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Abstract

Pre-training Transformers in FP4 precision is be-
coming a promising approach to gain substan-
tial speedup, but it comes with a considerable
loss of accuracy. Microscaling (MX) data for-
mat provides a fine-grained per-group quantiza-
tion method to improve the representation ability
of the FP4 format and is supported by the next-
generation Blackwell GPU architecture. How-
ever, training with MXFP4 data format still re-
sults in significant degradation and there is a
lack of systematic research on the reason. In
this work, we propose a novel training method
TetraJet for a more accurate FP4 training. We
comprehensively evaluate all of the quantizers
involved in the training, and identify the weight
oscillation problem in the forward pass as the
main source of the degradation in MXFP4 train-
ing. Therefore, we introduce two novel methods,
EMA Quantizer (Q-EMA) and Adaptive Ramp-
ing Optimizer (Q-Ramping), to resolve the oscil-
lation problem. Extensive experiments on Vision
Transformers demonstrate that TetraJet consis-
tently outperforms the existing 4-bit training meth-
ods, and Q-EMA & Q-Ramping can provide addi-
tional enhancement by effectively reducing oscil-
lation. We decreased the accuracy degradation by
more than 50% compared to the baseline, and can
even achieve competitive performance compared
to full precision training. The codes are avail-
able at https://github.com/thu-ml/
TetraJet-MXFP4Training
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1. Introduction
Low-precision training has emerged as a promising tech-
nique for accelerating the training process of large-scale
neural networks. By quantizing tensors in both the for-
ward and backward passes to lower-precision formats, low-
precision training leverages specialized compute units in
modern hardware to enhance computational efficiency sig-
nificantly. While BF16 and FP16 precision remain the most
widely used formats for deep learning training (Narang et al.,
2017; Kalamkar et al., 2019), FP8 training (Sun et al., 2019;
Micikevicius et al., 2022; NVIDIA, 2024c; Xi et al., 2025)
is becoming increasingly mature in these years, with suc-
cessful application in training state-of-the-art large language
models (Liu et al., 2024).

There is a growing interest in pushing the training precision
down to 4-bit. While earlier works attempt to train the net-
work with FP4 (Sun et al., 2020), logarithm format (Chmiel
et al., 2021), and INT4 (Xi et al., 2023), these works have
rather large accuracy degradation (e.g., 1-2%) even on sim-
ple tasks such as ResNet training, and are not practically
favorable. Recently, a Microscaling (MX) data format has
been proposed for accurate low-precision training and in-
ference (Rouhani et al., 2023b;a). MX applies fine-grained
per-group quantization, where each small group of 32 ele-
ments shares a scaling factor. This fine-grained quantization
scheme significantly mitigates the impact of outliers, and
thus reduces quantization error. Particularly, the MXFP4
format utilizes an E2M1 (Exponent / Mantissa) FP4 with
an E8M0 scaling factor. MXFP4 is supported on the latest
Nvidia Blackwell architecture and is 2 times faster than
FP8/MXFP6 and 4 times faster than FP16/BF16 (NVIDIA,
2024a;b) when doing matrix multiplications. However, the
low-precision training method proposed in the original Mi-
croscaling paper uses MXFP6 activation/gradient, which is
as slow as FP8 training. The fast pure MXFP4 training still
has major accuracy degradation as tested in our experiments,
which makes it infeasible to use in practice.

In this work, we propose TetraJet, a novel training method
for transformer (Vaswani, 2017) with MXFP4 computation
in both forward and backward pass. All weight/activation/-
gradient tensors in linear layers are quantized to MXFP4
to fully unlock the acceleration potential of the hardware.
We propose several techniques to improve the accuracy of
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MXFP4 training. First, we propose a truncation-free scaling
method for quantizing full-precision values to MXFP4 to
avoid information loss in truncation. We further propose
a double quantization method to deal with the non-square
quantization group of MXFP4. With these techniques, we
prove that TetraJet can estimate the gradient unbiasedly.

We then conduct a comprehensive evaluation of the impact
of individual quantizers on the final model performance, and
find that activation and weight quantizers in the forward pass
contribute the most to accuracy degradation, due to a weight
oscillation problem: the master weight fluctuates around the
quantization boundary, causing the model to be quantized
into different values across iterations, which consequentially
brings significant instability in the optimization process. We
propose two methods to alleviate the oscillation problem:
the EMA quantizer (Q-EMA) conducts rounding based on
the moving average of historical weights rather than only
depending on the current weight matrix; and the Adapting
Ramping optimizer (Q-Ramping) adaptively identifies and
reduces the update frequency of oscillating weights.

Extensive experiments on Vision Transformers prove that
TetraJet consistently outperforms Microscaling’s original
method (Rouhani et al., 2023b), and Q-EMA & Q-Ramping
can provide additional improvement through oscillation re-
duction. We decreased the accuracy degradation by more
than 50% compared to the baseline, and even achieve com-
petitive performance compared to full-precision training.

2. Related Work
Low-Precision Training Low-precision training has be-
come a prominent technique in modern deep learning to
speed up the training process. FP16 and BF16 (half-
precision) training (Narang et al., 2017; Kalamkar et al.,
2019) is currently the most common low-precision method.
FP8 and INT8 training (Sun et al., 2019; Zhu et al., 2020;
Micikevicius et al., 2022; Wortsman et al., 2023; NVIDIA,
2024c; Peng et al., 2023; Xi et al., 2024; 2025; Liu et al.,
2024) further improves efficiency and uses more fine-
grained per-tensor / per-row / per-block quantization. When
it comes down to 4-bit training (Sun et al., 2020; Chmiel
et al., 2021; Xi et al., 2023), more techniques are being
applied (e.g. Hadamard transformation) to compromise the
degradation caused by the low representation ability. Still,
their accuracy degradation is not negligible.

For a more fine-grained quantization, the Microscaling
(MX) format (Rouhani et al., 2023a;b) in the Blackwell
architecture (NVIDIA, 2024a) offers a 1 × 32 per-group
quantization and could potentially double the speed com-
pared to FP8 training. Rouhani et al. (2023b) also propose
a low-precision training method with computation flow in
MX formats in 4, 6, and 8 bits. In this paper, we refer to

the 4-bit MX format as MXFP4, and refer to their train-
ing method as Microscaling. We propose a better training
method TetraJet with accuracy improvement compared to
Microscaling.

Oscillation Problem In low-precision training, weight
oscillation has been proven to be a serious problem that
affects optimization. Nagel et al. (2022) revealed that the os-
cillation of weight quantization does harm to Quantization-
Aware Training (QAT) of CNNs. Besides, Liu et al. (2023)
proved that oscillation was a key factor causing the degrada-
tion of accuracy in QAT of Vision Transformers. However,
they were both based on QAT, that is, they fine-tunes a
low-precision model based on a pre-trained full-precision
network rather than pre-training from scratch. They both
utilized pre-tensor Learned Step Size Quantization (LSQ)
to train the models. There is a lack of research on oscil-
lation problems about pre-training and more fine-grained
quantization methods (e.g., MX Format).

To reduce weight oscillation, Liu et al. (2023) proposed
several methods, but the application is restricted to LSQ
or QAT, while Nagel et al. (2022) proposed methods that
can be generalized to reduce oscillation in MXFP4 pre-
training: The method “Dampen” tried to encourage latent
weights to be closer to the quantized value to avoid fluctuat-
ing around the quantization boundary, by adding a regulation
term Ldampen = ∥W−Q(W)∥2F in the loss function; The
method “Freeze” tracks the oscillation frequency f for each
weight element, and freezes those frequently oscillating
weights (f > fth) to a running average value. The frozen
weights would never be updated again in the whole training
process, which may harm the optimization in pre-training.
In this work, we propose two novel methods Q-EMA & Q-
Ramping to better reduce oscillation in MXFP4 pre-training.

3. Our TetraJet Training Method
In this section, we review and identify several drawbacks
of the existing low-precision training method Microscal-
ing (Rouhani et al., 2023b), and propose a more accurate
training method TetraJet. The effectiveness of our method
is shown in Section 7.

3.1. Preliminary

MXFP4 Format Floating points have three components:
sign-bit, exponent-bits, and mantissa bits. If a format has x
exponent bits and y mantissa bits, we usually denote it as
ExMy. We use Qp, Qn to represent the max positive value
and the min negative value the format can represent. For
E2M1, Qp = 6, Qn = −6.

The MXFP4 (Microscaling Floating-Point 4-bit) data for-
mat (Rouhani et al., 2023a) follows a per-group quantization
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scheme where a group of N = 32 elements shares a com-
mon 8-bit exponential scaling factor s. Each element Xi

in the group is represented by Pi in E2M1 format. The
reconstruction of a floating-point value Xi from its MXFP4
representation follows the formula:

Xi = Pi × 2s, i = 1, 2, . . . , 32

Quantization To quantize a matrix to MXFP4, we need
to split it into blocks of size 1 × 32 (or 32 × 1), and then
quantize each block to MXFP4. To quantize a block of 32
full-precision values {Xi}32i=1 to MXFP4, we first determine
the E8M0 scale factor S = 2s with |s| ≤ 127. Each value
Xi is then mapped to a 4-bit FP4 representation Pi, such
that:

Pi = roundFP4

(
Xi

S

)
, Xi ≈ Pi · S. (1)

The quantized representation is stored as
(
{Pi}32i=1, S

)
,

where S is an 8-bit exponent, and Pi is an FP4 value.

3.2. Quantization with Truncation-Free Scaling

Computation of Scaling Factor Microscaling computes
the scale factor as follows

s = ⌊log2 M⌋ − Emax, S = 2s, (2)

where M = max1≤i≤32 |Xi| is the largest absolute value
of the block, Emax represents the largest exponent in FP4
format1. A drawback of the approach is that the scaled value
Xi/S may fall outside the range [Qn, Qp], and exceeding
values will be truncated. For instance, if M = 31, the
scaling factor will be S = 2s = 24−2 = 4. Since M/S =
31/4 = 7.75 exceeds the maximum representable value
Qp = 6, the value M will be truncated to 6. Intuitively,
large values carry more information, and such truncation
will be harmful to retaining the precision of the network.

TetraJet equips a truncation-free scaling method:

s =

⌈
log2

2M̃

Qp −Qn

⌉
, S = 2s,

where M̃ equals to M in most cases except when M = 0,
we set M̃ to a small number ϵ = 10−8 to avoid numerical
issues. Compared to Eq. (2), we replace floor ⌊·⌋ with ceil-
ing ⌈·⌉ to avoid truncation, and replace the numerical range
from [−2Emax ,+2Emax ] to a more accurate range [Qn, Qp].
In this way, Qn ≤M/S ≤ Qp always holds. For example,
when M = 31, the scaling factor will be S = 23 = 8, so
M/S = 3.875 still lies in the representation range of FP4.

1for E2M1, Emax = 22−1 = 2

Deterministic & Stochastic Rounding of FP4 format
Now we discuss the roundFP4(·) operation in Eq. (1). With
our scaling, all the values Xi/S are in the range [Qn, Qp].
Therefore, we can always find two consecutive FP4 value
q1, q2(q1 < q2) satisfying q1 ≤ Xi/S ≤ q2 for every Xi.

A direct way of rounding Xi/S is to select the nearest FP4
value between q1, q2, which we call deterministic rounding
or round to nearest. Here we denote it as

roundD(Xi/S) =

{
q1, |Xi/S − q1| < |Xi/S − q2|
q2, otherwise

Microscaling always applies deterministic quantization to
minimize the quantization error. However, we find it subop-
timal to apply deterministic quantization to gradients, since
the gradient will no longer be unbiased. To this end, we
apply stochastic rounding (Courbariaux et al., 2015) to gra-
dients to maintain an unbiased gradient. Stochastic rounding
generates random variable ξ ∼ Uniform(− q2−q1

2 , q2−q1
2 )

for each value Xi independently, and computes

roundS(Xi/S) =

{
q1, Xi/S + ξ < q1+q2

2

q2, otherwise

Stochastic rounding is unbiased: E[roundS(Xi/S)] =
Xi/S. We show the superiority of stochastic rounding in
the ablation study in Sec. 7.3,

3.3. TetraJet Linear Layer

When training the transformer, linear layers usually take
most of the computation. Following previous works on
low-precision training (Xi et al., 2023), we mainly focus on
accelerating the linear layer with MXFP4, whose forward
and backward pass are defined as:

Y = XW⊤,

∇XL = (∇YL)W, ∇WL = (∇YL)⊤X,

where X ∈ RN×D,W ∈ RC×D,Y ∈ RN×C , L
is a loss function, and ∇XL/∇YL/∇WL are the in-
put/output/weight gradient matrices with the same size of
X,Y,W.

To accelerate training, we need to compute all three matrix
multiplications (MMs) in MXFP4. To achieve this, we
need to quantize the six input matrices of the three MMs to
MXFP4, which can be formulated as:

Y = Q
(1)
D (X)×Q

(2)
D (W⊤) (3)

∇XL = Q
(3)
S (∇YL) ×Q

(4)
S

(
Q

(2)
D (W⊤)

⊤
)

(4)

∇WL = Q
(5)
S

(
(∇YL)⊤

)
×Q

(6)
S

(
Q

(1)
D (X)

)
(5)

where QD/QS refers to the deterministic/stochastic round-
ing quantizer. We explain the design of TetraJet linear layer
as follows.
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Figure 1: Visualization of MXFP4 Linear Layer.

Block Format As a fine-grained format, doing MM with
MXFP4 is more subtle than other coarser-grained formats
such as per-tensor quantization. For hardware-accelerated
MM to be possible, MXFP4 requires quantization group
shape to be 1× 32 for the first matrix and 32× 1 for the sec-
ond matrix. Therefore, quantizers Q(1), Q(3), Q(5) should
use 1 × 32 group shape, and quantizers Q(2), Q(4), Q(6)

should use 32 × 1 group shape. This means that weight
W, activation X, and gradient ∇YL should be quantized
along different axes in different quantizers. For example,
the quantization block size of X should be 1 token × 32
channels in forward and 32 tokens× 1 channel in backward.

Double Quantization We propose a double quantiza-
tion strategy to satisfy MXFP4’s block format requirement.
Specifically, Q(1)

D (X) is a quantized activation with 1× 32
group size, which is used in the forward pass. We quantize
the already quantized Q

(1)
D (X) again with a different 32× 1

group size to compute the gradient in Eq. (5). By doing
so, we ensure the activation is quantized with the required
group size for both forward and backward pass. Similarly,
the weight is also doubly quantized.

In contrast, Microscaling takes a different approach:

∇XL = Q
(3)
D (∇YL)×Q

(4)
D (W) (6)

∇WL = Q
(5)
D

(
(∇YL)⊤

)
×Q

(6)
D (X) (7)

where the activation used in the backward pass is deter-
ministically quantized from the full-precision X rather than
Q

(1)
D (X), which is biased as we will discuss.

3.4. Gradient Bias

We first derive the correct gradient formula with Straight
Through Estimator (STE) (Bengio et al., 2013): Given the
forward pass in Eq. (3), the correct gradient should be

∇XL
STE
≈ ∇

Q
(1)
D (X)

L = (∇YL)×Q
(2)
D (W⊤)

⊤
(8)

∇WL
STE
≈ ∇

Q
(2)
D (W)

L = (∇YL)⊤ ×Q
(1)
D (X). (9)

Table 1: Impact analysis on MXFP4 quantizers. We report
the top-1 Acc.% after 90-epoch pre-training. Qi means we
only activate the i-th quantizer Q(i).

DeiT-T DeiT-S
Full Precision 63.73 73.33

Q1 61.50 71.66
Q2 62.77 72.45
Q3 63.46 72.97
Q4 63.37 72.79
Q5 63.81 73.25
Q6 63.78 73.13

All Quantizers 59.75 71.03

Note that microscaling’s gradient Eq. (6,7) does not equal
to the correct gradient Eq. (8,9). Particularly, Q(4)

D (W) ̸=
Q

(2)
D (W⊤)

⊤
. Microscaling is actually computing the gra-

dient for another network with the forward pass Y =
Q32×1(X)Q1×32(W

⊤), where both operands are quan-
tized in the wrong direction.

In contrast, TetraJet gives an unbiased estimation of
Eq. (8,9). Take ∇XL in Eq. (4) as an example, since
Q(3), Q(4) are stochastic and truncation-free, the expecta-
tion of our gradient is

E
[
Q

(3)
S (∇YL)×Q

(4)
S

(
Q

(2)
D (W⊤)⊤

)]
= E

[
Q

(3)
S (∇YL)

]
× E

[
Q

(4)
S

(
Q

(2)
D (W⊤)⊤

)]
= ∇YL ×Q

(2)
D (W⊤)⊤

which is right side of Eq. (8). Similarly, the estimation
in Eq. (5) for ∇WL is also unbiased. Given that each
linear layer is unbiased, the final gradient calculated with
backpropagation is unbiased, which ensures the convergence
of SGD, as discussed by (Chen et al., 2020).

3.5. Impact Analysis of Six Quantizers

Before making any attempts to improve the training, it is
necessary to understand which among the 6 quantizers in
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Figure 2: Rate of change for weight and activation at differ-
ent stages of 90-epoch DeiT-Tiny pre-training. We calculate
the average rate for all quantized weights and select a trans-
former block to test output activation given fixed input.

Eq. (3,4,5) is the bottleneck. We test the impact of quan-
tizers by activating them separately: for the i-th test, we
only activate Q(i) while leaving all other matrices in full
precision, train the model from scratch, and compute vali-
dation accuracy. As shown in Tab. 1, the activation/weight
quantizers Q(1)/Q(2) in the forward pass lead to most accu-
racy degradation. For example, MXFP4 training on DeiT-T
has a 3.98% accuracy loss, while only quantizing the activa-
tion/weight in the forward pass accounts for 2.23% / 0.96%,
respectively. We reveal in the next section this is due to the
instability of low-precision training.

4. Oscillation Phenomenon
4.1. Instability of MXFP4 Training

During the final stage of training, the learning-rate (LR) typ-
ically approaches zero, so the model can stop exploration
and quickly descend to a local minimum. However, we
find that MXFP4 training cannot converge even with a suf-
ficiently small learning rate due to the oscillation between
quantization points. To explain this phenomenon, we define
rate of change for a tensor X as

r(X) =
1

T0

T0∑
t=1

∥∥Xt −Xt−1
∥∥
F∥∥Xt−1

∥∥
F

,

where t refers to training step, and step 0 ∼ T0 refers to
a short training interval. During pre-training, we can test
the rate of change for the master weight W, the quantized
weight matrix Q(2)(W⊤)⊤, and activation Y at different
stages.

As shown in Fig. 2, for full-precision models, the rate of
change can gradually decrease to near zero, while for quan-
tized models the rate of change would stay high in the final
of training, indicating that there are still large changes inside
the models.
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Figure 3: Trajectory of some oscillation elements in DeiT-
Tiny during the last epoch of training. The top plot shows
the change of quantized FP4 value, and the bottom plot
shows the oscillating latent weight around the quantization
decision threshold thrd = −0.75.

We find that the weight oscillation is the source of this
problem. To be clear, we refer to w/S as latent weight,
where S is the quantization scale factor of weight element
w. As illustrated in the top plot in Fig. 4, a large amount of
latent weights lies around the quantization thresholds (the
midpoints of two quantized values) at the end of the training
process. For these elements, little perturbation on their
corresponding master weights will change the quantized
values, which results in a giant jump from one quantized
value to another. This makes the rate of change of the
quantized weight matrix much higher than its corresponding
master weight, and meanwhile contributes to the instability
of activation, which aligns with our finding.

We tracked several oscillating weight elements during the
final epoch of training for a better understanding of this
oscillation phenomenon. As shown in Fig. 3, these latent
weights are changing with small steps around the quanti-
zation threshold thrd = −0.75, which is the midpoint of
two FP4 values q1 = −1, q2 = −0.5. When the latent
weight crosses thrd = −0.75 caused by a small update, the
quantized weight would shift from q1 to q2 (or from q2 to
q1). Frequently crossing thrd causes the frequent flipping
between q1 and q2. Therefore, a direct characterization of
oscillating weight is that, the oscillating weight elements
will have their latent value stay closely around the quantiza-
tion threshold and frequently cross the threshold.

4.2. Quantization Confidence of Weight Distribution

To quantitatively assess the severity of the oscillation prob-
lem, we define quantization confidence for each weight
element w, which measures the normalized distance to the
nearest quantization threshold:

QuantConf(w) :=
mini |w − thrdi|
MaxDist(wFP4)

,
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More Confident Less Confident

Figure 4: The change of latent weight and quantization con-
fidence during 90-epoch pre-training of DeiT-Tiny. The top
plot shows the distribution of latent weight, and the bottom
plot shows the distribution of quantization confidence.

where wFP4 denotes the quantized FP4 value of w,
{thrdi} denotes all the quantization thresholds, and
MaxDist(wFP4) denotes the maximum possible distance
if quantized to wFP4. It is ensured that QuantConf(w) ∈
[0, 1].

The rationale behind this metric is that the closer a latent
weight is to a quantization decision threshold, the more
likely it is to oscillate, making it harder for the weight to
converge to a stable FP4 value.

As shown in the bottom plot of Fig. 4, we observe a grad-
ual decline in quantization confidence throughout training.
This trend indicates an increasing prevalence of oscillation
as training progresses. Consequently, effective solutions
to mitigate oscillation should be dynamic, adapting to the
specific conditions of each stage of the training process.

5. EMA Quantizer
We firstly propose an EMA Quantizer (Q-EMA) to solve
the oscillation phenomenon. Since the weight will oscillate
between the two possible choices randomly even with small
perturbations, we hope to find a better way to choose from
these two possible values after quantization.

We find that the Exponential Moving Average (EMA) can
be used to alleviate the oscillation problem. EMA on weight
is determined as:

Wt
EMA = βWt−1

EMA + (1− β)Wt, (10)

where Wt is the BF16 weight. A Typical choice of β is
0.998. Therefore, even when weight makes a very large step,
WEMA only moves slightly. When the weight oscillates
between two quantized values, as EMA weight is always left

behind the actual optimization process and is updated slowly,
EMA weight is less likely to be affected by oscillations.
Consequently, this makes the optimization process much
more stable.

Our EMA quantizer first maintains an EMA weight through-
out the training process. When doing quantization to each
weight element w with scale factor S and its EMA value
wEMA, we first use the latent weight w/S to propose two
candidate quantized values wq1 and wq2 , as they are the
two values that give the smallest MSE. We then use the
EMA weight to check which is closer to wEMA, and use
this as the quantized value. This algorithm is formalized as
Algorithm 1 in Appendix C.

6. Adaptive Ramping Optimizer
Besides smoothing the weight quantization with EMA quan-
tizer, another effective approach to reducing oscillations
is to manually decrease the update frequency of oscillat-
ing weights. Building on this idea, we propose Adaptive
Ramping Optimizer (Q-Ramping), which directly locates
the frequently oscillating weights according to their updat-
ing trajectory, and then adaptively decrease their updating
frequency by using a higher gradient accumulation step for
these oscillating weights to reduce the oscillation frequency.

6.1. Identifying Oscillating Weights

The first thing is to locate the oscillating weights and quan-
tify their degree of oscillation. To achieve this, we would
record information about the weight update trajectory for
each element. During a training stage with T0 steps, we sum
up updating distance for each master weight element w and
its quantized weight wQ:

distW =

T0∑
t=1

|wt − wt−1|, distQ =

T0∑
t=1

|wt
Q − wt−1

Q |,

And then, we define oscillation ratio Rw for each weight
element as

Rw := distQ/distW ,

representing the degree of oscillation.

During training, if a weight element w doesn’t fall into the
oscillation process, the master weight w and the quantized
weight wQ would move with a similar trajectory. In this
situation, distQ ≈ distW , so Rw would not be too large.

In contrast, for oscillating weight elements, the quantized
weight would switch frequently between two discrete quan-
tization values q1 and q2. Each switch from q1 to q2 (or
from q2 to q1) will increase distQ by |q1 − q2|, making it
relatively large. Meanwhile, the master weight w would be
oscillating around the quantization threshold, and the step-
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Table 2: Results on the 90-epoch pretraining of Vision Transformers. We report the Top-1 Accuracy% on validation dataset.

PRE-TRAINING METHODS BIT WIDTH QUANTIZATION DEIT-T DEIT-S DEIT-B SWIN-T SWIN-S

FULL PRECISION A16W16G16 - 63.73 73.33 75.57 78.35 80.44

INT4 A4W4G4 PER-TENSOR 40.14 60.07 68.13 74.22 75.74
MICROSCALING (BASELINE) A4W4G4 PER-GROUP 58.56 70.10 74.54 76.87 79.45

TETRAJET (OURS) A4W4G4 PER-GROUP 59.75 71.03 74.91 77.12 79.51
TETRAJET + Q-EMA(OURS) A4W4G4 PER-GROUP 60.00 72.25 77.32 77.30 79.74
TETRAJET + Q-RAMPING(OURS) A4W4G4 PER-GROUP 60.31 71.32 75.62 77.33 79.67

size would be≪ |q1 − q2|, so in this situation, we would
get distW ≪ distQ, and Rw will be quite large.

Therefore, the larger Rw, the more frequently and severely
the weight element w oscillates, which means that we should
put more effort into suppressing the oscillation of w.

6.2. Suppressing Weight Oscillation Adaptively

Based on periodically detecting and quantifying weight
oscillation, we propose Adaptive Ramping Optimizer (Q-
Ramping) to alleviate the oscillation problem of these
weights. We adaptively decrease the updating frequency
of these oscillating weights, by setting larger batch-size for
them. We also expand their corresponding learning-rate pro-
portional to their batch-size. The adapted batch-size would
be an integer multiple of the global batch-size, and we would
accumulate the gradient for each oscillating weight accord-
ing to its own batch-size. This algorithm can be formalized
as Algorithm 2 in Appendix C.

By applying Q-Ramping, the update frequency is reduced
for oscillating weights, so that their oscillation frequency
is also reduced. Additionally, through larger batch-size
and larger learning-rate, the oscillating weights near the
quantization thresholds can be updated to a place further
away from the quantization threshold. Therefore, the weight
distribution will have a higher quantization confidence, and
the oscillation phenomenon can be alleviated.

7. Experiments
7.1. Vision Transformer Pre-Training

We evaluate our TetraJet training method and oscillation
reduction method Q-EMA & Q-Ramping on Vision Trans-
formers pre-training. During training, we quantize the for-
ward and backward process of all the linear layers in the At-
tention module and the MLP module of transformer blocks.

We do pre-training for DeiT-Tiny, DeiT-Small, and DeiT-
Base (Touvron et al., 2021) using Facebook’s training
recipe2, and pre-train Swin-Tiny and Swin-Small (Liu et al.,

2https://github.com/facebookresearch/deit

2021) based on the official implementation3. All the models
are trained for 90 epochs on ImageNet1K (Russakovsky
et al., 2015) with default training recipes. For Q-EMA & Q-
Ramping, we show the insensitivity to their hyperparameter
choice in Appendix C.3.

We compared our MXFP4 training method, TetraJet, with
full-precision training, 4-bit per-tensor quantization method
INT4 (Xi et al., 2023), and original Microscaling’s MXFP4
training method (Rouhani et al., 2023b). The detailed results
are listed in Tab. 2.

As a result, our TetraJet can consistently outperform the orig-
inal method Microscaling, and we can further improve the
performance of MXFP4 training by overcoming oscillation
problems in forward pass with Q-EMA / Q-Ramping.

7.2. Quantitative Analysis on Oscillation Reduction

To validate our improvements in mitigating oscillation, we
analyzed different statistics to show how our methods work
in oscillation reduction in real training.

Improvement of Training Stability As described in
Sec. 4.1, the rate of change for weights and activation can-
not converge to zero in MXFP4, which reflects the model
cannot converge stably. In Tab. 3, we can see our methods
can effectively reduce the instability of both the weight and
activation in forward.

Improvement of Quantization Confidence As described
in Sec. 4.2, weight confidence indicates the risk of weight os-
cillation. If the confidence is lower at the end of the training,
more weights are still oscillating around the quantization
threshold, and it is harder for these parameters to converge
to decisive values.

In Fig. 5, we can see the unique function of Q-Ramping in
improving quantization confidence. It successfully reduced
the weights that are prone to oscillate (those with low confi-
dence) by identifying them, reducing their update frequency,
and increasing their gradient accumulation steps.

3https://github.com/microsoft/Swin-Transformer
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Figure 5: Q-Ramping’s unique effect on improving the
distribution of quantization confidence of the final model.
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Figure 6: Q-EMA & Q-Ramping’s effect on oscillating
weights reduction during the whole training process. We
present the 90-epoch pre-training of DeiT-T.

Table 3: Effect of Q-EMA & Q-Ramping on stabilizing
weight and activation at the end of DeiT-T training. r(·)
refers to the rate of change for tensors, WQ is the quantized
weights, and Y is the output of 9th transformer block given
fixed input.

r(WQ)↓ r(Y)↓

TetraJet 0.0045 0.0401
TetraJet + Dampen 0.0044 0.0394
TetraJet + Q-EMA (Ours) 0.0018 0.0251
TetraJet + Q-Ramping (Ours) 0.0028 0.0318

Table 4: Comparison of our oscillation reduction methods
with other methods for DeiT MXFP4-Pretraining on Ima-
geNet Classification. We report the top-1 Acc.% of the final
model.

DeiT-T DeiT-S

TetraJet 59.75 71.03
TetraJet + Dampen 59.75 70.75
TetraJet + Freeze 16.45 22.04
TetraJet + Q-EMA (Ours) 60.00 72.25
TetraJet + Q-Ramping (Ours) 60.31 71.32

Oscillation Reduction throughout the Training We use
Oscillation Ratio Rw (defined in Sec. 6.1) to characterize
the oscillation problem during the whole training process.
We define that those weights with Rw > 16 are oscillating
weights. As shown in Fig. 6, both of our methods can
effectively reduce the Oscillating Weights. Among them,
Q-EMA reduces the most oscillating weights by directly
smoothing weight quantization. Q-Ramping also reduces
the oscillating level, while method “Dampen” from Nagel
et al. (2022) cannot effectively reduce oscillation in MXFP4
pre-training.

7.3. Ablation Study

Training Method We investigate the quantization method
in the MXFP4 training. We find that double quantization
consistently outperforms Microscaling’s incorrect gradient
computation. Besides, when we ensure unbiased gradient
estimation by double quantization and truncation-free scal-
ing, we can get the optimal result with stochastic rounding.
The detailed results are listed in Tab. 5 in Appendix B.

Other Methods on Oscillation Reduction Following the
configuration in Nagel et al. (2022), we compared Q-EMA
& Q-Ramping with their methods. As a result in Tab. 4, their
“Dampen” method cannot work well on reducing oscillation

in pre-training, and the “Freezing” method would encounter
severe degradation when adapted to pre-training tasks.

Stability Improvement We removed weight quantizers in
forward to simulate an oscillation-free training (set Q(1) to
identity function), and removed both activation and weight
quantizers in forward to simulate a MXFP4 training with
stable forward process (set Q(1) and Q(2) to identity func-
tion). Consequently, our stabilization method Q-EMA and
Q-Ramping can counteract the influence of weight oscilla-
tion, and approach a comparable accuracy to training with a
full-precision forward process. Results are listed in Tab. 6
in Appendix B.

8. Conclusion
In this work, we not only proposed a new MXFP4 train-
ing method TetraJet for a more accurate 4-bit training in
MXFP4 format, but also introduced novel approaches to an-
alyzing and resolving the instability of forward pass, which
is the bottleneck of MXFP4 training. Extensive experiments
revealed that our TetraJet consistently surpasses current 4-
bit training methods, and Q-EMA / Q-Ramping can provide
additional enhancement with effective oscillation reduction,
and even achieve competitive performance compared to
full-precision training.
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A. Statistics for Measuring Oscillation and Training Instability
In this section, we formally define and explain the statistics we use in this paper to measure weight oscillation and training
instability.

A.1. Oscillation Ratio

Definition During a training stage with T0 steps, we sum up updating distance for each master weight element w and its
quantized weight wQ = Q(w):

distW =

T0∑
t=1

|wt − wt−1|,

distQ =

T0∑
t=1

|wt
Q − wt−1

Q |.

We define oscillation ratio Rw for each weight element, representing the degree of oscillation:

Rw := distQ/distW .

In the Q-Ramping method for pre-training, we set T0 = 30 to minimize the additional cost of identifying oscillating weights.
In the validation experiment (Tab. 6), we set T0 = 200 to fully validate the oscillation reduction.

Interpretation If a weight element w has higher Rw at a certain stage of training, it means that it shows more characteristics
of oscillation. The larger Rw, the more frequently and severely the weight element w oscillates, which means that we should
put more effort into suppressing the oscillation of w.

Comparison of Oscillation Ratio and Previous Metric Nagel et al. (2022) also define a metric flipping frequency f
(average frequency of quantization flipping, defined for each weight element) to find out oscillating weights and measure
oscillation severity, but it is only suitable for the small learning-rate training (e.g. fine-tuning, or near the end of pre-training),
because when the learning-rate is relatively large (e.g. the early or middle stage of pre-training), the latent weight would be
updated with large step size and the quantized weights also change frequently during training, but f would falsely recognize
some of them as quantization oscillation. This is also a reason why the ”Freeze” method performs badly in pre-training (see
the result in Tab. 4).

Oscillation Ratio Rw overcomes the issue of oscillation detection in the early stage of pre-training. Only the weights that
fall into real quantization oscillation would get a large Rw: these weights are with small moves around the quantization
threshold (distW is relatively small) but with frequent switch between quantization values (distQ is relatively large).

A.2. Quantization Confidence

Definition To quantitatively assess the severity of the oscillation problem, we define quantization confidence for each
weight element w, which measures the normalized distance to the nearest quantization threshold.

QuantConf(w) :=
mini |w − thrdi|
MaxDist(wFP4)

where wFP4 denotes the quantized FP4 value of w, {thrdi} denotes all the quantization thresholds, and MaxDist(wFP4)
denotes the maximum possible distance when quantized to wFP4. It is ensured that QuantConf(w) ∈ [0, 1].

Interpretation If an element w has less quantization confidence, it is more prone to oscillate, because it is closer to the
quantization threshold and little perturbation would make its quantized value switch frequently. If a weight matrix W has
more elements with low confidence, we call the weight distribution is less confident, which indicates that the optimization to
this weight is more unstable. For example, in Fig. 4, weights in Epoch 90 are less confident than weights in Epoch 30.
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A.3. Rate of Change for Weight and Activation

Definition we define rate of change for a tensor X as

r(X) =
1

T0

T0∑
t=1

∥∥Xt −Xt−1
∥∥
F∥∥Xt−1

∥∥
F

where t refers to training step, and step 0 ∼ T0 refers to a short training interval.

During pre-training, we can test the rate of change for the master weight W, the quantized weight matrix Q(2)(W⊤)⊤, and
activation Y in different stages.

Interpretation This metric is useful in the end of training. When Learning Rate (LR) is approaching zero to push the
model to quickly descend to a local minimum and converge, we expect the rate of change for quantized weight and activation
can also be near zero to ensure stability of training. However, in Section 4.1, we have found that the rate of change stays
high at the end of MXFP4 training.

Therefore, if we can decrease the rate of change for quantized weight and output activation of quantized layers, it means we
effectively improve the training stability. We have shown the results in Tab. 3.
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B. More Detailed Results of Ablation Study
Quantization Methods We do an ablation study to compare our training method TetraJet and Microscaling’s original
training method. Through Tab. 5, we conclude that: (a) Our double quantization corrects the gradient estimation in MXFP4
Linear Layers, and is consistently better than Microscaling’s original design. (b) As long as we give unbiased gradient
estimation, which is guaranteed by double quantization and truncation-free scaling, we can reach the optimal strategy
with stochastic quantization in backward. (c) It is necessary to ensure unbiasedness. Only in the unbiased situation, can
stochastic quantization exert its advantage.

Table 5: Comparison on quantization methods. We report the accuracy on the validation set of 90-epoch DeiT-T pre-training.

Backward Quant XW For Grad Computing Computation of Shared Scale Top-1% Top-5% Note

Stochastic Double Quantization Truncation-Free Scaling 59.75 82.67 TetraJet(unbiased gradient)
Stochastic Double Quantization Microscaling’s Scaling 59.18 82.64
Stochastic Microscaling’s Design Truncation-Free Scaling 56.98 80.60
Stochastic Microscaling’s Design Microscaling’s Scaling 57.49 81.27

Deterministic Double Quantization Truncation-Free Scaling 58.60 82.11
Deterministic Double Quantization Microscaling’s Scaling 59.02 82.18
Deterministic Microscaling’s Design Truncation-Free Scaling 58.40 81.57
Deterministic Microscaling’s Design Microscaling’s Scaling 58.56 81.92 Microscaling

Stability Improvement We simulated an oscillation-free training by removing the weight quantizer in forward, and
simulated a stable forward process by removing both weight & activation quantizers in forward. As a result in Tab. 6, our
methods Q-EMA & Q-Ramping can fully eliminate the negative effects of weight oscillation, and can approach better
accuracy with a more stable forward process.

Data Format We study the choice of FP4 format for the forward and backward computation. In Tab. 7, although E3M0 is
another possible FP4 format, E2M1 is always a better format for weight, activation, and gradient.

Table 6: Ablation study on quantization stability. We re-
port the accuracy on validation set of 90-epoch DeiT-B
pre-training. WQ: Weight Quantization in forward; AQ: Ac-
tivation Quantization in forward.

Top-1 Acc.%

TetraJet 74.91
TetraJet w/o WQ 75.16
TetraJet w/o WQ & AQ 75.86

TetraJet + Q-EMA 77.32
TetraJet + Q-Ramping 75.62

Table 7: MXFP4 Data Format Selection. We report the
top-1 Acc.% of DeiT-T Pre-Training.

A&W
Grad E2M1 E3M0

E2M1 59.75 58.90
E3M0 54.21 53.72
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C. Detailed Implementation of Q-EMA and Q-Ramping
C.1. Algorithm: EMA Quantizer (Q-EMA)

Algorithm 1 EMA Quantizer for a Micro-Block (Q-EMA)

input Weight Block W; EMA weight block WEMA.
output Quantized Weight Block (WFP4, s) in MXFP4 format

1: Assume W and WEMA are vectors of size 32.
2: M ← max1≤i≤32 |Vi|, M̃ ←M + ε · I (M = 0)

3: s←
⌈
log2

2M̃
Qp−Qn

⌉
, S ← 2s

4: for i← 1 to 32 do
5: q1, q2 ← two nearest MXFP4 values to Wi

S

6: if
∣∣WEMAi

S − q1
∣∣ < ∣∣WEMAi

S − q2
∣∣ then

7: WFP4
i ← q1

8: else
9: WFP4

i ← q2
10: end if
11: end for
12: Return MXFP4 block (WFP4, s)

C.2. Algorithm: Adaptive Ramping Optimizer (Q-Ramping)

Algorithm 2 Adaptive Ramping Algorithm for MXFP4 Training (Q-Ramping)

1: Hyperparameter: k1, k2.
2: function OscillationDetection(Model M , Global Learning-Rate LR, Global Batch-Size BS)
3: Train the model M for T0 ≪ Tupdate steps on a calibration dataset without Q-Ramping, to detect oscillating weight.
4: for each weight element w in quantized layers do
5: Compute the oscillation ratio Rw according the length of trajectory of master weight w & quantized weight wQ;
6: LRw ← min(k2⌊Rw/k1⌋+ 1, Nmax) · LR;
7: BSw ← min(k2⌊Rw/k1⌋+ 1, Nmax) · BS;
8: // k1, k2 are coefficients for amplifying LR & BS (that is using a higher gradient accumulation step).
9: // Nmax denotes the maximum amplification factor.

10: end for
11: end function
12: function ModelTraining with Q-Ramping(Initial Model M , Steps T , Learning-Rate LR, Batch-Size BS)
13: for t← 0 to T do
14: if t mod Tupdate = 0 then
15: call OscillationDetection(M , LR, BS) to adaptively adjust LRw & BSw for each element w;
16: end if
17: for each weight element w in quantized layers do
18: update w according to LRw & BSw by Customized AdamW;
19: end for
20: for each parameter W in non-quantized layers do
21: update W by normal AdamW;
22: end for
23: end for
24: end function
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C.3. Selection of Hyperparameter & Insensitity to Hyperparameter

For Q-EMA, the momentum β = 0.998 for calculating WEMA is a good default choice. For Q-Ramping, k1 = 16 is a good
threshold to measure the severity of oscillation, and k2 = 5 is a default ratio for amplifying the Learning Rate & Batch Size
(meanwhile, reducing the frequency of oscillation). We can reach better performance through minor tuning. The detailed
settings are listed in Tab. 8.

Table 8: Selection of hyperparameter in Q-EMA & Q-Ramping.

DeiT-T DeiT-S DeiT-B Swin-T Swin-S

TetraJet 59.75 71.03 74.91 77.12 79.51

TetraJet + Q-EMA (default: β = 0.998) 59.69 71.51 77.18 77.23 79.74

TetraJet + Q-EMA (best: β tuned) 60.00
(β = 0.9983)

72.25
(β = 0.9972)

77.32
(β = 0.999)

77.30
(β = 0.9975)

79.74
(β = 0.998)

TetraJet + Q-Ramping (default: k1 = 16, k2 = 5) 60.31 71.32 75.62 77.23 79.52

TetraJet + Q-Ramping (best: k1 = 16, k2 tuned) 60.31
(k2 = 5)

71.32
(k2 = 5)

75.62
(k2 = 5)

77.33
(k2 = 3)

79.67
(k2 = 4)

We also validate Q-EMA / Q-Ramping’s insensitivity to hyperparameter choice in Tab. 9 & 10.

Table 9: Insensitivity to hyperparameters (TetraJet + Q-EMA) on DeiT-B.

β 0.993 0.995 0.997 0.998 0.999 0.9995 w/o Q-EMA

Accuracy 75.39 76.37 77.23 77.18 77.32 77.30 74.91

Table 10: Insensitivity to hyperparameters (TetraJet + Q-Ramping) on DeiT-B.

k1 16 16 16 16 16 16 8 12 16 20 w/o Q-Ramping
k2 3 4 5 6 7 8 5 5 5 5

Accuracy 75.35 75.33 75.62 74.96 75.29 75.13 75.19 75.60 75.62 74.85 74.91

C.4. Other Discussion on Q-EMA & Q-Ramping

Q: Why cannot we combine two algorithms?

A: When we use Q-EMA, there are two variables (W & WEMA) that determine the result of weight quantization, so training
with Q-EMA results in a different MXFP4 training dynamic. Therefore, it is more complicated to identify and track the
oscillating weights in this situation. Therefore, it is not proper to simply combine Q-EMA & Ramping.
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