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ABSTRACT

It has been demonstrated in many scientific fields that artificial neural networks,
like autoencoders or Siamese networks, encode meaningful concepts in their latent
spaces. However, there does not exist a comprehensive framework for retrieving
this information in a human-readable form without prior knowledge. In order to
extract these concepts, we introduce a framework for finding closed-form inter-
pretations of neurons in latent spaces of artificial neural networks. The interpre-
tation framework is based on embedding trained neural networks into an equiva-
lence class of functions that encode the same concept. We interpret these neural
networks by finding an intersection between the equivalence class and human-
readable equations defined by a symbolic search space. The effectiveness of our
approach is demonstrated by retrieving invariants of matrices and conserved quan-
tities of dynamical systems from latent spaces of Siamese neural networks.

1 INTRODUCTION

The current AI revolution is driven by artificial neural networks (ANNs), particularly deep learning
models. These models have enabled machines to achieve superhuman performance in a variety of
tasks, such as image recognition, language translation, game playing, and even generating human-
like text. However, this remarkable power comes at the expense of interpretability, often referred
to as the ”black box” problem. The representational capacity of artificial neural networks relies
on interactions between possibly billions of neurons. While each single neuron is easy to describe
mathematically, as networks become larger, it becomes increasingly difficult to understand how
these interactions give rise to a neural network’s overall prediction.

The black-box nature of neural networks can be acceptable in applications where prediction is the
primary goal. However, in science, where the goal is not just prediction but also understanding the
underlying phenomena, interpretability is crucial. Moreover, in medicine, it is important to under-
stand why an AI system has made a particular diagnosis or treatment recommendation to avoid risks
of dangerous or ethically questionable decisions (Jin et al., 2022; Amann et al., 2022). AI inter-
pretability in the law domain is crucial for understanding and explaining how automated decisions
are made, which helps ensure transparency and accountability. It also allows for the identification
and correction of biases, compliance with regulations, and maintains the integrity of legal processes
(Hacker et al., 2020; Bibal et al., 2020).

In many scientific applications of neural networks, it can be verified that neural networks often learn
meaningful concepts, similar to those that humans use, to describe certain phenomena (Ha & Jeong,
2021; Desai & Strachan, 2021; Nautrup et al., 2022) . Unfortunately, without a method to distill this
learned concept in a human-interpretable form, the only way to reveal it is by directly comparing it
to a set of candidates that the researcher is already aware of. Clearly, it is not possible to make new
discoveries in this way.

To address this problem, symbolic regression techniques have been proposed to interpret neural
networks by deriving closed-form expressions that represent the underlying concepts learned by
these networks (Cranmer et al., 2020; Mengel et al., 2023). These approaches involve exploring the
space of potential mathematical expressions to identify those that best replicate the predictions of
a neural network. Unfortunately, such methods are limited to interpreting output neurons of neural
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networks performing regression, where the concept that is recovered is the global function learned
by the neural network.

Neural networks applied to perform scientific discovery are often tasked with solving problems that
cannot be formulated under the umbrella of regression. Further, it is often necessary to interpret a
simpler sub-concept encoded in hidden layers. For these reasons, it is desirable to have a frame-
work capable of interpreting concepts encoded in arbitrary intermediate neurons of artificial neural
networks.

Prominent artificial scientific discovery methods have been proposed based on networks like autoen-
coders (Wetzel, 2017; Iten et al., 2020; Miles et al., 2021; Frohnert & van Nieuwenburg, 2024) or
Siamese networks (Wetzel et al., 2020; Patel et al., 2022; Han et al., 2023). These networks can dis-
till meaningful concepts inside their latent spaces without explicit training information in the form
of labeled targets. The crucial obstacle to their wider adoption is the lack of tools that enable the re-
covery of such concepts without prior knowledge. Removing this bottleneck would allow scientists
to use these tools to discover potentially new scientific insights.

In this paper, we describe a framework that can be employed to interpret any single neuron within an
artificial neural network in closed form. Concepts encoded in neurons in hidden layers are generally
not stored in a human-readable form, but instead get distorted and transformed in a highly non-linear
fashion. Hence, the interpretation method is based on constructing an equivalence class around
a certain neuron that contains all functions encoding the same concept as the target neuron. In
practice, we interpret the neuron by searching a closed-form representative function contained in
this equivalence class. We demonstrate the power of our framework by rediscovering the explicit
formulas of matrix invariants and conserved quantities from the latent spaces of Siamese networks.

The capability of interpreting any single neuron in closed-form closes a significant gap regarding
the problem of neural network interpretability. The main targets of our interpretation framework
are neural networks tasked with solving scientific problems on structured data sets where the ulti-
mate level of interpretation is a scalar symbolic equation capturing the learned concept. The three
obstacles towards having a full interpretation of neural networks are:

1. scaling of symbolic representations: Any form of symbolic search algorithm scales
poorly with the complexity of the underlying equation. Many scientists are working on
competing symbolic search algorithms mainly tailored to symbolic regression, a list can be
found in the subsequent paragraph.

2. dimensional mismatch of neural networks storing information distributed among multiple
neurons. Common methods to eliminate this mismatch are based on disentangling features
learned by different neurons within the same layer (Higgins et al., 2017) or to enforce a
bottleneck (Koh et al., 2020) such that single neurons capture individual concepts.

3. distortions of concepts within a neural network in highly non-linear form. If neural net-
works learn concepts, there is no reason to store them in a form which is aligned with a
human formulation of the concept. For example, if a neural network learns the concept
of temperature, there is no reason to choose the Celsius or the Fahrenheit scale, nor does
this encoding need to be linear. In practice, it turns out that this non-linear distortion can-
not even be captured with symbolic equations. This problem prevents symbolic search
algorithms from interpreting anything beyond output neurons in the context of regression.
Until the invention of the interpretation framework presented in our manuscript, solving
this problem was impossible.

Hence our method is highly complementary with other publications and is currently the only option
to overcome obstacle 3.

2 RELATED WORK

The current manuscript concerns the domain of artificial neural network interpretability, with a fo-
cus on enabling new scientific discovery through latent space models. Much of the neural network
interpretability research adresses the question of whether or not neural networks learn certain known
scientific concepts. While verifying a neural network is an important task, it is unsuitable for gain-
ing novel scientific insights. There has been limited progress toward revealing scientific insights in
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symbolic form from artificial neural networks that do not require previous knowledge of the under-
lying concept beforehand (Wetzel & Scherzer, 2017; Cranmer et al., 2020; Miles et al., 2021; Liu
& Tegmark, 2021). These cases are rare examples where the underlying concept is encoded in a
linear manner, or where other properties of the concept simplify the interpretation problem. While
there are no unified approaches to interpreting latent space models, it might in principle be possible
to build such models based on architectures with symbolic layers (Martius & Lampert, 2016; Sahoo
et al., 2018; Dugan et al., 2020; Liu et al., 2024)

Our article aims instead to interpret existing latent space models. We extend an interpretation frame-
work (Wetzel, 2024), originally developed to interpret neural network classifiers, to interpret neural
network latent spaces.

The interpretation method relies on efficiently searching the space of symbolic equations, which
can be achieved by genetic search algorithms which form the backend of many symbolic regression
algorithms. These include Eureqa (Schmidt & Lipson, 2009), Operon C++ (Burlacu et al., 2020),
PySINDy (Kaptanoglu et al., 2022), Feyn (Broløs et al., 2021), Gene-pool Optimal Mixing Evolu-
tionary Algorithm (Virgolin et al., 2021), GPLearn (Stephens, 2022) and PySR (Cranmer, 2023).
Other symbolic regression algorithms include deep symbolic regression uses recurrent neural net-
works (Petersen et al., 2020), symbolic regression with transformers (Kamienny et al., 2022; Biggio
et al., 2021) or AI Feynman (Udrescu & Tegmark, 2020).

An overview of interpretable scientific discovery with symbolic Regression can be found in (Makke
& Chawla, 2022; Angelis et al., 2023).

b)

c)Compare Neural Network 
Latents to Candidate 

Concepts

a)

Figure 1: (a) The Siamese network consists of two pairs of identical sub-networks f . From the
first pair, we compute the distance between the anchor and the positive example d(f(xA), f(xP )),
which should be as close to zero as possible. From the second we compute d(f(xA), f(xN )), which
should be as large as possible. This facilitates a latent space where similar items are close together,
while dissimlar ones are far apart. (b) Most existing approaches attempt to interpret a neural network
latent space by comparing the latent with known candidate concepts. In this case, it is necessary to
have the correct concept at hand, which is unsustainable for scientific discovery. (c) Our method
requires only a dataset and a trained neural network to be used in conjunction with a symbolic
search algorithm, which then discovers a closed-form expression describing the concept encoded in
the network’s latent space.
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3 METHOD

3.1 SIAMESE NEURAL NETWORKS

Siamese neural networks (SNN) (Baldi & Chauvin, 1993; Bromley et al., 1993) were originally in-
troduced to solve fingerprint recognition and signature verification problems. SNNs consist of two
identical sub-networks with shared parameters, each receiving distinct inputs which are then pro-
jected to an embedding space. These projections are then compared by a distance metric, which
joins each sub-network f together at their output. Inputs belonging to the same class should ob-
tain high similarity, while those belonging to different classes should obtain low similarity. Such
a framework allows for generalization to infinite-class classification problems. The distance met-
ric d(·) is chosen according to the specific problem at hand, and in our case we use the squared
Euclidean distance.

The network F can be trained effectively using a contrastive or triplet loss (Schroff et al., 2015),
wherein a set of triplets are supplied to the energy function,

L(xA, xP , xN ) = max(d(f(xA), f(xP ))− d(f(xA), f(xN )) + α, 0).

The anchor xA is the ground truth class, the positive sample xP is of the same class as xA, whereas
the negative sample N is of a different class. Instead of using a twin network, this setup requires a
triplet of identical networks, each still sharing the same weights. The triplet loss is minimized when
the distance between the anchor and positive sample is minimized in the embedding space, while the
distance between the anchor and negative sample is maximized. The margin parameter α is a positive
constant which encourages separation between positive and negative samples, as α = 0 would mean
that the loss could be trivially minimized by projecting all samples to the same location. Finally, the
max(·) operation ensures that the distance between positive and negative samples remains finite.

It has been shown that in scientific settings SNNs can be trained to learn conserved quantities and
symmetry invariants of the underlying system. For this purpose, training data is collected where data
points belonging to the same class are defined through a connection via trajectories obeying laws
of motion (conserved quantities) or a desired symmetry group (symmetry invariants) (Wetzel et al.,
2020).

The architecture of the sub-network f depends on the underlying data. In our case, we implement
it as a fully-connected network. We note that our framework interprets single neurons, hence our
latent layer, which we wish to interpret, consists of only one neuron. The details of our architecture
and training hyperparameters can be found in subsection C.2.

3.2 INTERPRETATION FRAMEWORK

The interpretation framework is designed to extract concepts in the form of symbolic equations from
any single disentangled or concept bottleneck neuron within an artificial neural network. While the
interpretation framework can be applied to any single neuron, for the purpose of this manuscript we
perform an interpretation of the output neuron f(x) of a single sub-net of a Siamese network defined
by equation 1 which produces a scalar mapping of the input into a latent space.

f(x) contains the full information about a certain symbolic concept g(x) if g(x) can be faithfully
reconstructed from f(x). Conversely, if f(x) only contains information from g(x) it is possible to
reconstruct f(x) from the knowledge of g(x). In mathematical terms that means that there exists
an invertible function ϕ such that f(x) = ϕ(g(x)). An example of the same concept embedded in
different forms is the temperature, it can be measured in Fahrenheit or Celsius and there exists a
linear transformation that maps one version of the temperature onto the other.

In general, this means that if we aim to extract information from a neural network f , we need to
account for any nonlinear and uninterpretable transformation ϕ that conceals the human formulation
of a concept,

f(x) = ϕ︸︷︷︸
uninterpretable transformation

( g(x)︸︷︷︸
closed form concept

). (1)

Different realizations of neural networks might learn the same concept g and therefore contain the
same information. More formally, these realizations are all members of the following equivalence
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class:

H̃g =
{
f(x) ∈ C1(D ⊂ Rn,R) | ∃ invertible ϕ ∈ C1(R,R) : f(x) = ϕ(g(x))

}
. (2)

While each network f ∈ H̃g is related to g via a different unique invertible transformation ϕ, they
are functionally equivalent in that they learn the same concept from the data. At this point, we ask
the question, whether it is possible to identify the concept g without knowing the function ϕ.

g(x) = ϕ−1 (f(x)) . (3)

In order to avoid the necessity of knowing ϕ, we rewrite the equivalence class equation 2 such that
membership can be defined without explicit information about ϕ. Since all f ∈ H̃g are required to
be continuously differentiable, we can show that the gradients of the two functions f and g point in
the same direction,

∇f(x) = ϕ′(g(x)) · ∇g(x) where ∥ϕ′(g(x))∥ > 0. (4)

Here we used that ϕ, by construction, is invertible. Since ϕ′(g(x)) is merely a scaling factor, this
equation allows us to define a new equivalence class H̃g ⊆ Hg = Hg+ ∪Hg−, where

Hg± =

{
f(x) ∈ C1(D ⊂ Rn,R)| ∇f(x)

∥∇f(x)∥
=

±∇g(x)

∥∇g(x)∥
∨ ∇f(x) = ∇g(x) = 0,∀x ∈ D

}
.

(5)

Trivially, if f ∈ Hg then Hg = Hf . It can be proven that Hg = H̃g , see subsection A.1 under mild
assumptions. In subsubsection A.1.1 we explore whether these assumptions are justified in typical
neural network settings. In order to execute the interpretation framework we look at the definition
of this equivalence class in reverse. We define an equivalence class anchored on the neural network
Hf and use a genetic algorithm to retrieve the most likely symbolic concept g within Hf .

3.3 SYMBOLIC SEARCH

Symbolic regression is a regression analysis technique that has traditionally been used to find closed-
form expressions that approximate the relation between target and input variables for a given dataset.
Typically, this is done by employing a genetic algorithm, which evolves a population of candidate
formulas using genetic operations like selection, crossover, and mutation, aiming to find the least
complex tree of operators T that best maps inputs X to outputs Y according to some objective
function. This tree consists of a set of nodes, each containing either a number, variable, or a unary
or binary operator (see Figure 5 (c) for an example tree) that represent a mathematical expression. In
the context of neural network interpretation, symbolic regression is employed to convert a complex
model into an interpretable tree representation.

In our case, we search for a symbolic tree T which represents a function g ∈ Hf+, meaning, we look
for a symbolic concept g within the equivalence class anchored on the neural network f . During
this step we choose a symbolic quantity whose gradient points in the same direction as the gradient
of the network f . This is possible because Hf− can be mapped to Hf+ simply by multiplying each
element with −1. Hence, it is enough to focus on Hf+. However, instead of performing regression
on a set of prediction targets to find the best fitting function, we search for an analytical expression
whose normalized gradients are as close as possible to those of f . Because of this difference, we
refer to this approach as symbolic search instead of symbolic regression. Note that this requires
that T consists of operators that yield a differentiable function. To implement our symbolic search
algorithm, we modify the the SymbolicRegression.jl module from the PySR package (Cranmer,
2023).

The objective function we choose is the mean-squared-error (MSE), which measures the distance
between the normalized gradients gT (x) =

∇T (x)
∥∇T (x)∥ , and gf (x) =

∇f(x)
∥∇f(x)∥ ,

MSE(gT (X), gf (X)) =
1

n

n∑
i=1

∥gT (xi)− gf (xi)∥2 . (6)

Nodes are mutated and added by the modified symbolic search algorithm in order to minimize
this objective function. The unary operators we use include {sqrt, square, sin, exp}, and for binary
operators we use {+,−, ∗, /,∧}. The setup we use is described in subsection C.1.
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3.4 ALGORITHMS

Implementing our framework involves three main algorithms which summarize the preceding sec-
tions:

1. Train the model fθ to learn the invariant. See algorithm 1.
2. Choose a neuron to interpret. This neuron computes hθ′(x), where θ′ ⊆ θ, i.e., we are

using a subset of the network. In our specific case, we are interested in interpreting the
latent space of the Siamese network, hence we choose to interpret the final neuron, which
means we use the entire sub-network fθ, and θ′ = θ. Compute its gradient with respect to
the input, i.e., ∇xfθ(x). See algorithm 2.

3. Apply symbolic search to find a symbolic tree T whose gradients point in the same direction
as fθ. See algorithm 3.

ALGORITHM 1: Training a Siamese Neural Network to Learn an Invariant
Data: Dataset of triplets D = {(XA, XP , XN )i}mi=1

Input: Neural network hyperparameters
Output: Trained network fθ

1 for each epoch do
2 for each mini-batch {(XA, XP , XN )} from D do
3 fA = fθ(XA)
4 fP = fθ(XP )
5 fN = fθ(XN )

6 L = max(0, ∥fA − fP ∥22 − ∥fA − fN∥22 + α)
7 Backpropagate the loss and update the model parameters θ
8 end
9 end

ALGORITHM 2: Extracting the Gradients from the Siamese Network
Data: Unlabelled dataset (X)
Input: Trained network fθ
Output: (X, gf )

1 gf ← [∇fθ(x) for x in X] ▷ Evaluate gradients w.r.t. input at neuron f

2 gf ← [ ∇fθ
∥∇fθ∥+ϵ

for∇fθ in gf ] ▷ Normalize Gradients

ALGORITHM 3: Symbolic Search
Data: Gradient data set (X, gf )
Input: Symbolic search hyperparameters; a set of unary and binary operations.
Output: Symbolic model T

1 Initialize symbolic model T
2 Evolve T with (
3 gT ← [∇T (x) for x in X] ▷ Gradients of symbolic model
4 gT ← [if∇T (x) ̸= 0 : ∇T (x)/∥∇T (x)∥
5 else∇T (x) for∇T (x) in gT ] ▷ Normalize Gradients
6 ) to minimize MSE(gf , gT )

4 EXPERIMENTS

4.1 DATASET GENERATION

To test the effectiveness of our method, we demonstrate it on 12 different datasets. Each dataset
consists of N triplets, which we construct in the following way: once the anchor xA is sampled,
the positive sample xP is obtained via xP = M(xA), where M is a placeholder operator for a
specific transformation that is defined for each experiment in Appendix D, and finally xN is sampled

6
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independently. The operation implemented by M transforms xA to xP such that certain properties of
xA are inherited by xP , but the two points are otherwise unique. We consider the trace, determinant,
sum of principal minors under the similarity transformation, the inner product and spacetime interval
under the Lorentz transformation, and the energy and momentum in a variety of potentials. More
details about each dataset, including how to reproduce them, can be found in Appendix D.

Table 1: Matrix Invariants
Exp. No. Name d Transformation Invariant Analytical Expression Retrieved Expression
1 2× 2 4 Similarity Transformation Trace A11 +A22

A11+A22

−0.878
2 Determinant A11A22 −A12A21 A12A21 −A11A22

3 3× 3 9 Similarity Transformation Trace A11 +A22 +A33 A11 +A22 +A33

4 3× 3 Antisymmetric Sum of Principal Minors A2
12 +A2

23 +A2
13 A12A21 +A23A32 +A13A31

5 4× 4 16 Similarity Transformation Trace A11 +A22 +A33 +A44 A11 +A22 +A33 +A44

6 6 Lorentz Transformation Inner Product E1B1 + E2B2 + E3B3 E1B1 + E2B2 + E3B3

Table 2: Potentials
Experiment No. d Potential V Invariant Analytical Expression Retrieved Expression
7 1 1

2x
2 Energy 1

2v
2 + 1

2x
2 v2 + x2

8 sin(x) 1
2v

2 + sin(x) v2 + sin(x) + sin(x)
9 1

2x
2 + 1

4x
4 1

2v
2 + 1

2x
2 + 1

4x
4 v · v + x · x+ 0.513(x · x)2

10 1
2x

2 + exp(x+ 1) 1
2v

2 + 1
2x

2 + exp(x+ 1) square(v) + x · x+ exp(x+ 1.684)
11 2 −r−2 Angular Momentum x1v2 − x2v1 x2v1 − x1v2

Table 3: Spacetime
Experiment No. d Transformation Invariant Analytical Expression Retrieved Expression
12 4 Lorentz Transformation Spacetime Interval t2 − x2

1 − x2
2 − x2

3 x1 · x1 + square(x2)− ((t · t)− square(x3))

4.2 RESULTS
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Figure 2: The latent space encodings of Siamese neural network applied to different data sets are
compared with the corresponding ground truth concept for each data point. In all cases, it is possible
to see a clear correlation. However, this correlation is mostly non-linear causing direct symbolic re-
gression methods to fail, since they would attempt to fit additional variables for slopes and intercepts
as well as the deformation to a non-linear dependency.
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We summarize the results of our experiments in Tables 1–3. For each experiment, we use the
method outlined in section 3 to obtain a set of predicted expressions from the symbolic search
algorithm, which we present as a Pareto chart in Figure 4 and Figure 3. The pareto chart plots each
of these expressions as a bar chart in decreasing order of loss. Of these expressions, we identify
the one that most closely matches the correct expression, and present it under the column titled
retrieved expression in tables 1–3. It is interesting to note that the correct expression is often the
one corresponding to the steepest drop in the loss. We note that in some cases, the network learns a
polynomial approximation to the desired expression, which we rectified by increasing the sampling
range used to produce the dataset.

All obtained solutions match the correct expressions. It is also possible for the symbolic search
algorithm to instead return a solution that matches the ground truth one up to a piecewise invertible
transformation, although we do not observe this in our experiments. Furthermore, we observe that
the symbolic search algorithm may approximate the correct solution, or add simplifications to it. For
example, the solution denoted by the striped pink bar in Figure 3 (c) a uses exp(x1·x1) ≈ 1+x2+x4

2 ,
which matches the correct solution up to the fourth order in x. In Figure 3 (d), the expression
2 exp(x+ 1) was simplified to exp(x+ 1 + ln(2)) ≈ exp(x+ 1.684).

Furthermore, because the network’s latent layer consists of only a single neuron, we can directly
compare the value it encodes f(X) for all inputs on the data set X to the true underlying concept
g(X). We plot these quantities against each other in Figure 2. Note that these correlation plots
are not a necessary component of our interpretation framework. We use them only to highlight
the non-linear manner in which the neural network encodes the concept. In most experiments, the
values encoded in the latent space are highly correlated with some well-known concept. In fact,
the correlation plots for the trace in Figure 2 (a), (c), and (e) are almost linear, which is expected
as they can trivially be learned by a single-layer neural network with no non-linearities. In such
cases, it may be possible to use other methods to interpret the neural network. However, most
invariants are significantly more complex, and the neural network will encode them in a non-linear
manner, in which case most other interpretation methods will fail. All of these methods fail for
the same reason - they attempt to retrieve the distorted version of the concept ϕ(g(x)), rather than
the concept itself. In comparison, our method searches for a symbolic tree whose gradients are
aligned with the network f . This means that the tree is not restricted to representing the distorted
concept, and coupled with the complexity penalty of symbolic search, it often yields the simplest
possible expression whose gradients match the network f . We provide a comparison of our method
to performing symbolic regression directly on the latent space (Cranmer et al., 2020) in Appendix E,
where only 7 of 12 experiments are successful. Interestingly, direct symbolic regression manages to
successfully retrieve the expression for the 3×3 antisymmetric matrix, which is encoded in a highly
non-linear manner according to the correlation plot in Figure 2. We speculate that the symbolic
regression algorithm finds a tree using a linear sub-region of the data that achieves a low loss.

5 CONCLUSIONS

In this manuscript, we develop a framework to interpret any single neuron in neural network latent
spaces in the form of a symbolic equation. It is based on employing symbolic search to find a
symbolic tree that exhibits the same normalized gradients as the examined latent space neuron. The
approach is suitable to interpret all kinds of neural networks applied to structured data within settings
where concepts are formulated as scalar equations, like in science. The approach is limited by the
expressibility of symbolic search algorithms and the challenge of isolating single neurons through
bottlenecks or disentanglement.

We justify this procedure by defining an equivalence class of functions encoding the same concept,
in which the membership criterion is that all members have parallel gradients at every point on the
data manifold. Through this procedure, we enable the extraction of concepts encoded by latent space
models.

We demonstrate the power of our approach by interpreting Siamese networks tasked with discover-
ing invariants of matrices and conserved quantities of dynamical systems. We are able to uncover
the correct equations in all of our examples. It is important to note that the symbolic search al-
gorithm sometimes made clever approximations. For example, the anharmonic potential was sum-
marized by an exponential function whose Taylor expansion agrees to fourth order in x. Further,
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a)

c)

e) f)

d)

b)

Figure 3: The Pareto front for experiments involving conserved quantities, summarizing the results
of the symbolic gradient-based interpretation framework to find a candidate concept that is contained
in the corresponding neural network latent space. Several possible equations are plotted in order of
decreasing Mean Square Error (MSE) and increasing complexity. The red bar indicates the candidate
that resembles the ground truth concept, which is often found at the point of steepest change of the
Pareto front. The striped pink bar denotes a solution that approximates the correct one up to the
fourth order.

the approach simplified expressions, for example, the term 2 exp(x + 1) was transformed into
exp(x+ 1 + ln(2)) ≈ exp(x+ 1.684).

It is impossible to compare our results to other methods because our approach is the only general
method that allows for the extraction of concepts encoded in latent spaces in closed form. As we
have seen, sometimes the latent space encodings are approximately linearly correlated with the
human-readable ground truth concept. In these cases, it is possible to retrieve the expression with
traditional symbolic or polynomial regression. However, this is not the general case. It is important
to note that there might exist publication bias towards linear encodings, since non-linear encodings
cause traditional interpretations to fail.

The pathways to scientific understanding via interpretable machine learning might lead down dif-
ferent roads. On one side there are inherently interpretable ML models, like PCA or support vector
machines. On the other side, there are powerful artificial neural networks, which are difficult to
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a)

c)

e) f)

d)

b)

Figure 4: The Pareto front for experiments involving matrices, summarizing the results of the sym-
bolic gradient-based interpretation framework to find a candidate concept that is contained in the
corresponding neural network latent space. Several possible equations are plotted in order of de-
creasing Mean Square Error (MSE) and increasing complexity. The red bar indicates the candidate
that resembles the ground truth concept, which is often found at the point of steepest change of the
Pareto front.

interpret. Further, there is a middle ground implementing layers resembling symbolic calculations
inside artificial neural networks. Until recently, none of these approaches was able to truly dis-
cover human-readable concepts from latent space models. We hope that through our approach many
scientists will understand the potential discoveries that their latent space models might make.

The code used for this project is provided in an anonymized repository here.
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