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Abstract

Neural processes (NPs) can be extremely fast at
test time, but their training requires a wide range
of context sets to generalize well. We propose to
address this issue by incorporating the structure of
graphical models into NPs. This leads to aggrega-
tion strategies in which context points are appropri-
ately weighted, generalizing a recent proposal by
Volpp et al. [2020]. The weighting further reveals
an interpretation of each point, which we refer to
as the neural sufficient statistics. It is expected that
by exploiting information in structured priors, the
data inefficiency of NPs can be alleviated.

1 INTRODUCTION

Many real-world tasks require models to make predictions
in new scenarios on short notice. For example, climate mod-
els are often asked to make predictions at novel locations
[Vaughan et al., 2022]. Data is collected in well-populated
regions but predictions for remote regions (e.g. mountain
ranges, forests) are desirable as well. Neural processes (NPs)
[Garnelo et al., 2018] are models designed for situations
such as this. At test time, the model is seeded with a context
data set from a novel setting that (hopefully) allows the NP
to make accurate predictions in the new setting. Moreover,
the NP’s predictive distribution is efficient to compute, scal-
ing linearly with respect to the size of the context set. These
properties make the NP a tractable model for online and
adaptive predictive inference.

However, the ability for NPs to generalize to novel contexts
is made possible only through intensive training. Usually
many, many different context sets must be shown to the
model.1 We address this issue by endowing the NP with a

1Training the (conditional) NP to generalize over one dimen-
sional samples from a Gaussian process requires 200,000 training

structured inference network [Johnson et al., 2016]. This
change is beneficial for several reasons: (i) the datapoint-
wise representations of the encoder architecture now have
a clear interpretation as neural sufficient statistics, (ii) the
aggregation strategy naturally follows from the set of proba-
bilistic assumptions, and (iii) structured priors are straight-
forward to incorporate. We demonstrate that a recent pro-
posal by [Volpp et al., 2020] is recovered as a special case
with Gaussian prior assumptions.

2 BACKGROUND

Data NPs assume a partition of the data into a context set
and a target set. The former is used by the model to seed
adaptation. The latter is a set of points from the same domain
as the context set and for which we will make predictions.
Specifically, we denote the context set for the lth task as
Dl,c = {x(i)

l,c , y
(i)
l,c}

Nl,c

i=1 , where x denotes a feature vector
and y the corresponding response. The target set for the lth
task is denoted similarly as Dl,t = {x(i)

l,t , y
(i)
l,t }

Nl,t

i=1 . At test

time, for a new task l∗, we observe Dl∗,c and {x(i)
l∗,t}

Nl,t

i=1 .

The target responses {y(i)l∗,t}
Nl,t

i=1 are unobserved, and our
goal is to predict them.

Neural Processes Neural processes [Garnelo et al., 2018]
frame few-shot learning as a multi-task learning problem
[Heskes, 2000], employing a conditional latent variable
model with context/target splits on task-specific datasets.
Training amounts to maximising the following conditional
marginal likelihood across L tasks:

ℓ(θ) =

L∏
l=1

pθ(Dl,t | Dl,c)

=

L∏
l=1

∫
pθ(Dl,t | zl) pθ(zl | Dl,c) dzl,

(1)

iterations, each having 64 context sets containing 3 to 10 data
points.
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Figure 1: Computational graph of (a) sum-decomposition network and (b) structured inference network.

where zl is the task-specific latent variable and θ is the
global parameter that is shared across tasks. The marginal-
ization over task-specific latent variables is typically in-
tractable hence approximate inference is required:

pθ(z | Dc) =
1

pθ(Dc)

Nc∏
i=1

pθ(D(i)
c | z) pθ(z) (2)

≈ qϕ(z | Dc). (3)

We have dropped task indices for the sake of notational sim-
plicity. The variational approximation is amortised, meaning
we will parameterize the local approximations with an infer-
ence model. For a Gaussian approximation, the mean and
variance are parameterized by neural networks (NNs) that
take as input sets of datapoints: qϕ(z | Dc) = N(z | µ̃, Σ̃)

with µ̃ = encmϕ (Dc) and Σ̃ = encvϕ(Dc). Throughout we
assume covariance matrices have diagonal structure, result-
ing in factorized Gaussian distributions.

Sum-Decomposition Networks The inference networks
for NPs must have at least two properties. The first is that
they make no assumptions about the size of the context set.
The second is that the encoder be invariant to the ordering of
context points. A common way to satisfy these criteria is by
having the encoder take the form of a sum-decomposition
network [Edwards and Storkey, 2017, Zaheer et al., 2017]:

ri = fϕ(D(i)
c ), r̄ =

1

Nc

Nc∑
i=1

ri (4)

where ri are datapoint-wise encodings given by a NN which
are then aggregated. The aggregation operation is typically
taken to be a simple average in NPs but other operators are
valid as long as they are permutation-invariant. Thus the
amortisation goes one level further with parameter sharing
across context points. Finally, the aggregated representation

r̄ is passed to further NNs to give the variational parameters.
In the case of Gaussian posterior, there are two further NNs
predicting the mean and variance as illustrated in Fig. 1a:
µ̃ = µϕ(r̄), Σ̃ = Σϕ(r̄).

3 STRUCTURED INFERENCE
NETWORKS

Despite the flexibility of the sum-decomposition architec-
ture, its use is more for computational convenience than
due to a strong connection to the variational approximation
(Eq. (2)). The computation is clearly localized to each data
point, similar to the factorization of the likelihood, but the
additional NN-based transform make them uninterpretable.
Furthermore, there is no explicit presence of a prior (whose
underlying structure could be exploited).

We describe our approach that incorporates the structure
of the graphical model into the encoder whilst performing
fast amortized inference. In particular, we replace the sum-
decomposition network with a structured inference network
[Lin et al., 2018, Johnson et al., 2016] that reflects the like-
lihood’s factorization (Eq. (2)) and the presence of a prior.
We write the posterior approximation as:

qϕ(z | Dc) =
1

Zc(ϕ)

[
Nc∏
i=1

q(z | fϕNN(D(i)
c ))

]
︸ ︷︷ ︸

NN factor

[
q(z;ϕPGM)

]
︸ ︷︷ ︸

prior

where Zc(ϕ) is the normalisation constant. The NN factors
are constructed to be conjugate to the prior in order to pre-
serve tractability. In turn the variational posterior can be
evaluated by conjugate computations, i.e. adding natural
parameters arising from the Nc predictions of the inference
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(a) Linear (b) Quadratic (c) MLP: 2 hidden layers of 20 units

Figure 2: Structured inference network (solid curves) expressiveness to model Gaussian regression likelihood (dashed
curves) accurately (see App. A.4 for details).

network and the prior:

qϕ(z | Dc) ∝

exp

{〈
ηϕPGM +

Nc∑
i=1

η
(
fϕNN(D(i)

c )
)
,T(z)

〉}
(5)

where ηϕPGM is the natural parameters of the prior distribu-
tion, η(·) is the natural parameters of each NN factor and
T(z) is the sufficient statistics. The computation is illus-
trated in Fig. 1b. The NN factors may not necessarily be in
canonical form. In the case of Gaussian factors, fϕNN(·) may
output the mean and variance, and therefore we use η(·) to
indicate transformation to the natural parameterization.

Due to the close resemblance to computations in an actual
conjugate system—where the natural parameters of the pos-
terior are obtained by adding the sufficient statistics of the
likelihood to the prior natural parameters—we can inter-
pret the NN factors as neural sufficient statistics [Wu et al.,
2020]. This is further supported by considering the VI ob-
jective used to train NPs. After substituting the structured
inference network and simplifying, the resulting objective
contains a term that resembles the entropy on the individual
NN factors (for full derivation see App. A.1). Given the link
between statistical sufficiency and information-maximizing
representations of the data, this suggests the NN factors are
approximating the true sufficient statistics.

These structured inference networks have several important
differences from the sum-decomposition network. The first
is the level at which aggregation is performed. Instead of
having the intermediate representation r̄ (Eq. (4))—which
has no interpretation—the encoder produces the NN fac-
tors. The variational parameters are then computed directly
from these factors instead of having to be computed by
a black-box NN-based transform. Not only does this aid
in interpretability, but it also results in fewer NN parame-
ters to estimate. The second change is the introduction of
an explicit prior distribution whose parameters are aggre-
gated along with the datapoint-wise representations. The
third change is the aggregation strategy is determined di-
rectly from the parameterization chosen for the exponential-

family. If operating in natural parameters (as shown above),
the aggregation is a simple sum—thus recovering mean ag-
gregation. However, as we will demonstrate below, other
parameterizations lead to non-trivial pooling operations.

3.1 GAUSSIAN PRIOR

Before we show how a structured prior can be exploited, we
first demonstrate the framework for the case of a Gaussian
prior. The resulting conjugate exponential-family distribu-
tion for the NN factors is also Gaussian:

qϕ(z | Dc) =
1

Zc(ϕ)

Nc∏
i=1

N(z |mi,Vi) N(z |µ0,Σ0) (6)

where mi = f
(1)
ϕNN

(D(i)
c ) and Vi = f

(2)
ϕNN

(D(i)
c ) are the mean

and variance parameterized by a NN. To derive the posterior,
we can swap z and mi in the NN factor and apply the rules
for Gaussian conditioning resulting in,

qϕ(z | Dc) = N(z; µ̃, Σ̃), with (7)

Σ̃−1 =

Nc∑
i=1

V−1
i +Σ−1

0 (8)

µ̃ = Σ̃

(
Nc∑
i=1

V−1
i mi +Σ−1

0 µ0

)
. (9)

The normalisation constant Zc(ϕ) is also available in closed-
form and can be evaluated by a completing-the-squares
technique. Since we assume diagonal covariance matrices,
the computations remain tractable, i.e. no expensive matrix
operations, but this assumption could be relaxed.

Equivalence to Bayesian Aggregation The Gaussian-
based procedure above is equivalent to Bayesian context ag-
gregation [Volpp et al., 2020] (when the prior is fixed). Their
approach was motivated by introducing a surrogate Gaussian
CLV model with the local datapoint-wise encodings being
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interpreted as noisy observations of the underlying latent
variable. They give the expression for the mean of Gaussian
posterior in the form of an incremental update to the prior.
We show equivalence to Eq. (14) in App. A.2. They discuss
the relationship of Eq. (14) to mean aggregation when a
non-informative prior is imposed along with uniform ob-
servation variances. In addition to this, an interpretation of
Eq. (14) as a weighted average of datapoint-wise encodings
drawing connections to self-attention mechanisms in neural
processes [Kim et al., 2019].

Simulation Study To verify the importance of the func-
tional form of the NN factors, we perform a simulation study
with a simple Gaussian model that admits exact posterior
computations. We train NPs on one-dimensional data gener-
ated from a hierarchical linear model with Gaussian likeli-
hood y

(i)
l ∼ N(x

(i)
l zl, 1) and Gaussian prior zl ∼ N(0, 5).

Inputs are generated according to x
(i)
(l) ∼ U(0, 1). The

true sufficient statistics of this problem take the form:
[(xy)/σ2

y, −x2/(2σ2
y)]. Therefore the structured inference

network must be sufficiently expressive to represent a
quadratic function of the data in order to learn the true
sufficient statistics. We consider three NPs, each with a
structured inference network but with three variations of fϕ:
(1) linear; (2) linear but with polynomial basis expansion of
degree 2; (3) MLP with 2 hidden layers each with 20 units.
The linear model should only be able to capture the location
whereas the degree-two polynomial and MLP should be
sufficiently expressive to represent location and scale. The
results of the simulation are shown in Fig. 2. Indeed, the cur-
vature is poorly approximated in the linear case (subfigure
a). Moreover, there is no clear advantage to using the NN
(subfigure c), which is overly expressive.

3.2 MIXTURE OF GAUSSIAN PRIOR

We now consider a structured prior such as mixture of Gaus-
sian which is a conditionally-conjugate exponential-family
distribution. This may a beneficial modelling assumption if
we expect the data to arise from multiple sources. The prior
is given by,

q(z;ϕPGM) =

K∑
k=1

πkN(z |µk,Σk) (10)

with K component Gaussian distributions and weighting
terms such that

∑K
k=1 πk = 1. Taking the DNN factors

to be Gaussian and in moment parameterization similar to
Sec. 3.1, the posterior can also be expressed as a mixture of

Gaussians,

qϕ(z | Dc) =
1

Zc(ϕ)

Nc∏
i=1

N(z |mi,Vi) q(z;ϕPGM) (11)

=
1

Zc(ϕ)

K∑
k=1

π̃kN(z | µ̃k, Σ̃k) (12)

with,

Σ̃−1
k =

Nc∑
i=1

V−1
i +Σ−1

k (13)

µ̃k = Σ̃k

(
Nc∑
i=1

V−1
i mi +Σ−1

k µk

)
(14)

π̃k = πk Ck (15)

where Zc =
∑K

k=1 π̃k and Ck is given in App. A.3. The
aggregation for the mean and variance parameters for each
component in the posterior takes an identical form to Eqs. (8)
and (14). However, we arrive at a non-trivial expression for
the mixing proportions.

4 CONCLUSION

We proposed to improve NPs by incorporating structured
inference networks. This change is attractive for several
reasons: (i) the local encodings (ri) now have a clear inter-
pretation as neural sufficient statistics, (ii) the aggregation
step is predetermined by and follows from the probabilistic
assumptions, and (iii) structured priors are straightforward
to incorporate. We demonstrated in a Gaussian simulation
that these structural assumptions do indeed matter: the linear
encoder was only able to capture the location, as predicted
by the form of the true sufficient statistics. In future work,
we plan to explore structured inference networks for differ-
ent priors as well as scale up to large experiments.
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A APPENDIX
A.1 ELBO DERIVATION WITH STRUCTURED

INFERENCE NETWORK

log p(Dt | Dc) (16)

= log

∫
z

p(Dt | z) p(z | Dc) (17)

= log

∫
z

qϕ(z | Dc ∪ Dt)
p(Dt | z) p(z | Dc)

qϕ(z | Dc ∪ Dt)
(18)

≥ Eqϕ(z | Dc∪Dt)

[
log

p(Dt | z) p(z | Dc)

qϕ(z | Dc ∪ Dt)

]
(19)

≈ Eq

[
log

p(Dt | z) qϕ(z | Dc)

qϕ(z | Dc ∪ Dt)

]
(20)

= Eq [log p(Dt | z)]

+Eq

[
log ((((((((∏Nc

i=1
q(z | fϕNN

(D(i)
c ))

((((((((∏Nc
i=1

q(z | fϕNN
(D(i)

c ))
∏Nt

i=1
q(z | fϕNN

(D(i)
t ))

((((q(z;ϕPGM) Zc,t(ϕ)

((((q(z;ϕPGM) Zc(ϕ)

]
(21)

= Eq [log p(Dt | z)]−
Nt∑
i=1

Eq

[
log q(z | fϕNN(D

(i)
t ))

]
+ logZc,t(ϕ)− logZc(ϕ) (22)

A.2 EQUIVALENCE TO BAYESIAN
AGGREGATION MEAN UPDATE EQUATION
IN [Volpp et al., 2020]

µ̃ = Σ̃

(
Nc∑
i=1

V−1
i mi +Σ−1

0 µ0

)
(23)

= Σ̃

(
Nc∑
i=1

V−1
i mi + Σ̃−1µ0 −

Nc∑
i=1

V−1
i µ0

)
(24)

= µ0 + Σ̃

Nc∑
i=1

V−1
i (mi − µ0) (25)

A.3 MIXING QUANTITY FOR MIXTURE OF
GAUSSIAN POSTERIOR

Ck =(2π)−
DN
2

Nc∏
i=1

det(Vi)
− 1

2

(
det(Σk)

det(Σ̃k)

)− 1
2

exp

{
− 1

2

(
Nc∑
i=1

m⊤
i V

−1
i mi + µ⊤

k Σ
−1
k µk

− µ̃⊤
k Σ̃

−1
k µ̃k

)}
(26)

A.4 EXPERIMENTAL DETAILS

We train a NP on 1D data generated from a hierarchical
linear model with Gaussian likelihood y

(i)
l ∼ N(x

(i)
l zl, σ

2
y)

and Gaussian prior zl ∼ N(µ0, σ
2
0). Inputs are generated

according to x
(i)
(l) ∼ U(xmin, xmax). The following config-

uration of parameters are used: σ2
y = 1, µ0 = 0, σ2

0 =
5, xmin = 0, xmax = 1. We consider L = 10000 tasks with
Nc = 5 context points and Nt = 15 target points, both
generated in the same fashion.

We consider the NP with structured inference network in
natural parameterization and with Gaussian prior but with 3
varieties for fϕ(·): (1) linear; (2) linear but with polynomial
basis expansion of degree 2; (3) MLP with 2 hidden layers
each with 20 units. The NP is fitted using the VI objective
via full-batch gradient descent with the Adam optimizer for
10000 epochs and learning rate 10−3. The number of latent
samples during training is set to 128 and the decoder is fixed
to the true likelihood.
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