
Under review as a conference paper at ICLR 2023

CONSTRAINED HIERARCHICAL DEEP REINFORCE-
MENT LEARNING WITH DIFFERENTIABLE FORMAL
SPECIFICATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Formal logic specifications are a useful tool to describe desired agent behavior and
have been explored as a means to shape rewards in Deep Reinforcement Learn-
ing (DRL) over a variety of problems and domains. Prior reward-shaping work,
however, has failed to consider the possibility of making these specifications dif-
ferentiable, which would yield a more informative signal of the objective via the
specification gradient. This paper examines precisely such an approach by explor-
ing a Lagrangian method to constrain policy updates using differentiable temporal
logic specifications capable of associating logic formulae with real-valued quan-
titative semantics. This constrained learning mechanism is then used in a hierar-
chical setting where a high-level specification-guided neural network path planner
works with a low-level control policy to navigate through planned waypoints. The
effectiveness of our approach is demonstrated over four robot configurations with
five different types of Signal Temporal Logic (STL) specifications. Our demo
videos are collected in https://sites.google.com/view/schrl.

1 INTRODUCTION

Specifying tasks with precise and expressive temporal logic formal specifications has a long his-
tory (Pnueli, 1977; Kloetzer & Belta, 2008; Wongpiromsarn et al., 2012; Chaudhuri et al., 2021),
but integrating these techniques into modern learning-based systems has been limited by the non-
differentiability of the formulas used to construct these specifications. In the context of Deep Rein-
forcement Learning (DRL), a line of recent work (Li et al., 2017; Hasanbeig et al., 2019b; Jothimu-
rugan et al., 2019; Icarte et al., 2022) tries to circumvent this difficulty by turning Linear Temporal
Logic (LTL) specifications into reward functions used to train control policies for the specified tasks.
The quantitative semantics introduced yields real-valued information about the task that can then be
used by reinforcement learning agents via policy gradient methods. However, the sample complex-
ity of such policy gradient approaches limits the scalability of these algorithms, especially when it
comes to extracting reward functions from complex specifications (Yang et al., 2022). Moreover,
these techniques do not consider how to effectively leverage the differentiability of the quantita-
tive semantics associated with these specifications to yield a more accurate gradient than the policy
gradient estimated from the LTL reward and samples.

Interestingly, as we show in this paper, this differentiability property can indeed be leveraged to
meaningfully constrain policy updates. Previous approaches (Schulman et al., 2015; 2017; Achiam
et al., 2017) constrain policy updates using KL-divergence and safety surrogate functions. For ex-
ample, Achiam et al. (2017); Schulman et al. (2017) use Lagrangian methods for this purpose. Based
on the same Lagrangian methods, we consider how to constrain policy updates with differentiable
formal specifications (Leung et al., 2020; 2022) equipped with rich quantified semantics, expressed
in the language of Signal Temporal Logic (STL)(Maler & Nickovic, 2004). This semantics gives
us the ability to specify various tasks with logic formulas and realize them within a hierarchical
reinforcement learning framework.

Instead of burdening a single policy to satisfy formal specifications and achieve control tasks simul-
taneously (Li et al., 2017; Hasanbeig et al., 2019b; Jothimurugan et al., 2019), we choose to learn
a hierarchical policy. Hierarchical policies have proven to be effective in DRL with complex tasks

1

https://sites.google.com/view/schrl

Under review as a conference paper at ICLR 2023

(Sutton et al., 1999; Nachum et al., 2018; Jothimurugan et al., 2021; Icarte et al., 2022). In contrast
to previous DRL techniques integrated with LTL (Jothimurugan et al., 2021; Icarte et al., 2022),
however, we replace multiple low-level options (Sutton et al., 1999) with a single goal-conditioned
policy (Schaul et al., 2015; Nachum et al., 2018). A high-level planning policy, constrained by a
formal specification, provides a sequence of goals to guide a low-level control policy to satisfy this
specification. Additionally, because we wish for a learned policy to satisfy tasks as fast as possible,
the high-level policy and low-level policy are jointly trained for both the satisfaction rate and the
number of steps required to complete the objective. Finally, we also show novel applications of a
neural-ODE policy as a high-level policy and integrate neural network-based predicate functions as
part of our specification framework.

Our contributions are as follows. (1) We propose a programmable hierarchical reinforcement learn-
ing framework constrained by differentiable STL specifications, which avoids the sample complex-
ity challenges of previous reward shaping work, and scales to benchmarks with high dimensional
environments. (2) We show that the joint training of the high-level and low-level policy in this
hierarchical framework provides better performance than training these components individually.
(3) We demonstrate that our framework can be easily extended with neural predicates for complex
specifications, such as irregular geometric obstacles that would be difficult to specify using purely
symbolic primitives.

2 BACKGROUND

Goal-Conditioned DRL Schaul et al. (2015) shows that training a single policy conditioned by
multiple goals using only one neural network is feasible and can act as a universal option model
(Yao et al., 2014). Given a goal g and an agent observation ot, the action at = π(ot | g) is predicted
by the goal-condition policy π(ot | g). Intuitively, at leads an agent to get “closer” to the goal g.
Iteratively calling policy π(ot | g) in a loop will finally lead an agent to reach goal g.

Two-layer Hierarchical DRL Combining a high-level planning policy with a low-level control
policy can often expand the range of problems solvable by DRL algorithms (Florensa et al., 2017;
Shu et al., 2018). Given a high-level planning policy πh : Gn → G mapping all historical goals
to the next goal, a low-level policy πl : O,G → A maps the observation conditioned by a goal to
action space A. At time step t, supposing that the low-level policy is toward i-th goal, the action is
computed with at = πl(ot|gi), where gi = πh([g0, . . . , gi−1]). In this work, the low-level policy πl

is also called the control policy, and the high-level policy is identical to the planning policy.

Lagrangian Methods in Constrained DRL Lagrangian methods solve constrained maximization
problems. For a real vector x, consider the equality-constrained problem:

max
x

f(x) s.t. h(x) = 0.

This can be expressed as an unconstrained problem with the Lagrange multiplier λ. Let L(x, λ) =
f(x) + λh(x),

(x∗, λ∗) = argmin
λ

max
x
L(x, λ),

which can be solved by iteratively updating the primal variable x and dual variable λ with gradients
(Stooke et al., 2020). The λ here acts as “dynamic” penalty coefficients for updating on real vector x.
Lagrangian methods are widely used in the policy gradient update of many popular constrained DRL
algorithms (Schulman et al., 2017; Achiam et al., 2017). Note that to compute the gradient through
the constraint function h(x), the function h must be differentiable. Since we want to constrain
training with formal specifications, we, therefore, introduce a differentiable formal specification
language in the following sections.

TLTL Syntax and Operator Semantics The syntax of TLTL contains both first-order logic oper-
ators ∧ (and), ¬ (not), ∨ (or),⇒ (implies), etc., and temporal operators⃝ (next), ♢[a,b] (eventually),
□[a,b] (globally), U[a,b] (until). The initial time a and end time b ”truncate” a path. For example,
□[a,b] qualifies property that globally holds during time a and b. The syntax of TLTL is recursively
defined via the following grammar:

ϕ :=⊤ | ⊥ | P | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ⇒ ψ | ⃝ϕ | ♢[a,b]ϕ | □[a,b]ϕ | ϕ U[a,b]ψ

2

Under review as a conference paper at ICLR 2023

Given a path τ and state space S, a TLTL formula ϕ(τ) : Sn → B maps a path to a Boolean
value. Discrete Boolean values, however, make computing a continuous gradient infeasible. More
specifically, we need quantitative semantics to enable differentiable specifications; we adapt Signal
Temporal Logic (STL) (Maler & Nickovic, 2004) that equips TLTL specifications with quantitative
semantics for this purpose.

Quantitative Semantics The full definition of the quantitative semantics is provided in Ap-
pendix C. We introduce four of the semantic rules here relevant to describe backpropagation through
specifications. ρ(τ, ϕ) denotes a real-valued function evaluated on path τ and represents the quantita-
tive semantics of specification ϕ. In this logic, we require that a true predicate (⊤) always has a pos-
itive value k, which we write as ρ(τ[a:b],⊤) = k. Every user-defined (or neural network predicate)
P must also be accompanied by its quantitative interpretation ρ(s,P) in the real-value domain; here,
if the return value is greater than 0, it denotes that the predicate is satisfied. For example, a reaching-
task predicate Preach can be defined as ρ(s,Preach) := −∥s− g∥+ c, where s is a state, g is a goal,
and c is a positive threshold; if state s is close to goal g, ρ(s,Preach) will be positive. In Sec. 3.1, we
further show that a neural network can be learned as a quantitative measurement of a predicate. For
the and (∧) operator, ρ(τ[a:b], ϕ ∧ ψ) = min(ρ(τ[a:b], ϕ), ρ(τ[a:b], ψ)). The quantitative semantics
for temporal operator ♢[a,b] (Eventually) is defined as ρ(τ[a:b],♢[a,b]ϕ) = maxt∈[a,b] ρ(τ[t:b], ϕ).

2

1

1

2
I

II

1

III

Figure 1: Demonstration of incorporating differ-
entiable specifications and neural predicates to
satisfy a Coverage specification that requires an
agent to visit two goals (A and B) while avoiding
a complex obstacle (the “duck”).

Backpropagation through Specifications
The STL semantics defines a differentiable
quantitative measurement for first-order logical
and temporal operators, which allows gradi-
ents to backpropagate through them (Leung
et al., 2020; 2022). Considering a coverage
specification containing two goals A,B with
goal-reaching predicates ϕA, ϕB as illustrated
in Fig. 1, the specification is:

ϕcover = ♢[0,T]ϕA ∧ ♢[0,T]ϕB (1)

The quantitative semantics of goal-reaching
predicates ϕA and ϕB , as well as ∧ and ♢[a,b]

are detailed in Sec. 2. We consider a path with
three waypoints (T = 2). Given the initial path
τ = [g0, g1, g2], ϕcover can be evaluated as

ρ
(
τ[0,2], ϕcover

)
= min

(
max
t∈[0,2]

ρ(τ[t:2], ϕA), max
t∈[0,2]

ρ(τ[t:2], ϕB)

)
(2)

All the operators in this semantics, including min,max, ρ(·, ϕ·) and slicing ([· : ·]), are differentiable
and can be easily compiled to a computational graph with any auto-differentiation framework (e.g.,
PyTorch, JAX). Hence, we can differentiate through Eq. (2). Step II and III in Fig. 1 conceptually
shows how backpropagation generates a path satisfying ϕcover. A step-by-step example illustrating
the entire updating process is provided in Appendix D.

3 APPROACH

3.1 NEURAL PREDICATES

The specification grammar allows specifications to use predicates whose interpretation is given by
complex quantitative functions such as a neural network. For example, we can learn a neural network
predicate for collision-avoidance tasks with neural Signed Distance Functions (SDF) (Park et al.,
2019). A neural SDF fd(p, obj) represents the closest distance from a given point p to the surface
of the object obj. When p is inside the object, the sign of fd is negative. The neural predicate
fd can be seamlessly incorporated into STL specifications - when a waypoint is inside the object,
fd is negative (evaluated as ⊥); when a waypoint is outside the object, fd is evaluated as ⊤. For
example, given a predicate of the duck obstacle shown in Fig. 1, ϕduck = fd(p, duck), we can write
a collision-avoidance specification □[a,b]ϕduck. Step I in Fig. 1 shows that increasing the value of

3

Under review as a conference paper at ICLR 2023

ϕduck with gradient ascent tweaks the waypoint to be outside of this duck obstacle. Details about
the neural SDF are provided in Appendix E.

The predicate has been interpreted as a quantitative measurement of a given state (i.e., a function
P : S → R). The reward function is also exactly a function mapping from a state to a reward value.
Thus, techniques such as inverse reinforcement learning Abbeel & Ng (2004); Ziebart et al. (2008)
can be applied to learn a differentiable predicate without explicitly labeled data. Jha et al. (2019)
provides a framework that makes the structure in STL also learnable. Our primary focus is not on
investigating the diversity and application of neural predicates. We point out that our framework
can be easily extended with differentiable functions generated using any relevant method, and leave
details about the specific techniques that should be used in future work.

3.2 CONSTRAINED PATH PLANNING POLICY

Sec. 2 describes how gradients backpropagate through formal specification and how to use them
to refine waypoints. However, directly tweaking the waypoint for different initial paths is com-
putationally expensive for real-time deployment and cannot leverage learning techniques to yield
better-quality plans. To alleviate these issues, we introduce a path-planning network.

Path-Planning Network We employ a learnable recurrent neural-ODE planning neural network
to generate planning paths as sequences of waypoints. Neural ODEs (Chen et al., 2018) can back-
propagate with long paths effectively. The choice of a Recurrent Neural Network (RNN) is because
temporal logic tasks are time-dependent. An example task may be to visit points p1, p2, p3 sequen-
tially. Without memorizing the visited points, a neural network cannot decide the next point that is
to be reached. From a sampled initial position g0, we run the neural ODE with a fixed timestep 1
(i.e., Euler ODE with timestep 1) and generate a goal path (i.e., waypoints) [g0, g1, . . . , gT]. Given
a Gated Recurrent Unit cell (GRU) (Cho et al., 2014), and hidden state hi,

gi+1 = gi +GRU(gi, hi) (3)

The idea here is that the GRU cell predicts the change of a waypoint instead of directly predicting
the next waypoint. An illustration figure for this structure is provided in the Appendix F (Fig 10b).

Specification-Constrained Policy Gradient Because the GRU-ODE is suitable for path planning,
we choose it as our high-level planning policy. For computing policy gradients, we modify the GRU-
ODE as a stochastic policy. The Gaussian high-level policy is πh = N (gt, σt), where gt is the mean
and σt is the variance. gt is predicted by the GRU-ODE shown in Eq. (3), and σt is predicted by a
linear transform from the hidden state ht. Consider the Lagrangian methods in Sec. 2 and objective
function maximizing the expected reward under a constraint:

L(θ, λ) = E
τ∼πh

θ

(
πh
θ (τ)r

h(τ) + λ(ϵ− ρ(τ, ϕ)
)
, (4)

where ϵ > 0 is a positive number. The introduction of ϵ is because we want ρ(τ, ϕ) to be positive
(evaluated as ⊤) when L converges optimally. While optimizing with gradient ascent, we first
update the high-level policy parameters θ with the specification-constrained policy gradient:

∇L(θ, λ) = E
τ∼πh

θ

(
∇θ log π

h
θ (τ)r

h(τ)− λ∇θρ(τ, ϕ)

)
,

where∇θ log π
h(τ)rh(τ) is the standard policy gradient, and ρ(τ, ϕ) is a quantitative specification.

We can compute∇θρ(τ, ϕ) because τ is sampled from πθ
h. In practice, this requires that τ is sampled

with reparameterization (Kingma & Welling, 2013). After updating the primal variable θ, we update
the dual variable λ with gradient: ∇λL(θ, λ) = ϵ− ρ(τ, ϕ) in a descent direction.

The reward rh(τ) contains two parts: the quantitative specification ρ(τ, ϕ) and the control reward
rl(τ) introduced later. We define rh(τ) = ρ(τ, ϕ) + rl(τ). Note that we not only use ρ(τ, ϕ) as
part of the constraint function, but also consider it as part of reward rh. A larger ρ(τ, ϕ) means that
the specification is “closer” to being satisfied. rl(τ) =

∑T
i=0 r

l
t is a cumulative of control reward rlt

when following path τ . A larger value for rl(τ) means the generated path is easier to be followed
by the low-level control policy. The involvement of rl(τ) lets the planning policy also consider the
capability of the low-level control policy.

4

Under review as a conference paper at ICLR 2023

3.3 CONTROL POLICY

The low-level control policy πl(ot | g̃) is a goal-conditioned policy, where g̃ is sampled from high-
level policy πh. πl(ot | g̃) is trained with PPO (Schulman et al., 2017), and the control reward is
rlt = ∥g̃ − xt−1∥2 − ∥g̃ − xt∥2, where xt is the position of a robot at time t. rlt will be positive if
and only if a robot gets closer to the planned goal g̃ in one timestep. We train the control policy and
planning policy jointly in a DRL loop. The detailed algorithm is in Appendix A.

4 EXPERIMENTS

We present experimental details related to robot dynamics, environments, and specifications in
Sec. 4.1. The remaining subsections aim to answer the following questions: Q1. How does our
approach compare to other DRL approaches with LTL specifications? Q2. What is the performance
of the policies trained with our algorithm? Q3. What do we gain by jointly training the plan and
control policy in a hierarchical structure? Q4. What if we replace the high-level policy with a path
planner? Q5. Why do we need the GRU-ODE as the planning policy network? Q6. Why is the
specification-constrained policy gradient better than the policy gradient with reward shaping?

4.1 DYNAMICS, ENVIRONMENTS, AND SPECIFICATIONS

(a) Drone (b) Point

(c) Car (d) Doggo

Figure 2: four Robots

Dynamics and Environments All the robots we evaluated are shown
in Fig 2. Drone is collected from PyBullet Drone (Panerati et al., 2021);
Point, Car and Doggo are collected from safety gym (Achiam & Amodei,
2019). Their corresponding state and action space dimensions, denoted
as (state dim, action dim), from (a)-(d) are (18, 18), (14,2), (26,2), and
(58,12), resp.

We provide the illustrative figures for the environments (i.e., plane, ob-
stacles) in Appendix G. The Drone robot operates in an environment that
contains the duck obstacle described earlier, while the other robots oper-
ate in an environment containing walls. The specification of the duck and
walls are represented as neural SDF in our task specifications.

Specifications We consider five types of specifications. They are Se-
quence, Coverage, Branch, Loop, and Signal. Sequence tasks require a robot to reach goals in a
given order. In contrast, the Coverage tasks only require a robot to reach all goals without consider-
ing the order in which they are visited. Branch tasks are defined in terms of conditional behaviors.
For example, if visiting A then also visit B; if visiting C then also visit D. Loop tasks ask robots
to repeatedly visit a set of goals, while Signal tasks ask robots to repeatedly visit a set of goals until
a certain condition is satisfied. All tasks also require robots to avoid obstacles modeled with neural
network predicates. The formal definition of these five task types is provided in Appendix G.

4.2 TRAINING PERFORMANCE (Q1)

We compare the training performance of our algorithm, Specification Constrained Hierarchical Re-
inforcement Learning (SCHRL), with previous works, including CRM and DHRM from Icarte et al.
(2022), and TLTL (Li et al., 2017). Approaches such as those described in Jothimurugan et al. (2019;
2021) cannot directly handle Loop and Signal tasks, so we cannot meaningfully compare their ap-
proach with ours in our experiments. HTLTL is a hierarchical version of TLTL, where a high-level
planning policy is trained with a TLTL reward. The difference between this algorithm and ours is
the objective function of high-level policy, where we remove the Lagrange item λ(ϵ − ρ(τ, ϕ) in
Eq. (4). To the best of our knowledge, HTLTL has not been discussed in any previous work; it is
introduced purely as an ablation experiment to assess the effectiveness of our algorithm.

CRM and TLTL are non-hierarchical algorithms. They need to control a robot and satisfy a task
with a single controller. The state dimensions of our robots are at least 14 (on Point) and up to 58
(on Doggo); these continuous control tasks pose pressure on the control side, and CRM and TLTL
fail to generate a reasonable controller as other algorithms with the same amount of samples on all

5

Under review as a conference paper at ICLR 2023

doggo-seq doggo-cover doggo-branch doggo-loop doggo-signal

SCHRL HTLTL DHRM CRM TLTL

Figure 3: The quantitative specification scores (y-axis) against the simulation steps (x-axis) during
training. We trained every algorithm with 5 different random seeds. The complete steps for Doggo
are 1×108. Fig. 12 given in the Appendix provides the results of other robots. The tasks from left to
right are Sequence, Coverage, Branch, Loop, and Signal, respectively. Any y-axis value above these
green dash lines is greater than 0 and means a specification is satisfied (e.g., in a coverage task, the
generated path gets closed enough to all the goals).

the tasks as shown in Fig. 3 and Fig. 12 in the Appendix H. DHRM is a hierarchical policy. How-
ever, it requires every transition in a reward machine to learn an option policy which is extremely
challenging as specification and control complexity increase. It also cannot reuse the existing option
policy for different transitions. For example, if two transitions in the reward machine have the same
go-right requirement, DHRM will learn two separate policies. For Doggo with a more complex
control task, the DHRM cannot learn a reasonable policy to achieve the tasks in given steps (see
Fig. 3), but it can get higher scores than CRM and TLTL on Sequence and Coverage tasks on Point
with simpler control tasks (see Fig. 12 in Appendix H).

The goal-conditioned policies applied in our HTLTL and SCHRL algorithms avoid building multiple
policies. More importantly, on the control level, all sampled data is used to train a single goal-
conditioned control policy instead of being distributed to different policies like DHRM. As a result,
SCHRL and HTLTL perform better than DHRM given the same number of samples. The difference
between SCHRL and HTLTL is in their use of specification constraints. The training results in
Fig. 3 show that specification constraints significantly improve training both w.r.t the number of
samples required and the best score it can achieve. Moreover, we noticed that HTLTL could reach
higher rewards when compared with DHRM, CRM, and TLTL, which lends support to our use of a
hierarchical RL structure with a goal-conditioned control policy and GRU-ODE planning policy.

4.3 SATISFYING RATE AND STEPS TO REACH (Q2)

The performance of trained policies is measured with two metrics. Firstly, we care about whether a
robot can achieve a specified task. There may be many reasons that cause a robot to fail a task. For
example, a robot can fall down, fail to avoid obstacles, or be misled by a badly planned path. Our
policies demonstrate higher-than-95% satisfaction rates on all the tasks of the Drone, Point, Car,
and Doggo, as shown in Table 1 and Table 3 in Appendix I.

We also care about how fast a robot can achieve a task. We summarize the number of steps needed to
achieve a Doggo task in Table 1; Table 4 in Appendix I gives details for the other robots in our study.
Note that ”Loop” requires a robot to keep looping between some goals, so we report the number of
steps when it cumulatively achieves the given goals ten times. The data in Table 1 is the average
(before ±) and standard deviation (after ±) of five policies trained with different random seeds.

Table 1: Performance of Doggo Tasks

Tasks Seq Cover Branch Loop Signal

Satisfaction Rate 0.98 ± 0.02 0.96 ± 0.02 0.97 ± 0.01 0.95 ± 0.02 0.97 ± 0.01
Steps to Reach 454.89 ± 88.84 545.95 ± 129.76 433.20 ± 100.47 1431.13 ± 333.19 1523.90 ± 278.10

The performance results in Table 1 are achieved by different components in our algorithm. Our
ablation study in Sec. 4.4 shows that the absence of these components decreases performance.

6

Under review as a conference paper at ICLR 2023

4.4 ABLATION STUDIES

We conducted ablation studies on Doggo (the robot with the highest state/action dimensions) to
justify our design choices. The data in Fig. 4 and Fig. 6 are summarized from 5 groups of 100
simulations. All the Steps to Reach are normalized within each task.

4.4.1 HIERARCHICAL POLICIES ABLATION (Q3, Q4)

We trained the planning and control policy jointly in each epoch, as detailed in Appendix A - when
learning the goal-conditioned control policy, the control policy is specialized to the goals generated
from the planning policy; when learning the planning policy, the control policy’s reward is also
considered in its reward function (as detailed in Sec. 3.2). To demonstrate the benefits of joint
training, we replace the control policy with a general goal-conditioned control policy, and replace
the planning policy with a gradient-based path planner, separately.

doggo-seq doggo-cover doggo-branch doggo-loop doggo-signal
0.00

0.25

0.50

0.75

1.00
Satisfaction Rate

doggo-seq doggo-cover doggo-branch doggo-loop doggo-signal
0.00

0.25

0.50

0.75

1.00
Steps to Reach

SCHRL General Controller Gradient Planner

Figure 4: Policies Ablation

General Goal-Conditioned Control Policy A general goal-conditioned policy can be obtained
by training the policy with randomly sampled goals and the same reward function introduced in
Sec. 3.3. The general goal-conditioned policy is used to replace the control policy in an SCHRL
hierarchical policy; Fig. 4 shows comparative results. Although all general controllers (gold bars)
have only a slightly lower satisfaction rate than SCHRL (red bar), they require a notably higher
number of steps to reach. This is expected because general goal-conditioned policies do not adapt
to the goals generated by a planning policy. For example, when a sharp turn happens in the planned
path, a general goal-conditioned policy reacts more slowly than the policy learned by SCHRL. Note
that on the Signal task, the difference in steps to reach can be as high as 24%.

Gradient Planner A gradient planner can backpropagate through a differentiable specification,
refine the waypoints with a gradient as shown in Fig 9, and generate a path. We replaced the planning
policy with the gradient planner in an SCHRL hierarchical policy, and show the comparative results
in Fig. 4. On task Sequence, Coverage, and Branch, the original SCHRL policy performs better in
terms of both satisfaction rate and steps to reach. The largest difference in satisfaction rate (66%)
is on the Coverage task. On the Sequence task, the SCHRL policy requires 29% fewer steps on
average to achieve a task. On tasks Loop and Signal, the planning policy and the gradient planner
perform similarly, and both have around 95% satisfaction rate and similar steps to reach counts.

(a) Planning Policy (b) Gradient Planner

Figure 5: Planning Paths

Sequence, Coverage, and Branch
give flexibility to choose a waypoint
(cyan circles in Fig 5a and Fig. 5b)
between two goals. For example, a
Sequence task may ask a robot to
reach A then B, but before reaching
B, the robot can reach an additional
waypoint in the middle. This mid-
dle waypoint can help a robot to cir-
cumvent an obstacle that intersects a
straight-line path between two goals.
However, as the specification only re-
quires all the waypoints to be outside the region of an obstacle, a gradient planner only optimizing
on the specification will not know how to place these middle waypoints appropriately. An example
is shown in Fig. 5b where these middle waypoints are placed randomly. In contrast, because our

7

Under review as a conference paper at ICLR 2023

planning policy also considers the control reward as an optimization objective, a badly placed way-
point will result in the control policy failing to reach a goal and being assigned a bad reward. Hence,
our planning policy can learn to place waypoints as shown in Fig. 5a. Because the path generated by
the planning policy is shorter and yet does not intersect with obstacles, this path is easier to follow
and can guide a robot to finish the task faster. In addition to the satisfaction rate and the steps to
reach, we also note that a gradient planner needs additional computation time for different initial-
ization positions, while a well-trained planning policy can plan faster with forward propagation. A
comparsion on planning time is provided in Appendix J.

4.4.2 PLANNING NETWORK ABLATION (Q5)

Our planning policy is built upon a GRU-ODE, which has benefits both in terms of memory and
gradient backpropagation. In Fig. 6, we show that GRU-ODE outperforms both Multilayer Percep-
tron (MLP) and GRU policy in almost every case. For example, on Sequence task, the GRU-ODE
outperforms MLP and GRU 65% and 51% on the satisfaction rate and 29% and 18% on the steps to
reach, respectively.

doggo-seq doggo-cover doggo-branch doggo-loop doggo-signal
0.00

0.25

0.50

0.75

1.00
Satisfaction Rate

doggo-seq doggo-cover doggo-branch doggo-loop doggo-signal
0.00

0.25

0.50

0.75

1.00

Steps to Reach
GRU-ODE MLP GRU

Figure 6: Planning Network Ablation. The GRU policy on Loop task and the MLP policy on Signal
task failed to reach all the time, so their data is absent from the plot.

Figure 7: Loop task

One exception is that the MLP on the Loop task works equally well
as GRU-ODE. This is because solving the Loop tasks does not re-
quire memory about the past. For example, in Fig. 7, to generate a
path that satisfies the Loop constraint, when we know one goal is
located at the upper-right green circle, a policy can always predict
the next goal as the lower-right green circle to build one edge of a
square loop path with whatever history it has. However, this is not
the case for other tasks such as Sequence, where an agent needs to
reach A then reach B. If the robot reaches B first, it still needs
to go to A. Without a memory of the past, an MLP policy does not
have the ability to make a decision in this case. This explains why it

works badly on other tasks (e.g., 0% satisfaction rate on Signal task). Although the GRU policy has
a memory of the past, longer and more complex paths still pose training challenges. For example,
the GRU policy has a low satisfaction rate on the Loop and Signal tasks, both of which have long
paths. Details of these five tasks are provided in Appendix G.

4.4.3 CONSTRAINED POLICY GRADIENT ABLATION (Q6)

Table 2: PG vs CPG Ablation

Tasks PG CPG

Seq 9800 ± 0 (1 / 5) 640 ± 102 (5 / 5)
Cover N/A (0 / 5) 780 ± 584 (5 / 5)
Branch 9700 ± 200 (2 / 5) 720 ± 527 (5 / 5)
Loop N/A (0 / 5) 1240 ± 150 (5 / 5)
Signal N/A (0 / 5) 1500 ± 420 (5 / 5)

Previous reward-shaping work updates policy with sample-
based Policy Gradient (PG). We run both the PG (eq. (4)
minus λ(ϵ− ρ(τ, ϕ)) and our Constrained Policy Gradient
(CPG) (eq. (4)) 5 times on all the 5 high-level path plan-
ning tasks within 10000 gradient updates. The gradient
updates will stop if over 95% of planned paths satisfy the
STL specification. In each column, the number before and
after ± is the mean and standard deviation of gradient up-
dates, resp. N/A means in 5 runs, the algorithm failed to
train a planning policy with over 95% satisfaction rate. The

2 numbers in the parentheses are the runs successfully trained by a policy and the total number of
runs, resp. In all the 5 tasks evaluated, constrained policy gradient (with the Lagrangian term) results
in 10x fewer gradient steps and can always successfully train a path planning policy.

8

Under review as a conference paper at ICLR 2023

5 RELATED WORK AND CONTRIBUTION

Related Work Integrating symbolic techniques with deep learning has led to recent interest in
different learning domains (Manhaeve et al., 2018; Chaudhuri et al., 2021; Badreddine et al., 2022).
LTL is a formal logic initially designed for system verification tasks (Pnueli, 1977). Because LTL
can encode complex system behaviors in a precise manner, a line of work (Fainekos et al., 2005;
Kloetzer & Belta, 2008; Kress-Gazit et al., 2009; Wongpiromsarn et al., 2012) considers its use in
specifying various planning and control tasks. More recently, as advances in reinforcement learning
have demonstrated its ability to solve challenging planning and control problems in an unknown,
stochastic environment, a line of work has considered how to combine LTL-specified tasks with
reinforcement learning. However, this approaches (Fu & Topcu, 2014; Li et al., 2017; Hasanbeig
et al., 2018; 2019a;b; 2020; 2022; Jothimurugan et al., 2019; Jiang et al., 2020; Bozkurt et al.,
2020; Xu et al., 2020; Icarte et al., 2022; Zhang & Kan, 2022) formulate this integration in terms
of either continuous or discrete rewards. However, to the best of our knowledge, they have not
considered applying STL (LTL equipped with quantified semantics) specifications in a constrained
setting (Schulman et al., 2015; Achiam et al., 2017), which can be solved with the gradient-based
Lagrangian methods (Stooke et al., 2020). Lagrangian methods require differentiable constraint
functions. Although differentiable STL specifications are discussed in Leung et al. (2020; 2022),
they do not apply differentiable STL in a DRL setting.

Jothimurugan et al. (2021); Icarte et al. (2022) notice that a hierarchical structure provides benefits
when learning from LTL specifications. However, they require learning multiple policies as options
(Sutton et al., 1999). Moreover, one policy in Jothimurugan et al. (2021); Icarte et al. (2022) is
only used for one state transition on the automaton built from the specification, which makes such
an approach problematic as specifications become more complex. In contrast, we select a different
hierarchical structure based on a goal-conditioned control policy and a path planning policy (Levy
et al., 2017; Nachum et al., 2018; Zhang et al., 2020); such an approach has been shown to be
feasible theoretically (Schaul et al., 2015). Only one control policy is required in this setting, and
all data samples can be used to train this single control policy.

Our work is also related to constrained reinforcement learning (Schulman et al., 2015; Achiam
et al., 2017), programmable reinforcement learning (Andre & Russell, 2002; Yang et al., 2021;
Qiu & Zhu, 2021), probabilistic temporal logic constraint (Hasanbeig et al., 2019b; Jansen et al.,
2020), and gradient-based robot planning and control (Ratliff et al., 2009; Campana et al., 2016;
Leung et al., 2020; Dawson & Fan, 2022). Unlike previous reinforcement learning algorithms that
usually focus on safety constraints, we extend our constraints to be more expressive using formal
logic. Programmable reinforcement learning also specifies the behaviors of a reinforcement learning
agent in a programmable way (Andre & Russell, 2002; Yang et al., 2021); for example, Qiu & Zhu
(2021) learns specifications with an idea inspired by neural architecture search. However, Andre
& Russell (2002); Yang et al. (2021) also fall into the category of reward engineering with formal
specifications. Qiu & Zhu (2021) design a domain-specific language without loops to automatically
compose policies and thus cannot handle some of our tasks, such as Loop. Hasanbeig et al. (2019b);
Jansen et al. (2020) synthesize controllers and shields with probabilistic guarantees for satisfying
LTL specifications under uncertainty. The uncertainty is embedded in the environment (e.g., the
uncertainty in the structure of the workspace, and the agent’s actions). Such uncertainty also exists
in our environments manifesting as stochastic dynamics and policies. Modeling these probabilis-
tic behaviors and providing probabilistic guarantees of satisfying LTL specifications in hierarchical
settings is an interesting direction for future work. Gradient-based motion planning (Ratliff et al.,
2009; Campana et al., 2016; Leung et al., 2020; Dawson & Fan, 2022) also leverages backpropaga-
tion to generate plans. However, they typically only work when the dynamics (i.e., simulator) are
known, differentiable and deterministic. Lastly, our high-level planning policy is related to plan-
ning networks (Qureshi et al., 2019), which supports fast online planning. However, learning such a
planning neural network in a DRL loop, which benefits both the planning policy and control policy,
has not been discussed in previous work.

Conclusions In this paper, we show how to leverage the differentiability of STL specifications
to constrain policy updates in a hierarchical reinforcement learning framework, which leads to a
framework co-optimizing the planning and control policies with challenging system dynamics and
LTL tasks. We demonstrate that our approach outperforms other DRL techniques equipped with
LTL specifications when the LTL specification is used only for reward shaping. We also justified the
design choices of our approach with detailed ablation studies.

9

Under review as a conference paper at ICLR 2023

REPLICATION STATEMENT

Our code is available in https://github.com/a-n-onymous/schrl.git

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Joshua Achiam and Dario Amodei. Benchmarking safe exploration in deep reinforcement learning.
In Online, 2019.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22–31. PMLR, 2017.

David Andre and Stuart J Russell. State abstraction for programmable reinforcement learning agents.
In Aaai/iaai, pp. 119–125, 2002.

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor net-
works. Artificial Intelligence, 303:103649, 2022. ISSN 0004-3702. doi: https://doi.org/10.1016/
j.artint.2021.103649. URL https://www.sciencedirect.com/science/article/
pii/S0004370221002009.

Alper Kamil Bozkurt, Yu Wang, Michael M Zavlanos, and Miroslav Pajic. Control synthesis from
linear temporal logic specifications using model-free reinforcement learning. In 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 10349–10355. IEEE, 2020.

Mylène Campana, Florent Lamiraux, and Jean-Paul Laumond. A gradient-based path optimization
method for motion planning. Advanced Robotics, 30(17-18):1126–1144, 2016.

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, and
Yisong Yue. Neurosymbolic programming. Found. Trends Program. Lang., 7(3):158–243, 2021.
doi: 10.1561/2500000049. URL https://doi.org/10.1561/2500000049.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, Oc-
tober 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL
https://aclanthology.org/D14-1179.

Charles Dawson and Chuchu Fan. Robust counterexample-guided optimization for planning from
differentiable temporal logic. arXiv preprint arXiv:2203.02038, 2022.

Georgios E Fainekos, Hadas Kress-Gazit, and George J Pappas. Temporal logic motion planning
for mobile robots. In Proceedings of the 2005 IEEE International Conference on Robotics and
Automation, pp. 2020–2025. IEEE, 2005.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical re-
inforcement learning. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=B1oK8aoxe.

Jie Fu and Ufuk Topcu. Probably approximately correct mdp learning and control with temporal
logic constraints. arXiv preprint arXiv:1404.7073, 2014.

Yann Gilpin, Vince Kurtz, and Hai Lin. A smooth robustness measure of signal temporal logic for
symbolic control. IEEE Control Systems Letters, 5(1):241–246, 2021. doi: 10.1109/LCSYS.
2020.3001875.

10

https://github.com/a-n-onymous/schrl.git
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://doi.org/10.1561/2500000049
https://aclanthology.org/D14-1179
https://openreview.net/forum?id=B1oK8aoxe

Under review as a conference paper at ICLR 2023

Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Logically-constrained re-
inforcement learning. arXiv preprint arXiv:1801.08099, 2018.

Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Certified reinforcement
learning with logic guidance. arXiv preprint arXiv:1902.00778, 2019a.

Mohammadhosein Hasanbeig, Yiannis Kantaros, Alessandro Abate, Daniel Kroening, George J Pap-
pas, and Insup Lee. Reinforcement learning for temporal logic control synthesis with probabilis-
tic satisfaction guarantees. In 2019 IEEE 58th Conference on Decision and Control (CDC), pp.
5338–5343. IEEE, 2019b.

Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Cautious reinforcement
learning with logical constraints. arXiv preprint arXiv:2002.12156, 2020.

Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate. LCRL: Certified policy
synthesis via logically-constrained reinforcement learning. In International Conference on Quan-
titative Evaluation of SysTems. Springer, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Reward ma-
chines: Exploiting reward function structure in reinforcement learning. Journal of Artificial In-
telligence Research, 73:173–208, 2022.

Nils Jansen, Bettina Könighofer, Sebastian Junges, AC Serban, and Roderick Bloem. Safe rein-
forcement learning using probabilistic shields. 2020.

Susmit Jha, Ashish Tiwari, Sanjit A Seshia, Tuhin Sahai, and Natarajan Shankar. Telex: learning
signal temporal logic from positive examples using tightness metric. Formal Methods in System
Design, 54(3):364–387, 2019.

Yuqian Jiang, Sudarshanan Bharadwaj, Bo Wu, Rishi Shah, Ufuk Topcu, and Peter Stone. Temporal-
logic-based reward shaping for continuing learning tasks. arXiv preprint arXiv:2007.01498, 2020.

Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. A composable specification language for
reinforcement learning tasks. Advances in Neural Information Processing Systems, 32, 2019.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforce-
ment learning from logical specifications. Advances in Neural Information Processing Systems,
34:10026–10039, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Marius Kloetzer and Calin Belta. A fully automated framework for control of linear systems from
temporal logic specifications. IEEE Transactions on Automatic Control, 53(1):287–297, 2008.
doi: 10.1109/TAC.2007.914952.

Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Temporal-logic-based reactive
mission and motion planning. IEEE Transactions on Robotics, 25(6):1370–1381, 2009. doi:
10.1109/TRO.2009.2030225.

K. Leung, N. Aréchiga, and M. Pavone. Backpropagation through signal temporal logic specifica-
tions: Infusing logical structure into gradient-based methods. Int. Journal of Robotics Research,
2022.

Karen Leung, Nikos Aréchiga, and Marco Pavone. Back-propagation through signal temporal logic
specifications: Infusing logical structure into gradient-based methods. In International Workshop
on the Algorithmic Foundations of Robotics, pp. 432–449. Springer, 2020.

Andrew Levy, Robert Platt, and Kate Saenko. Hierarchical actor-critic. arXiv preprint
arXiv:1712.00948, 12, 2017.

11

Under review as a conference paper at ICLR 2023

Xiao Li, Cristian-Ioan Vasile, and Calin Belta. Reinforcement learning with temporal logic rewards.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3834–
3839. IEEE, 2017.

Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pp. 152–166. Springer,
2004.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Deepproblog: Neural probabilistic logic programming. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Jacopo Panerati, Hehui Zheng, SiQi Zhou, James Xu, Amanda Prorok, and Angela P. Schoellig.
Learning to fly—a gym environment with pybullet physics for reinforcement learning of multi-
agent quadcopter control. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2021.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 165–174, 2019.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pp. 46–57, 1977. doi: 10.1109/SFCS.1977.32.

Wenjie Qiu and He Zhu. Programmatic reinforcement learning without oracles. In International
Conference on Learning Representations, 2021.

Ahmed H Qureshi, Anthony Simeonov, Mayur J Bency, and Michael C Yip. Motion planning
networks. In 2019 International Conference on Robotics and Automation (ICRA), pp. 2118–2124.
IEEE, 2019.

Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa. Chomp: Gradient op-
timization techniques for efficient motion planning. In 2009 IEEE International Conference on
Robotics and Automation, pp. 489–494. IEEE, 2009.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Tianmin Shu, Caiming Xiong, and Richard Socher. Hierarchical and interpretable skill acquisition
in multi-task reinforcement learning. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=SJJQVZW0b.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by pid lagrangian methods. In International Conference on Machine Learning, pp. 9133–9143.
PMLR, 2020.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

12

https://proceedings.neurips.cc/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://openreview.net/forum?id=SJJQVZW0b

Under review as a conference paper at ICLR 2023

Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray. Receding horizon temporal logic
planning. IEEE Transactions on Automatic Control, 57(11):2817–2830, 2012. doi: 10.1109/TAC.
2012.2195811.

Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu, and Bo Wu.
Joint inference of reward machines and policies for reinforcement learning. Proceedings of the
International Conference on Automated Planning and Scheduling, 30(1):590–598, Jun. 2020.
URL https://ojs.aaai.org/index.php/ICAPS/article/view/6756.

Cambridge Yang, Michael L. Littman, and Michael Carbin. On the (in)tractability of reinforcement
learning for LTL objectives. In Luc De Raedt (ed.), Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp.
3650–3658. ijcai.org, 2022. doi: 10.24963/ijcai.2022/507. URL https://doi.org/10.
24963/ijcai.2022/507.

Yichen Yang, Jeevana Priya Inala, Osbert Bastani, Yewen Pu, Armando Solar-Lezama, and Martin
Rinard. Program synthesis guided reinforcement learning for partially observed environments.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 29669–29683. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
f7e2b2b75b04175610e5a00c1e221ebb-Paper.pdf.

Hengshuai Yao, Csaba Szepesvari, Richard S Sutton, Joseph Modayil, and Shalabh Bhatnagar.
Universal option models. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q.
Weinberger (eds.), Advances in Neural Information Processing Systems, volume 27. Curran As-
sociates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
996a7fa078cc36c46d02f9af3bef918b-Paper.pdf.

Hao Zhang and Zhen Kan. Temporal logic guided meta q-learning of multiple tasks. IEEE Robotics
and Automation Letters, 7(3):8194–8201, 2022. doi: 10.1109/LRA.2022.3185384.

Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Generating
adjacency-constrained subgoals in hierarchical reinforcement learning. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 21579–21590. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
f5f3b8d720f34ebebceb7765e447268b-Paper.pdf.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

APPENDIX

A HIERARCHICAL LEARNING ALGORITHM

We summarize our learning algorithm in Algo. 1. Line 3 to 7 sample data with a control policy
conditioned by the planned path τ . Line 8 to 9 is the policy updates introduced in Sec. 3.2 and
Sec. 3.3, respectively.

We point out that control and planning policies adapt to each other during training. The reward rh
used for the planning policy contains the cumulative reward rl(τ) of the control policy, enabling
the planning policy to generate paths that are easier to follow. Meanwhile, the control policy is
conditioned by the planning path, specializing it to the planning policy, allowing it to reach goals
faster.

B TLTL SEMANTICS

The TLTL grammar rule is recursively defined as

ϕ :=⊤ | ⊥ | P | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ⇒ ψ | ⃝ϕ | ♢[a,b]ϕ | □[a,b]ϕ | ϕ U[a,b]ψ

13

https://ojs.aaai.org/index.php/ICAPS/article/view/6756
https://doi.org/10.24963/ijcai.2022/507
https://doi.org/10.24963/ijcai.2022/507
https://proceedings.neurips.cc/paper/2021/file/f7e2b2b75b04175610e5a00c1e221ebb-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f7e2b2b75b04175610e5a00c1e221ebb-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/996a7fa078cc36c46d02f9af3bef918b-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/996a7fa078cc36c46d02f9af3bef918b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f5f3b8d720f34ebebceb7765e447268b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f5f3b8d720f34ebebceb7765e447268b-Paper.pdf

Under review as a conference paper at ICLR 2023

Algorithm 1: Specification-Constrained Hierarchical Reinforcement Learning

Notions: Spec ϕ, Planning Policy πh, Control Policy πl, Rollout Buffer B, Sequence [·],
Observation o, Control Reward rl, Planned Path τ , Initial Position g0.

1 B ← ∅;
2 for i = 1, 2, . . . , N1 do
3 for j = 1, 2, . . . N2 do
4 g0 ← SampleInitial();
5 τ ← ForwardPath(πh, g0) ; // τ is waypoint sequence.
6 [o], [rl] = Rollout(πl, τ) ; // Control policy follows τ.
7 B.add(τ, [o], [rl]);
8 UpdateP lanPolicy(πh,B) ; // Sec. 3.2
9 UpdateControlPolicy(πl,B) ; // Sec. 3.3

10 B ← ∅;

Next Eventually Globally Until

Figure 8: Temporal Operator Semantics.

The semantics of first-order logic operators (¬,∧,∨,⇒) is trivially defined. We summarize the
semantics of temporal operators (⃝,♢[a,b],□[a,b], U[a,b]) in Fig. 8. All paths in Fig. 8 start at time a
and end at time b. Next (⃝ϕ) means that logical formula ϕ holds at next state in a path; Eventually
(♢[a,b]ϕ) says that ϕ will be satisfied at least once; Globally (□[a,b]ϕ) enforces the requirement that
ϕ will always be satisfied; Until (ϕ U[a,b]ψ) asserts that ϕ always holds until ψ holds.

Additionally, we allow specifications to contain state-based predicates P : S → {⊤,⊥} that map a
state to a Boolean value. For example, we can express a safe predicate Psafe(s) = ⊤ ⇐⇒ s /∈ Su
that holds precisely when s does not belong to the set of unsafe states Su. We can combine these
predicates freely in other specifications; for example, the following specification:

(
□[a,b]Psafe

)
∧
(
♢[a,b]Pliveness

)
(5)

captures the requirement that an agent always stays in a safe region but eventually reaches a goal
state (Pliveness).

C FULL SIGNAL TEMPORAL LOGIC SEMANTICS

A specification’s quantitative semantics (i.e., STL) maps a path to a real value. Its signature is:
ρ : Sn → R. We provide the full semantics below:

14

Under review as a conference paper at ICLR 2023

ρ(τ[a:b],⊤) =k (k > 0)

ρ(τ[a:b],P) =F(τ[a])
ρ(τ[a:b],¬ϕ) =− ρ(τ[a:b], ϕ)
ρ(τ[a:b], ϕ ∧ ψ) =min(ρ(τ[a:b], ϕ), ρ(τ[a:b], ψ))

ρ(τ[a:b], ϕ ∨ ψ) =max(ρ(τ[a:b], ϕ), ρ(τ[a:b], ψ))

ρ(τ[a:b], ϕ⇒ ψ) =max(ρ(τ[a:b],¬ϕ), ρ(τ[a:b], ψ))
ρ(τ[a:b],⃝ϕ) =ρ(τ[a+1:b], ϕ)

ρ(τ[a:b],□[a,b]ϕ) = min
t∈[a,b]

ρ(τ[t:b], ϕ)

ρ(τ[a:b],♢[a,b]ϕ) = max
t∈[a,b]

ρ(τ[t:b], ϕ)

ρ(τ[a:b], ϕ U[a,b]ψ) = max
t∈[a,b]

(
min

(
ρ(τ[t,b], ψ), min

t′∈[a,t−1]
ρ(τ[a,t′], ϕ)

))

⊤ is defined as a positive value k. According to the definition of ρ(τ[a,b],¬ϕ), the ⊥ is defined as
−k. Value 0 is undefined in this semantics. For a predicate P , we associate it with a differentiable
function F(s) : S → R. This function can be any differentiable function that maps a state to a real
value. For example, one can define it as the negative distance to a goal plus a threshold or represent
it with a neural network in Sec. 3.1. The other rules define how to compose different predicates in
numerical ways. For example, the ∧ is interpreted as a min operator between two predicates; the
□[a,b] (globally) operator is interpreted as a min operator over a finite path. The semantics of U[a,b]
(until) is non-trivial. It comes from an equivalent formula of U[a,b]:

ϕ U[a,b]ψ := ♢[a,b](ψ ∧□[a,t−1]ϕ)

where t is a time when ψ holds.

All the operators in this semantics, including min,max, predicate function F(·, ϕ), index ([·]), and
slicing ([· : ·]), are differentiable and can be easily compiled to a computational graph with any
auto-differentiation framework (e.g., PyTorch, JAX).

The min and max can in the semantics can be soften as m̃in and m̃ax:

m̃in = softmin(v) · vT

m̃ax = softmax(v) · vT

where

softmin(v) =
e−v∑
i e

−vi

softmax(v) =
ev∑
i e

vi

Jha et al. (2019); Leung et al. (2020; 2022); Gilpin et al. (2021) demonstrated that such soften thick
benifits gradient-based STL path planning. Experiments about using soft STL (with soft min and
max) and hard STL (with general min and max) as Lagrangian terms is provided in the Appendix. L

D BACKPROPAGATE THROUGH A COVERAGE SPECIFICATION

We discuss how the gradient backpropagates a coverage specification example with two goals A,B
specified by ϕA, ϕB , resp:

ϕcover = ♢[0,T]ϕA ∧ ♢[0,T]ϕB

15

Under review as a conference paper at ICLR 2023

The goal-reaching predicates ϕA and ϕB are defined as ρ(s, ϕ.) := −∥s − g∥ + c, where s is a
state, g is the position of either A or B, and c is a positive threshold. We consider a path with three
waypoints (T = 2). ϕcover can be evaluated as

ρ
(
τ[0,2], ϕcover

)
= min

(
max
t∈[0,2]

ρ(τ[t:2], ϕA), max
t∈[0,2]

ρ(τ[t:2], ϕB)

)
.

The yellow dot in Fig. 9 is the initial waypoint and can be any valid initial state. The other two green
points are planning waypoints. Because we want the path to satisfy the specification, we maximize
the ρ

(
τ[0,2], ϕcover

)
using its gradient. Fig. 9 shows how the gradient backpropagates through the

Eq. (2). Before presenting the details, we point out that the gradient of min and max is only a
gradient masking operator. For example, given x1 < x2, min(x1, x2) will not backpropagate any
gradient to the variable x2.

2

1

2

1

2

1

2

1

2

1

2 1

(b) Evaluate (c) Evaluate and Update(a) Initial

(d) Evaluate (e) Evaluate and Update (f) Final

Figure 9: Gradient backpropagation through a coverage specification. (a) shows the initial path and
the distance to A and B. We do not modify the initial waypoint. It is detached from the gradient
computation. (b) ♢[0,2] (eventually) is a max operator over a path. It will select the two short
distances (larger negative distance, marked with check logos) to backpropagate. (c) ∧ is evaluated
as a min operator. Thus, it selects the longer distance (smaller negative distance, marked with a
check logo) to backpropagate. Now, we tweak waypoint 1 to B with gradient. This figure simplifies
the gradient updating process to one step for illustration purposes. In practice, the update can be
more tortuous, and waypoint 1 may take several steps to reach B. (d) and (e) are similar to (b) and
(c), respectively, but they update on waypoint 2. (f) shows the final planned path. This path covers
both A and B.

E DETAILS ABOUT NEURAL SDF

The neural SDF fits an SDF fd(p, obj) with a neural network. A neural SDF fd(p, obj) computes
the closest distance from a given point p to the surface of object obj. When p is inside the object, the
sign of fd is negative. One can easily get an SDF with an object mesh (Park et al., 2019). However,
the SDF gotten in this way is usually non-differentiable. Instead, we sample a dataset of position-
distance pairs (p, d) with such an SDF and train a differentiable neural network to predicate the
closest distance d with a position p.

Fig. 10a is the contour plot of a neural SDF. This neural SDF is built from the duck obstacle in (e)-(f)
in Fig. 11. More precisely, it is the contour plot for a cross-section of this 3D duck when y = 0.
The purple outline represents value 0, with values inward decreasing monotonically. This neural
SDF can naturally represent the differentiable function F of the STL semantics in Appendix C. For
example, when we want to define a collision-avoidance predicate ϕsafe on this duck obstacle, if
a waypoint is inside this obstacle, the ϕsafe should be interpreted as a negative value under STL
semantics (i.e., ⊥). Similarly, an outside waypoint should have a positive value (i.e., ⊤). Moreover,

16

Under review as a conference paper at ICLR 2023

(a) The contour of a duck neural SDF

GRU GRU GRU

GRU-ODE Path

(b) GRU-ODE

Figure 10: (a) The purple outline represents value 0 with values inward decreasing monotonically.
(b) The initial point g0 is given. Feeding it to the GRU cell generates the time derivative dg0

gt ; g1 is

generated by adding the dg0
dt and g0. Iterating this procedure generate a path τ = [g0, g1, g2, g3].

when maximizing an STL formula with gradients, the gradients will “push” a waypoint inside the
obstacle to the outside, as shown in Fig. 1.

F DETAILS ABOUT GRU-ODE

We consider a neural ODE with a fixed timestep 1 (i.e., Euler ODE with timestep 1). Given a GRU
cell, goal gi and hidden state hi, the next goal gi+1 = gi + GRU(gi, hi). Fig. 10b illustrates the
forward computation of the GRU-ODE. Note that

gi = g0 +GRU(g0, h0) + · · ·+GRU(gi−1, hi−1),

making it easy to backpropagate from gi to any previous forward of GRU. This idea is similar to the
ResNet (He et al., 2016), which alleviates gradient vanishing in a long-term backpropagation.

G TASKS AND SPECIFICATIONS

(a) Car Seq./Cover. (b) Car Branch (c) Car Loop (d) Car Signal

(e) Drone Seq./Cover. (f) Drone Branch (g) Drone Loop (h) Drone Signal

Figure 11: Illustration for All Tasks. The Point and Doggo have the same setting with Car on all
the tasks. The robots (Point, Car and Doggo) in Fig. 11b (Branch) are randomly initialized in the
bottom-left room; all the other tasks in the 4-room environment randomly initialize robots (Point,
Car and Doggo) in the bottom-right room. All the Drone tasks randomly initialize the Drone in a
box space with lower-bound (−5, 4, 3) and upper-bound (−4, 5, 8).

The Point and Doggo have the same setting with Car on all the tasks.

17

Under review as a conference paper at ICLR 2023

The Sequential task requires a robot to visit a sequence of goals in order.
N∧
i=0

♢[ti,ti+1−1]ϕi, (6)

where ti < ti+1 and ϕi is a goal spec. This formula means eventually reaching all the goals in
specified time slots.

In Fig. 11a, a car is required to visit the upper-right (ϕ0), upper-left(ϕ1), bottom-left(ϕ2), and
bottom-right(ϕ3) blue spheres sequentially. The time slot assigned to ϕ0, ϕ1, ϕ2, and ϕ3 are [1, 2],
[3, 4], [5, 6], and [7, 8], respectively. The time here represents the index of a waypoint in a path. In
other words, in a path with a length 8, the first or the second waypoint in this path should reach the
upper-right blue spheres. Similarly, the Drone Sequence also requires the robot to visit 4 blue balls
in Fig. 11e in the slots [1, 2], [3, 4], [5, 6], and [7, 8].

As introduced in Sec. 2, the Coverage task’s formula is
N∧
i=0

♢[1,T]ϕi. (7)

The Coverage task shares the same map with the Sequence task. For Point, Car, and Doggo, they
use the same map in Fig. 11a, and Drone uses the map in Fig 11e. However, in the Coverage task, a
robot is only asked to visit the four spheres, but discards the order. In Eq. 7, the T is assigned as 8
for all the robots.

Branch task can be seen as a collection of if . . . then . . . clusters, e.g., if visiting A then visiting B,
if visiting C then visiting D. We encode this type of task as

N
2∨

i=0

(
♢[1,T]ϕi ∧□[1,T]

(
ϕi ⇒ ♢[t,T]ϕ2i

))
, (8)

whereN is even. This formula says eventually satisfying ϕi, and globally ϕi implies that ϕ2i will be
satisfied eventually. The ϕi and ϕ2i has the same color in Fig. 11b and Fig. 11f. This specification
defines that a robot must visit one goal, and it will visit the other one with the same color eventually.
For all the robots, t = 2, T = 3 and N = 6 in Eq.(8). All the Point, Car, and Doggo use the same
map in Fig. 11b

The Loop task asks a robot to loop among some waypoints. It can be written as

□[1,T]

(
N∨
i=0

ϕi ∧
N∧
i=0

(ϕi ⇒ ¬⃝ ϕi)

)
. (9)

This formula says that globally, any of ϕi should be satisfied, and ϕi will not be satisfied next time.
A waypoint in a path will also stay in one of the giving goals specified by ϕi, and the next waypoint
will not stay here for the next time. In Fig. 11c the robot will loop among the four red spheres, and
the Drone will loop among the three blue balls in Fig. 11g. The TLTL only supports finite paths, so
we have to set a terminated time (T in Eq. (9)). For all the robots, T = 20.

Signal task is a loop task with until operators:

♢[1,T]ϕN+2 ∧

(
N∨
i=0

ϕi ∧
N∧
i=0

(ϕi ⇒ ¬⃝ ϕi)

)
U[1,T]ϕN+1. (10)

This means looping until ϕN+1 is satisfied and eventually visits the position specified by ϕN+2. For
all tasks, the ϕN+1 is a counter predicate; it is evaluated as −1(⊥) until the 10th waypoint in a path,
which means a robot needs to visit the position specified by ϕ0, . . . , ϕN 10 times, and eventually
visits the position specified by ϕN+2. In our experiments, T = 11 for all the tasks. In Fig. 11d, a
robot will loop among the four corner spheres and visit these spheres ten times, and eventually visit
the center sphere. In Fig. 11h, the Drone will keep visiting three pink balls ten times and eventually
visit the highest yellow one.

All these formulas will be appended with an obstacle-avoidance cluster ∧□[1,T]ϕobs. For the Drone
tasks, the ϕobs is a duck neural SDF introduced in Sec 3.1. For the Point, Car, and Doggo tasks, the
ϕobs is a neural SDF of all the walls.

18

Under review as a conference paper at ICLR 2023

H MORE TRAINING CURVES

We provide the training curves for Drone, Point, and Car in this section. All the data is collected
with training with five different random seeds.

drone-seq drone-cover drone-branch drone-loop drone-signal

point-seq point-cover point-branch point-loop point-signal

car-seq car-cover car-branch car-loop car-signal

SCHRL HTLTL DHRM CRM TLTL

Figure 12: The quantitative specification scores (y-axis) against the simulation steps (x-axis) during
training.

The SCHRL outperforms all the other algorithms for all robot dynamics and tasks. In the given
steps, the DHRM learns better policies than non-hierarchical CRM and LTL on the Sequence and
Coverage tasks on Point.

I ADDITIONAL POLICY PERFORMANCE

We report the SCHRL policy performance of Drone, Point, and Car in this section. The data is
collected with 5 groups of 100 times simulations.

Table 3: Satisfaction Rates of Drone, Point, and Car

Tasks Seq Cover Branch Loop Signal

Drone 0.96 ± 0.01 1.00 ± 0.00 0.97 ± 0.01 1.00 ± 0.00 1.00 ± 0.00
Point 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01
Car 0.98 ± 0.00 0.96 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 0.95 ± 0.01

The trained SCHRL policies generated decent satisfaction rates on all the dynamics and tasks. The
worst case appeared in the Loop task of Car, where it has a 95% satisfaction rate on average. The
Point robot almost can always satisfy a task expecting the Signal task with 99% satisfaction rate on
average.

Table 4: Achieving Steps of Drone, Point, and Car

Seq Cover Branch Loop Signal

Drone 1453.36 ± 373.71 1165.97 ± 131.42 761.66 ± 153.76 2342.76 ± 213.68 2859.54 ± 220.96
Point 601.93 ± 18.70 669.93 ± 17.51 546.96 ± 34.00 1861.21 ± 126.20 1912.04 ± 174.05
Car 547.47 ± 97.18 592.56 ± 153.10 508.48 ± 136.58 1611.68 ± 387.99 1802.66 ± 26.79

19

Under review as a conference paper at ICLR 2023

The steps to achieve tasks are summarized in Table 4. All the Loop and Signal tasks have longer
planned paths. They are with higher achieving steps than the Sequence, Cover, and Branch for each
robot.

J PLANNING TIME

One benefit we mentioned in Sec. 4.4.1 is planning time. Compared with Leung et al. (2020; 2022);
Gilpin et al. (2021), our approach requires less planning time when deployed online.

Table 5: Planning Time (in sec.) Comparision

Tasks Planning Net MIP Gradient

Seq 0.001722 0.096137 0.842844
Cover 0.001770 0.218563 3.484746
Branch 0.001437 0.078942 7.204325
Loop 0.004844 7.423811 10.480951
Signal 0.002383 7.853121 2.670637

The planning policy is a neural network that generates planning paths from randomly sampled initial
states. A forward propagation in milliseconds will produce a path with MIP (Gilpin et al., 2021) or
gradient techniques (Leung et al., 2020; 2022) for several seconds to solve. We quantify the planning
time in Table 5.

The time in Table 5 is the average time (in sec.) over 100 runs. Our planning policy is at least 55X
faster than MIP planners and 489X faster than gradient-based planners.

K GOAL-CONDITIONED POLICY AND OPTIONS

Previous work learns one control policy (option) for each transition in the automaton built with an
LTL specification. For example, a sequence task with four goals will require four policies.

Table 6: Samples Required until Convergence for Point

Goal-Conditioned Policy 1 Option 2 Options 4 Options

Number of Samples 2.93e+5 2.01e+5 4.02e+5 8.04e+5

Our work replaces these options with a more flexible goal-conditioned control policy. Unlike using
an option to reach one goal, the goal-conditioned policy learns to reach any given goal. Because
we train only one control policy, all the samples we during training are used for training this policy,
while the samples in the options framework are distributed to train multiple policies. Over 5 runs,
the average number of samples required to train policies reaching the convergence reward on the
Point robot is in Table 6.

L SOFT AND HARD STL LAGRANGIAN TERMS

Table 7: Soft and Hard STL Constraints

Soft STL Hard STL

Seq 268.20 ± 80.45 710.20 ± 193.76
Cover 1090.60 ± 428.56 1035.00 ± 370.58
Branch 49.00 ± 24.23 43.20 ± 9.74
Loop 119.20 ± 23.07 112.60 ± 35.57
Signal 352.40 ± 289.79 588.00 ± 128.79

We provided smooth STL Leung et al. (2020; 2022); Jha et al. (2019); Gilpin et al. (2021) with soft
min and max in our implementation. In a constrained learning context, STL is used as part of a loss
function. To explain the role of soft and hard STL in this context, we conducted an ablation study

20

Under review as a conference paper at ICLR 2023

showing the efficiency of soft and hard STL loss. We trained our planning policy network with both
soft and hard STL loss, and stop training when the policy could generate 95% of paths satisfying
the STL specification. Each cell in Table 7 is the result of 5 runs. The mean and stand deviation
are before and after ±, resp. The results in Table 7 are mixed. Soft STL loss performs significantly
better on task seq and signal, but slightly worse on the cover, branch, and loop tasks on average.
Intuitively, choosing soft and hard STL is analogous to choosing L2 or L∞ loss (L2 loss based on
MSE is ”smooth” while L∞ loss based on max is ”hard”).

21

	Introduction
	Background
	Approach
	Neural Predicates
	Constrained Path Planning Policy
	Control Policy

	Experiments
	Dynamics, Environments, and Specifications
	Training Performance (Q1)
	Satisfying Rate and steps to reach (Q2)
	Ablation Studies
	Hierarchical Policies Ablation (Q3, Q4)
	Planning Network Ablation (Q5)
	Constrained Policy Gradient Ablation (Q6)

	Related Work and Contribution
	Hierarchical Learning Algorithm
	TLTL Semantics
	Full Signal Temporal Logic Semantics
	Backpropagate Through a Coverage Specification
	Details about Neural SDF
	Details about GRU-ODE
	Tasks and Specifications
	More Training Curves
	Additional Policy Performance
	Planning Time
	Goal-Conditioned Policy and Options
	Soft and Hard STL Lagrangian Terms

