
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BREADCRUMBS REASONING: MEMORY-EFFICIENT
REASONING WITH COMPRESSION BEACONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The scalability of large language models for long-context reasoning is severely
constrained by the linear growth of their Transformer key-value cache, which
incurs significant memory and computational costs. We posit that as a model
generates reasoning tokens, the informational value of past generated tokens di-
minishes, creating an opportunity for compression. In this work, we propose to
periodically compress the generation KV cache with a learned, special-purpose
token and evict compressed entries. We train the model to perform this compres-
sion via a modified joint distillation and reinforcement learning (RL) framework.
Our training method minimizes overhead over the conventional RL process, as it
leverages RL outputs for distillation. Empirically, our method achieves a supe-
rior memory–accuracy Pareto frontier compared to both the model without cache
compression and training-free compression techniques.

1 INTRODUCTION

Reasoning through token generation allows large language models (LLMs) to solve arbitrarily com-
plex problems with a fixed depth architecture (Merrill & Sabharwal, 2023), by scaling the compute
invested through the generation of more tokens (i.e., test-time scaling) (Snell et al., 2024). This
practice carries high computational costs, because of the self-attention design of Transformers (Bah-
danau et al., 2014; Vaswani et al., 2017; Keles et al., 2023). Not only it relies on simply generating
many more tokens, but later tokens require computation over the representations of all previous
tokens, incurring higher time complexity and necessitating increasing memory costs.

However, not all past representations are equally important. For example, the details of a previously
explored attempt at a solution are likely not critical, as long as the model retains some signal that
advises it to avoid exploring this same failed path again. We propose to jointly learn to reason,
compress, and discard previously computed representations along reasoning chains.

The key to our approach is to substitute previously computed key-value (KV) cached representa-
tions with significantly more compact representations, inspired by how activation beacons are used
for long-context compression (Zhang et al., 2025). We train these representations to contain the
information from past tokens that is necessary for continuing the reasoning process to solve the task
the model is given, allowing us to evict from the KV cache most previously computed represen-
tations. The challenge is to combine the training of these beacons into the reinforcement learning
(RL, Sutton & Barto (2018)) process that makes length-based reasoning possible, a fundamentally
different process than the pre-training that enables conventional long-form generation. We design
a joint RL-distillation approach, where we train the original non-compression policy using the con-
ventional RL process with a verifier for reward computation, and concurrently distill it a policy that
jointly compresses and reasons.

We evaluate our method, Breadcrumbs Reasoning, on the Qwen2.5-1.5B and Phi-4-Mini models
across three challenging reasoning benchmarks: Countdown (Gandhi et al., 2024), LinSys, and Star-
Graph (Bachmann & Nagarajan, 2024). We compare against a strong, uncompressed teacher policy
trained with RL, as well as two training-free cache eviction baselines, TOVA (Oren et al., 2024) and
StreamingLLM (Xiao et al., 2023). Our experiments reveal several key findings. Demonstrating a
clear Pareto improvement, Breadcrumbs Reasoning enables effective test-time scaling by generating
longer reasoning chains to match or exceed the teacher’s accuracy within a fixed memory budget,
while still retaining 67.1–94% of the original performance when using 2–32x less memory at a fixed

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

La
ye
rs

Standard Transformer

Erased from cache Erased from cache

Breadcrumbs Reasoning

KV Cache
ErasedVisible Visible until next compression

Tokens
Question Generation Beacon

La
ye
rs

Time

Time

Inputs

Outputs

KV entries

Inputs

Outputs

KV entries

1

Figure 1: Breadcrumbs Reasoning, with a compression ratio c = 8. To save memory during infer-
ence, a window of c tokens is periodically compressed into a single beacon token. The original KV
cache entries for the window are then evicted, leaving only a compact ’breadcrumb’ that summarizes
the preceding reasoning steps.

generation length. In contrast, the training-free baselines consistently underperform, stressing the
necessity of a learned compression scheme for complex reasoning. We also validate our training
strategy, showing that our joint RL-distillation approach matches or outperforms a more complex
two-stage training pipeline, confirming its efficiency. Our code, data, and models will be released
under the MIT license upon publication.

2 RELATED WORK AND BACKGROUND

Generation in Transformers-based LLMs requires reasoning over and storing a key-value (KV)
cache. This entails high memory (i.e., space) and time costs, which increase as the context (i.e.,
the number of previous tokens) increases. Therefore long-form generation costs suffer not only
from the fundamental need to generate more tokens via more steps, but also from the increasing
cost of each such step. KV compression is a solution avenue that is receiving significant research
attention (LI et al., 2025).

An important thread within this compression literature is training models to perform KV cache
compression. Nawrot et al. (2024) train models to compute importance scores, which are then
used to store averaged KV cache entries instead of the original entries. Other methods train the
Transformer-based LLMs themselves to summarize past KV entries (Chevalier et al., 2023; Zhang
et al., 2025), so more compact representations can be retained. Our approach is inspired by the
activation beacons method (Zhang et al., 2025), but with significant simplifications and adaptation
for reasoning. We do away with the chunk and sub-chunk distinction, and eliminate the addition
of specialized attention mechanisms. Rather we adopt a flat segmentation into blocks, and use
the standard Transformer attention mechanism, and remove KV cache entries every time a beacon
is processed (e.g., ex-ante). These modifications do not only simplify the implementation, but also
allow for immediate eviction of cache entries, instead of a delayed one. More broadly, a drawback of
these learned methods is that they require fine-tuning on a considerable amount of general-purpose
pre-training data. We design a joint reasoning-compression training approach, which adds minimal
overhead over the existing reasoning training processes.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 Breadcrumbs Reasoning
Input: Transformer-based policy πBR, beacon token b, prompt tokens q̄, stop token s, compression

ratio c. Let KVπBR
be the persistent KV cache of the policy model πBR.

Output: x̄
1: Initialize: Encode q̄ through π
2: for i = 0, 1, 2, . . . do
3: xi ∼ πBR(·|q̄, x̄) ▷ Sample the next token. KVπBR

is updated internally.
4: x̄← x̄+ xi ▷ Concatenate the sampled token to the end of the output.
5: if xi = s then ▷ Check for the generation stopping token.
6: break
7: if i > 0 and i mod c = 0 then
8: Encode b through πBR(·|q̄, x̄) ▷ Updates KVπBR

with the entry for the compression
token b.

9: KVπBR ← KVπBR [: −c− 1] ▷ Drop the KV cache entries of the most recent c tokens.
10: +KVπBR [−1] ▷ But, keep the entry of the beacon b.
11: return x̄

An alternative method for training-based method are training-free methods that perform compres-
sion at generation time. They can be divided into two main categories. The first is that of sliding-
window approaches, which limit the KV cache by only including a sliding window plus an additional
subset of tokens. Particularly simple and effective is StreamingLLM (Xiao et al., 2023), which finds
that including a few initial sink tokens in addition to the window recovers most of the uncompressed
performance. The second type not constrain window tokens to remain in the cache, but rather tries
to select the empirically more important for attention computations, as in H2O (Zhang et al., 2023)
or TOVA (Oren et al., 2024).

An alternative to reducing the KV cache size, is to reduce Chain-of-Thought reasoning length (Kang
et al., 2025; Ma et al., 2025; Shen et al., 2025; Yan et al., 2025; Munkhbat et al., 2025; Xia et al.,
2025). These methods primarily aim to directly shorten reasoning traces. This is distinct from our
objective of dynamic KV cache compression, which focuses on extracting critical information to
manage cache sizes effectively during the reasoning process itself. KV cache compression methods,
like ours, could be applied in combination with those methods to achieve even higher levels of
efficiency.

3 METHODOLOGY

Breadcrumbs Reasoning (BR) periodically computes compressed representations of KV cache en-
tries, and evicts them from the KV cache. We design a training process that adds relatively little
overhead on top of the conventional reasoning RL process. The learned policy model effectively
reasons by through token generation and concurrently compresses KV cache representations.

3.1 BREADCRUMBS REASONING

Our compression scheme uses the Transformer architecture itself for both compression and reason-
ing. We generate tokens following the same procedure as a vanilla Transformer-based language
model, but periodically compute compressed representations of past KV cache entries, and evict
these entries from the cache. Algorithm 1 describes the process. We use a special token b to mark
when the model should compute compressed representations of past tokens, and input this token
every c tokens, where c is the target compression ratio. The KV cache entries for the token b form
the compressed representation, and we drop the entries for previous c tokens. Immediately after the
beacon b, we force the next input token to be the last sampled token before b was given as input.
This is equal to continuing conventional generation. Figure 1 visualizes this process to illustrate the
space savings. Roughly speaking, this process leaves a trace of “reasoning breadcrumbs” behind,
instead of long, detailed, and eventually irrelevant information.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1 … 7332 1 2 1 4 2 5 6 3

0 … 353331 32 33 34 34 35 34 35 36

Input
Cache size

Tokens
Question
Generation
Beacon

Key
1 … 7332 1 2 1 4 2 5 6 3

Q
ue

ry

1

…

7

3

32

1

2

1

4

2

5

6

3

Masked
Visible

Attention Mask

Figure 2: Attention mask used to enforce com-
pression during training. Each token after the
question can attend to the initial question tokens,
all previous beacons, and earlier generation to-
kens within the same window, i.e., since the most
recent preceding beacon. This encourages the
model to compress relevant past context into the
beacons to support future generations.

3.2 JOINT RL-DISTILLATION TRAINING

Typically, LLMs are trained to solve reasoning tasks through RL (Shao et al., 2024; DeepSeek-
AI, 2025; Lambert et al., 2025). Applying this process as is to a breadcrumbs reasoning policy is
technically possible, but is unlikely to lead to effective learning. This is because, before training,
the model does not have compression ability, so incorporating the compression token and cache
eviction will significantly damage its functionality, and it will observe no positive reward during
RL. We use a surrogate teacher policy πRL that does not compress and is trained through RL to
perform the reasoning task, and distill it into the breadcrumbs policy πBR. By learning to imitate
the surrogate policy πRL, our target breadcrumbs policy πBR simultaneously learns to compress and
to perform the new reasoning task. This process relies on the trajectories sampled during RL, so no
expensive sampling of trajectories beyond the conventional RL process is needed. This procedure
minimizes the overhead over a standard two-steps procedure, where either (a) πRL is completely
trained before generating new data for πBR to learn to compress, or (b) πBR is trained to compress
through extensive general data and only after that learns the new reasoning task.

Given a token trajectory x̄ sampled from πRL, the distillation loss is defined as the average token-
level KL divergence between the uncompressed policy πRL and the compressed policy πBR:

L(x̄) =
1

|x̄|

|x̄|∑
i=1

DKL (πRL(xi|x̄<i) ∥ πBR(xi|x̄<i)) (1)

=
1

|x̄|

|x̄|∑
i=1

|V |∑
k=1

πRL(xi = k|x̄<i) log
πRL(xi = k|x̄<i)

πBR(xi = k|x̄<i)

The total loss is then computed as the average over a batch of B trajectories:

L = Ex̄∼πRL
[L(x̄)] ≈ 1

B

B∑
b=1

L(x̄b)

When training πBR, we only compute the gradient of L with respect to the parameters of πBR. The
parameters of the teacher policy πRL are kept frozen during this update step, as πRL should not
adapt to πBR.

For parallel and efficient training, at training time πBR does not execute the KV cache removal
strategy (Section 3.1), but simulates it by masking compressed tokens. Figure 2 visualizes the
attention mask that results from the training masking pattern.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 EXPERIMENTAL SETUP

Tasks We use three reasoning tasks that the initial models solve with only a very low success rate:

Countdown (Gandhi et al., 2024): the task input is a tuple of numbers, and the goal is to create a
sequence of arithmetic operations using a subset of the numbers to equal a target number. While
this task requires the model to avoid repeating previous attempts, or it can enter an endless loop,
the individual guesses are largely independent of one another.

LinSys: each problem consists of a linear equation system with a unique integer solution. The
coefficients and variables are randomly generated. In contrast to Countdown, which emphasizes
educated trial and error, this task more closely reflects structured reasoning: solving for one
variable often enables solving for the next, resulting in a multi-step deductive process.

StarGraph (Bachmann & Nagarajan, 2024): the model is given a list of directed edges of a star
graph (i.e., a graph with multiple branches of a fixed length all expanding from a central node) and
a target end node. The model must output the full sequence of edges to get to the target node from
the central node. This is a task auto-regressive models such as Transformers naturally struggle
with, as observed by Bachmann & Nagarajan (2024) and Hu et al. (2025).

Model and Training Details We utilize two models for our experiments: Qwen2.5-1.5B-
Instruct (Team, 2025) and Phi-4-mini-instruct (Microsoft et al., 2025). For Qwen2.5-1.5B-Instruct,
we train for 1000 steps for all tasks, while for Phi-4-mini-instruct, we train for 200 steps for Star-
Graph and LinSys and 1000 steps for Countdown. We use a batch size of 256 for both models. We
use PPO (Schulman et al., 2017) as the RL algorithm for πRL. We experiment with compression
ratios c of 2, 4, 8, 16, and 32 for breadcrumbs reasoning. The reward of an incorrect or not present
answer is 0.0, a correct format of the final answer but an incorrect value gets a 0.1 reward, and a
correct response gets a 1.0 reward.

Baselines We compare our approach against two primary training-free baselines applied to πRL:
StreamingLLM (Xiao et al., 2023) and TOVA (Oren et al., 2024). Similar to our joint training setup,
they also do not require more data than what πRL was trained on, and they also delete entries from
the KV cache.1 For a fair comparison, we adapt these methods to use an increasingly large KV cache
size during generation, matching the memory footprint of our approach. This is to avoid potentially
penalizing them with a smaller static cache size. In particular, given a compression ratio c, we allow
the cache to grow by 1 every c generated tokens. We set the sliding window of StreamingLLM to c
to match the budget given to our approach. We also set the sink size of StreamingLLM to the entire
question. For TOVA, we set the initial size of the KV cache to the number of question tokens plus
c, so that the first compression would only happen after at least c tokens, similar to our method. For
both methods, we test the same c as for our policies. We also study the effect of training with a two-
steps approach, by first training the RL policy πRL and only later generating data for distillation. In
both cases, we use the same number of data samples and training steps (256 samples per step, for 1k
steps).

Evaluation We generate evaluation answers for 256 held-out test examples for each task. In all
settings, we fix the maximum KV cache size to 1,000 entries (i.e., tokens), which is also the maxi-
mum response length permitted during training. Generation is interrupted if this limit is reached.

5 RESULTS

We compare the Breadcrumbs Reasoning (BR) policy to an uncompressed RL policy and to the
baselines in two different configurations. We first compare results with a set maximum cache size
(Table 1 and Figure 3). We also compare with a fixed maximum number of generation tokens
(Table 2).

1We omit comparing to methods such as QUEST (Tang et al., 2024), because they are not focused on
compression, but rather smart management of the GPU memory, an orthogonal approach to compression.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

COUNTDOWN LINSYS STARGRAPH

QWEN PHI QWEN PHI QWEN PHI

Method c Accc AUAC Accc AUAC Accc AUAC Accc AUAC Accc AUAC Accc AUAC

Teacher - 0.598 0.377 0.633 0.433 0.918 0.276 0.898 0.142 0.902 0.513 0.848 0.498

Breadcrumbs

2 0.605 0.465 0.609 0.506 0.730 0.451 0.652 0.373 0.957 0.726 0.812 0.636
4 0.613 0.533 0.625 0.557 0.656 0.532 0.539 0.421 0.969 0.845 0.832 0.739
8 0.613 0.555 0.613 0.581 0.410 0.368 0.363 0.322 0.973 0.906 0.836 0.786

16 0.574 0.539 0.625 0.604 0.367 0.347 0.219 0.205 0.957 0.918 0.812 0.785
32 0.535 0.513 0.613 0.597 0.297 0.286 0.195 0.187 0.957 0.926 0.816 0.792

TOVA

2 0.574 0.447 0.230 0.196 0.000 0.000 0.000 0.000 0.664 0.526 0.801 0.621
4 0.289 0.272 0.066 0.064 0.000 0.000 0.000 0.000 0.457 0.417 0.562 0.504
8 0.172 0.167 0.051 0.050 0.000 0.000 0.000 0.000 0.445 0.424 0.457 0.433

16 0.188 0.183 0.047 0.046 0.000 0.000 0.000 0.000 0.430 0.414 0.453 0.436
32 0.207 0.199 0.098 0.094 0.000 0.000 0.000 0.000 0.441 0.423 0.395 0.378

StreamingLLM

2 0.012 0.007 0.016 0.014 0.000 0.000 0.000 0.000 0.055 0.038 0.180 0.137
4 0.023 0.015 0.031 0.018 0.000 0.000 0.000 0.000 0.055 0.032 0.020 0.017
8 0.027 0.024 0.109 0.060 0.000 0.000 0.000 0.000 0.031 0.023 0.031 0.029

16 0.051 0.049 0.156 0.150 0.000 0.000 0.000 0.000 0.047 0.041 0.098 0.089
32 0.094 0.090 0.312 0.300 0.000 0.000 0.000 0.000 0.117 0.105 0.102 0.097

Table 1: Model performance on long-context reasoning tasks. We report accuracy given a maximum
cache size of 1,000 entries (Accc) and Area Under the Accuracy Curve (AUAC). c denotes the
compression ratio.

0 250 500 750 10000.0

0.2

0.4

0.6

Q
w

en
A

cc
ur

ac
y

Countdown

0 250 500 750 10000.0

0.2

0.4

0.6

0.8

LinSys

0 250 500 750 10000.0

0.2

0.4

0.6

0.8

1.0
StarGraph

0 250 500 750 1000
KV Cache Size

0.0

0.2

0.4

0.6

Ph
i

A
cc

ur
ac

y

0 250 500 750 1000
KV Cache Size

0.0

0.2

0.4

0.6

0.8

0 250 500 750 1000
KV Cache Size

0.0

0.2

0.4

0.6

0.8

Compression Ratios
2 4 8 16 32

Methods
Teacher Breadcrumbs Reasoning

Figure 3: Accuracy vs. KV Cache Size Breadcrumbs Reasoning retains most of the teacher’s
performance while using significantly fewer KV cache entries, even outperforming the teacher when
matching KV cache size in Countdown and StarGraph.

Test-Time Scaling with Breadcrumbs Reasoning Table 1 shows accuracy performance with a
fixed maximum cache budget of 1,000 steps, as well as the accuracy area under the curve (AUAC)
with varying the maximum cache size up to 1,000. Figure 3 shows the curves. Across most settings,
BR recovers most of the performance of the teacher at a much lower memory cache budget. Except
for LinSys, which remains challenging, all compression ratios outperform the teacher for most of the
budgets. This is because the compressed models are able to effectively accommodate more reasoning

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.00

0.05

0.10

0.15

Q
w

en
 A

cc
ur

ac
y

Countdown

0.00

0.05

0.10

0.15
LinSys

0.00

0.05

0.10

0.15
StarGraph

Compression Ratios
0.00

0.05

0.10

0.15

Ph
i

 A
cc

ur
ac

y

Compression Ratios
0.00

0.05

0.10

0.15

Compression Ratios
0.00

0.05

0.10

0.15

Compression Ratios
2 4 8 16 32

Figure 4: Performance increase with extended generation. Breadcrumbs Reasoning improves up
to 14.5% with Qwen and 5.1% with Phi beyond the 1,000 token training length.

steps within the same cache budget, allowing for more aggressive test-time compute scaling. On
Countdown, both BR models outperform even the teacher at maximum KV cache budget.

We measure the trade-off between accuracy and KV cache consumption by measuring the area under
the accuracy-cache size curve. This metric integrates accuracy over the full range of cache sizes,
and thus captures a model’s overall robustness to a variety of cache constraints. A larger AUAC
indicates that a method maintains high accuracy across a wider range of cache budgets, rather than
only performing well with high memory usage. We can observe that BR outperforms even the
teacher policy by 3.6–92.8% for Qwen and 16.9—196.5% for Phi across the different ratios and
tasks. For high compression ratios, the number of generated tokens is much higher than during
training (e.g., 32,000 tokens vs 1,000 for 32x compression ratio). This is evidence that compression
generalizes to much longer sequences than those observed during training.

We visualize this effect in Figure 4. In particular, Qwen and Phi improve by up to 14.5% and 5.1%
respectively across tasks after 1,000 generation tokens. The only exception is LinSys, where more
generation tokens do not seem to help (as can be seen from Figure 3 too).

Beyond matching teacher accuracy at full context, BR is far more efficient with cache usage. In
Countdown and StarGraph, Figure 3 shows that BR nearly reaches or even exceeds the teacher’s
peak accuracy with fewer than 250 tokens in cache - less than a quarter of the teacher’s required
1,000 tokens. For instance, in Phi–Countdown, BR surpasses 0.60 accuracy by cache size 100,
while the teacher requires more than 800 tokens to reach the same level. A similar pattern holds in
StarGraph, where BR consistently reaches >0.80 accuracy with only a few hundred tokens, whereas
the teacher climbs much more gradually. The only clear exception is LinSys, where BR improves
more slowly and is not able to completely close the gap to the teacher.

Breadcrumbs Reasoning Retains Most of Uncompressed Performance We compare the BR
policies across different compression ratios to the πRL that we use as the distillation source. We
maintain the same source policy for all our experiment to makes this comparison valid. Table 2
reports the results for a fixed maximum generation length (i.e., time steps) of 1,000. While on
Countdown and StarGraph all compression ratios work well, performance on LinSys varies greatly

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

COUNTDOWN LINSYS STARGRAPH AVERAGE

Method c QWEN PHI QWEN PHI QWEN PHI QWEN PHI

Teacher - 0.594 0.633 0.918 0.895 0.898 0.848 0.803 0.792

Breadcrumbs

2 0.559 0.590 0.707 0.641 0.906 0.777 0.724 0.669
4 0.578 0.574 0.648 0.516 0.883 0.797 0.703 0.629
8 0.508 0.574 0.395 0.352 0.895 0.793 0.599 0.573
16 0.430 0.594 0.359 0.207 0.867 0.785 0.552 0.529
32 0.438 0.570 0.289 0.195 0.891 0.781 0.539 0.516

TOVA

2 0.535 0.219 0.000 0.000 0.648 0.773 0.395 0.331
4 0.289 0.066 0.000 0.000 0.457 0.559 0.249 0.208
8 0.172 0.051 0.000 0.000 0.441 0.453 0.204 0.168
16 0.188 0.047 0.000 0.000 0.430 0.453 0.206 0.167
32 0.207 0.098 0.000 0.000 0.441 0.395 0.216 0.164

StreamingLLM

2 0.008 0.016 0.000 0.000 0.043 0.156 0.017 0.057
4 0.012 0.012 0.000 0.000 0.016 0.016 0.009 0.009
8 0.012 0.039 0.000 0.000 0.012 0.031 0.008 0.023
16 0.051 0.137 0.000 0.000 0.012 0.078 0.021 0.072
32 0.094 0.297 0.000 0.000 0.047 0.102 0.047 0.133

Table 2: Model accuracy on long-context reasoning tasks. The metric shown is accuracy at a se-
quence length of L = 1,000. c denotes the compression ratio.

across compression ratios. As expected, higher compression ratios lead to worse performance. For
LinSys, BR lags behind the teacher for both models. We speculate this is due differences in the
reasoning challenge compared to Countdown and StarGraph. Overall, given a fixed response length,
BR preserves performance across tasks by 67.1–94.0% for Qwen and 65.1–84.5% for Phi while
using only 2–32x fewer KV cache entries at generation time.

Training-Free Methods Underperform The training-free methods TOVA and StreamingLLM
consistently underperform across tasks. On Countdown, their performance drops dramatically with
higher compression (e.g., TOVA falls from 0.574 at 2× to 0.172 at 8× for Qwen; StreamingLLM
remains below 0.32 across all settings). On StarGraph and LinSys, the gap between the baselines
and out approach is even more severe, with StreamingLLM dropping below 0.1 accuracy in nearly
every configuration. In LinSys, both baselines fail to reach even a single correct output. These results
highlight the limitation of training-free cache eviction methods: for tasks requiring long coherent
reasoning chains, simply truncating past tokens eliminates essential intermediate steps, from which
the model is unable to recover.

Joint RL-Distillation Training Matches or Outperforms a Two-Steps Training We compare
two strategies for distilling from πRL in Figure 5. In our joint RL-distillation training, BR is distilled
online from the rollouts of the teacher πRL as it learns; in late distillation, compression policies
are trained only on trajectories sampled from a final checkpoint of πRL. BR achieves equivalent
or superior performance in 26 of the 30 configurations tested, and very close performance on the
other four. This demonstrates that it effectively piggyback on the same data used to train πRL.
This eliminates the need for additional distillation data, minimizes training overhead, and does not
impose the need to decide a priori a number of training steps for πRL. We hypothesize that the
superior performance may derive from the distributional shift of πRL during RL training.

6 DISCUSSION

We present a training-based approach to compress reasoning chains: Breadcrumbs Reasoning. Our
empirical results demonstrate that indeed there is significant room for compression in reasoning
chains, and not all information or tokens are equally important for downstream reasoning and even
task completion. Our approach shows effective compression while retaining much of the reasoning
performance. In contrast, training-free methods are significantly less effective.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2 4 8 16 32
0.10

0.05

0.00

0.05

0.10

0.15

 A
cc

ur
ac

y
(C

ac
he

)

Countdown

2 4 8 16 32
0.10

0.05

0.00

0.05

0.10

0.15

LinSys

2 4 8 16 32
0.10

0.05

0.00

0.05

0.10

0.15

StarGraph

2 4 8 16 32
Compression Ratios

0.10

0.05

0.00

0.05

0.10

0.15

 A
cc

ur
ac

y
(R

es
p.

 L
en

)

2 4 8 16 32
Compression Ratios

0.10

0.05

0.00

0.05

0.10

0.15

2 4 8 16 32
Compression Ratios

0.10

0.05

0.00

0.05

0.10

0.15

Figure 5: Joint RL-distillation vs. Two-step Training on Qwen. We compare our joint approach
to the standard two-step process, where compression policies are trained on trajectories from a final
πRL checkpoint. Each point shows the accuracy difference (Joint − Two-step) at a given compres-
sion ratio. The top row fixes cache size; the bottom fixes response length. Positive values favor joint
training, which outperforms or matches in 26/30 settings, showing BR can learn compression online
during RL without separate distillation data.

We propose a joint RL–distillation training scheme, which provides an efficient way to teach a
model to reason while also learning to compress. Training is necessary in any case to develop a
policy that can successfully solve a reasoning task. Our approach integrates this requirement into a
more effective procedure.

Although at a fixed generation length our method shows a small performance loss, we demonstrate
that when generating many more tokens under the same memory budget, performance often sur-
passes that of a non-compressing teacher. This is enabled by effective test-time scaling: when
matching the KV-cache size, we are able to generate significantly more tokens. To some extent,
these results show that we trade memory for time. Such trade-offs are common in efficiency-oriented
methods — for example, speculative decoding (Leviathan et al., 2023; Chen et al., 2023) reduces
latency but requires more memory, since multiple models must be loaded simultaneously.

There are several directions for future work, entailed from several areas where our approach can be
improved. Foremost, our compression policy is not dynamic — one cannot adjust its compression
rate as desired. It is advantageous to have a single model that supports different compression rates,
and therefore can be used flexibly in different settings. This is an important direction for future
work, and one that is relatively understudied in the compression literature. Our work also charts
the direction for future work to improve test-time scaling and compression tradeoffs. Ideally, one
can compress aggressively without needing to increase the number of reasoning steps. Our work
exposes this tradeoff in reasoning models, and outlines the methodology to analyze it. Finally, as
the space of accessible benchmarking scenarios in reasoning research develops, it is important to
understand the behavior of our approach across a broader set of domains.

REFERENCES

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In Proceed-
ings of the 41st International Conference on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pp. 1547–1574. PMLR, 2024. URL https://proceedings.
mlr.press/v235/bachmann24a.html.

9

https://proceedings.mlr.press/v235/bachmann24a.html
https://proceedings.mlr.press/v235/bachmann24a.html

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. CoRR, abs/1409.0473, 2014. URL https://api.
semanticscholar.org/CorpusID:11212020.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models
to compress contexts. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 3829–3846,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.232. URL https://aclanthology.org/2023.emnlp-main.232.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D. Goodman. Stream of search (sos): Learning to search in language, 2024. URL
https://arxiv.org/abs/2404.03683.

Edward S. Hu, Kwangjun Ahn, Qinghua Liu, Haoran Xu, Manan Tomar, Ada Langford, Dinesh
Jayaraman, Alex Lamb, and John Langford. The belief state transformer. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=ThRMTCgpvo.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 39, pp. 24312–24320, 2025.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In Proceedings of the 34th International Conference on Algorithmic
Learning Theory, volume 201 of Proceedings of Machine Learning Research, pp. 1–23. PMLR,
2023. URL https://proceedings.mlr.press/v201/duman-keles23a.html.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya
Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Christo-
pher Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
jishirzi. Tulu 3: Pushing frontiers in open language model post-training. In Second Conference on
Language Modeling, 2025. URL https://openreview.net/forum?id=i1uGbfHHpH.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pp. 19274–19298. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/leviathan23a.html.

Haoyang LI, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole HU, Wei
Dong, Li Qing, and Lei Chen. A survey on large language model acceleration based on KV
cache management. Transactions on Machine Learning Research, 2025. ISSN 2835-8856. URL
https://openreview.net/forum?id=z3JZzu9EA3.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning. arXiv preprint arXiv:2502.09601, 2025.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought,
2023.

Microsoft, :, Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen
Bach, Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, Dong Chen,
Dongdong Chen, Junkun Chen, Weizhu Chen, Yen-Chun Chen, Yi ling Chen, Qi Dai, Xiyang Dai,
Ruchao Fan, Mei Gao, Min Gao, Amit Garg, Abhishek Goswami, Junheng Hao, Amr Hendy,
Yuxuan Hu, Xin Jin, Mahmoud Khademi, Dongwoo Kim, Young Jin Kim, Gina Lee, Jinyu Li,
Yunsheng Li, Chen Liang, Xihui Lin, Zeqi Lin, Mengchen Liu, Yang Liu, Gilsinia Lopez, Chong

10

https://api.semanticscholar.org/CorpusID:11212020
https://api.semanticscholar.org/CorpusID:11212020
https://aclanthology.org/2023.emnlp-main.232
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2404.03683
https://openreview.net/forum?id=ThRMTCgpvo
https://openreview.net/forum?id=ThRMTCgpvo
https://proceedings.mlr.press/v201/duman-keles23a.html
https://openreview.net/forum?id=i1uGbfHHpH
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://openreview.net/forum?id=z3JZzu9EA3

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Luo, Piyush Madan, Vadim Mazalov, Arindam Mitra, Ali Mousavi, Anh Nguyen, Jing Pan, Daniel
Perez-Becker, Jacob Platin, Thomas Portet, Kai Qiu, Bo Ren, Liliang Ren, Sambuddha Roy,
Ning Shang, Yelong Shen, Saksham Singhal, Subhojit Som, Xia Song, Tetyana Sych, Praneetha
Vaddamanu, Shuohang Wang, Yiming Wang, Zhenghao Wang, Haibin Wu, Haoran Xu, Weijian
Xu, Yifan Yang, Ziyi Yang, Donghan Yu, Ishmam Zabir, Jianwen Zhang, Li Lyna Zhang, Yunan
Zhang, and Xiren Zhou. Phi-4-mini technical report: Compact yet powerful multimodal language
models via mixture-of-loras, 2025.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
training elicits concise reasoning in large language models. arXiv preprint arXiv:2502.20122,
2025.

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti. Dy-
namic memory compression: Retrofitting llms for accelerated inference. arXiv preprint
arXiv:2403.09636, 2024.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns. arXiv preprint arXiv:2401.06104, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
Wang, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models.
arXiv preprint arXiv:2503.04472, 2025.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference, 2024.

Qwen Team. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.
15115.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueting Zhuang.
Inftythink: Breaking the length limits of long-context reasoning in large language models. arXiv
preprint arXiv:2503.06692, 2025.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao, Qiwei Ye, and Zhicheng Dou. Long context
compression with activation beacon. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=1eQT9OzfNQ.

11

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=1eQT9OzfNQ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023.

A LLM USAGE

LLMs were used in the process of writing this paper to assist in creating tables and figures.

12

	Introduction
	Related Work and Background
	Methodology
	Breadcrumbs Reasoning
	Joint RL-distillation Training

	Experimental Setup
	Results
	Discussion
	LLM Usage

