
Advancing Process Verification for Large Language Models via Tree-Based
Preference Learning

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have demon-001
strated remarkable potential in handling com-002
plex reasoning tasks by generating step-by-step003
rationales. Some methods have proven effec-004
tive in boosting accuracy by introducing ex-005
tra verifiers to assess these paths. However,006
existing verifiers, typically trained on binary-007
labeled reasoning paths, fail to fully utilize the008
relative merits of intermediate steps, thereby009
limiting the effectiveness of the feedback pro-010
vided. To overcome this limitation, we propose011
Tree-based Preference Learning Verifier (Tree-012
PLV), a novel approach that constructs reason-013
ing trees via a best-first search algorithm and014
collects step-level paired data for preference015
training. Compared to traditional binary clas-016
sification, step-level preferences more finely017
capture the nuances between reasoning steps,018
allowing for a more precise evaluation of the019
complete reasoning path. We empirically eval-020
uate Tree-PLV across a range of arithmetic021
and commonsense reasoning tasks, where it022
significantly outperforms existing benchmarks.023
For instance, Tree-PLV achieved substantial024
performance gains over the Mistral-7B self-025
consistency baseline on GSM8K (67.55% →026
82.79%), MATH (17.00% → 26.80%), CSQA027
(68.14% → 72.97%), and StrategyQA (82.86%028
→ 83.25%). Additionally, our study explores029
the appropriate granularity for applying pref-030
erence learning, revealing that step-level guid-031
ance provides feedback that better aligns with032
the evaluation of the reasoning process.033

1 Introduction034

Large Language Models (LLMs) have demon-035

strated the ability to decompose complex ques-036

tions into step-by-step problem-solving processes037

(Brown et al., 2020; Achiam et al., 2023; Liu et al.,038

2023; Frieder et al., 2024), achieving strong rea-039

soning performance across a variety of tasks.040

To enhance the reliability of reasoning paths, the041

best-of-N decoding strategy (Nakano et al., 2021;042

Askell et al., 2021; Cobbe et al., 2021) is employed, 043

where N candidate solutions are generated by the 044

LLMs, and the most plausible one is selected based 045

on specific rules (Golovneva et al., 2022; Prasad 046

et al., 2023), such as coherence, logical consistency, 047

and alignment with known facts. Recently, some 048

studies have introduced an auxiliary model, termed 049

a verifier (Cobbe et al., 2021), to assess the quality 050

of candidate solutions. The training of verifiers can 051

be divided into outcome supervision (Cobbe et al., 052

2021; Yu et al., 2023a; Hosseini et al., 2024) and 053

process supervision (Li et al., 2022; Lightman et al., 054

2023; Wang et al., 2023) based on the granularity 055

of the supervision signal (see Figure 1). Outcome 056

supervision labels the entire path based on the fi- 057

nal result, while process supervision evaluates the 058

correctness of each individual step. 059

Whether employing outcome supervision or pro- 060

cess supervision, verifiers are typically trained us- 061

ing binary classification (Uesato et al., 2022; Light- 062

man et al., 2023; Wang et al., 2023), which may not 063

align ideally with the goals of optimizing verifiers. 064

In the best-of-N decoding, verifiers are expected 065

to rank candidate paths accurately. However, bi- 066

nary labels, offering rudimentary correct or incor- 067

rect signals, fail to capture the relative merits of 068

different paths. Such coarse supervisory signals 069

are insufficient to provide the detailed feedback 070

necessary for verifiers to discern which steps are 071

more effective, thereby limiting the potential for 072

further improvements. Moreover, the annotations 073

used in training, often derived from answers, in- 074

herently contain some degree of noise. Even if 075

the final answer is correct, the reasoning process 076

may not be entirely accurate. Unfaithful reasoning 077

and spurious shortcuts can also lead to the correct 078

answer (Creswell and Shanahan, 2022; Lyu et al., 079

2023; Turpin et al., 2024). Consequently, training 080

verifiers using binary classification is particularly 081

vulnerable to noisy labels, which constrains the 082

verifier’s capacity to precisely validate the steps. 083

1

Problem Best Path
Candidate Path 1

Candidate Path N
· · ·

Ranking

VerifierGenerator

Correct Path

Wrong Path

(1) Outcome Supervision

(2) Process Supervision

Step kStep 3Step 1 Step 2

Candidate Path

Process Supervision Outcome
Supervision

Labeling Training and Inference

Binary Classification Verifier

Best-of-N

Problem

Path 1 Path 2

Step 1 Step 2
Step k

Step k

low highreward
Step 3

Step 3

Path 1

Path 2

(3) Tree-PLV

Preference-based Verifier

Figure 1: A comparison of different methods: Traditional verifiers rely on binary labels for outcome and process
supervision, whereas Tree-PLV employs preferences instead of scalar values.

To tackle these challenges, we propose a shift084

from a binary to a preference-based verifier.085

Trained through preference learning, it ranks the086

relative merits of different reasoning paths, allow-087

ing for more nuanced partitioning than simply judg-088

ing them as correct or incorrect. The advantages of089

adopting this step-level preference-based verifier090

for ranking the reasoning paths include:091

• Granular Validation at the Step Level: Ver-092

ifiers based on preference learning can capture093

subtle differences between steps, thereby provid-094

ing more precise feedback.095

• Improving Verifier Robustness: Focusing on096

ranking rather than binary judgments enhances097

the verifier’s stability. As long as the relative098

ordering of steps is consistent, the training of the099

verifier remains robust against label noise.100

• Enhancing Model Explainability: The detailed101

feedback provided by preference learning offers102

deeper insights into the reasoning process, mov-103

ing beyond mere correctness on the final result.104

Therefore, we introduce Tree-based Preference105

Learning Verifier (Tree-PLV), a novel method in-106

spired by preference learning principles. Tree-107

PLV transcends traditional verifiers by modeling108

rewards based on comparisons between paths. Our109

method not only focuses on instance-level rewards110

derived from the outcomes but also emphasizes111

step-level optimization. This allows Tree-PLV to112

utilize intermediate steps to provide more finely113

grained feedback. Specifically, we employ a best-114

first search strategy during inference to construct a115

reasoning tree, with the initial problem statement 116

as the root and each step as a node. Upon devel- 117

oping the tree, we construct our dataset by tracing 118

paths from the root to each leaf node. At each level, 119

we form pairs by conducting pairwise comparisons 120

among child nodes, preferring those with higher 121

rewards. This dataset serves to train our verifier 122

using a ranking loss, greatly enhancing its ability 123

to discern subtle nuances in reasoning sequences. 124

We conduct an empirical evaluation of Tree-PLV 125

across diverse reasoning tasks, focusing on arith- 126

metic reasoning with the GSM8K (Cobbe et al., 127

2021) and MATH (Hendrycks et al., 2021) datasets, 128

and commonsense reasoning on the CSQA (Talmor 129

et al., 2018) and StrategyQA (Geva et al., 2021) 130

datasets. We benchmark Tree-PLV against existing 131

verifiers, including self-consistency (Wang et al., 132

2022) as a strong baseline. Our results indicate 133

substantial performance gains across all datasets. 134

For instance, when compared to the Mistral-7B 135

self-consistency baseline, our method showed the 136

following increases in accuracy: GSM8K (67.55% 137

→ 82.79%), MATH (17.00% → 26.80%), CSQA 138

(68.14% → 72.97%), and StrategyQA (82.86% → 139

83.25%). Notably, Tree-PLV, when trained with 140

data from GSM8K, demonstrates robust general- 141

ization to the more challenging MATH dataset. 142

2 Tree-PLV 143

In this section, we introduce the Tree-PLV method, 144

which leverages tree-based preference learning to 145

advance verification for large language models in 146

the context of stepwise reasoning processes. We 147

begin by outlining the problem formulations (§ 2.1). 148

2

Problem: Ann's favorite store was having a
summer clearance... She also bought 4 tops, all
at the same price. How much did each top cost?

0.75

Step 1: Ann spent $75 in total.

0.25

Step 2: She bought 5 pairs of
shorts for $7 each, so she
spent 5 * $7 = $35 on shorts.

0.125

Step 2: She spent $7 * 5 =
$35 on 5 pairs of shorts.

0.75

Step 2: She spent $75 on 5
pairs of shorts at $7 each and
2 pairs of shoes at $10 ...

1.0

Step 3: So, the total amount
she spent on 5 pairs of shorts
and 2 pairs of shoes ...

0.25

Step 3: So, 5 * $7 + 2 * $10 =
$75, which means 5 * 7 + 2 *
10 = 75, which means 5 * 7...

0.75

Step 3: The total amount
spent on the shorts and
shoes is 5 * $7 + 2 * $10 = ...

Step 3: So, Ann spent $75 - (5 * $7... The answer is 5.

Step 3: 5 * $7 + 2 * $10 = $35 + $2... The answer is 5.

Step 3: The total amount spent...The answer is 18.75.

·····

Completion

·····

Figure 2: The construction process of the reasoning tree. Best-first search consistently selects the child node with
highest reward for further expansion. To evaluate the quality of the i-th step, we sample N completions from it,
denoted as Pi. The reward is then calculated based on the proportion of these N paths that yield the correct answer.

Next, we detail how to construct a reasoning tree149

that represents reward preferences at each step150

(§ 2.2). Finally, we describe how we gather paired151

data for step-level preference learning and imple-152

ment this into our verifier training (§ 2.3).153

2.1 Problem Formulations154

Following the best-of-N evaluation protocol pro-155

posed by Lightman et al. (2023), we generate N156

candidate solutions {y(1), y(2), . . . , y(N)} from the157

generator model for a given input x. Each solution158

y consists of a sequence of steps {y1, y2, . . . , yn}.159

These solutions are then ranked by the verifier, and160

the highest-rated one is selected as the most plausi-161

ble solution.162

2.2 Reasoning Tree Construction163

To provide precise step-level preference feedback,164

we implement a best-first tree search algorithm165

designed to generate paired data critical for prefer-166

ence learning. As Figure 2 depicts, our method con-167

structs a reasoning tree step-by-step, where each168

node represents a reasoning step. Expansion starts169

from the root of the tree at each search iteration.170

At step i of the tree expansion, we have a171

partial solution y1:i−1 consisting of the previous172

i − 1 reasoning steps. We use a reward function173

R(yi|x, y1:i−1) to evaluate the quality of the next174

potential step yi, given the input x and the current175

partial solution y1:i−1. The tree search proceeds176

by expanding the most promising node at each177

iteration, i.e., the node whose child (the next po-178

tential step) has the highest reward according to179

R. This guided exploration allows us to construct180

high-quality reasoning paths through the tree, pro- 181

viding paired data for preference learning between 182

competing steps. 183

The traditional approaches regard the correct- 184

ness of a step as its quality, relying on metrics like 185

perplexity (PPL) or self-evaluation by LLMs to 186

design the reward function R. However, recent 187

studies have shown that LLMs frequently struggle 188

to effectively recognize errors (Huang et al., 2023; 189

Hong et al., 2023; Ren et al., 2023b), which can 190

degrade performance. To address this, we lever- 191

age the model’s look-ahead capability to assess a 192

step’s quality by its potential to lead to the correct 193

conclusion. Specifically, to evaluate a candidate 194

step yi, we use the same model to simulate N sub- 195

sequent reasoning trajectories starting from yi, de- 196

noted as N completions Pi = {P 1
i , P

2
i , . . . , P

N
i }. 197

The quality of the step yi is quantified by the pro- 198

portion of trajectories reaching the correct answer: 199

R(yi) =

∑N
j=1 1[a[P

j
i] = g]

N
(1) 200

where a[P j
i] is the outcome of the j-th trajectory 201

P j
i and g represents the golden answer. 202

After determining the node with the highest re- 203

ward value according to R(yi|x, y1:i−1), we ex- 204

pand the tree by generating new child nodes. To 205

achieve this, we sample k potential subsequent 206

reasoning steps yji+1 ∼ πθ(yi+1|x, y1:i) for j = 207

1, . . . , k, where πθ is the language model used for 208

reasoning. Each of these candidate steps {yji+1}kj=1 209

becomes a new child node connected to the previ- 210

ously selected node. If the selected node represents 211

3

the last step, indicating the end of the reasoning212

chain, we omit the expansion phase, and this itera-213

tion concludes. Guided by the reward function R,214

this approach ensures a systematic exploration and215

expansion of reasoning paths in the search tree.216

2.3 Step-Level Pairwise Training217

A reasoning tree illustrates all potential reasoning218

paths, starting from the root and branching out to219

various leaf nodes. Our objective is to create a220

dataset Dpair consisting of pairs that express prefer-221

ences of reasoning paths. We generate this dataset222

by tracing each unique path from the root to the223

leaves of the tree. Within this dataset, each en-224

try consists of a triplet in the form {(x, y+, y−)},225

where x denotes the initial problem statement, y+226

is the preferred reasoning sequence that leads to227

an accurate solution, and y− is a less desirable228

reasoning chain that results in an incorrect answer.229

To collect the paired data {(x, y+, y−)}, we con-230

duct pairwise comparisons between sibling nodes231

at each decision point along the tree. Sibling nodes232

are the various possible next steps in the reason-233

ing process branching from the same prior context234

y1:i−1. If the reward difference between a prefer-235

able step y+i and a less preferable step y−i meets the236

minimum margin α, we create a pair (x, y+, y−)237

that includes the initial problem x, the superior rea-238

soning sequence y+, and the inferior alternative y−.239

Specifically, for the preferable step y+i , we sample240

a path that leads to a correct solution among its241

completions P+
i . This constitutes the complete rea-242

soning path y+. Conversely, the less preferable243

step y−i is assembled with one of the subsequent244

paths P−
i that begins from it to form y−, which245

ultimately leads to incorrect outcomes. Based on246

the pairwise instance data {(x, y+, y−)}, we gather247

two types of step preferences during our training.248

The first type is derived from the reward function R249

for the current step yi, which assesses the choices250

at each decision point. The second type of pref-251

erence implicitly decomposes the outcome-guided252

instance preference into step-by-step comparisons,253

examining each potential path leading to possible254

outcomes. This breakdown allows us to allocate255

the instance preference to both the decision points256

and the completion steps in the reasoning process,257

ensuring that steps on the correct path are preferred258

over those on the incorrect path.259

The verifier is built upon a large language model260

with an additional randomly initialized linear layer261

that outputs a scalar value. During evaluation, we262

take the value linked to the end token to represent 263

the aggregate reasoning score. 264

We train the verifier using a step-level ranking 265

loss function designed to promote the choice of the 266

most effective solutions, defined as: 267

L = −
n∑

i=d

log σ
(
rϕ(x, y

+
1:i)− rϕ(x, y

−
1:i)

)
(2) 268

Here, d is the index where the two reasoning paths 269

diverge, and rϕ(x, y1:i) represents the output of 270

our verifier for an input x and a sequence of steps 271

{y1, . . . , yi} with parameters ϕ. 272

3 Experiments 273

3.1 Experimental Setup 274

Tasks and Datasets In our evaluation, we se- 275

lect benchmarks from two distinct reasoning cate- 276

gories: arithmetic reasoning and commonsense rea- 277

soning. These tasks encompass diverse reasoning 278

paradigms, enabling a comprehensive assessment 279

of our method’s effectiveness. For arithmetic rea- 280

soning, we utilize GSM8K (Cobbe et al., 2021) 281

and MATH (Hendrycks et al., 2021). GSM8K 282

comprises grade school math problems, whereas 283

MATH includes complex competition-level math 284

problems. We use the entire GSM8K test set and 285

a subset of 500 problems from MATH, which is 286

identical to the test set of Lightman et al. (2023). 287

For commonsense reasoning, we employ CSQA 288

(Talmor et al., 2018) and StrategyQA (Geva et al., 289

2021). CSQA challenges the model with multiple- 290

choice questions that often require reasoning based 291

on complex semantics and prior knowledge. Strate- 292

gyQA involves true-or-false questions that demand 293

implicit multi-hop reasoning to derive answers. 294

Metrics Following the methodology suggested 295

by Lightman et al. (2023), we adopt a best-of-N 296

evaluation paradigm. For arithmetic reasoning, we 297

generate 64 solutions for each problem. However, 298

for commonsense reasoning, due to the relatively 299

limited search space for answers in these tasks, we 300

generate 10 solutions for each question. 301

Models Our experiments leverage a series of 302

models to serve as the generator, including 303

LLaMA2-7B/13B (Touvron et al., 2023) and 304

Mistral-7B (Jiang et al., 2023). For arithmetic rea- 305

soning tasks, we additionally conduct experiments 306

with two specialized models: a version of Mistral- 307

7B fine-tuned on MetaMATH (Yu et al., 2023b), 308

and WizardMath-7B (Luo et al., 2023). 309

4

Models Verifiers
Arithmetic Commonsense

GSM8K MATH500 CSQA StrategyQA

LLaMA2-7B

Self-Consistency 33.97 4.00 55.12 76.82
ORM 55.72 5.80 56.27 61.95
Self-Explore 51.40 7.20 57.82 72.47
Math-Shepherd 58.30 6.00 58.23 70.78
Tree-PLV (Ours) 62.70 14.00 64.21 79.81

LLaMA2-13B

Self-Consistency 54.51 3.40 64.62 78.77
ORM 66.34 9.40 66.34 64.74
Self-Explore 65.66 9.60 66.67 78.64
Math-Shepherd 68.01 6.60 67.89 71.23
Tree-PLV (Ours) 76.12 18.20 71.66 83.64

Mistral-7B

Self-Consistency 67.55 17.00 68.14 82.86
ORM 70.74 14.40 63.96 67.14
Self-Explore 72.18 20.00 67.49 77.99
Math-Shepherd 74.91 21.20 70.11 79.22
Tree-PLV (Ours) 82.79 26.80 72.97 83.25

Table 1: Results comparison (accuracy %) on arithmetic and commonsense reasoning tasks, with various generators.
Bold indicates the best results and underline indicates the second best.

Method GSM8K MATH500

Mistral-7B: MetaMATH

Self-Consistency 83.55 35.00
ORM 85.67 29.20
Self-Explore 86.05 34.80
Math-Shepherd 87.11 35.40
Tree-PLV (Ours) 87.72 37.20

WizardMath-7B

Self-Consistency 88.93 38.80
ORM 84.31 24.00
Self-Explore 88.86 39.60
Math-Shepherd 89.16 39.80
Tree-PLV (Ours) 90.14 40.20

Table 2: Results (accuracy %) of the arithmetic reason-
ing task on generators with stronger capabilities.

Data Collection To construct the training dataset,310

we selected 6,000 problems from each of the311

GSM8K and CSQA training sets to generate paired312

data. We applied a margin threshold of α = 0.375313

to filter these pairs, resulting in approximately 100k314

and 120k valid pairs for GSM8K and CSQA, re-315

spectively. For additional evaluation, we sampled316

750 questions from the StrategyQA training set,317

which yielded 15k pairs. The verifier then trains318

for an epoch on the corresponding dataset based on319

task types. A more detailed description of the train-320

ing parameter settings is provided in Appendix B.321

Baselines We conducted a comparative eval-322

uation against several well-established verifiers.323

Specifically, we compared Tree-PLV with two ver-324

ifiers trained using cross-entropy loss with binary325

labels: the outcome-supervised verifier, termed326

ORM (Lightman et al., 2023), and Math-Shepherd 327

(Wang et al., 2023), a state-of-the-art process- 328

supervised verifier that leverages automatically an- 329

notated data. Additionally, we adopted the self- 330

consistency (Wang et al., 2022) as a strong baseline, 331

following Lewkowycz et al. (2022). Regarding 332

paired data generation, we also considered Self- 333

Explore (Hwang et al., 2024) as a baseline method. 334

It identifies the first erroneous step in a solution and 335

uses the preceding steps to sample a correct path. 336

These sequences are then paired to form training 337

data. We evaluated the quality of data by compar- 338

ing a verifier trained on this data with ours. 339

3.2 Main Results 340

Arithmetic Reasoning As shown in Tables 1, 341

our proposed method significantly outperforms 342

other methods across all scenarios within the 343

GSM8K and MATH500 datasets. For the GSM8K 344

dataset, Tree-PLV consistently surpasses compet- 345

ing approaches. For instance, using the LLaMA2- 346

13B generator, Tree-PLV achieves an accuracy of 347

76.12%, outperforming the second-best method, 348

Math-Shepherd, by 8.11%. The Tree-PLV, initially 349

trained on the GSM8K dataset, yields effective re- 350

sults on the more complicated MATH500 dataset, 351

illustrating its strong generalization capabilities. Its 352

adaptability stems from the training approach of 353

Tree-PLV, which focuses on comparing the quality 354

of steps rather than simply identifying correct or 355

incorrect paths. This strategy makes the verifier 356

more versatile. Additionally, Tree-PLV requires 357

only 22.7% of the training data size used by Math- 358

5

10 20 30 40 50 64
N = number of solutions per problem

60

65

70

75

80

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-N
)

GSM8K

10 20 30 40 50 64
N = number of solutions per problem

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-N
)

MATH500

Self-Consistency ORM SELF-EXPLORE MATH-SHEPHERD Tree-PLV

Figure 3: Performance of different verifiers across varying numbers of solution (N) generated by Mistral-7B.

Shepherd, significantly reducing data requirements.359

Table 2 displays the results of arithmetic rea-360

soning tasks using advanced generators, namely361

Mistral-7B: MetaMATH and WizardMath-7B, on362

the GSM8K and MATH500 datasets. In all sce-363

narios, our method, Tree-PLV, consistently out-364

performs the others. With Mistral-7B: Meta-365

MATH, it achieves accuracies of 87.72% on366

GSM8K and 37.20% on MATH500. Similarly,367

with WizardMath-7B, Tree-PLV delivers the high-368

est accuracies of 90.14% and 40.20% on GSM8K369

and MATH500, respectively. These results under-370

line Tree-PLV’s robust performance and adaptabil-371

ity in tackling complex arithmetic reasoning tasks372

across various generator settings.373

Commonsense Reasoning The results in Ta-374

ble 1 highlights Tree-PLV’s strong performance375

in commonsense reasoning tasks. Regardless of376

the dataset or the generator used, Tree-PLV consis-377

tently outperforms other verifiers, demonstrating378

its versatility and robustness. In the CSQA dataset,379

specifically, Tree-PLV improves accuracy by up to380

5.98%, 3.77%, and 3.03%, when compared with381

the second-best model. This high level of accuracy382

becomes even more pronounced with the Strate-383

gyQA dataset, confirming Tree-PLV’s strong ca-384

pabilities in handling intricate reasoning tasks. In385

contrast, both ORM and Math-Shepherd, which386

are trained using a binary supervision strategy, fail387

to show similar improvement. This underperfor-388

mance could indicate the limitations inherent to389

binary supervision, especially in tasks that require390

complex reasoning. It is more prone to introduc-391

ing noise into the binary supervision signal, which392

could consequently limit the verifier’s capabilities.393

We attribute these improvements to the follow-394

ing factors: 1) The training method of our verifier395

utilizes step-level preference learning, allowing for396

a nuanced evaluation of step quality that is better 397

aligned with the best-of-N ranking paradigm. 2) 398

The reward function, in our approach, is used to 399

compare sibling steps instead of annotating them, 400

which minimizes the impact of label noise. 3) 401

Our approach improves the diversity of the data 402

by incorporating comparisons among similar steps, 403

thereby enriching the dataset and improving the 404

robustness of our method. 405

4 Analysis 406

4.1 Different Amounts of Candidate Solutions 407

The number of candidate solutions impacts the per- 408

formance of verification. As the number of so- 409

lutions increases, more potentially superior can- 410

didates are introduced. However, there’s a trade- 411

off, as more solutions mean higher computational 412

overhead and diminishing performance gains. For 413

our study, we set a maximum of 64 solutions. As 414

shown in Figure 3, we found that all methods show 415

an enhancement in performance as the number of 416

solutions increases and finally stabilizes at 64, con- 417

sistent with Wang et al. (2023)’s findings. Through- 418

out the study, the Tree-PLV method consistently 419

outperforms the others across all quantities of solu- 420

tions. Remarkably, as the number of solutions rises, 421

Tree-PLV continues to widen the performance gap, 422

underscoring its robustness and superior capacity 423

to leverage a greater number of solutions. 424

4.2 Granularity of Preference Learning 425

We further analyze the appropriate granularity for 426

applying preference learning, aiming to determine 427

the most effective level of feedback for Tree-PLV. 428

Specifically, we compare our step-level preference 429

with instance-level and conventional token-level 430

training methods (Christiano et al., 2017; Ouyang 431

et al., 2022). Additionally, we include a verifier 432

6

LLaMA2-7B Mistral-7B Mistral-7B: Meta-MATH

56

64

72

80

88
%

 A
cc

ur
ac

y
(B

es
t-o

f-6
4)

GSM8K

LLaMA2-7B Mistral-7B Mistral-7B: Meta-MATH

8

16

24

32

%
 A

cc
ur

ac
y

(B
es

t-o
f-6

4)

MATH500
instance-level binary
instance-level preference
token-level preference
step-level preference

Figure 4: A performance comparison of verifiers trained with different levels of feedback granularity.

trained using instance-level binary classification in433

our comparison for a comprehensive analysis. The434

results presented in Figure 4 demonstrate that veri-435

fiers trained with preference learning consistently436

outperform those trained using binary classification437

across all levels of granularity. This finding sug-438

gests that preference learning is better aligned with439

the ranking evaluation pattern. Furthermore, step-440

level guidance exhibits the best performance, indi-441

cating that it represents the most suitable granular-442

ity. In contrast to instance-level sparse supervision,443

it provides more detailed and informative feedback.444

Moreover, in step-by-step inference scenarios, step-445

wise preference proves to be more reasonable than446

token-level supervision, and such step-level align-447

ment is also more consistent with the intuitive hu-448

man process of evaluating reasoning.449

4.3 Impact on Reasoning Path Distribution450

Recent studies have highlighted the difficulties451

large language models encounter in accurately452

identifying their errors (Huang et al., 2023; Hong453

et al., 2023). To assess our verifier’s effective-454

ness, we generate reasoning paths using greedy455

decoding, which are then scored by the original456

model’s generation confidence and by Tree-PLV.457

We compare the score distributions from both meth-458

ods. Figure 6 shows Tree-PLV’s capability to sepa-459

rate correct and incorrect reasoning paths. In con-460

trast, generation confidence scores produce overlap-461

ping distributions for both categories, highlighting462

their limited differentiation capacity. Specifically,463

Tree-PLV increases the scores of correct paths by464

35%, whereas the confidence scores show only465

a marginal 2% higher score for them. This pro-466

nounced disparity between the two methods not467

only confirms the superior performance of Tree-468

PLV in evaluating the quality of reasoning paths469

but also emphasizes the critical need for an effec-470

tive verifier to accurately assess model outputs.471

LLaMA2-7B Mistral-7B Mistral-7B: Meta-MATH
50

60

70

80

90

%
 A

cc
ur

ac
y

(B
es

t-o
f-6

4)

MCTS
Tree-PLV

Figure 5: Performance comparison of MCTS and Tree-
PLV across different generators on GSM8K.

4.4 Reward Design 472

Our proposed reward function R evaluates the qual- 473

ity of the current step by assessing the proportion 474

of its latent complete paths that reach accurate con- 475

clusions. Some research demonstrates the advan- 476

tages of integrating models’ self-evaluation capabil- 477

ities into inference to enhance accuracy (Hao et al., 478

2023; Ren et al., 2023a; Xie et al., 2023). Inspired 479

by this, we also developed a reward function that 480

relies on self-evaluation. As per Hao et al. (2023), 481

we first construct a reasoning tree based on Monte 482

Carlo Tree Search (MCTS) that incorporates self- 483

evaluation. We then collect preference data from 484

each step of this tree to train a verifier under the 485

same setting. The results, as shown in Figure 5, 486

reveal that the self-evaluation-based reward does 487

not perform as effectively as our proposed reward 488

function. This trend is consistent across different 489

generators, where the performance of the verifier 490

trained with self-evaluation rewards significantly 491

lagged behind our Tree-PLV. Our comparative anal- 492

ysis reveals that relying solely on the model’s in- 493

trinsic ability to evaluate reasoning steps falls short 494

in reliability. Additional results on the MATH500 495

dataset are provided in the Appendix C. 496

4.5 Margin Value for Preference Collection 497

We delve deeper into the analysis by applying vary- 498

ing margins to filter data. As shown in Figure 7, 499

7

0.0 0.2 0.4 0.6 0.8 1.00

30

60

90

120 0.89
0.87

(a) LLM distribution

Overall
Correct
Wrong

0.0 0.2 0.4 0.6 0.8 1.00

8

16

24

0.71
0.36

(b) Verifier distribution

Overall
Correct
Wrong

Figure 6: Distributions of the LLM’s generation confidence and verifier score on correct/incorrect reasoning paths.
The median scores for correct and wrong paths are highlighted with lines of the same respective colors.

0.125 0.250 0.375 0.500

81.0

81.5

82.0

82.5

%
 A

cc
ur

ac
y

(B
es

t-o
f-6

4)

Figure 7: Results on GSM8K, showing verifiers trained
with data sampled using different margins.

increasing the margin value raises the proportion of500

paired data with more noticeable path differences,501

thereby reducing noise and improving the perfor-502

mance of the verifier. However, when the margin503

value reaches 0.5, the verifier’s performance de-504

clines, indicating that excessively high margins505

can diminish the comparison of similar paths and506

reduce the richness of the data. Results on the507

MATH500 dataset are provided in the Appendix C.508

4.6 Efficiency of Data Generation509

We further analyze our tree-based framework510

across the dimensions of data generation efficiency.511

We compare the average number of training data512

per problem generated by different methods over513

10 iterations, as shown in Figure 8. Math-Shepherd514

consistently labels ten paths. In contrast, Self-515

Explore struggles with datasets where the model516

already performs well, as it inherently relies on517

incorrect paths to form pairs. Our framework en-518

hances the utilization of single paths through the519

branching structure of a tree, demonstrating signifi-520

cant scalability and efficiency in data generation.521

5 Related Work522

Recent studies (Lightman et al., 2023; Cobbe et al.,523

2021; Yu et al., 2023a) have demonstrated that in-524

corporating a verifier can significantly enhance per-525

GSM8K CSQA0

5

10

15

20

Av
g.

 Tr
ai

ni
ng

 D
at

a
pe

r P
ro

bl
em

SELF-EXPLORE
MATH-SHEPHERD

Tree-PLV

Figure 8: A comparison of methods’ efficiency in gen-
erating training data.

formance in reasoning tasks. Primarily, there are 526

two methods for training verifiers: outcome super- 527

vision and process supervision. Unlike these ap- 528

proaches, which rely on supervised learning with 529

binary labels, our methodology employs prefer- 530

ence learning to achieve step-level alignment. We 531

provide a detailed discussion of additional related 532

work in Appendix A. 533

6 Conclusion 534

In this paper, we propose Tree-PLV, an innovative 535

verifier developed through step-level preference 536

learning. Utilizing a best-first tree search frame- 537

work to construct reasoning trees, this method cre- 538

ates a diverse and robust dataset, ensuring a rich 539

pool of paired data for preference training. By 540

leveraging step-level preferences instead of con- 541

ventional binary labels, our methodology provides 542

more granular and detailed feedback, enhancing the 543

verification of reasoning paths. Our empirical find- 544

ings highlight the efficacy of Tree-PLV, showing 545

significant performance improvements over exist- 546

ing benchmarks across a variety of arithmetic and 547

commonsense reasoning tasks. In future work, we 548

aim to delve deeper into integrating our verifier 549

within the reasoning process by combining it with 550

various search algorithms, thereby refining the ver- 551

ification of intermediate reasoning steps. 552

8

Limitations553

While Tree-PLV is effective at scoring complete554

solutions, its potential to provide feedback that as-555

sists and refines the reasoning process during the556

inference phase has not been explored in this work.557

Additionally, aside from assisting in reasoning to558

encourage successful outcomes, some studies treat559

verifiers as reward models in reinforcement learn-560

ing scenarios. However, our current research fo-561

cuses on developing highly reliable verifiers, rather562

than employing reinforcement learning to enhance563

the generator. Addressing these aspects will be the564

focus of our future research.565

Ethics Statement566

The development of Tree-PLV aims to improve567

the accuracy and reliability of reasoning assess-568

ments in Large Language Models. Although our569

method poses no immediate ethical concerns, we570

acknowledge the potential for misuse if applied in571

sensitive areas such as automated decision-making.572

We recommend rigorous evaluation and oversight573

to prevent bias and ensure data privacy in all appli-574

cations. It is crucial to maintain transparency and575

adhere to ethical standards in the deployment of576

such technologies.577

References578

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama579
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,580
Diogo Almeida, Janko Altenschmidt, Sam Altman,581
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.582
arXiv preprint arXiv:2303.08774.583

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,584
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas585
Joseph, Benjamin Mann, Nova Dassarma, Nelson586
Elhage, Zac Hatfield-Dodds, Danny Hernandez, John587
Kernion, Kamal Ndousse, Catherine Olsson, Dario588
Amodei, Tom B. Brown, Jack Clark, Sam McCan-589
dlish, Christopher Olah, and Jared Kaplan. 2021. A590
general language assistant as a laboratory for align-591
ment. ArXiv, abs/2112.00861.592

Tom Brown, Benjamin Mann, Nick Ryder, Melanie593
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind594
Neelakantan, Pranav Shyam, Girish Sastry, Amanda595
Askell, et al. 2020. Language models are few-shot596
learners. Advances in neural information processing597
systems, 33:1877–1901.598

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-599
tic, Shane Legg, and Dario Amodei. 2017. Deep600
reinforcement learning from human preferences. Ad-601
vances in neural information processing systems, 30.602

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 603
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 604
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 605
Nakano, et al. 2021. Training verifiers to solve math 606
word problems. arXiv preprint arXiv:2110.14168. 607

Antonia Creswell and Murray Shanahan. 2022. Faith- 608
ful reasoning using large language models. arXiv 609
preprint arXiv:2208.14271. 610

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, 611
Tommaso Salvatori, Thomas Lukasiewicz, Philipp 612
Petersen, and Julius Berner. 2024. Mathematical ca- 613
pabilities of chatgpt. Advances in Neural Information 614
Processing Systems, 36. 615

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 616
Dan Roth, and Jonathan Berant. 2021. Did aristotle 617
use a laptop? a question answering benchmark with 618
implicit reasoning strategies. Transactions of the 619
Association for Computational Linguistics, 9:346– 620
361. 621

Olga Golovneva, Moya Chen, Spencer Poff, Martin 622
Corredor, Luke Zettlemoyer, Maryam Fazel-Zarandi, 623
and Asli Celikyilmaz. 2022. Roscoe: A suite of 624
metrics for scoring step-by-step reasoning. arXiv 625
preprint arXiv:2212.07919. 626

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen 627
Wang, Daisy Wang, and Zhiting Hu. 2023. Rea- 628
soning with language model is planning with world 629
model. In Proceedings of the 2023 Conference on 630
Empirical Methods in Natural Language Processing, 631
pages 8154–8173, Singapore. Association for Com- 632
putational Linguistics. 633

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 634
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja- 635
cob Steinhardt. 2021. Measuring mathematical prob- 636
lem solving with the math dataset. arXiv preprint 637
arXiv:2103.03874. 638

Ruixin Hong, Hongming Zhang, Xinyu Pang, Dong Yu, 639
and Changshui Zhang. 2023. A closer look at the 640
self-verification abilities of large language models in 641
logical reasoning. arXiv preprint arXiv:2311.07954. 642

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron 643
Courville, Alessandro Sordoni, and Rishabh Agar- 644
wal. 2024. V-star: Training verifiers for self-taught 645
reasoners. arXiv preprint arXiv:2402.06457. 646

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 647
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 648
and Weizhu Chen. 2021. Lora: Low-rank adap- 649
tation of large language models. arXiv preprint 650
arXiv:2106.09685. 651

Jie Huang, Xinyun Chen, Swaroop Mishra, 652
Huaixiu Steven Zheng, Adams Wei Yu, Xiny- 653
ing Song, and Denny Zhou. 2023. Large language 654
models cannot self-correct reasoning yet. arXiv 655
preprint arXiv:2310.01798. 656

9

https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507

Hyeonbin Hwang, Doyoung Kim, Seungone Kim,657
Seonghyeon Ye, and Minjoon Seo. 2024. Self-658
explore to avoid the pit: Improving the reasoning659
capabilities of language models with fine-grained re-660
wards. arXiv preprint arXiv:2404.10346.661

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-662
sch, Chris Bamford, Devendra Singh Chaplot, Diego663
de las Casas, Florian Bressand, Gianna Lengyel, Guil-664
laume Lample, Lucile Saulnier, et al. 2023. Mistral665
7b. arXiv preprint arXiv:2310.06825.666

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her-667
bie Bradley, Roberta Raileanu, and Robert McHardy.668
2023. Challenges and applications of large language669
models. arXiv preprint arXiv:2307.10169.670

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-671
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-672
guage models are zero-shot reasoners. Advances in673
neural information processing systems, 35:22199–674
22213.675

Aitor Lewkowycz, Anders Andreassen, David Dohan,676
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,677
Ambrose Slone, Cem Anil, Imanol Schlag, Theo678
Gutman-Solo, et al. 2022. Solving quantitative rea-679
soning problems with language models. Advances680
in Neural Information Processing Systems, 35:3843–681
3857.682

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, B. Chen,683
Jian-Guang Lou, and Weizhu Chen. 2022. Making684
language models better reasoners with step-aware685
verifier. In Annual Meeting of the Association for686
Computational Linguistics.687

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri688
Edwards, Bowen Baker, Teddy Lee, Jan Leike,689
John Schulman, Ilya Sutskever, and Karl Cobbe.690
2023. Let’s verify step by step. arXiv preprint691
arXiv:2305.20050.692

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji693
Zhou, and Yue Zhang. 2023. Evaluating the logical694
reasoning ability of chatgpt and gpt-4. arXiv preprint695
arXiv:2304.03439.696

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-697
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei698
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-699
ardmath: Empowering mathematical reasoning for700
large language models via reinforced evol-instruct.701
arXiv preprint arXiv:2308.09583.702

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,703
Delip Rao, Eric Wong, Marianna Apidianaki, and704
Chris Callison-Burch. 2023. Faithful chain-of-705
thought reasoning. arXiv preprint arXiv:2301.13379.706

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,707
Long Ouyang, Christina Kim, Christopher Hesse,708
Shantanu Jain, Vineet Kosaraju, William Saunders,709
et al. 2021. Webgpt: Browser-assisted question-710
answering with human feedback. arXiv preprint711
arXiv:2112.09332.712

Ansong Ni, Jeevana Priya Inala, Chenglong Wang, Olek- 713
sandr Polozov, Christopher Meek, Dragomir Radev, 714
and Jianfeng Gao. 2022. Learning math reasoning 715
from self-sampled correct and partially-correct solu- 716
tions. arXiv preprint arXiv:2205.14318. 717

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 718
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 719
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 720
2022. Training language models to follow instruc- 721
tions with human feedback. Advances in neural in- 722
formation processing systems, 35:27730–27744. 723

Archiki Prasad, Swarnadeep Saha, Xiang Zhou, and 724
Mohit Bansal. 2023. Receval: Evaluating reasoning 725
chains via correctness and informativeness. arXiv 726
preprint arXiv:2304.10703. 727

Jie Ren, Yao Zhao, Tu Vu, Peter J Liu, and Balaji Lak- 728
shminarayanan. 2023a. Self-evaluation improves se- 729
lective generation in large language models. arXiv 730
preprint arXiv:2312.09300. 731

Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin 732
Zhao, Jing Liu, Hao Tian, Hua Wu, Ji-Rong Wen, 733
and Haifeng Wang. 2023b. Investigating the fac- 734
tual knowledge boundary of large language mod- 735
els with retrieval augmentation. arXiv preprint 736
arXiv:2307.11019. 737

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 738
Jonathan Berant. 2018. Commonsenseqa: A question 739
answering challenge targeting commonsense knowl- 740
edge. arXiv preprint arXiv:1811.00937. 741

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 742
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 743
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 744
Bhosale, et al. 2023. Llama 2: Open founda- 745
tion and fine-tuned chat models. arXiv preprint 746
arXiv:2307.09288. 747

Miles Turpin, Julian Michael, Ethan Perez, and Samuel 748
Bowman. 2024. Language models don’t always say 749
what they think: unfaithful explanations in chain-of- 750
thought prompting. Advances in Neural Information 751
Processing Systems, 36. 752

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran- 753
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell, 754
Geoffrey Irving, and Irina Higgins. 2022. Solv- 755
ing math word problems with process-and outcome- 756
based feedback. arXiv preprint arXiv:2211.14275. 757

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai 758
Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui. 759
2023. Math-shepherd: Verify and reinforce llms 760
step-by-step without human annotations. CoRR, 761
abs/2312.08935. 762

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 763
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and 764
Denny Zhou. 2022. Self-consistency improves chain 765
of thought reasoning in language models. arXiv 766
preprint arXiv:2203.11171. 767

10

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten768
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,769
et al. 2022. Chain-of-thought prompting elicits rea-770
soning in large language models. Advances in neural771
information processing systems, 35:24824–24837.772

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao,773
MingSung Kan, Junxian He, and Qizhe Xie. 2023.774
Self-evaluation guided beam search for reasoning. In775
Neural Information Processing Systems.776

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,777
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.778
2024. Tree of thoughts: Deliberate problem solving779
with large language models. Advances in Neural780
Information Processing Systems, 36.781

Fei Yu, Anningzhe Gao, and Benyou Wang. 2023a.782
Outcome-supervised verifiers for planning in mathe-783
matical reasoning. arXiv preprint arXiv:2311.09724.784

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,785
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-786
guo Li, Adrian Weller, and Weiyang Liu. 2023b.787
Metamath: Bootstrap your own mathematical ques-788
tions for large language models. arXiv preprint789
arXiv:2309.12284.790

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting791
Dong, Chuanqi Tan, and Chang Zhou. 2023. Scal-792
ing relationship on learning mathematical reason-793
ing with large language models. arXiv preprint794
arXiv:2308.01825.795

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-796
man. 2022. Star: Bootstrapping reasoning with rea-797
soning. Advances in Neural Information Processing798
Systems, 35:15476–15488.799

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang,800
Yongfeng Huang, Ruyi Gan, Jiaxing Zhang, and Yu-801
jiu Yang. 2022. Solving math word problems via co-802
operative reasoning induced language models. arXiv803
preprint arXiv:2210.16257.804

11

A Related Work805

Multi-step Reasoning Challenging reasoning806

tasks have spurred innovative research in large lan-807

guage models (LLMs), which are essential for han-808

dling complex queries (Kaddour et al., 2023; Light-809

man et al., 2023; Huang et al., 2023). A prominent810

strategy employed is the Chain-of-Thought (CoT)811

prompting technique (Wei et al., 2022), along with812

its derivatives (Kojima et al., 2022; Wang et al.,813

2022; Yao et al., 2024). These methods decompose814

the reasoning process into sequential steps, system-815

atically approaching problem-solving by mimick-816

ing human-like reasoning. To further enhance the817

accuracy of these intermediate steps, recent stud-818

ies leverage extensive synthetic datasets, which819

are either distilled from cutting-edge models (Yu820

et al., 2023b; Luo et al., 2023) or composed of self-821

generated rationales (Zelikman et al., 2022; Yuan822

et al., 2023; Ni et al., 2022), to fine-tune the LLMs.823

Such training effectively sharpens the models’ abil-824

ity to produce CoT reasoning that leads to correct825

answers.826

In addition, there is an increasing emphasis on827

test-time verification, a process that generates mul-828

tiple solutions and ranks them through a separate829

verifier (Cobbe et al., 2021) to select the most accu-830

rate one. The DIVERSE framework (Li et al., 2022)831

demonstrates the effectiveness of employing a vari-832

ety of CoT prompts in conjunction with a verifier833

to tackle reasoning challenges. CoRe (Zhu et al.,834

2022) implements a dual-process system by fine-835

tuning both the generator and the verifier, thereby836

enhancing the performance of LLMs on math word837

problems.838

Training Verifiers The training process for ver-839

ifiers is typically approached as a binary classifi-840

cation task. In closely related work, Uesato et al.841

(2022) introduces two distinct training methodolo-842

gies for verifiers, differentiated by the granular-843

ity of the supervision signal: outcome supervision844

(Cobbe et al., 2021; Yu et al., 2023a; Hosseini et al.,845

2024) and process supervision (Li et al., 2022; Ue-846

sato et al., 2022; Lightman et al., 2023; Wang et al.,847

2023). Verifiers trained under outcome supervision848

utilize only the final result of a reasoning path for849

learning, while those trained under process super-850

vision benefit from incremental feedback at each851

step within the CoT.852

The training objective for this binary classifi-853

cation does not align well with its intended ap-854

plication in ranking scenarios. The binary labels855

provide a coarse supervisory signal, which fails 856

to differentiate the efficacy of various steps, thus 857

capping potential enhancements in performance. 858

Addressing these issues is not straightforward, as 859

accurately assessing the quality of each step in- 860

volves subjective judgments that are difficult to 861

standardize, even with human annotations. Math- 862

Shepherd (Wang et al., 2023) employs heuristic 863

rules to annotate individual steps; however, the ver- 864

ifier trained on these refined labels does not show 865

improvement compared to its binary version. Our 866

method, Tree-PLV, fundamentally rethinks the ver- 867

ifier’s role by incorporating step-level preference 868

learning. This approach more effectively captures 869

subtle differences among paths and better aligns 870

with the ranking evaluation paradigm. 871

B Experimental Details 872

B.1 Dataset Description 873

Table 3 presents the reasoning benchmarks used 874

in this paper, along with examples. We utilize the 875

same test sets as Wang et al. (2023) for GSM8K 876

and MATH500, and as Wei et al. (2022) for CSQA. 877

For StrategyQA, there are 2,290 test cases (i.e., 878

questions paired with TRUE/FALSE labels). How- 879

ever, there are no additional cases that can be lever- 880

aged by Tree-PLC to construct the training set. To 881

address this issue, we randomly sampled 750 test 882

cases to create the training data, leaving the remain- 883

ing 1,540 cases for testing. 884

B.2 Training Data 885

To construct the training set for Tree-PLV, we select 886

6,000 problems each from the GSM8K and CSQA 887

training datasets to generate paired data. We sam- 888

ple 8 subsequent trajectories (N=8) to calculate the 889

reward for each step. By applying a margin thresh- 890

old of α = 0.375, we filter these pairs, resulting 891

in approximately 100k valid pairs from GSM8K 892

and 120k from CSQA. Additionally, we sampled 893

750 questions from the StrategyQA training set, 894

yielding 15k pairs. 895

B.3 Training Details 896

Considering our limited computational resources, 897

we use Mistral-7B as the backbone to train our 898

verifier via the LoRA (Hu et al., 2021) training 899

method for one epoch. We choose a learning rate 900

of 1e-6, implemented with a cosine learning rate 901

scheduler. Specifically for arithmetic reasoning, 902

the base model is fine-tuned on MetaMATH, fol- 903

12

Dataset N Example Problem

GSM8K 1319 James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint.
How many total meters does he run a week?

MATH500 500 A regular hexagon can be divided into six equilateral triangles. If the perimeter
of one of the triangles is 21 inches, what is the perimeter, in inches, of the regular
hexagon?

CSQA 1221 Where would you find magazines along side many other printed works? Answer
Choices: (A) doctor (B) bookstore (C) market (D) train station (E) mortuary

StrategyQA 1540 Could a silverfish reach the top of the Empire State Building?

Table 3: Reasoning benchmarks we use in this paper with examples. N: number of test cases.

lowing Wang et al. (2023). Furthermore, ORM,904

Self-Explore, and Math-Shepherd are trained under905

settings identical to those we use.906

B.4 Prompt Examples907

We present a prompt example for generating solu-908

tions and performing reasoning. We employ few-909

shot learning to guide the model towards producing910

outputs in the step-by-step format.911

Solve the questions step by step. Make each
step clear and logical, leading to the next. If
a step directly leads to an answer, end it with
"The answer is: ". If not, proceed to the next
step until you find the solution.

Four years ago, Kody was only half as
old as Mohamed. If Mohamed is currently
twice as 30 years old, how old is Kody?
Step 1: If Mohamed is currently twice as old as
30 years old, then Mohamed is currently 2 * 30
= 60 years old.
Step 2: Four years ago, Mohamed was 60 - 4 =
56 years old.
Step 3: Four years ago, Kody was only half as
old as Mohamed, so Kody was (1/2) * 56 = 28
years old.
Step 4: Therefore, Kody is currently 28 + 4 =
32 years old. The answer is: 32.

<more examples>
912

B.5 Preference Pair913

We present an example of preference pairs914

{(x, y+, y−)} used for training Tree-PLV, where915

x represents the problem statement, y+ denotes916

the preferred reasoning sequence, and y− is a less917

desirable path. 918

x: One pie costs $4 for a piece. Each pie is
having 3 pieces. During one hour the bakery
can make 12 pies. Creating one pie costs the
bakery $0.5. Considering the bakery would be
able to sell all pie pieces, how much money
would it make?

y+:
Step 1: Each pie is having 3 pieces.
Step 2: 12 pies is equal to 3 * 12 = 36 pieces.
Step 3: Each piece costs $4, so the bakery
would earn 36 * $4 = $144 if it could sell all of
its pieces.
Step 4: The cost of making one pie is $0.5, so
the cost of making 12 pies is 12 * $0.5 = $6.
Step 5: The bakery would make 144−6 = $138.
The answer is: 138.

y−:
Step 1: Each pie is having 3 pieces.
Step 2: 12 pies is equal to 3 * 12 = 36 pieces.
Step 3: The bakery can make 36 pieces during
one hour.
Step 4: One piece costs $4 and a pie costs $0.5,
so it costs the bakery (1/3) * $4 + (2/3) * $0.5 =
$1.5 to create one pie.
Step 5: The bakery would make 12 * $1.5 =
$18 during one hour. The answer is: 18.

919

C Additional Experiment Results 920

C.1 Additional Results of Reward Design 921

In Figure 9, we show the additional results on the 922

MATH500 dataset for verifiers in Section 4.4. The 923

results of the experiment are consistent with our pa- 924

13

LLaMA2-7B Mistral-7B Mistral-7B: Meta-MATH

8

16

24

32

%
 A

cc
ur

ac
y

(B
es

t-o
f-6

4)
MCTS
Tree-PLV

Figure 9: Performance comparison of MCTS and Tree-
PLV across different generators on MATH500.

0.125 0.250 0.375 0.50024.5

25.0

25.5

26.0

26.5

%
 A

cc
ur

ac
y

(B
es

t-o
f-6

4)

Figure 10: Results on MATH500, showing verifiers
trained with data sampled using different margins.

per’s analysis; our reward design is comparatively925

more effective.926

C.2 Additional Results on Different Margins927

In this section, we provide the experimental results928

of different verifiers on MATH500 in Section 4.5.929

As shown in Figure 10, the performance trend of930

the verifiers with different margin values is consis-931

tent with the trend on GSM8K.932

14

	Introduction
	Tree-PLV
	Problem Formulations
	Reasoning Tree Construction
	Step-Level Pairwise Training

	Experiments
	Experimental Setup
	Main Results

	Analysis
	Different Amounts of Candidate Solutions
	Granularity of Preference Learning
	Impact on Reasoning Path Distribution
	Reward Design
	Margin Value for Preference Collection
	Efficiency of Data Generation

	Related Work
	Conclusion
	Related Work
	Experimental Details
	Dataset Description
	Training Data
	Training Details
	Prompt Examples
	Preference Pair

	Additional Experiment Results
	Additional Results of Reward Design
	Additional Results on Different Margins

