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ABSTRACT

Vision transformers, which propose to tokenize an image and introduce attention
mechanism to learn cross-token relationship, have advanced many computer
vision tasks. However, the attention module owns a quadratic computational
complexity and hence suffers from slow computing speed and high memory
cost, hindering it from handling long sequences of tokens. Some attempts
optimize the quadratic attention with linear approximation yet observe undesired
performance drop. This work balances the trade-off between modeling efficiency
and capacity of vision attention. We notice that, by treating queries and keys
as nodes in a graph, existing algorithms are akin to modeling one-step interaction
between nodes. To strengthen the cross-node connection for a more representative
attention, we introduce multi-step interaction, which is equivalent to solving an
inverse matrix as in random walk graph kernel. We then come up with a new
strategy to construct queries and keys, with the help of bipartite graph, to ease
the calculation of matrix inversion. The effectiveness of our approach is verified
on various visual tasks. We achieved the competitive results on the semantic
segmentation task with 15% fewer parameters and 10-25% less computation.
In addition, the vision transformer based quantization method can be applied to
512 x 512 or even 1024 x 1024 resolution images. Code will be made publicly
available.

1 INTRODUCTION

Transformer, a powerful tool for natural language processing, has recently opened up favorable
prospects for solving computer vision tasks (Dosovitskiy et al., 2021; Touvron et al., 2021). Such
tremendous success mainly comes from the attention mechanism, which is primarily designed for
sequential data modeling. Specifically, in vision transformers (Dosovitskiy et al., 2021; Touvron
et al., 2021; Wu et al., 2021; Liu et al., 2021; Wang et al., 2021), an image is first divided into
patches and then converted to a sequence of tokens. The attention module helps learn the relationship
between tokens, resulting in an overall understanding of the given image.

Despite its capability in representation learning, a vision transformer is usually faced with quadratic
computational complexity growth along with the sequence getting longer. That is because attention
is typically asked to connect every two tokens to ensure a comprehensive interpretation of the input.
Considering the forward speed and memory usage, such a drawback hinders the model from using
a smaller patch size' or training on higher-resolution images. To cut the computing cost, existing
attempts propose to replace full attention with non-generic sparse attention (e.g., not relating all
token pairs) (Child et al., 2019; Parmar et al., 2018; Ho et al., 2019; Beltagy et al., 2020; Zaheer
et al., 2020), or to simplify the attention computation with linear approximation (Choromanski et al.,
2021; Wang et al., 2020; Xiong et al., 2021). However, linear attention may suffer from insufficient
modeling capacity and cause performance deterioration accordingly (Zhu et al., 2021; Wu et al.,
2021).

In this work, we target balancing the trade-off between modeling efficiency and capacity of vision
attention. For this purpose, we revisit self-attention (i.e., the set of query tokens is identical to the

'Tt is recently shown that smaller patch size is beneficial to the performance of vision transformers (Doso-
vitskiy et al., 2021; Wang et al., 2021; Xie et al., 2021).
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set of key tokens) by forming tokens into a graph. We find that existing formulations (Beltagy
et al., 2020; Xie et al., 2021; Kitaev et al., 2020; Shen et al., 2021) only characterize the one-
step interaction between graph nodes, leaving space for strengthening the node connection via
introducing other nodes as the intermediate steps. In other words, in addition to the one-edge
(i.e., direct) relationship in the graph, we would like to also learn the multi-edge (i.e., indirect)
relationship, encouraging the attention to capture more information from the input image. Motivated
by this, we extend the conventional attention with multi-step node interaction. It turns out that
such an improved version is equivalent to finding the inverse of a matrix as in random work
graph kernel (Katz, 1953). However, matrix inversion own a cubic complexity. To speed up the
calculation, we present a carefully designed strategy to construct queries and keys, drawing support
from bipartite graph (Liu et al., 2010). That way, we are able to perform full attention in a linear
time regarding the sequence length.

Extensive experiments demonstrated that our model is applicable on different kind of vision tasks.
Without special design and tuning, our model can be directly used to replace the simplified attention
design of the visual transformer for long sequence inputs. In particular, we achieved the comparable
results on the semantic segmentation task with 15% fewer parameters and 10-25% less computation.
Moreover, the quantization of high-resolution images with small patch becomes possible when the
computational optimization of self-attention is performed using our model. Compared to other linear
attention optimizations with a similar structure, our model has significant advantages in terms of
speed or image reconstruction quality.

2 RELATED WORK

Vision transformer. Vision transformer (ViT) (Dosovitskiy et al., 2021; Touvron et al., 2021;
Liu et al., 2021) have recently dominated a wide range of tasks (e.g., classification, segmentation
and generation) in computer vision community. It splits the images into discrete nonoverlapping
patches that are treated as a sequence of tokens. For image classification task, the ViT has shown
to outperform convolutional neural networks (e.g., ResNet (He et al., 2016)) with sufficient training
data. In recent works (e.g., PVT (Wang et al., 2021; 2022), Swin-Transformer (Liu et al., 2021),
Vil (Zhu et al., 2021), CvT (Wu et al., 2021)), they have shown that smaller patch size (or longer
sequences of image patches) is beneficial to the performance of vision transformers. Specifically,
Convolutional Vision Transformer (CvT) (Wu et al., 2021), stack a pyramid of ViTs to form a
multi-scale architecture and model long sequences of image patches at much higher resolution (e.g.,
96 x96 = 9216 patches for images with 3842 image size). Besides using vision transformer in
classification, SETR (Zheng et al., 2021) adopts ViT-based encoder following with several CNN
decoders to semantic segmentation and achieve good performance. After this, Segformer (Xie et al.,
2021) design a pooling-like efficient attention mechanism and make an input image as a sequence
of length 128 x 128 = 16384, obtained greater performance. In addition, vision transformer is also
widely adopted in unsupervised learning for generative model or pre-train model. VIT-VQGAN
applied vision transformer into a VQVAE architecture and achieved excellent image quantization
ability. This vision transformer based VQVAE is chosen to be backbone in BeiT-2 (Peng et al.,
2022) and used as the first stage model of 256-resolution image synthesis stage in Parti (Yu et al.,
2022).

Efficient transformer. In recent years, many efficient transformers are proposed to deal with the
quadratic cost of vanilla self-attention mechanism, which make improvements around computational
and memory efficiency. They can be categorized as follows: 1) Sparse attention mechanism
reduces the dense attention matrix to a sparse version by predefined patterns (e.g., chunking
paradigm),including Sparse Transformer (Child et al., 2019), Image Transformer (Parmar et al.,
2018), Axial Transformer (Ho et al., 2019), Longformer (Beltagy et al., 2020), ETC (Ainslie
et al.,, 2020) and Big Bird (Zaheer et al., 2020). 2) Low-rank projection attention mechanism
is to improve efficiency by leveraging low-rank approximations of the full self-attention matrix,
including Linformer (Wang et al., 2020), Nystromformer (Xiong et al., 2021), Synthesizer (Tay
et al.,, 2021). 3) Kernel-based approximation of the attention matrix is to view the attention
mechanism through kernelization (e.g., the unbiased estimation of the Gaussian kernel), including
Performer (Choromanski et al.,, 2021), Linear Transformer (Katharopoulos et al., 2020), and
Random Feature Attention (Peng et al., 2021). Besides that, some models utilize hybrid attention
mechanisms, such as Long-Short Transformer (Zhu et al., 2021) seamlessly integrates both low-rank



Under review as a conference paper at ICLR 2023

(b) Linear Attention (c) Linear Attention
A+ A=

(d) Linear Attention (e) Random Walk
\_ (a) Full Attention J ATAZHAS Graph Kernel )

Figure 1: Concept diagram of our motivation. (a) A graph view of traditional self-attention. (b) A
weak linear attention can only model limited attention relationship. (c) 2-step interactions based on
a weak linear attention. (d) n-step interactions based on a weak linear attention. (¢) Random Walk
Graph Kernel (I — AA)~ L.

projection and sparse attentions. We notice that these existing efficient transformers are designed
based on the one-step interaction between graph nodes, and they neglect to consider the multi-step
interaction strategy. Thus, we introduce multi-step interaction into the attention mechanism via
random walk graph kernel, encouraging the attention to capture more information from the input
image.

3 METHOD

In this section, we first revisit the traditional self-attention mechanism, then discuss the basic idea
of our random walk graph kernel, and finally give some structure and complexity analysis.

3.1 RETHINKING SELF-ATTENTION

The traditional self-attention mechanism outputs the feature of data by modeling the cross-token
relationship among the input sequence. Specifically, an input sequence of N tokens of dimension d,
X € RV*4 s projected to Q, K and V, called the query, key and value of input:

Q=XW,,K=XWg,V=XWy. (1)

Then, the popular scale dot-product self-attention (denoted as attention in the following paper) can
be formulated as:

K
Attention(X) = AV = SoftmaX(Q

Vd

where the Softmax(-) function normalizes the input matrix by row. Inspired by Zaheer et al. (2020),
we interpret a general attention mechanism as a directed graph G that takes input tokens [n] =
{1,2,..., N} as vertices. A general attention is a well-defined weighted adjacent matrix A of G
based on the attended-relationship between two corresponding vertices. Without loss of generality,
the matrix A satisfies some basic properties, such as A € [0,1]V>*" and forany i = 1,2,..., N,

Z;\[:l A;; = 1. Formally, getting matrix A needs to consider inner product among all elements in
query and key, which leads to quadratic computational cost. Meanwhile, considering the inherent
2D structure of the image, the applications of attention in vision are limited to big patch size or low
resolution images.

)V, 2
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Figure 2: Framework of our proposed random walk graph kernel attention. Q, K, and V denotes
the query, key and value of the input, respectively. Anchors with query and key form a bipartite graph
structure. The gray dashed box contains the core part of the random walk graph kernel method.

3.2 RANDOM WALK GRAPH KERNEL AS ATTENTION

The key idea of our work is to handle long sequence input in vision tasks with an enhanced linear
attention mechanism using random walk graph kernel (or Katz kernel (Katz, 1953)), which is a
classical kernel formed by graph paths of different lengths.

Enhance Linear Attention with random walk graph kernel. Shen et al. (2021) proposed a
simple linear attention A = Softmax(Q) Softmax(K) to deal with long sequence input in vision
tasks. In order to maintain speed and feasible memory usage, this kind of linear attention sacrifices
its representing capacity. We noticed that the simple linear attention only modeling one-step
interaction between input tokens. However, for image-related problem, the representation of visual
tokens in the embedding space is characterized by semantic coupling. To elaborate, when we
split an image into small patches, the token embedding of a image patch may only has low-level
semantic information. As shown in Fig. 1, given a weak adjacent matrix A, considering hierarchical
relative interactions based on A can clearly strengthen itself. Namely, we can get a better attention
mechanism by calculating the weighted average of the powers of the matrix A of different orders:

AMA A+ MA% o F A AT st Y A =10 €0, 1. (3)

n=1

Among Eq. (3), A™ denotes n-length path adjacent matrix of graph G. We would expect the
relevance of longer paths to decay, thus, Eq. (3) has the same form as a random walk graph kernel:

K(A) =D AN'A"=> A"A"-T=(T-)A)"' - L 4)
n=1 n=0

Now we can construct a general attention mechanism using random walk graph kernel with a
normalised parameter:

LAy =12 a1, )

KernelAttention(A) = 3

Flexible Bipartite Anchor Graph. We briefly discuss how to construct an appropriate bipartite
graph with a set of flexible anchors which can both improve the capacity of inner attention matrix
A and make the random walk graph kernel attention more efficient. As shown in Fig. 2, given query
Q € RV*4 and key K € RV*?, we represent them with some base anchors in an embedding space
with also dimension d, denoted as B € RM*9 and B € RM*4;

Gg = Softmax(QB%), Gk = Softmax(BgoK7”). (6)
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In the actual implementation, there is no special restriction on the choice of anchor points. Those
anchor points can either be obtained from query and key through a projection, or can simply be
designed as a set of learnable parameters. Similar to simple linear attention, we let

A = GG = Softmax(QBY%) Softmax(BoK™). (7)

Linearization by Woodbury Formula. The current random walk graph kernel attention is still
suffering unacceptable computational cost from A and the matrix inversion in Eq. (5). Fortunately,
combined with our bipartite anchor graph design, the Woodbury formula provide us a technique
transposing Eq. (5) to:

RWXKernelAttention(A) = (1 — \)Go(I - AGxGg) 'Gg. ®)

The complete architecture is shown in Fig. 2 and the implementation pipeline in practice is shown
in algorithm 1.

Algorithm 1: Pipeline for random walk graph kernel Attention

Input: Current feature sequence X, parameter matrix Wgo, W, Wy, Bg,Bg
Result: Output feature sequence RWKernelAttention(X).

Compute query, key and value: Q = XWgq, K = XWg,V = XWy;

Compute bipartite graph matrix: Gg = Softmax(QB%.), Gk = Softmax(BoK™);
Compute kernel matrix W = GG g and the inversion: (I — AW)~*

Normalise and Use associative law of matrix multiplication:

RWKernelAttention(X) = (1 — \)(Gg(I - AGxGg) ) (G V)

3.3 ANALYSIS OF RANDOM WALK GRAPH KERNEL ATTENTION.

Softmax Plays a Key Role. The following simple property(the proof is given in appendix ) allows
us give a simple analysis on why we choose softmax similarity in our bipartite graph structure.

Lemma 1 We call a matrix A € RN*? is normalised if and only if the summation of all values
in each row of the matrix is equal to 1, i.e. for any i € N, Z?Zl A;; = 1. Then we have the

multiplication of any number normalized matrix (feasibility without violating matrix multiplication):
A1A, ... A, isstill a normalised matrix.

Keeping (I — )\W) is invertible, similar to Eq. (3) we can expand it as:
T AW) L =T 4 AW 4+ A2W?2 4 N3W3 4 9)

From lemma 1, we can easily get the summation of each row of the kernel is equal to ZZO oA =
T A Thus, with the normalization factor 1 )\ , the matrix get from our random walk graph kernel
attention, the right hand side of Eq. (8) is a normalized matrix. As discussed in section 3.1, our
random walk graph kernel attention forms a general attentlon mechanism. Moreover, the kernel
matrix W is a normalized matrix, means that p(W) < 1 (p(W) denotes the the spectral radius of
W). Then we can choose the hyperparameter A € (0, 1), which ensures the matrix invertible and
the training stability.

Complexity analysis. We now provide a computational complexity analysis of our random walk
graph kernel attention, which comprise the computation of bipartite graphs, random walk graph
kernel and the final matrix multiplication. Two bipartite graphs respectively calculate Gg =
Softmax(QB%) and Gx = Softmax(BoK7) takes O(NMd + MNd). The kernel matrix
W = G Gg and the inversion among kernel calculate (I — AW)~! takes O(M?N + M3). The
final matrix multiplication calculates (Gg(I — AW)™1)(G V) takes O(M2N + M Nd+ NMd).
And in terms of memory usage, our random walk graph kernel attention takes O(Md) of anchor
matrix, O(NM + NM) of two bipartite graph matrix and M? for kernel matrix. The overall
computational cost is thus O(4NMd + 2M?*N + M?3) and the overall memory usage is thus
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Table 1: Comparison to state-of-the-art real time methods on Cityscapes

Method Encoder #Param Cityscapes
Encoder Decoder Image Size GFlops mloU
FCN (Long et al., 2015) MobileNetV2 9.8 1024x1024 317.1 61.5
ICNet (Zhao et al., 2018) - - 1024x1024 - 67.7
PSPNet (Zhao et al., 2017) MobileNetV2 13.7 1024x1024 4234 70.2
DeepLabV3 (Chen et al., 2018)| MobileNetV2 15.4 1024x1024 5554 752

3.4 04 1024x1024 443 176.2
34 04 768 x768 20.8 753

Segformer (Xie et al., 2021) MiT-BO 34 04 640 x1024 238 737
34 04 512 x1024 18.0 719

29 04 1024x1024 334 752

. 2.9 0.4 768 x768 185 752

Segformer-RWGKA MiT-BO-RWGKA 2.9 04 640 x1024 206 73.8
29 04 512x 1024 164 72.7

MiT-B1 13.1 0.6 1024x1024 86.8 78.5

Segformer (Xie et al., 2021) MiT-B2 242 33 1024x1024 291.0 81.0

MiT-B1-RWKA 114 0.6 1024x1024 649 78.1
MiT-B2-RWKA  20.2 33 1024x1024 249.0 81.1

Segformer-RWGKA

O(2NM + Md + M?). Both computational and memory cost are dominated by the number of
anchors, i.e. when M < N, our random walk graph kernel attention has linear complexity of the
input length. In fact, during the actual implementation the anchor serves the purpose of giving the
token embedding a new representation in a same dimensional space. Our experiments in next section
shows that choosing the number of anchors equal to dimension of token embedding is enough.
With multi-head technique adopted in most attention mechanism, for each head the input tokens are
embedded in a 64-dimension space which is indeed significantly less than the input length.

4 EXPERIMENTS

The structure of our model is not designed for a specific vision task. To verify the modeling ability
and generalization of our model for long sequence inputs, we directly replace the attention block of
existing well-known methods with our random walk graph kernel attention with anchors (RWGKA).

4.1 SEGMENTATION

Dataset and Implementation Details. We performed the semantic segmentation experiments on
cityscapes (Cordts et al., 2016) datasets. In the training phase, the backbone is initialized with the
weights pre-trained on ImageNet, and the newly added layers are initialized with Xavier (Kumar,
2017). We optimize our models using AdamW (Loshchilov & Hutter, 2018) with an initial learning
rate of le-4. The learning rate is decayed following the polynomial decay schedule with a power of
0.9. We change all attention blocks in Segformer (Xie et al., 2021) with three different model size.
We pretrain our model on ImageNet1K with Deit bachbone (Touvron et al., 2021). We report our
model’s semantic segmentation performance using mean Intersection over Union (mloU).

Results and Analysis. Since our random walk graph kernel attention only introduce some
learnable anchors but without projection needed to reduce the length of key and value, all the encoder
using random walk graph kernel attention has only about 85% parameters compared with the original
architecture. The linear computational complexity in random walk graph kernel also leads to about
10-25% flops reduce. For largest model B2, Segformer with our random walk graph kernel attention
gets best mloU result.
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Table 2: Different backbones with supervised pre-trained in ImageNet-1K.

Model |#Param(M) Flops top-1 (%)
SegFormer-B0 3.58 0.46 70.50
SegFormer-BO-RWGKA 3.17 0.65 69.58
SegFormer-B1 13.66 1.69 78.70
SegFormer-B1-RWGKA 11.93 2.06 77.94
SegFormer-B2 2471 3.29 81.60
SegFormer-B2-RWGKA 20.75 4.00 82.07

Table 3: Reconstruction Quality based on VITVQGAN

Model | Size Length GFlops Batch Size Train Steps FID (]) on Val.
ViT-VQGAN-SS (Yu et al., 2021)| 256 1024 403 256 500K 4.66
ViT-VQGAN-SS-Nystrom 256 1024 8.94 64 300K 11.97
ViT-VQGAN-SS-RWGKA 256 1024 2.78 64 300K 5.72
ViT-VQGAN-SS-Slinear 512 4096  10.08 64 300K 27.27
ViT-VQGAN-SS-Nystrom 512 4096  21.09 64 300K 10.00
ViT-VQGAN-SS-RWGKA 512 4096  11.09 64 300K 6.70
ViT-VQGAN-SS-Nystrom 1024 4096  21.09 32 100K 27.80
ViT-VQGAN-SS-RWGKA 1024 4096 11.09 32 100K 22.30

4.2 IMAGE QUANTIZATION WITH VITVQGAN

Dataset and Implementation Details. We performed the image quantization experiments with
the VITVQGAN backbone on CelebA-HQ (Huang et al., 2018) dataset. We train a ViIT-VQGAN-SS
model, the base first stage model used for image synthesis in Yu et al. (2021), on three resolutions
(i.e., 256, 512 and 1024) separately. We chose linear attention mentioned in Shen et al. (2021);
Xiong et al. (2021) as our comparison backbone, since their architecture is closed to ours. Finding
that CelebA-HQ dataset is relative easy to train and limited by computing resources, we train all
model 300K steps with 64 batch size on 256/512 resolution and we train all model 100K steps with
32 batch size on 1024 resolution. All other training settings are following Yu et al. (2021).

Results and Analysis. As shown in Tab. 3, the quantitative results indicate that our method on
image size 256 get the comparable performance with traditional self-attention mechanism while get
fewer computing flops. When dealing with high resolution image quantization and reconstruction
tasks, our method gets significantly better performance and keeps almost identical computing flops
with the simplest softmax linear attention.

We then show a visualization results in Fig. 3 to compare the relationship between model capabilities
and multi-step attention considerations for image tokens. In this experiments we choose the
simplest softmax linear attention Aj_giinear = Q KT as a 1-step concerned attention method.
On this basis, we compared it with 2-steps concerned method As_ gjineqr and co-step concerned
method A _siinear. We trained a VIT-VQGAN-SS model with the above three kind of attention
mechanism on Celeb-AHQ with 64 batch size and 100 epochs. In Fig. 3, we found that the
attention who concerned more steps relationships between the input tokens gives out a stronger
model capacibility.

4.3 IMAGE CLASSIFICATION

Dataset and Implementation Details. We performed the Image classification experiments on
the ImageNet-1K dataset (Deng et al., 2009), which consists of 1.3M training images and 50K
validation images from 1,000 categories. We use CvT (Wu et al., 2021) and ViL (Zhu et al., 2021),
the state-of-the-art vision transformer architectures, as our backbones and replace their attention
mechanisms with our random walk graph kernel attention equipped by pooling tokens (RWGKP) or



Under review as a conference paper at ICLR 2023

Table 4: Test accuracies of models trained on ImageNet-1K.

Model #Param Image FLOPs ImageNet
M) Size (G) top-1 (%) top-5 (%)
DeiT-S (Touvron et al., 2021) 22 2242 46 79.8 95.0
DeiT-B (Touvron et al., 2021) 86 2242 17.6  81.8 95.6
PVT-Medium (Wang et al., 2021) 44 2242 6.7 812 -
PVT-Large (Wang et al., 2021) 61 2242 9.8 817 -
Swin-S (Liu et al., 2021) 50 2242 8.7 832 96.2
Swin-B (Liu et al., 2021) 88 2242 154 835 96.5
PVTv2-B4 (Wang et al., 2022) 63 2242 10.1  83.6 -
PVTv2-B5 (Wang et al., 2022) 82 2242 11.8  83.8 -

ViT-B/16 (Dosovitskiy et al., 2021) 86 3842 55,5 779 -
ViT-L/16 (Dosovitskiy et al., 2021) 307 3842 191.1 765

DeiT-B (Touvron et al., 2021) 86 3842 55.5 83.1 96.2
Swin-B (Liu et al., 2021) 88 3842 47.1  84.5 97.0
CvT-13 (Wu et al., 2021) 20 2242 46 81.6 95.7
CvT-13-RWGKP 20 2242 44 813 95.6
CvT-13-RWGKA 20 2242 45 813 94.2
CvT-13 (Wu et al., 2021) 20 3842 16.3  83.0 96.4
CvT-13-RWGKP 20 3842 13.5 825 96.2
CvT-13-RWGKA 20 3842 13.6 827 96.4
CvT-21 (Wu et al., 2021) 31.6 3842 25.0 833 96.2
CvI-21-RWGKP 31.6 384> 21.8 829 96.0
ViL-Tiny (Zhu et al., 2021) 6.4 2242 1.3 763 -

ViL-Tiny-RWGKP 6.4 2242 1.3 760 93.2
ViL-Medium (Zhu et al., 2021) 39.8 2242 11.0 833 -

ViL-Medium-RWGKP 39.8 2242 10.7 833 96.4

anchors (RWGKA), denoted as CvIT-RWGKP, CvT-RWGKA and VIiL-RWGKP in the Tab. 4. For
All models are trained for 300 epochs. We apply a center crop on the validation set to benchmark,
where we adopt 224 x 224 and 384 x 384 resolution to evaluate the classification accuracy.

Results and Analysis. To demonstrate the generalization and capabilities dealing with long
sequences of our models, we compare our models with two notable method (i.e., CvT and ViL) on
the classification tasks. CvT models a long sequence length in the early stages (e.g., 96 x96 = 9216
patches for images with 3842 image size). As shown in the Tab. 4, our random walk graph kernel
attention with CvT-21 on 3842 image size achieves competitive results with CvT, while using the
same amount of parameters and 87.2% of its FLOPs. ViL uses window attention and global tokens to
improve the efficiency. Our ViL-Medium-GKP with random walk graph attention saves 0.3 FLOPs
compared with the vanilla ViL-Medium, while maintaining the same perfomance. Thanks to our
designed the random walk graph kernel, our method has shown superior cost-benefit trade-off over
these two approaches.

4.4 ABLATION STUDY

Thus We do some ablation studies on the long path decay factor A and the number of anchors
in semantic segmentation with the backbone Segformer-B2 whose attention layers are changed by
ours. We compare the mloU accuracy on Cityscapes dataset with resolution 1024 x 1024.

The impact of ) in random walk graph kernel attention. As results shown in Tab. 5, we see
that in semantic segmentation the model performance drops with the long path decay factor A
increasing. This is not counter-intuitive; in fact, as A gets larger, the random walk graph kernel
attention mechanism gives more weight to modeling relative relationships over more steps. This
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Table 5: Ablation studies on Segformer
Model |#Heads #Anchors X #Param GFlops mloU

1x 64 05 235 249 80.96
1x 64 0.1 235 249 81.10
1x 64 09 235 249 80.89
SegFormer-B2-RWGKA 1x 32 0.5 232 243 81.01
Ix 128 05 237 268 80.77
2% 32 05 232 242 80.62
2% 64 05 234 251 81.03

(a) Input

(b) Linear
Attention
A

(¢) Linear
Attention
A+ A?

Figure 3: 256 x 256 image reconstruction comparison of 1-step, 2-step weak linear attention and
random walk graph kernel attention.

means that the model focuses more on deep cross-token interactions, which may not be necessary
or even harmful for semantic segmentation task.

The impact of anchor size and the number of head. In the last four rows in Tab. 5, we show the
relationship between the model performance and the number of anchor points. As we mentioned
in Sec. 3.3, Keeping the number of anchors in the same dimension as the token embedding gives
good performance. Increasing the number of anchors does not improve the model performance
significantly, but even makes it more difficult to learn and makes it slower. In addition, we
can improve the performance of the model by increasing the number of attention heads without
significantly increasing the computational consumption. This technique also allows us to control the
number of anchor points < 64. In practical applications, this makes the number of anchor points
much smaller than the length of the input sequence, which guarantees the linear complexity of our
proposed method in terms of computation and storage.

5 CONCLUSION

Due to the inherent 2D structure of the image itself, the vision transformer needs to simplify the
traditional self-attention when dealing with long sequence input. Previous methods based on sparse
attention tend to have insufficient generalization, while those based on linear attention tend to have
limited performance. We approach a novel attention mechanism based on random walk graph kernel,
can be widely used in vision transformer with long sequence inputs. The random walk graph kernel
enhances a weak linear attention by pushing it focus on multi-step interactions between tokens. By
a special design of a bipartite anchor graph, we make the random walk graph kernel attention still
maintain the structure of linear attention, i.e. the linear complexity is maintained. This plug-and-
play attention mechanism achieves competitive performance with significant speed up on various
vision tasks, especially for settings with long sequences as input.
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