018; Blalock
et al., 2020) and quantization methods (Yang et al., 2019;
Nagel et al., 2021), which typically require fine-tuning with
data. However, privacy and security concerns often make
fine-tuning impractical for applications with sensitive data.
To address this, it is necessary to consider data-free com-
pression, which mainly involves three categories as follows.

Data-free pruning eliminates reliance on the fine-tuning
process with real-world dataset. Two methods are employed:
data-free parameter pruning (Srinivas & Babu, 2015) iden-
tifies redundant neurons, and Neuron Merging (Kim et al.,
2020) extends the method to convolutional layers.

Data-free quantization introduced by (Nagel et al., 2019)
faces performance drops at low bit-widths, prompting re-
cent studies like ZeroQ (Cai et al., 2020), IntraQ (Zhong
et al., 2022), and DSG (Zhang et al., 2021) to use generator
architectures, generating synthetic samples to replace the
original data.

Unified data-free compression such as Bai et al. (2023)
assumes that partial information from a damaged channel
is preserved via a linear combination of other channels,
concurrently prunes and quantizes without real data.

8. Conclusion
In this paper, we investigate the integration of Riemannian
dynamics with neural structures to develop a more effective
data-free neural compression method. We introduce a Rie-
mannian metric for neural models, denoted as RieM, to in-
terpret neural weights as the relations between the dynamic
states of neurons, resulting in a reduced parameter size and
lower computational complexity for the RieM-based neu-
ral model. Experimental results on visual datasets, such
as MNIST, CIFAR-100, ImageNet-1k, COCO object de-
tection, demonstrate that our approach outperforms exist-
ing data-free compression methods in neural compression,
surpassing even those requiring external real data for fine-
tuning. Future work involves refining the computational
form of Riemannian metrics, reducing the conversion time,
and deriving a more accurate physics-inspired framework
to further enhance the representation and computational
efficiency of neural structures.
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A. Ablation Study

Table 5: RieM (Option1) refers to Eq. 5 that concatenates the neuronal states into a feedforward neural network. RieM
(Option2) refers to Eq. 10. SCC refers to the approach (Sec. 4) that merge relevant matrices to reduce compression loss.
DyMerge refers to the accelerating mechanism (Sec. 5) that reduces duplicated computations based on neuronal topology.

METRIC SCC DYMERGE SIZE (MB) BOPS (G) TOP-1 (%)

SWIN-T

RIEM (OPTION2)
√ √

29 288 80.85

RIEM (OPTION2) ×
√

29 288 79.50
RIEM (OPTION2)

√
× 29 288 80.25

RIEM (OPTION1)
√ √

29 288 75.38
SVD

√
× 58 288 76.23

L1-NORM
√ √

29 288 79.04
L2-NORM

√ √
29 288 78.24

L3-NORM
√ √

29 288 78.31
NO-SKIPPING

√ √
29 288 80.50

SWIN-S

RIEM (OPTION2)
√ √

50 557 82.96

RIEM (OPTION2) ×
√

50 557 82.41
RIEM (OPTION2)

√
× 50 557 81.98

RIEM (OPTION1)
√ √

50 557 79.84
SVD

√
× 100 557 80.37

L1-NORM
√ √

50 557 80.96
L2-NORM

√ √
50 557 81.54

L3-NORM
√ √

50 557 81.50
NO-SKIPPING

√ √
50 557 82.85

B. Comparison with Dimensionality Reduction Methods

Table 6: Normalized matrix-vector production error on the squared ImageNet dataset. The ratio Tcomp./Tnaive represents
the degree of speeding up for the current method with the naive one, i.e., direct matrix-vector production, by setting different
hyper-parameters.

MATRIX SHAPE R1000×1000 R5000×5000 R10000×10000

Tcomp./Tnaive 0.1 0.3 0.1 0.3 0.1 0.3

ISOMETRIC MAPPING 1.22E-01 1.23E-01 6.27E-02 6.28E-02 4.55E-02 4.56E-02

AUTOENCODER 4.60E-02 3.66E-02 1.57E-02 2.86E-02 4.43E-02 4.33E-02

DEEP
AUTOENCODER

3.16E-02 3.41E-02 1.35E-02 1.58E-02 9.50E-03 3.93E-02

LOCALLY LE 3.16E-02 3.16E-02 1.41E-02 1.41E-02 9.98E-03 9.98E-03

NYSTROM 3.16E-02 3.16E-02 1.41E-02 1.41E-02 9.98E-03 9.98E-03

KERNEL PCA 1.35E-03 1.35E-03 7.70E-04 7.80E-04 7.40E-04 7.50E-04

LP-NORM 2.50E-04 1.31E-04 2.15E-05 1.65E-05 9.87E-06 7.88E-06

RIEM (OURS) 2.20E-04 1.20E-04 1.58E-05 1.26E-05 5.56E-06 6.27E-06

12



Data-free Neural Representation Compression with Riemannian Neural Dynamics

C. Evaluations on Real-Data-Driven Neural Compression

Table 7: A preliminary evaluation of our proposed metric-based methods on simple models and small-scale datasets. We use
randomly initialized models such as LeNet-5 and ResNet-9 and interpret them using our proposed metrics. These models
are separately trained on datasets like MNIST and Cifar100, and their Top-1 test accuracies are obtained. For simplicity, we
replace only the fully connected (FC) layer with our metric and present their parameter counts.

METRIC
NO.PARAMS
(FC LAYER)

TOP-1 (%)

MNIST CIFAR100

LENET-5 N/A 59.3K 99.10 44.30

LENET-5 L1-NORM 6.3K 98.95 44.35
LENET-5 L2-NORM 6.3K 99.17 44.45
LENET-5 L3-NORM 6.3K 99.10 44.40
LENET-5 RIEM 7.2K 99.28 44.78

RESNET-9 N/A 102.8K 99.62 67.58

RESNET-9 L1-NORM 32.0K 99.58 67.54
RESNET-9 L2-NORM 32.0K 99.64 67.63
RESNET-9 L3-NORM 32.0K 99.62 67.53
RESNET-9 RIEM 33.4K 99.69 68.12
RESNET-9 RIEM 51.5K 99.72 68.15

D. Why Option 2 is Better Than Option 1
Given qx, qy ∈ Rn as the neuronal embeddings, and each embedding has a discrete representation such that qx[i] ∈
{−N · δ,−(N − 1) · δ, ..., 0, ..., (N − 1) · δ,N · δ} for any i. Let’s define Ω(v) as the logarithm of the number of
permutations of v, referring to the representational capacity of v. Then, for Option 1, we have,

Ω([qx; qy]) = (2N)2n (14)

For Option 2, we have,

Ω
(
g(qx, qy)

)
= (4N)n · (γ · 4N)n · ... · (γD · 4N)n =

D∏
s=0

(γs · 4N)n (15)

where γ ∈ (0, 1] refers to the approximated decay between each displacement step. Next, let’s define the difference between
Option 1 and Option 2 as,

ε = log
(
Ω
(
g(qx, qy)

))
− log

(
Ω([qx; qy])

)
= (D + 1) · n · log(4N) +

(D + 1) ·D
2

· log(γ)− 2n · log(2N)

= f(N,n,D; ϵ)

(16)

where γ = 1 · 10−ϵ. Using approximation or computational validation (see Figure 4), we can conclude that

ε = −(a ·D) · ϵ+ b ·N + c · n (17)

where a, b, c ≈ 1. Thus, ε ≤ 0 holds if and only if

ϵ ≥ N + n

D
≫ 1 (18)

Because each element of neuronal embedding is initialized independently at random, and the interdimensional differences
between them are also independent, thus, γ is often slightly less than 1. For sufficiently random initialized neuronal
embeddings, γ cannot approach zero infinitely. Therefore, we need not worry about γ being so small that ε becomes
negative; that is, the probability that the representational capacity of Option 2 exceeds that of Option 1 approaches 1
infinitely.
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Figure 4

E. Metrics-based Matrix-Vector Product
Utilizing a fast algorithm (Indyk & Silwal, 2022) specifically designed for distance matrices, the multiplication of a
metric-based weight matrix W ∈ Rm×n with any vector y ∈ Rm can be performed with a reduced spatial complexity
of O((m + n) · Dq). We first validate the case with a metric function of L1-norm. Following Indyk & Silwal (2022),
we aim to compute z(h) = D(h)y, where D(h) ∈ Rm×n is a distance matrix constructed via L1-norm on two sets of
points X(h) ∈ Rm×d and Y(h) ∈ Rn×d. We generalize the fast matrix-vector product for the squared distance matrices to
non-squared distance matrices. For each coordinate k ∈ [1,m], we have

z
(h)
k = D

(h)
k y =

n∑
i=1

yi∥X(h)
k −Y

(h)
i ∥

1
=

d∑
j=1

n∑
i=1

yi · |X(h)
k [j]−Y

(h)
i [j]| (19)

Let’s denote i ∈ π+
j implies that X(h)

k [j] ≥ Y
(h)
i [j], and i ∈ π−

j implies that X(h)
k [j] < Y

(h)
i [j], then the inner sum of the

right side can be expanded as follows:

n∑
i=1

yi · |X(h)
k [j]−Y

(h)
i [j]| =

∑
i∈π+

j

yi · (X(h)
k [j]−Y

(h)
i [j]) +

∑
i∈π−

j

yi · (Y(h)
i [j]−X

(h)
k [j]) (20)

The inner sum is then rearranged as follows:

X
(h)
k [j]

( ∑
i∈π+

j

yi −
∑
i∈π−

j

yi

)
+

∑
i∈π−

j

yiY
(h)
i [j]−

∑
i∈π+

j

yiY
(h)
i [j]

= X
(h)
k [j] · (S+

Y − S−
Y ) + S−

yY − S+
yY

(21)

where S+
Y , S−

Y , S−
yY and S+

yY are preprocessed terms computed using the partial sum of the sorted array of X(h) and Y(h)

for each dimension. With the simplest L1-norm metric function, the corresponding computational complexity will be O(nd)
or O(max(m,n)d), which roughly equals the parameters required to construct the distance matrix.

F. Dimensionality Reduction and Nonlinear Transformation
Our method can provide new insight into dimensionality reduction. As presented in Section 4, a set of vectors
A = [v1, ..., vm]⊤ can be reconstructed using fewer parameters, i.e., H distinct sets of points {X(1),Y(1); ...;X(H),Y(H)}.
Unlike traditional dimensionality reduction approaches that explicitly compress an n-dimensional vector to an n∗-
dimensional one with n∗ < n, our method implicitly reduces dimension. For simplicity, we denote X̃ ∈ Rm×d×H

14
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and Ỹ ∈ Rn×d×H and X̃[i, k, h] = X
(h)
i [k]. According to the definition of distance matrices, an n-dimensional vector

vi ⊂ A can be seen as an array of metrics to the bases {Ỹ1, ..., Ỹn} as follows:

vi = [µ̃(X̃i, Ỹ1), ..., µ̃(X̃i, Ỹn)]
⊤ (22)

where the metric function µ̃ : Rd×H × Rd×H 7→ R is a generalized nonlinear metric equipped with finite scalar coefficients
{λ1, ...λH} expressed as an analytical form as follows:

µ̃(X̃i, Ỹj) =

H∑
h=1

λh · µ(R̃⊤
ij [h]) (23)

where R̃ij = X̃i − Ỹj and µ is Lp-norm; we set p = 1 by defaults in practice. As a result, each vi ∈ Rn refers to a
point with coordinates X̃i ∈ Rd×H , and vi can be approximated as the relations between X̃i and the bases {Ỹ1, ..., Ỹn}.
Therefore, if we have a large well-formed A, i.e., m ≫ n > dH , then when we add a new vector vm+1 ∈ Rn to A, what
we need is to pick an appropriate point X̃m+1 such that vm+1 can be approximated as the relations between X̃m+1 and the
bases via the nonlinear metric µ̃. In this way, the dimensionality reduction mechanism of our method involves converting
a vector into a low-dimensional vector and a set of global bases shared by other vectors while also employing a specific
nonlinear metric function. This mechanism extracts the necessary local features and captures more comprehensive global
features, ensuring the reduced representation has a hierarchical structure rather than a determined lossy encoding.

Next, let us proceed to the implementation of matrix-vector production. Based on the discussion above, the process of
ẑ = Ây can be interpreted physically. First, the n bases receive signals denoted by y ∈ Rn, i.e., each basis Ỹj receives
a signal yj ∈ y. Second, a basis Ỹj emits the received signal to the m points, e.g., {X̃i ∈ Rd×H , i ∈ [1,m]}. Third, the
arrival signal at a point X̃i is amplified by a factor µ̃(X̃i, Ỹj). Finally, the total signals ẑi received by a point X̃i are as
follows:

ẑi =

n∑
j=1

yj · µ̃(X̃i, Ỹj) (24)

In general, Eq. 24 interprets matrix-vector production ẑ = Ây as follows. Given the nonlinear metric space SP(A)

equipped with a nonlinear metric function µ̃ over the n bases {Ỹ1, ..., Ỹn}, then ẑ = Ây is equivalent to the process of
signals y transmitting in SP(A), received by the n points {Ỹ1, ..., Ỹn} and emitting to the m points {X̃1, ..., X̃m}.

Theorem F.1. We can approximate arbitrary matrix A ∈ Rm×n with the weighted sum of distance matrices Â =∑H
h=1 D

(h), and H , the number of L1 distance matrices, is upper-bounded.

Proof. According to the properties of piecewise linearity and Ramer–Douglas–Peucker algorithm (Ramer, 1972), we can
decimate a curve composed of line segments to a similar curve with fewer points. The entries of a matrix can be seen as the
lengths of many isolated curves, which can be approximated as the weighted sum of segments, which are the entries of a
distance matrix. Moreover, we need at most ⌈ mn

d·(m+n)⌉ different distance matrices to cover all the parameters contained in
A. For example, an arbitrary matrix with m · n components can be fully expressed as the metrics between a set of m · n 1D
points and another set of n or m 1D points. This implies that the upper-bound of H is ceiled mn/(d · (m+ n)). Therefore,
the total number of parameters H · d · (m+ n) should not exceed m · n.

Theorem F.2. Given arbitrary matrix A ∈ Rm×n and vector y ∈ Rn×1, there exists an algorithm to compute z = Ay in
O
(
(1− k · ϵ) · n2

)
, where k ≫ 1 is a constant related to A, and ϵ = ∥z−ẑ∥2

σz
, where σz is the standard deviation of z.

Proof. Recall the element-wise error between A and the weighted sum of H proper distance matrices is denoted by
ε
(H)
ij = Aij −

∑H
h=1 λhD

(h)
ij , then the collection of {ε(H)

ij , i ∈ [1,m], j ∈ [1, n]} has a mean 0 and standard deviation

σ
(H)
A . According to the chain rule, we can conclude that

σ
(H+1)
A =

σ
(H)
A

c
(25)

15



Data-free Neural Representation Compression with Riemannian Neural Dynamics

where c > 1 is a constant related to A. The error related to H is denoted by ε
(H)
z = Ay −

∑H
h=1 λhD

(h)
ij y, then the

standard deviation σ
(H)
z of ε(H)

z is computed as

σ(H)
z =

√√√√ n∑
i=1

y2i · σ
(H)
A

2
= σ

(H)
A · ∥y∥2 (26)

According to the properties of folded normal distribution, the expectation of ∥z− ẑ(H)∥2 is proportional to σ
(H)
z . Substituting

Eq. 25 and Eq. 26 into the definition of ϵ, we have

ϵ(H+1) =
∥z − ẑ(H+1)∥2

σz
=

ζ · σ(H+1)
z

σz
=

ζ · σ(H+1)
A · ∥y∥2

σz

(27)

where ζ denotes a constant determined by the distribution. The ratio of ϵ with different H is given by

ϵ(H+1)

ϵ(H)
=

σ
(H+1)
A

σ
(H)
A

=
1

c
(28)

Obviously, H is proportional to the computational complexity when implementing matrix-vector production. Therefore,
Eq. 28 implies that the ratio of computational complexity and ϵ demonstrates linearity with respect to H , which holds for
Theorem F.2. Note that the complexity of O

(
(1− k · ϵ) · n2

)
indicates that our method is scalable to m. This property is

particularly useful when performing neural inference on neural layers with arbitrarily large output widths or dimensions.
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