
Under review as a conference paper at ICLR 2023

INSPIRE: A FRAMEWORK FOR INTEGRATING
INDIVIDUAL USER PREFERENCES IN RECOURSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Most recourse generation approaches optimize for indirect distance-based metrics
like diversity, proximity, and sparsity, or a shared cost function across all users
to generate recourse. The latter is an unrealistic assumption because users can
have diverse feature preferences which they might be willing to act upon and any
changes to any undesirable feature might lead to an impractical recourse. In this
work, we propose a novel framework to incorporate the individuality of users in
both recourse generation and evaluation procedure by focusing on the cost in-
curred by a user when opting for a recourse. To achieve this, we first propose
an objective function, Expected Minimum Cost (EMC) that is based on two key
ideas: (1) the user should be comfortable adopting at least one solution when pre-
sented with multiple options, and (2) we can approximately optimize for users’
satisfaction even when their true cost functions (i.e., costs associated with feature
changes) are unknown. EMC samples multiple plausible cost functions based on
diverse feature preferences in the population and then finds a recourse set with
one good solution for each category of user preferences. We optimize EMC with
a novel discrete optimization algorithm, Cost-Optimized Local Search (COLS),
that is guaranteed to improve the quality of the recourse set over iterations. Our
evaluation framework computes the fraction of satisfied users by simulating each
user’s cost function and then computing the incurred cost for the provided recourse
set. Experimental evaluation on popular real-world datasets demonstrates that our
method satisfies up to 25.9% more users compared to strong baselines. Moreover,
human evaluation shows that our recourses are preferred more than twice as often
as the strongest baseline.1

1 INTRODUCTION

Over the past few years, ML models have been increasingly deployed to make critical decisions
related to loan approval (Siddiqi, 2012), allocation of public resources (Chouldechova et al., 2018),
and hiring decisions (Ajunwa et al., 2016). These decisions have real-life consequences for the
involved users. As a result, there is a growing emphasis on explaining these models’ decisions
(Poulin et al., 2006; Ribeiro et al., 2018) and providing recourse for unfavorable decisions (Voigt &
dem Bussche, 2018). A recourse is an actionable plan that allows a user to change the decision of a
deployed model to a desired alternative (Wachter et al., 2017). Recourses are often presented to users
as a set of counterfactuals (cfs), where each cf details the changes to the user’s state vector (i.e.,
their feature vector). Recourses are desired to be actionable, and feasible. Actionable means that
only features which can be changed by the user are requested to be changed. A recourse is feasible
if it is easy for the user to adopt, in other words, it is actionable and has a low cost for the user.

To achieve these objectives, prior work used feature distance-based objectives like proximity, spar-
sity, and feature diversity. For instance, Mothilal et al. (2020) and Wachter et al. (2017) encourage
proximity by minimizing the distance between the user’s state vector and the counterfactuals (cfs)
with the assumption that proximal cfs are easier to adopt. Whereas, sparsity quantifies the number
of features that require modification to implement a recourse (Mothilal et al., 2020). In contrast to
these, feature diversity (Mothilal et al., 2020; Cheng et al., 2021) provides a user with multiple cfs
that change diverse subsets of features assuming that users are more likely to find at least one feasible

1Our code is uploaded as supplementary material.

1

Under review as a conference paper at ICLR 2023

solution. These objectives capture the desired properties of recourses but do not account for individ-
ual user preferences that should be the primary objective. For instance, if a user prefers to change
features f1 and f2, then providing them with recourses that change undesirable features make them
infeasible even if they are proximal, sparse, and diverse. To address this, some recourse methods de-
fine a single cost function that is shared by all the users. A cost function C(f, i, j) denotes the cost of
changing a feature f from value i to j. They optimize and evaluate for low-cost solutions under this
function (Ustun et al., 2019; Rawal & Lakkaraju, 2020; Karimi et al., 2020c;d; Cui et al., 2015). We
question this assumption and argue for the importance of user-specific cost functions as a shared cost
function is likely to poorly represent different users in a diverse population. Hence, these indirect
objectives and global cost functions might be necessary but are not sufficient for a feasible recourse.

: Sampled Cost Functions
: True Cost Function

:
:
:

Figure 1: Diagram showing the intuition behind the
Expected Minimum Cost Objective. This figure rep-
resents an abstract cost function space where squares
denote cost function samples that are the same color if
they are similar and form a cluster. We aim to find a re-
course set where each cf (here, {s1, s2, s3}) does well
under a particular cluster of cost functions. The shaded
big circles each represent a single cf si that caters to the
enclosed cost functions. Here the user’s hidden ground-
truth cost function (grey circle) is served well by s1.

In this work, we propose a novel frame-
work, INSPIRE (INdividual uSer Preferences
In RecoursE), that incorporates individual user
preference via user-specific cost function to
generating algorithmic recourse. INSPIRE pro-
vides each user with a recourse set that contains
multiple cf options such that there is at least one
feasible solution adhering to the user’s personal
feature preference (if possible). As noted by
Rawal & Lakkaraju (2020), in most cases it is
difficult for users to specify their exact feature
preferences or cost functions. INSPIRE solves
this issue by focusing and improving upon four
major components – (1) the procedure to for-
malize and define individual user preferences
via user-specific cost functions, (2) the recourse
objective function, (3) the optimization algo-
rithm, and (4) the evaluation procedure.

Next, we propose a novel objective function,
Expected Minimum Cost (EMC) that approxi-
mately optimizes for the cost incurred by the
user under their cost function (which is un-
known). To do this, (1) we build on Ustun et al.
(2019) to propose three distributions over cost
functions, Dlin, Dperc, and Dmix, that repre-
sent diverse user preferences in a population.
These distributions are based on linear and percentile changes in the feature values (§3.1). (2) Next,
we compute the expected minimum cost of the generated cfs with respect to multiple sampled cost
functions from one of the proposed distributions (§3.2). In order to efficiently optimize for EMC,
we propose a discrete optimization method, Cost-Optimized Local Search (COLS) (§3.3). COLS
guarantees a monotonic reduction in EMC of the recourse set, leading to large empirical reductions
in the user-incurred cost. Note that, the EMC objective encourages diversity in the solution set with
respect to the diverse feature preferences a user might possess by ensuring that each cf is a good cf
under some particular cluster of cost functions from the sampling distribution. Hence, if the user’s
ground-truth cost function is well represented by any of the clusters, then we will have some coun-
terfactual that is feasible (actionable and low-cost) under their cost function (shown in Figure 1).

To evaluate the effectiveness of EMC and COLS, we run experiments on two popular real-world
datasets: Adult-Income (Dua & Graff, 2017) and COMPAS (Larson et al., 2016). We compare our
method with multiple strong baselines methods like DICE (Mothilal et al., 2020), FACE (Poyiadzi
et al., 2020), and Actionable Recourse (AR) (Ustun et al., 2019). We evaluate these methods on
existing metrics from the literature like diversity, proximity, sparsity, and validity (§4.1) along with
our novel cost-based evaluation framework (§3.4) and a human evaluation. In particular, we define
the fraction of satisfied users based on whether their cost of recourse is below a certain satisfiability
threshold k. We also report coverage, which is the fraction of users with at least one actionable
recourse (Rawal & Lakkaraju, 2020). Using simulated user cost functions, we show that our method
satisfies up to 25.89% more users than strong baseline methods while covering up to 22.35% more
users across datasets. Furthermore, our human evaluation shows that the recourses generated by our

2

Under review as a conference paper at ICLR 2023

method are preferred by humans 57% of the time as compared to 25% for our strongest baseline (Ac-
tionable Recourse), a difference of 32%. We also perform important ablations to show what fraction
of the performance can be attributed to COLS optimization method or the EMC objective. Finally,
we perform a fairness analysis of all the methods across demographic subgroups to show that our
method is more fair than baseline methods. Our primary contributions in this paper are listed below.

1. We conceptualize a novel framework, INSPIRE that accounts for the individuality of users
while generating and evaluating recourse options. INSPIRE provides the flexibility for future
researchers to further innovate on its four components.

2. We propose a new objective function, Expected Minimum Cost that approximately optimizes
for a user’s true cost function by using diverse plausible cost functions from a distribution.

3. We propose a discrete optimization method, Cost-Optimized Local Search which generates
recourses that lead to higher user satisfaction. In human evaluation, we find that our recourses
are preferred more than twice as often as the strongest baseline recourses while being fairer.

4. We propose a novel evaluation procedure to simulate users’ hidden cost functions to asses
individual user satisfaction by using our proposed metric FS@k.

2 PROBLEM STATEMENT

Features Types. We assume a dataset with features F = {f1, f2, ...fh}. Features can be mutable,
conditionally mutable, or immutable, according to the causal processes that generates it. For exam-
ple, Race is an immutable feature (Mothilal et al., 2020), Age and Education are conditionally mu-
table (cannot be decreased), and number of work hours is mutable (can both increase and decrease).
Following Ustun et al. (2019), continuous features are always discretized into appropriate sized bins.

Cost Function. In this work, we assume that each user has an inherent feature-preference (FP) that
captures the ease of changing a particular features, and different users can have different FPs. We
express such differential FPs via user-specific cost-function. A cost function C(f, i, j) denotes the
cost of changing a feature f from i to j and lies in [0, 1] ∪ {∞}. Here, 0 means that the transition
has no associated cost, whereas 1 means it is maximally difficult, and∞ means that it is infeasible.

Transition Costs. Given a cost function C and two feature vectors si, sj , the cost of transition from
si → sj is the summation of the cost of changing individual features. Hence, Cost(si, sj ; C) =∑

f∈F C(f, s
f
i , s

f
j), where sf is the value of feature f in the state vector.

User Definition. A user is defined as a tuple u = (su, C∗u), where su is the user’s current state vector
of length |F| containing their feature values and C∗u is their ground-truth cost function. See Appendix
Table 7 for examples of su and feature preferences. Next, we define the cost incurred by a user when
acting on a recourse set S consisting of cfs S. As a rational user will select the least costly option,
the cost they will incur is the minimum transition cost across all cf in the recourse set, defined as,

MinCost(su,S; C∗u) = min
sj∈S

Cost(su, sj ; C∗u), where Cost(su, sj ; C∗u) =
∑
f∈F

C∗u(f, sfu, sfj). (1)

Problem Definition. For a user u, our goal is to find a recourse set Su such that there exists at
least one low-cost cf with the desired outcome. Hence, if the user’s ground-truth cost function C∗u is
provided then we can provide them with a good recourse by directly optimizing for,

Su = argmin
S

MinCost(su,S; C∗u) s.t. ∃ si ∈ S s.t. F (si) = 1, (2)

where F is the black-box ML model and 1 is the desired class. Similar to Rawal & Lakkaraju
(2020), we note that in practice it is difficult for a user to precisely quantify their FP and cost
function. Hence, in most practical scenarios C∗u is not provided and we propose the EMC objective
to approximately optimize for the user incurred cost.

3 INSPIRE: INCORPORATING INDIVIDUALITY OF USERS IN RECOURSE

Given a user, we first sample some plausible cost functions from our proposed distribution that
capture diverse user feature preferences (FP) in a population (§3.1). Then our COLS optimization
method to generate a candidate recourse set (§3.3). Next, we compute our EMC objective for this
candidate cfs with respect to multiple samples of cost functions (§3.2). We perform this iteratively
to generate a final candidate recourse set which is evaluated using our evaluate procedure (§3.4).

3

Under review as a conference paper at ICLR 2023

3.1 CHARACTERISING TRANSITION COST AND COST FUNCTION DISTRIBUTIONS

Our first goal is to carefully design distributions to sample cost functions that – (1) adhere to the
fundamental concepts of how the population quantifies the transition costs between two feature
values, and (2) can quantify and integrate different user FPs to represent a diverse population.

Recent works like Ustun et al. (2019) argue that users in a population fundamentally quantify the
transition cost of changing a feature value from x to y as being proportional to – (1) the difference in
percentile of x and y; (2) the number of major steps involved to transition from x to y. For instance,
when changing the education feature from Bachelors to Ph.D., the percentile might be appropriate
as very few people have Ph.D. degrees as compared to Bachelors, leading to a higher cost. While in
contrast, when changing the number of working hours from 30 to 35, users might associate a fixed
cost for every additional hour as opposed to percentile differences. We recognize these different
underlying phenomena for quantifying transition costs and call them percentile cost and linear cost.

Even though most users quantify transition costs for features in the two ways described above, they
can find it easier or harder to act upon certain features depending on their personal circumstances.
We quantify these user FPs via preference-scores denoted by p = [pf1 , . . . , pfh], which sum to 1 and
each pfi ∈ [0, 1] represents the willingness of the user u to change feature fi. We use these FPs to
scale the transition costs (percentile and linear costs) of each feature fi by (1−pfi) which decreases
the cost of transition for preferred features and vice-versa. This allows us to create a user-specific
cost-function that accounts for their FPs. Now, given a FP scores p, Algorithm 2 and 3 allow us to
generate cost functions based on percentile and linear costs respectively that adhere to the FPs.

Next, we propose three distributions, Dperc, Dlin, Dmix, that are highly flexible and can generate
cost-functions that model diverse FPs to better represent a population. The distributionsDperc, Dlin

are based on percentile and linear transition costs. Whereas, Dmix is our most general distribution
that combines both linear and percentile transition costs using a user-specific cost-type weight α. To
generate samples fromDmix, we use Algorithm 4 that first samples a FP scores p by – (1) randomly
sampling a subset of preferred features for a hypothetical user that are easy to act upon, and (2)
sampling their FP scores p from a Dirichlet distribution with concentration parameter with all ones
for preferred features and zero otherwise. Then, we use FP score p along with a state vector s in
Algorithm 2 and 3 to sample percentile and linear transition cost. We then obtain the mixed-costs
by taking a convex combination of the percentile and linear transition costs with randomly sampled
cost-type weight α ∼ Unif(0, 1) that capture the user’s fundamental way to quantify transition cost.
These mixed-costs represent transition cost for a hypothetical user with FP score p and cost-type
weight α. In order to capture the slight variance amongst users with similar preference, we use a Beta
distribution with the mixed-costs as mean with a small noise (std = 0.01) to get the final cost function.

We highlight some desired properties of our Dmix distribution – (1) The distribution captures all
possible FP score vectors p because we randomly sample the preferred features. (2) It captures a
user’s predilection towards linear and percentile costs by combining them with a cost-type weight.
(3) The Linear and Percentile costs are monotonic, i.e., more drastic changes have higher the asso-
ciated costs. (4) Following Watson et al. (2021), we provide the user with an option to specify their
needs by providing their preferred features, or FP scores p. These properties allow us to represent
a much larger space of plausible cost functions compared to past works that assume a shared cost
function with no user FPs. Hence, these distributions better represent a population.

3.2 EXPECTED MINIMUM COST (EMC) OBJECTIVE FUNCTION

As noted by Rawal & Lakkaraju (2020), in most practical scenarios the user’s true cost-function C∗u
is hard to obtain thus we cannot exactly minimize for Equation 2. Hence, we propose the Expected
Minimum Cost (EMC) objective function. Give a state vector s, a recourse set S, and a distribution
Dtrain to sample cost functions, we compute EMC as follows,

EMC(s,S) = ECi∼Dtrain [MinCost(s,S; Ci)] ≈
1

M

M∑
i=1

min
sj∈S

Cost(s, sj ; Ci). (3)

We employ Monte Carlo Estimation (Robert & Casella, 2010) to approximate the expectation by
sampling M cost functions {Ci}Mi=1 fromDtrain and then expand MinCost using Equation 1. More-
over, the distribution Dtrain can be any of the three distributions we proposed. Next, for the user u,

4

Under review as a conference paper at ICLR 2023

we obtain the recourse set Su by minimizing the EMC objective as follows,

Su = argmin
S

EMC(su,S). (4)

3.3 COST OPTIMIZED LOCAL SEARCH (COLS)

Algorithm 1 Cost-Optimized Local Search Algorithm

Input: A state vector s, {Ci}Mi=1 ∼ Dtrain cost distributions
Output: Sbest, a set with N generated counterfactuals.
function COLS(s, {Ci}Mi=1,Budget, hamDist = 2)

Initialize
// Perturb s, N times.

Sbest ∈ RN×d ← pertubCFS(s, hamDist)
// Incurred costs for Sbest.

Cb ← getCostMatrix(s,Sbest; {Ci}Mi=1)
t = 0;maxIter = Budget//N

while t < maxIter do
St ∈ RN×d ← pertubCFS(Sbest, hamDist)
C ∈ RN×M ← getCostMatrix(s,S; {Ci}Mi=1)
t += 1
// Bij = Change in objective when

Sbest[i]← S[j]. See Algorithm 5.

B ∈ RN×N ← computeBenefits(Cb,C)
// Greedily select which pairs to

swap given B
replaceIndices← getReplaceIdx(B)
// Swap these pairs and update Cb.
forall originalIdx, replaceIdx ∈ replaceIndices do
Sbest[originalIdx] = S[replaceIdx]

end
Cb ← getCostMatrix(s,Sbest; {Ci}Mi=1)

end
return Sbest,Cb

end

To generate a recourse set Su for a user
u, we optimize for EMC as shown in
Equation 4. We propose two simple, and
efficient discrete search algorithms (Pir-
lot, 1996), namely Cost-Optimized Lo-
cal Search (COLS) and Parallel Cost-
Optimized Local Search (P-COLS) pre-
sented in Algorithm 1. COLS maintains
a best set Sbest which will be the final re-
course provided to the user. At each it-
eration t, a candidate set St is generated
by locally perturbing each element of the
best set with a Hamming distance of two,
i.e. making small changes to two features
at once. Then it is evaluated against the
EMC objective as defined in Equation 3.
For efficient implementation we store the
costs of all the N cfs with respect to all
the M cost functions Ci. Instead of mak-
ing a direct comparison of EMC for the
best-set-so-far and the candidate set, we
evaluate whether any cfs from the candi-
date set St would improve the EMC of the
best set Sbest if we swapped out individual
cfs. Specifically, if the benefit of replacing
si ∈ St with sj ∈ Sbest is positive, i.e.,
reduces EMC of Sbest then we make the
replacement (see Algorithm 5). The abil-
ity to assess the benefit of each candidate
cf is critical because it allows us to con-
stantly update the best set using cfs from a candidate set instead of waiting for an entire candidate
set with lower EMC. For objectives like feature diversity, evaluating the benefit of individual re-
placement becomes expensive (see Appendix B.1). Moreover, for COLS we can guarantee that the
EMC of the best set will monotonically decrease over time, which we formally state below:

Theorem 3.1 (Monotonicity of COLS Algorithm). Given the best set, Sbestt−1 ∈ RN×d, the candidate
set at iteration t, St ∈ RN×d, the matrix Cb ∈ RN×M and C ∈ RN×M containing the incurred cost
of each counterfactual in Sbestt−1 and St with respect to all the M sampled cost functions {Ci}Mi=1,
there always exist a Sbestt constructed from Sbestt−1 and St such that

EMC(su,Sbestt ; {Ci}Mi=1) ≤ EMC(su,Sbestt−1 ; {Ci}Mi=1)

For the proof of the theorem, please refer to Appendix B.2.2.

P-COLS: The P-COLS method is a variant of COLS that starts multiple parallel runs of COLS
with different initial sets. With a given computational budget, each run is allocated a fraction of the
budget. The recourse set of the run with the least objective value is provide to the user.

3.4 EVALUATION PROCEDURE AND INDIVIDUAL USER BASED METRICS

Given that users’ ground-truth cost functions C∗u are unknown, in order to asses user’s satisfaction,
we need to ask them. Generally, obtaining such feedback is challenging. Hence, for every user u, we
simulate a evaluation cost function C#u from a distributionDtest and use Equation 1 to compute their

5

Under review as a conference paper at ICLR 2023

Table 1: Recourse method performance across various cost and distance metrics (Section 4.1). The numbers
reported are averaged across 5 different runs. For all the metrics higher is better except for PAC.

Data Method Metrics
Cost Metrics Distance Metrics

FS@1 PAC(↓) Cov Div Prox Spars Val

Adult-Income

DICE 2.47 1.37 8.32 3.90 65.80 47.20 97.90
Face-Eps 15.23 0.76 22.60 4.75 92.22 74.98 100.0
Face-Knn 25.30 0.74 35.00 8.62 89.07 71.85 100.0

Act. Recourse 49.93 0.55 56.85 18.38 74.68 73.57 78.67

COLS 72.57 0.38 76.07 25.77 80.22 76.48 97.15
P-COLS 75.82 0.40 79.20 25.57 81.67 78.00 94.78

COMPAS

DICE 0.40 0.54 0.40 11.30 65.00 32.00 98.90
Face-Eps 12.20 0.29 12.20 2.50 94.20 60.60 100.0
Face-Knn 12.20 0.29 12.20 2.60 94.10 60.60 100.0

Act. Recourse 65.80 0.40 66.60 11.87 80.53 74.07 44.23

COLS 82.23 0.24 82.23 29.32 77.82 70.05 95.48
P-COLS 83.73 0.24 83.73 29.38 78.48 71.30 92.78

incurred cost. If the distribution Dtest can model diverse users in a population then this procedure
can be used to compare different recourse methods.

Proposed Metrics - FS@k and Coverage: We introduce a new cost-based metric that directly
captures user satisfaction and is computed using each user’s simulated cost function C#u . We say
that a user is satisfied by a recourse set if the best option in that set achieves a sufficiently low cost
under C#u . Formally, given a set of users U and the recourse sets {Su}u∈U provided to them, we
define the fraction of users satisfied at a satisfiability threshold k as:

FS@k(U , {Su}u∈U) =
1

|U|
∑
u∈U

1{MinCost(su,Su; C#u) < k} (5)

In reality, k can vary from user to user, we keep k fixed across users in our experiments because
the goal of any method is to find low-cost recourses regardless of k. In deployment scenarios,
reasonable values of k can be estimated by doing a user survey. In addition to FS@k, we also mea-
sure Population Average Cost (PAC), which is defined as PAC = 1

|U|
∑

u∈U MinCost(su,Su; C#u).
Another important measure is the Coverage (Cov) which is the fraction of users to which the re-
course method can provide at least one actionable recourse (Rawal & Lakkaraju, 2020), defined as
Cov(U , {Su}u∈U) = FS@∞ = 1

|U|
∑

u∈U 1{MinCost(su,Su; C#u) <∞}.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset: We use the Adult-Income (Dua & Graff, 2017) and COMPAS (Larson et al., 2016) datasets
which are available under Open Data Commons PDDL license. The Adult-Income dataset is based
on the 1994 US Census data and contains 12 features. The model has to predict whether an individ-
ual’s income is over $50, 000. COMPAS contains 7 features and was collected by ProPublica and
contains information about the criminal history of defendants for analyzing recidivism. The model
needs to decide bail based on predicting which applicants will recidivate in the next two years. These
datasets are anonymized to prevent privacy. We preprocess both datasets based on a previous anal-
ysis where categorical features are binarized (Pawelczyk et al., 2021).2 Our black-box model is an
Multi-Layer Perceptron with 2-layers. Please refer to Appendix Tables 9 and 10 for experiments
with logistic regression and Appendix A.1 and Table 5 for further experimental details.
Baselines: We compare our methods COLS and P-COLS with DICE (Mothilal et al., 2020), FACE-
Knn and FACE-Epsilon (Poyiadzi et al., 2020), and Actionable Recourse (Ustun et al., 2019). Im-
portantly, we control for compute across methods by restricting the number of forward passes to
the black-box model, which are needed to decide if a counterfactual produces the desired class. For
most big models, this is the rate-limiting step for each method. We ran our experiments on a local

2 The code for the Actionable Recourse method (Ustun et al., 2019) requires binary categorical variables.

6

Under review as a conference paper at ICLR 2023

Table 2: Ablation results with Search algorithms trained on
different objectives.

Search Alg. Objective Cost Metrics Distance Metrics
FS@1 PAC(↓) Cov Div Prox Spars

LS Sparsity 10.1 1.304 29.0 42.7 66.2 55.8
LS Proximity 9.7 1.275 27.0 42.1 67.5 55.0
LS Diversity 0.0 2.393 7.6 53.3 50.8 35.6

LS EMC 49.8 0.597 59.1 37.8 73.3 67.5
COLS EMC 68.8 0.391 72.6 27.1 77.5 73.5

Table 3: Percentage of times each method was preferred by
human annotators (Fleiss kappa=0.74 and p=1e-4).

No Preference Actionable Recourse Ours

18% 25% 57%

Table 4: Fairness analysis of recourse meth-
ods for Gender based subgroups. DIR: Dis-
parate Impact Ratio; M: Male, F: Female.

Method Gender FS@1 Cov DIR-FS DIR-Cov

DICE F 0.0 0.0 - -M 4.7 15.6

Face-Eps F 12.5 22.1 1.504 1.118M 18.8 24.7

Face-Knn F 29.9 36.3 0.719 0.89M 21.5 32.3

Act. Recourse F 53.8 58.7 0.881 0.959M 47.4 56.3

Random F 7.8 34.6 0.859 0.792M 6.7 27.4

COLS F 72.7 76.2 0.994 0.992M 72.3 75.6

P-COLS F 76.5 80.2 1.004 1.0M 76.8 80.2

server using a single Nvidia 1080 Ti GPU. We set a fixed budget of 5000 model queries, a set size
|S| = 10, and number of cost function sample M = 1000 for all methods. For a description of the
objective function and other details of these baselines refer to Appendix B.1.1, B.2.3.

Evaluation Details: For our main experiments, we set Dtrain and Dtest to our most general dis-
tribution Dmix as it is able to generate samples that are diverse and captures a wide variety of user
FPs. This is analogous to supervised learning where train and test data comes from the same distri-
bution. Note that, in contrast to past works (see §5), the cost samples {Ci}Mi=1 used during training
to evaluate EMC are different from C#u which is used for evaluation. For completeness, in Section
4.2 Q5, and Appendix A.2 Q5, Q6, we provide additional results in cases where Dtrain and Dtest

are different to show that our method is robust to choices of these distributions.

Distance Based Recourse Metrics: To compare with past work, we evaluate meth-
ods on distance-based metrics like feature diversity, proximity, sparsity, and validity that
lie between [0, 1] with higher values being better. We report the average of these
metrics, in percentage across all users. For a single user, Proximity is defined as
prox(x,S) = 1− 1

|S|
∑|S|

i=1 dist(x,Si), where Si is a counterfactual. Sparsity (Mothilal et al.,

2020) is defined as spar(x,S) = 1− 1
|S|∗d

∑|S|
i=1

∑|x|
j=1 1{xj ̸=Sij}. Feature diversity (Mothilal

et al., 2020) is defined as div(S) = 1
Z

∑|S|−1
i=1

∑|S|
j=i+1 dist(Si,Sj), where Z is the number of terms

in the double summation. Validity is defined as val(Y) = |{unique si∈S : f(si)=+1}|
|S| .

4.2 RESEARCH QUESTIONS

Q1. Which Recourse Method Satisfies the Most Users?

In this experiment, we compare different recourse methods on our cost-based evaluation framework
and distance-based metrics. We report the average performance over five random seeds in Table 1.
We observe that COLS and P-COLS, that optimize for EMC, achieve 22.64% and 25.89% higher
user satisfaction while covering 19.28% and 22.42% more users compared to the strongest baseline
on Adult-Income and COMPAS, respectively. Meanwhile, other methods that optimize for a com-
bination of distance-based metrics, perform worse on user cost-based metrics that directly model
user satisfaction. Interestingly, we find that COLS and P-COLS solutions exhibit very high feature
diversity, proximity, and sparsity. This implies that – (1) the Dmix distribution is generating cost
functions that model diverse FPs and COLS along with EMC allows us to obtain the highest diversity
even compared to other methods that directly optimize for it, and (2) proximity, sparsity, and diver-
sity emerge as necessary metrics even under our cost-based evaluation framework but they are not
sufficient to satisfy users with preferences as shown by other methods performance on cost-metrics.

Q2. Is the Performance Improved by the COLS Optimization Method or the EMC Objective?

We perform an ablation study to understand the impact of COLS optimization method and the EMC
objective. To do so, we run a basic local search (LS) to optimize objectives used by other methods
like feature diversity, proximity, and sparsity along with validity. We use a basic local search because

7

Under review as a conference paper at ICLR 2023

there are no simple and efficient way to guarantee reductions in the diversity objective by swapping
out single elements from the solution set that is required for using COLS (see Appendix B.1). To
quantify the usefulness of COLS, we also optimize EMC using a basic local search.

The results in Table 2 suggest that optimizing for distance-metrics is sub-optimal. For proximity,
sparsity, and feature diversity objectives, the FS score and coverage are very low, while they perform
well on their respective metrics. The low FS score for distance metrics is expected as they ignore
user preferences and hence can edit features that are not preferred making the generated recourses
infeasible under the user’s cost function. We find that EMC with LS outperforms all distance ob-
jectives not only on FS, PAC but also proximity, and sparsity suggesting that the EMC is a better
objective. Meanwhile, the 19% difference in the performance of EMC with LS and COLS can be
attributed to our cost optimization (§3.3) that allows COLS to efficiently search the solution space.

Q3. Do Recourse Methods Provide Fair Solutions Across Subgroups?

Next, We assess if the recourse methods provide equitable solutions across subgroups based on
demographic features like Gender and Race. This is important because we want to ensure that
recourse methods are not further inducing bias towards any particular group because it directly
affects the life of users. We adapt existing fairness metrics for disparate impact across population
subgroups (Feldman et al., 2015) for the recourse outcomes we study, which we denote by the
Disparate Impact Ratio (DIR). Given a metricM, DIR is a ratio between metric scores across two
subgroups. DIR-M = M(S=1)/M(S=0). We use either Cov or FS@1 as M. Under the DIR
metric, the maximum fairness score that can be achieved is 1, though this might not be achievable
depending on the black-box model. We run experiments on the Adult-Income dataset, with a budget
of 5000 model queries and |S| = 10.

We present the gender and race based subgroup results in Table 4 and Appendix Table 6 respectively.
We observe that our methods are typically more fair than baselines on both Gender and Race-
based subgroups while providing recourse to a larger fraction of people in both subgroups.
In particular, we find that our method achieves a score very close to 1 on DIR-FS and DIR-Cov
implying a very high degree of fairness. We attribute the fairness of our method to (1) the fact that
our method does not depend on the data distribution, and (2) the use of diverse cost functions to
generate recourse. Condition (2) is important since there are other individualized methods that do
not rely on the data distribution, such as Face, which can generate less fair solutions than COLS.

Q4. Which Recourse Method Do Humans Prefer?

Next, we are interested in whether humans would consider recourses to be reasonable for our
synthetic users. We designed a small study where we provided human annotators with state vectors
su and the sampled FP scores pu for 100 users from the Adult-Income dataset (see Appendix A.1.4
for details). We presented the recourse generated by COLS and Actionable Recourse (strongest
baseline) to the annotators while anonymizing each method’s name and asked them two questions:
(1) Acting as if they were the user with the provided preferences and state vector, which recourse
would they prefer to adopt? (2) Does the recourse generated by each method seem reasonable to
them? We collect three annotations for each sample and take a majority vote for each response; we
allow for users to indicate “no preference" between the two proposed recourses, and if there was
a tie in annotation we record the majority vote as “no preference." We found that our method was
preferred 57% of the time, while AR was preferred only 25% of the time, a difference of 32%
(+/- 16 points variance, Fleiss’ kappa=0.74, and p=1e-4). Furthermore, human annotators found
60% of the recourses generated by COLS to be reasonable as compared to 33% for AR, a 27%
difference with p<1e-4. This study shows that our method is preferred by humans over the baseline.

Q5. Robustness to Distribution Shifts And Other Research Questions

In this experiment, we test our evaluation framework’s robustness in cases where the train and test
distributions, Dtrain and Dtest are different. In Appendix Figure 2, the top-left and bottom-right
corners shows cases where Dtrain = Dlin while the users’ evaluation cost functions C#u are drawn
from Dtest = Dper (and vice versa). This is a complete distribution shift and our method performs
equally well for these cases demonstrating that our method is robust to distribution shift during test
time. For full experimental design and conclusions please refer to Appendix Section A.2 and Figures
2 and 3. We also provide several additional research questions in the Appendix A.2, which we
summarize here: (1) We can make use of a larger compute budget to scale up the performance (Fig-

8

Under review as a conference paper at ICLR 2023

ure 4); (2) The recourse sets provide high quality solutions to users using as few as 3 counterfactuals
(Figure 5); (3) We can achieve high user satisfaction with as few as 20 Monte Carlo samples, rather
than 1000 (Figure 6); (4) Our method works for other classification models as well (Table 10); and
(5) We present the computational complexity and runtimes in Appendix A.1.2. We also show some
qualitative examples of recourses provided by our method in Table 7.

5 RELATED WORK

Here, we distinguish our approach based on our recourse objectives, optimizer, and evaluation. We
point readers to Venkatasubramanian & Alfano (2020) for a philosophical basis for algorithmic
recourse and to Karimi et al. (2020b) for a comprehensive survey of the existing recourse methods.

Objectives: The most prominent family of objectives for recourse includes distance-based objec-
tives (Wachter et al., 2017; Karimi et al., 2020a; Dhurandhar et al., 2018; Mothilal et al., 2020;
Rasouli & Yu, 2021). These methods primarily seek recourses that are close to the original data
point. In DICE, Mothilal et al. (2020) provide users with a set of counterfactuals while trading off
between proximity and feature diversity. A second category of methods uses other heuristics based
on the data distribution (Aguilar-Palacios et al., 2020; Gomez et al., 2020) to come up with coun-
terfactuals. FACE constructs a graph from the given data and then tries to find a high-density path
between points in order to generate counterfactuals (Poyiadzi et al., 2020). Lastly, the works closest
to ours are the cost-based objectives, which capture feasibility in terms of the cost of recourse: (1)
Cui et al. (2015) define a cost function specifically for tree-based classifiers, which compares the
different paths that two data points follow in a tree to obtain a classifier-dependent measure of cost.
(2) Karimi et al. (2020c;d) take a causal intervention perspective on the task and define cost in terms
of the normalized distance between the user state and the counterfactual. (3) Ustun et al. (2019)
define cost in terms of the number of changed features and frame recourse generation as an Integer
Linear Program. (4) Rawal & Lakkaraju (2020) infer global cost function from pairwise compar-
isons of features that are drawn from simulated users. However, they take a different approach to
the recourse generation problem, which is to find a list of rules that can apply to any user to obtain
a recourse, rather than specially generating recourses for each user as in this work. Importantly, all
of these works assume there is a known and single cost function that is shared by all users.

Optimization: Several recourse methods uses gradient-based optimization to generate counterfac-
tuals close to a user’s data point (Wachter et al., 2017; Mothilal et al., 2020). Some recent approaches
use tree-based techniques (Rawal & Lakkaraju, 2020; von Kügelgen et al., 2020; Kanamori et al.,
2020) or kernel-based methods (Dandl et al., 2020; Gomez et al., 2020; Ramon et al., 2020), while
others employ some heuristic (Poyiadzi et al., 2020; Aguilar-Palacios et al., 2020) to generate coun-
terfactuals. A few works use autoencoders to generate recourses (Pawelczyk et al., 2020; Joshi et al.,
2019), while Karimi et al. (2020a) and Ustun et al. (2019) utilize SAT and ILP solvers, respectively.

Evaluation: Besides ensuring that recourses are classified as the desired outcome by a model (valid-
ity), the most prominent approaches to evaluate recourses rely on distance-based metrics. In DICE,
Mothilal et al. (2020) evaluate recourses according to their proximity, sparsity, and feature diver-
sity. Meanwhile, several works directly consider the cost of the recourses, using a single known
cost function as a metric, meaning that all users share the same cost function. In contrast, Rawal
& Lakkaraju (2020) estimate a cost function from simulated pairwise feature comparisons. For all
these method, a single cost function is used for both recourse generation and evaluation, i.e. the so-
lutions are optimized and tested on the same cost function (Cui et al., 2015; Karimi et al., 2020c;d;
Rawal & Lakkaraju, 2020). In contrast, we evaluate recourse methods by simulating user-specific
cost functions that can vary greatly across users to capture their preference.

6 DISCUSSION AND CONCLUSION

Our novel framework INSPIRE provides a way to incorporate the individuality of the user in the
recourse generation and evaluation process. INSPIRE lays a foundation for the future works to build
more complex distributions to better represent the population by designing non-linear transition
costs or modifying the COLS procedure to account for the causal relationships between features
while accounting for individual user preferences. We show that our method achieves much higher
rates of user satisfaction than comparable baselines and observe that diversity, proximity, and spar-
sity emerge as important metrics even in our framework but are not sufficient for user satisfaction.

9

Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

We hope that our recourse method is adopted by institutions seeking to provide reasonable paths
to users for achieving more favorable outcomes under the decisions of black-box machine learning
models or other inscrutable models. We see this as a “robust good," similar to past commentators
Venkatasubramanian & Alfano (2020). Below, we comment on a few other ethical aspects of the
algorithmic recourse problem.

First, we suggest that fairness is an important value that recourse methods should always be evalu-
ated along, but we note that evaluations will depend heavily on the model, training algorithm, and
training data. For instance, a sufficiently biased model might not even allow for suitable recourses
for certain subgroups. As a result, any recourse method will fail to identify an equitable set of
solutions for the population. That said, recourse methods can still be designed to be more or less
fair. This much is evident from our varying results on fairness metrics using a number of recourse
methods. What will be valuable in future work is to design experiments that separate the effects on
the fairness of the model, training algorithm, training data, and recourse algorithm. Until then, we
risk blaming the recourse algorithm for the bias of a model, or vice versa.

Additionally, there are possible dual-use risks from developing stronger recourse methods. For in-
stance, malicious actors may use recourse methods when developing models in order to exclude
certain groups from having available recourse, which is essentially a reversal of the objective of
training models for which recourse is guaranteed (Ross et al., 2021). We view this use case as gen-
erally unlikely, but pernicious outcomes are possible. We also note that these kinds of outcomes
may be difficult to detect, and actors may make bad-faith arguments about the fairness of their de-
ployed models based on other notions of fairness (like whether or not a model has access to protected
demographic features) that distract from an underlying problem in the fairness of recourses.

REPRODUCIBILITY STATEMENT

To encourage reproducibility, we provide our source code, including all the data pre-processing,
model training, recourse generation, and evaluation metric scripts as supplementary material. The
details about the datasets and the pre-processing are provided in Appendix A.1.1. We also provide
clear and concise Algorithms 4, 2, 3 for our cost sampling procedures and our optimization method
COLS in Algorithm 1. Additionally, we also provide formal proof of the Theorem 3.1 stated in
the main paper in Appendix B.2.2 along with the constructive procedure for the proof provided in
Algorithm 1.

REFERENCES

Carlos Aguilar-Palacios, Sergio Muñoz-Romero, and José Luis Rojo-Álvarez. Cold-start promo-
tional sales forecasting through gradient boosted-based contrastive explanations. IEEE Access,
2020.

Ifeoma Ajunwa, Sorelle Friedler, Carlos E Scheidegger, and Suresh Venkatasubramanian. Hiring by
algorithm: Predicting and preventing disparate impact. Available at SSRN, 2016.

Furui Cheng, Yao Ming, and Huamin Qu. Dece: Decision explorer with counterfactual explanations
for machine learning models. IEEE Transactions on Visualization and Computer Graphics, 27:
1438–1447, 2021.

Alexandra Chouldechova, Diana Benavides-Prado, Oleksandr Fialko, and Rhema Vaithianathan. A
case study of algorithm-assisted decision making in child maltreatment hotline screening deci-
sions. In Conference on Fairness, Accountability and Transparency, pp. 134–148, 2018.

Zhicheng Cui, Wenlin Chen, Yujie He, and Yixin Chen. Optimal action extraction for random
forests and boosted trees. In Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining, pp. 179–188, 2015.

Susanne Dandl, Christoph Molnar, Martin Binder, and Bernd Bischl. Multi-objective counterfactual
explanations. In Thomas Bäck, Mike Preuss, André Deutz, Hao Wang, Carola Doerr, Michael

10

Under review as a conference paper at ICLR 2023

Emmerich, and Heike Trautmann (eds.), Parallel Problem Solving from Nature – PPSN XVI, pp.
448–469, Cham, 2020. Springer International Publishing. ISBN 978-3-030-58112-1.

Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Pai-Shun Ting, Karthikeyan Shan-
mugam, and Payel Das. Explanations based on the missing: Towards contrastive explanations
with pertinent negatives. In Advances in Neural Information Processing Systems, 2018.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL https://archive.
ics.uci.edu/ml/datasets/adult.

Michael Feldman, Sorelle A. Friedler, John Moeller, C. Scheidegger, and S. Venkatasubramanian.
Certifying and removing disparate impact. Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2015.

Oscar Gomez, Steffen Holter, Jun Yuan, and Enrico Bertini. Vice: visual counterfactual explanations
for machine learning models. In Proceedings of the 25th International Conference on Intelligent
User Interfaces, pp. 531–535, 2020.

Shalmali Joshi, Oluwasanmi Koyejo, Warut D. Vijitbenjaronk, Been Kim, and Joydeep Ghosh.
Towards realistic individual recourse and actionable explanations in black-box decision mak-
ing systems. International Conference on Learning Representations; Workshop on Safe ML,
abs/1907.09615, 2019.

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Hiroki Arimura. Dace: Distribution-aware
counterfactual explanation by mixed-integer linear optimization. In Christian Bessiere (ed.), Pro-
ceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20,
pp. 2855–2862. International Joint Conferences on Artificial Intelligence Organization, 7 2020.
doi: 10.24963/ijcai.2020/395. URL https://doi.org/10.24963/ijcai.2020/395.
Main track.

Amir-Hossein Karimi, G. Barthe, B. Balle, and Isabel Valera. Model-agnostic counterfactual ex-
planations for consequential decisions. International Conference on Artificial Intelligence and
Statistics, abs/1905.11190, 2020a.

Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera. A survey of algorith-
mic recourse: definitions, formulations, solutions, and prospects. CoRR, abs/2010.04050, 2020b.
URL https://arxiv.org/abs/2010.04050.

Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse: from counter-
factual explanations to interventions. FAccT, 2020c.

Amir-Hossein Karimi, Julius von Kügelgen, Bernhard Schölkopf, and Isabel Valera. Algorithmic
recourse under imperfect causal knowledge: a probabilistic approach. Advances in Neural Infor-
mation Processing Systems, 2020d.

A. Kulesza and B. Taskar. Determinantal point processes for machine learning. Found. Trends Mach.
Learn., 5:123–286, 2012.

Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin.
https://github.com/propublica/compas-analysis, 2016.

Hans Mittleman. Mixed integer linear programming benchmarks (miplib 2010). http://plato.
asu.edu/ftp/milpc.html, 2018.

Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers
through diverse counterfactual explanations. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, pp. 607–617, 2020.

Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci. Learning model-agnostic counterfac-
tual explanations for tabular data. In WWW, pp. 3126–3132, New York, NY, USA, 2020. Associ-
ation for Computing Machinery. ISBN 9781450370233. doi: 10.1145/3366423.3380087. URL
https://doi.org/10.1145/3366423.3380087.

11

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://doi.org/10.24963/ijcai.2020/395
https://arxiv.org/abs/2010.04050
https://github.com/propublica/compas-analysis
http://plato.asu.edu/ftp/milpc.html
http://plato.asu.edu/ftp/milpc.html
https://doi.org/10.1145/3366423.3380087

Under review as a conference paper at ICLR 2023

Martin Pawelczyk, Sascha Bielawski, Johan Van den Heuvel, Tobias Richter, and Gjergji. Kas-
neci. CARLA: A python library to benchmark algorithmic recourse and counterfactual explana-
tion algorithms. In Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 1), 2021. URL https://openreview.net/forum?id=
vDilkBNNbx6.

Marc Pirlot. General local search methods. European Journal of Operational Research, 92(3):493–
511, 1996. ISSN 0377-2217. doi: https://doi.org/10.1016/0377-2217(96)00007-0. URL https:
//www.sciencedirect.com/science/article/pii/0377221796000070.

Brett Poulin, Roman Eisner, Duane Szafron, Paul Lu, Russell Greiner, David S Wishart, Alona
Fyshe, Brandon Pearcy, Cam MacDonell, and John Anvik. Visual explanation of evidence with
additive classifiers. In Proceedings Of The National Conference On Artificial Intelligence, vol-
ume 21, pp. 1822. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,
2006.

Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach. Face: Feasible
and actionable counterfactual explanations. In Proceedings of the AAAI/ACM Conference on
AI, Ethics, and Society, AIES ’20, pp. 344–350, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450371100. doi: 10.1145/3375627.3375850. URL https:
//doi.org/10.1145/3375627.3375850.

Yanou Ramon, David Martens, Foster Provost, and Theodoros Evgeniou. Counterfactual explana-
tion algorithms for behavioral and textual data. Advances in Data Analysis and Classification,
2020.

Peyman Rasouli and Ingrid Chieh Yu. Care: Coherent actionable recourse based on sound counter-
factual explanations, 2021.

Kaivalya Rawal and Himabindu Lakkaraju. Beyond individualized recourse: Interpretable and in-
teractive summaries of actionable recourses. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
12187–12198. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/8ee7730e97c67473a424ccfeff49ab20-Paper.pdf.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic
explanations. In AAAI Conference on Artificial Intelligence, 2018.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer Publishing
Company, Incorporated, 2010. ISBN 1441919392.

Alexis Ross, Himabindu Lakkaraju, and Osbert Bastani. Learning models for algorithmic recourse.
In Advances in Neural Information Processing Systems, 2021.

Naeem Siddiqi. Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scoring,
volume 3. John Wiley & Sons, 2012.

Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification. In Pro-
ceedings of the Conference on Fairness, Accountability, and Transparency, FAT* ’19, pp. 10–19,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450361255. doi:
10.1145/3287560.3287566. URL https://doi.org/10.1145/3287560.3287566.

Suresh Venkatasubramanian and Mark Alfano. The philosophical basis of algorithmic recourse. In
Proceedings of the 2020 conference on fairness, accountability, and transparency, pp. 284–293,
2020.

Paul Voigt and Axel Von dem Bussche. 2018 reform of EU data protection rules.
2018. URL https://ec.europa.eu/commission/sites/beta-political/
files/data-protection-factsheet-changes_en.pdf.

Julius von Kügelgen, Amir-Hossein Karimi, Umang Bhatt, Isabel Valera, Adrian Weller, and Bern-
hard Schölkopf. On the fairness of causal algorithmic recourse. NeurIPS AFCI Workshop, 2020.

12

https://openreview.net/forum?id=vDilkBNNbx6
https://openreview.net/forum?id=vDilkBNNbx6
https://www.sciencedirect.com/science/article/pii/0377221796000070
https://www.sciencedirect.com/science/article/pii/0377221796000070
https://doi.org/10.1145/3375627.3375850
https://doi.org/10.1145/3375627.3375850
https://proceedings.neurips.cc/paper/2020/file/8ee7730e97c67473a424ccfeff49ab20-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8ee7730e97c67473a424ccfeff49ab20-Paper.pdf
https://doi.org/10.1145/3287560.3287566
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

Under review as a conference paper at ICLR 2023

Table 5: Table containing data statistics and black-box model details. The binary version of the datasets are
take from (Pawelczyk et al., 2021) whereas the non-binary version are taken from (Mothilal et al., 2020).

Adult-Income Binary COMPAS Binary Adult-Income COMPAS

Continuous features 3 4 2 3
Categorical features 9 3 10 12
Undesired class ≤ 50k Will Recidivate ≤ 50k Will Recidivate
Desired class > 50k Won’t Recidivate > 50k Won’t Recidivate
Train/val/test 20088/2338/749 1415/229/491 13172/1569/748 5491/705/444
Model Type ANN(2, 20) ANN(2, 20) ANN(2, 20) ANN(2, 20)
Val Accuracy 82% 69% 81% 61%

Sandra Wachter, B. Mittelstadt, and Chris Russell. Counterfactual explanations without opening the
black box: Automated decisions and the gdpr. Cybersecurity, 2017.

David S. Watson, Limor Gultchin, Ankur Taly, and Luciano Floridi. Local explanations via necessity
and sufficiency: unifying theory and practice. In Cassio de Campos and Marloes H. Maathuis
(eds.), Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence,
volume 161 of Proceedings of Machine Learning Research, pp. 1382–1392. PMLR, 27–30 Jul
2021. URL https://proceedings.mlr.press/v161/watson21a.html.

A APPENDIX FOR INSPIRE: A FRAMEWORK FOR INTEGRATING
INDIVIDUAL USER PREFERENCES IN RECOURSE

A.1 EXPERIMENTAL SETUP

A.1.1 DATASETS AND BLACK-BOX MODEL

In our experiments, we have two versions of the dataset, one with binary categorical features,
whereas the other with non-binary categorical features. In the main paper, we show results on
the binarized version (Table 1) as an important baseline, Actionable Recourse (Ustun et al., 2019),
operates with binary categorical features.3 The data statistics for all the datasets can be found in
Table 5. In our experiments, for all the datasets, the features gender and race are considered to
be immutable (Mothilal et al., 2020), since we perform subgroup analysis with these variables that
would be rendered meaningless if users could switch subgroups. Other features can either be muta-
ble or conditionally mutable depending on semantics. These constraints can be incorporated into the
methods by providing a schema of feature mutability criterion. Our black-box model is a multi-layer
perceptron model with 2 hidden layers trained on the trained set and validated on the dev set. The
accuracy numbers are shown in Table 5. The test set which is used in the counterfactual generation
experiments only contains users which are classified to the undesired class by the trained black-box
model. Note that our frameworks can operate with any type of model, the only requirement is the
ability to query the model for outcome given a user’s state vector.

A.1.2 COMPUTATIONAL COMPLEXITY:

COLS is a local search-based method and runs for O(B
|S|) iterations for each user to generate the

recourse set, where B is the budget (see section 5.1 - Baselines). The complexity of the cost op-
timization step in COLS is O(|S|2 ∗ M) per iteration. Values of |S| and M as low as 3 and 10
respectively work well in practice (see Appendix B.2 and Figure 5, 6). Finally for the current im-
plementation the wall clock time on the adult dataset for each user with |S| = 10, M = 100, B =
5000 setting is COLS = 20s, Random = 7.5s, DICE = 7.5s, AR = 11s, Face-knn = 7s, Face-Eps = 6s
(can be parallelized across users). Cost function samples can be pre-computed once and saved for
all experiments, this typically takes a few minutes (< 5 min) across all users.

3The binary datasets can be downloaded from https://github.com/carla-recourse/cf-data, whereas the non-
binary data can be found on https://github.com/interpretml/DiCE.

13

https://proceedings.mlr.press/v161/watson21a.html
https://github.com/carla-recourse/cf-data
https://github.com/interpretml/DiCE

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
User -weight

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
on

te
 C

ar
lo

-w

ei
gh

t Linear vs Percentile Cost Robustness

50

60

70

80

90

100

Figure 2: This figure shows the performance of the
method on FS@k when recourses are generated with
Monte Carlo cost samples from a distribution with
α-weight varying between 0 and 1, where the user
costs follow different α-weight values varying be-
tween 0, 1. Performance is robust to misspecifica-
tion of α. Refer to Section A.2 for more details.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Distribution Shift

95

96

97

98

99

100

Bi
nn

ed
 F

S@
1

Methods Robustness to Distribution Shifts
COLS

Figure 3: In this plot we show the fraction of users
satisfied vs the distance between the train and test
distributions. The results demonstrate that as the
distance increases the performance drops a bit and
then plateaus, which means that the method is ro-
bust to this kind of distribution shift. Please refer to
Section A.2 for more details.

A.1.3 RECOURSE GENERATION AND EVALUATION PIPELINE

To approximate the expectation in equation 3, our algorithm samples a set of random cost functions
{Ci}Mi=1 ∼ Dtrain, which are used at the generation time to optimize for the user’s hidden cost
function. In the generation phase, we use Equation 4 as our objective. Note that, this objective
promotes that the generated counterfactual set contains at least one good counterfactual for each of
the cost samples, hence this set satisfies a large variety of samples from Dtrain. This is achieved via
minimizing the mean of the minimum cost incurred for each of the Monte Carlo samples (Robert
& Casella, 2010). Equivalently, the objective is minimized by a set of counterfactuals S where for
each cost function there exists an element in S which incurs the least possible cost. In practice the
size of set S is restricted, hence we may not achieve the absolute minimum cost but the objective
tries to ensure that the counterfactuals which belong to the set have a low cost at least with respect
to one Monte Carlo cost sample. The generation phase outputs a set of counterfactuals S which is
to be provided to the users as recourse options. Given this set Su, in the evaluation phase, we use
the users simulated cost functions which are hidden in the generation phase, to compute the cost
incurred by the user MinCost(su,S; C#u) and calculate the metrics defined in the Section 4.1.

A.1.4 DETAILS OF HUMAN EVALUATION

For our human evaluation experiments, we had three undergraduate research assistants with a back-
ground in computer science. They were provided with a set of instructions on how to interpret
and perform the task. Specifically, in virtual meetings, we provided them with an overview of the
dataset along with the feature descriptions, a description of the task, and an overview of the recourse
generation problem. Before testing, we conducted a small understanding quiz including example
problems, and we corrected any misunderstandings of the study procedure. For each data point,
they were asked to assume that they were a hypothetical user with the given state vector and pref-
erence scores in the sample and then were provided with the recourses generated by our method
and Actionable Recourse Ustun et al. (2019) (in a blind format with randomized ordering). In total,
we collected three annotations each for 100 samples from the Adult-Income dataset. We don’t see
any participant risks from doing the study, as the participant were asked to assume the identity of
hypothetical user and asked to guess which recourse are better. The hourly rate for for the annota-
tors was 12.5$/hours and it took around 2.5 hours for the whole study which leads to a total cost of
93.75$. The instructions provided to the participants of the human study are shown in Figure 7 and
a screenshot of how the study was conducted is provided in Figure 8.

14

Under review as a conference paper at ICLR 2023

A.2 ADDITIONAL RESEARCH QUESTIONS

Q5. Robustness to Misspecification in population’s true and proposed cost function distribu-
tion?

Design: Our Dmix distribution samples cost by taking an α-weighted combination of linear and
percentile costs. These two cost have different underlying assumptions about the how users view
the cost of transition between the states. We want to test the robustness of our method in terms of
misspecification in users disposition to these types of cost. We perform a robustness analysis where
the users cost function has a different α mixing weight as compared to the Monte Carlo samples
we use to optimize for EMC. This creates a distribution shift in the user cost function distribution
(Dtest) and the Monte Carlo sampling distribution (Dtrain) used in EMC. We vary the user and
Monte Carlo distributions α-weights within the range of 0 to 1 in steps of 0.2. At the extremes
values of α = 0, 1, the shifts are very drastic as the underlying distribution changes completely.
In the case when monte carlo α weight is 0 and user α weight is 1 then Dtrain = Dperc and
Dtest = Dlin, simlarly for the other case we get Dtrain = Dlin and Dtest = Dperc. Please note
that the distribution Dlin and Dperc have completely different underlying principles and are two
completely different distributions. Hence, the corners of the heatmap represent drastic distribution
shifts.

Results: In Figure 2, we show a heatmap plot to which demonstrates the robustness of our method.
The color of the block corresponding to Monte Carlo alpha, αmc = x and the users alpha, αuser = y
represents the fraction of users that were satisfied when αmc = x and αuser = y. This means that
if the user thought of costs only in terms of Linear step involved but the recourse method used
samples with only percentile based cost, still the recourse set can satisfy almost the same number
of users. In Figure 3, the corners correspond to these extreme cases described above, the user
satisfaction for the top left corner (Dtrain = Dperc and Dtest = Dlin) is similar to the bottom left
corner (Dtrain = Dlin and Dtest = Dlin). Similarly things happen for the opposite case which is
denoted by the top-right (Dtrain = Dperc and Dtest = Dperc) and bottom-right (Dtrain = Dlin

and Dtest = Dperc) corners. This means that even when a complete distribution shift occurs the
performance user satisfaction remains similar. This can be attributed to the hierarchical step for
user preference sampling in the procedure because the preferences values can be arbitrary and they
scale the raw percentile and linear cost hence the distribution designed this way to model extremely
diverse types of transition costs.

This means that our methods is robust to misspecification in the train and test distributions.
The almost consistent color of the grid means that there is very slight variation in the Fraction of
Satisfied users when the model is tested on out of distribution user cost types.

Q6. Are Solutions Robust to Misspecified Cost Distributions?

Design: In our cost sampling procedure, we make minimal assumptions about the user’s feature
preferences if they are not provided by the user. When finding recourses, we select a random subset
of features along with their preference score for each user. However, there are situations where user
preferences may be relatively homogeneous for certain features where people usually share common
preferences. For example, to increase their income, many users might prefer to edit their occupation
type or education level rather than their work hours or marital status. Given the possibility of this
kind of distribution shift in feature preferences, we want to measure how robust our method is to
distribution shift between our sampling distribution and the actual cost distribution followed by
users.

In this experiment, we test a case of this kind of distribution shift over cost functions. For users in
the Adult-Income data, we generate recourse sets using Monte Carlo samples from our standard dis-
tributionDmix (Algorithm 4). To obtain hidden user cost functions that differ from this distribution,
we first generate 500 different feature subsets indicating which features are editable, where each sub-
set corresponds to a binary vector concentration representing a user having specific preferences for
some features over others (see Sec. 3.1 and Alg. 4). Since having different editable features induces
a different distribution over cost functions, we obtain a measure of distribution shift for each of the
500 concentration vectors by taking an l2 distance between the vector and its nearest neighbor
in the space of concentration vectors used to generate the recourses. We use the nearest neighbor
because the most outlying concentration vectors are least likely to be satisfied by the recourse set.

15

Under review as a conference paper at ICLR 2023

500 1000 2000 3000 5000 10000
Budget

0

20

40

60

80
FS

@
1

User Satisfaction vs # black-box access
D
FE
FK
AR
R
COLS
P-COLS

Figure 4: Figure showing the performance of dif-
ferent recourse methods as the Budget is increased.
These are the average number across 5 different runs
along with the standard deviation error bars. For
some methods the standard deviation is very low
hence not visible as bars in the plot. It can be
seen that as the budget increases the performance of
COLS and P-COLS increases. Please refer to Sec-
tion A.2 for more details.

1 2 3 5 10 20 30
Number of Counterfactuals | |

0

20

40

60

80

FS
@

1

User Satisfaction vs # Counterfactuals
D
FE
FK
AR
R
COLS
P-COLS

Figure 5: Figure showing the performance of differ-
ent recourse methods as the the number of counter-
facuals to be generated is increased. These are the
average number across 5 different runs along with
standard deviation error bars. We see that there is
a monotonic increase in the fraction of users satis-
fied as the size of the set increases. We also observe
that most of the performance can be obtained with a
small set size. Please refer to Section A.2 for more
details.

Table 6: Fairness analysis of recourse methods for subgroups
with respect to Race. DIR: Disparate Impact Ratio; W: White,
NW: Non-White (Section 4.2).

Method Race FS@1 Cov DIR-FS DIR-Cov

DICE NW 0.0 0.0 - -W 3.1 10.4

Face-Eps NW 7.7 12.7 2.312 2.047W 17.8 26.0

Face-Knn NW 12.7 25.4 2.228 1.425W 28.3 36.2

Act. Recourse NW 46.5 54.9 1.101 1.056W 51.2 58.0

Random NW 4.9 28.9 1.571 1.076W 7.7 31.1

COLS NW 67.6 71.1 1.089 1.082W 73.6 76.9

P-COLS NW 72.5 74.6 1.07 1.092W 77.6 81.5

1 5 10 20 30 100 200 300 500 1000
Num MC Samples

55

60

65

70

75

80

FS
@

1

User Satisfaction vs # Monte Carlo Sample
COLS

Figure 6: Figure showing the performance
of the COLS method as the number of
Monte Carlo samples increase. These are the
average number across 5 different runs along
with standard deviation error bars. There is a
steep increase and then the performance sat-
urates. This implies that in practice we do
not need a large number of samples to con-
verge to the higher user satisfaction. Refer
to Section A.2 for more details.

In other words, the likelihood that a user is satisfied depends on the minimum distance between
their concentration vector and its nearest neighbor in the cost samples used at recourse generation
time. Therefore, when the minimum distance increases, there is a greater distribution shift between
the user’s cost functions and those obtained from Dmix. Finally, we measure how many users are
satisfied for a given degree of distribution shift.

Results: In Figure 3, we show a binned plot of FS@1 against our measure of distribution shift.
We observe that as the distance between the distributions increases, the fraction of users satisfied
decreases slightly and then plateaus. Even at the maximum distance we obtain, performance has only
dropped about 3 points. This implies that our method is robust to distribution shift in the cost
distribution in terms of which features people prefer to edit. We attribute this result to the fact
that our method (1) assumes random feature preferences which subsumes these skewed preferences
and (2) provides multiple recourse options, each of which can cater to different kinds of preferences.
As a result, we achieve a good covering of the cost function space (see experiments with respect to
varying recourse set size and number of sampled cost functions in the Appendix A.2).

Q7. Does Method Performance Scale with Available Compute?

16

Under review as a conference paper at ICLR 2023

Figure 7: Instructions for Human Evaluation. Please refer to Section A.1.4 for more details.

Figure 8: Screenshots of how the human evaluation test was conducted. Please refer to Section A.1.4 for more
details.

17

Under review as a conference paper at ICLR 2023

Table 7: Table providing qualitative examples for two users from the dataset. We show each users state vector,
the features that user is willing to edit, the preference scores for those editable features, the recourses provided
and the cost of the generated recourses. In the first example we see that user highly prefers the feature capital
loss and the recourse which suggests edit to that has the lowest cost for the user. Whereas, the recourse which
makes changes to both Occupation and Capital Loss has the highest cost as its changing multiple features.
For the second user, we see that the most preferred feature is Education-Num but the changes suggested in the
recourse requires three steps 7-8-9-10, hence the cost for that recourse is not the lowest but still relatively low.
Whereas, the recourse suggesting smaller changes to Capital Loss which is the second most preferred feature
has the lowest cost for the user.

Feature Name State Vector Editable Features Preference scores Recourses Cost

Age 24 No 0 (
Capital Loss: 0→ 1

)
0.009Workclass Private No 0

Education-Num 10 No 0
Martial-Status Married No 0
Occupation Other Yes 0.055 (

Occupation: Other→ Manager
)

0.378Relationship Husband No 0
Race White No 0
Gender Male No 0
Capital Gain 0 No 0 (

Occupation: Other→ Manager
Capital Loss: 0→ 1

)
0.387Capital Loss 0 Yes 0.944

Work Hours 40 No 0
Country US No 0

Age 45 No 0 (
Capital Loss: 0→ 1

)
0.071Workclass Private No 0

Education-Num 7 Yes 0.537
Martial-Status Married No 0 (

Capital Gain: 0→ 1
)

0.106Occupation Other No 0
Relationship Non-Husband No 0
Race White No 0 (

Education-Num: 7→ 10
)

0.187Gender Female No 0
Capital Gain 0 Yes 0.078
Capital Loss 0 Yes 0.240 (

Work Hours: 32→ 70
)

0.695# Work Hours 32 Yes 0.142
Country US No 0

Design: In this experiment on the Adult-Income dataset, we measure the change in performance
of all the models as the number of access to the black-box model (budget) increases. Ideally, a
good recourse method should be able to exploit these extra queries and use it to satisfy more users.
We vary the allocated budget in the set {500, 1000, 2000, 3000, 5000, 10000} and report the FS@1.
We run the experiment on a random subset of 100 users for 5 independent runs and then report the
average performance with standard deviation-based error bars in Figure 4.

Results: In Figure 4, we can see that as the allocated budget increases the performance of the
COLS and P-COLS increases and then saturates. This suggests that our method can exploit the
additional black-box access to improve the performance. Other methods like AR and Face-Knn also
show performance improvement but our method COLS and P-COLS consistently upper-bound their
performance. Our method satisfies approximately 70% of the user with a small budget of 500
and quickly starts to saturate around a budget of 1000. This suggests that our methods are suitable
even under tight budget constraints as they can achieve good performance rapidly. For example, in
a real-world scenario where the recourse method is deployed and has to cater to a large population, in
such cases there might be budget constraints imposed onto the method where achieving good quality
solution quickly is required. Lastly, for DICE and Random search the performance on the FS@1
increase by a very small margin and then stays constant as these methods are trying to optimize for
different objectives which don’t align well with user satisfaction as demonstrated in Section 4.2.

Q8. Does providing more options to users help?

Design: In this experiment, we measure the effect of having flexibility to provide the user with
more options, i.e. a bigger set S. The question here is that can the methods effectively exploit this
advantage and provide lower cost solution sets to the user such that the overall user satisfaction is
improved. In this experiment on the Adult-Income dataset, we take a random subset of 100 users
and fix the budget to 5000, Monte Carlo cost sample is set to 1000 and then vary the size of the set
S in the set {1, 2, 3, 5, 10, 20, 30}. We restrict the size of the set to a maximum of 30 as beyond
a point it becomes hard for users to evaluate all the recourse options and decide which one to act
upon. We run 5 independent runs for all the data points and plot the mean performance along with

18

Under review as a conference paper at ICLR 2023

Table 8: Table comparing different recourse methods across various cost and distance metrics on Non-Binary
versions of the datasets (Section A.1.1).The numbers reported are averaged across 5 different runs. Variance
values have been as 89% of them were lower than 0.05, with the maximum being 0.86. FS@1: Fraction of
users satisfied at k = 1. PAC: Population Average Cost. Cov: Population Coverage. For all the metrics higher
is better except for PAC where lower is better.

Data Method Metrics

Cost Metrics Distance Metrics

FS@1 PAC(↓) Cov Div Prox Spars Val

Adult-Income - NB

DICE 6.28 1.45 27.01 53.01 57.02 47.80 86.20
Random 0.08 2.42 17.41 70.35 33.32 22.45 75.71

COLS 72.67 0.36 74.60 29.27 79.06 76.64 97.85
P-COLS 70.03 0.39 72.81 29.85 78.45 76.29 92.30

COMPAS - NB

DICE 14.86 1.02 25.45 27.88 82.38 69.44 99.86
Random 1.31 1.87 21.76 49.07 54.10 42.34 67.82

COLS 67.34 0.31 68.11 20.53 85.47 82.34 95.97
P-COLS 70.86 0.35 72.03 21.03 85.48 82.88 91.93

standard deviation error bars. In Figure 5, we plot the fraction of users satisfied @1 as the size of
set S is increased.

Result: We observed that COLS and P-COLS monotonically increase the FS@1 metric as |S|
increases from 1 to 30. This is consistent with the intuition behind our methods (See Figure 1, sec-
tion 3.2, A.1.3 for more details). It is a fundamental property of our objective that as |S| increases
towards M which is 1000 in this case, then the quality of the solution set should increase and reach
the best possible value that can be provided under the user’s cost function. We note empirically that
smaller set size |S| between 3 to 10 is enough in most practical cases to reach close to maximum
performance. Additionally, even with |S| ∈ {1, 2, 3} our methods significantly outperform all the
other methods in terms of the number of users satisfied. This property is useful in real-world sce-
narios where the deployed recourse method can provide as little as 3 options while still satisfying
a large fraction of users. Additionally, we also see improvement in the case of AR and Face-Knn
methods as |S| increases. Note that Randoms Search’s performance doesn’t change as we increase
the set size because the method doesn’t take local steps from the best set and samples random points
from a very large space, hence it is much harder to end up with low-cost counterfactuals.

Q9. Does increase the number of Monte Carlo samples help with user satisfaction?

Design: In this experiment, we want to demonstrate the effect of increasing the number of Monte
Carlo samples on the performance of our COLS method. We take a random subset of 100 users,
a budget of 5000, |S| = 10. We vary the number of Monte Carlo samples (M) in the set
{1, 5, 10, 20, 30, 100, 200, 300, 500, 1000} and compute the user satisfaction. We ran 5 different
runs with different Monte Carlo samples and show the average FS@1 along with the standard devi-
ation in the Figure 6.
Results: We observe that as the number of Monte Carlo samples increases, the performance of
the method on the FS@1 metric monotonically increases. This supports the intuition underlying
our method (see Figure 1). That is, given a user with a cost function C∗u as we get more and more
samples from the cost distribution Dtrain the probability of having a cost sample similar to C∗u in-
creases and hence the fraction of satisfied users increase. It is important to note that empirically the
method’s performance approaches maximum user satisfaction with as low as 20 Monte Carlo
samples. In real-world scenarios, where the deployed model is catering to a large population this
can lead to small recourse generation time, hence making it more practical.

Q10. Qualitative examples of the recourses generated for some of the users.

In Table 7, we show a few examples of users along with their state vector, their editable features,
their preference scores along with the recourses provided to them and their cost.

Q11. Comparison of methods on Non Binary Dataset?

19

Under review as a conference paper at ICLR 2023

Table 9: Table comparing different recourse methods across various cost and distance metrics for a black-box
model with different seed but belonging to the same model family. The numbers reported are averaged across
5 different runs.

Data Method Metrics

Cost Metrics Distance Metrics

FS@1 PAC(↓) Cov Div Prox Spars Val

Adult-Income

DICE 2.70 1.24 7.10 3.80 66.20 47.30 97.80
Face-Eps 13.32 0.79 19.88 5.43 91.97 74.80 100.00
Face-Knn 21.78 0.83 34.13 8.67 88.68 71.43 100.00

Act. Recourse 46.55 0.58 53.82 19.07 74.33 73.25 80.72
Random 5.71 1.42 28.24 48.93 55.10 39.30 78.73

COLS 75.12 0.36 77.40 25.43 81.00 77.70 98.28
P-COLS 75.76 0.38 79.14 25.54 81.84 78.38 95.10

COMPAS

DICE 0.90 0.88 1.50 12.50 63.90 30.70 99.30
Face-Eps 6.80 0.29 6.80 2.40 95.00 60.40 100.00
Face-Knn 6.80 0.29 6.80 2.40 94.90 60.30 100.00

Act. Recourse 56.24 0.45 58.48 9.72 80.12 73.62 39.10
Random 27.44 0.78 35.70 41.76 58.14 33.06 49.34

COLS 77.08 0.24 77.90 29.33 76.90 68.87 95.78
P-COLS 78.32 0.24 79.02 29.02 77.88 70.08 92.10

In Table 8, we show the results on the non-binary version of the dataset. We observe similar perfor-
mance on and trends in these results as well. COLS and P-COLS performs the best in terms of user
satisfaction.

Q12. Robustness to black-box model architecture families and randomness?

In this experiment we demonstrate the result of our model when we train the same ANN architecture
with different random seed (Table 9) and when we change the model family to a logistic regression
classifier (Table 10). These obtained results have similar trends and demonstrate the effectiveness
and robustness of our methods COLS and P-COLS which consistently satisfy cover and satisfy more
users with low average population costs. In Table 9, we show the results when we train another
black-box model with a different seed to see the effect of having a different trained model from the
same model family.

Q13. Additional results for different values of k in FS@k
In Table 11, we report the fraction of satisfied user metric FS@k for four different values of k ∈
{0.5, 1, 2, 3}. These results are an extension of the results presented in Table 1.

B APPENDIX - OBJECTIVE AND OPTIMIZATION

B.1 PROPOSED METHOD

B.1.1 OTHER OBJECTIVES

To obtain feasible a counterfactual set, past works have used various objective terms. We list objec-
tives below from methods we compare with.

1. DICE (Mothilal et al., 2020) optimizes for a combination of Distance Metrics like diversity
and proximity. They model diversity via Determinantal Point Processes (Kulesza & Taskar, 2012)
adopted for solving subset selection problems with diversity constraints. They use determinant of
the kernel matrix given by the counterfactuals as their diversity objective as defined below.

dpp_diversity(S) = det(K), whereKij =
1

1 + dist(si, sj)

Here, dist(si, sj) is the normalized distance metric as defined in Wachter et al. (2017) between two
state vectors. Proximity is defined in terms of the distance between the original state vector and the
counterfacutals, prox(x,S) = 1− 1

N

∑|S|
i=1 dist(x,Si), where Si is a counterfactual.

20

Under review as a conference paper at ICLR 2023

Table 10: Table comparing different recourse methods across various cost and distance metrics for a logistic
regression black-box model. The numbers reported are averaged across 5 different runs.

Data Method Metrics

Cost Metrics Distance Metrics

FS@1 PAC(↓) Cov Div Prox Spars Val

Adult-Income

D 1.30 1.47 7.10 6.50 64.80 49.20 76.60
FE 2.82 0.99 5.46 9.44 83.08 65.90 100.00
FK 17.04 0.90 28.08 7.22 83.98 67.80 100.00
AR 44.40 0.62 52.62 21.74 74.00 72.92 87.58
R 3.60 1.59 24.10 48.14 54.76 38.94 79.46

COLS 67.93 0.39 69.97 27.83 78.40 74.43 99.13
P-COLS 69.17 0.40 71.57 27.20 79.30 76.70 95.67

COMPAS

D 0.00 - 0.00 11.10 63.10 29.20 100.00
FE 6.30 0.16 6.30 3.60 95.00 60.50 100.00
FK 6.30 0.16 6.30 3.60 95.00 60.50 100.00
AR 74.32 0.31 74.32 15.66 80.98 74.26 53.66
R 28.76 0.77 36.96 43.22 56.22 32.00 82.10

COLS 87.88 0.18 87.88 31.92 76.93 71.63 89.33
P-COLS 89.25 0.17 89.25 28.17 81.13 74.73 91.62

Table 11: Cost metrics for additional k values in FS@k for the results presented in the main Table 1.

Data Method Cost Metrics
FS@0.5 FS@1 FS@2 FS@3

Adult-Income

DICE 0.4 2.47 6.9 8.23
Face-Eps 7.32 15.23 22.57 22.6
Face-Knn 11.08 25.3 34.82 35

Act. Recourse 28.03 49.93 56.78 56.85
Random 0.82 6.27 28.5 31.68

COLS 53.4 72.57 76.05 76.07
P-COLS 53.42 75.82 79.18 79.2

COMPAS

DICE 0.2 0.4 0.4 0.4
Face-Eps 10.4 12.2 12.2 12.2
Face-Knn 10.4 12.2 12.2 12.2

Act. Recourse 42.47 65.8 66.6 66.6
Random 7.85 29.95 39.2 39.2

COLS 73.07 82.23 82.23 82.23
P-COLS 74.33 83.73 83.73 83.73

2. Actionable Recourse (Ustun et al., 2019) work under the assumption that all features have equal
preference scores for all the users. They define cost function based on the log-percentile shift is
given by,

cost(s+ a; s) =
∑
j∈JA

log
1−Qj(sj + aj)

1−Qj(sj)

where Qj(.) is the cumulative distribution function of sj in the target population, JA is the set of
actionable features and aj is the action performed on the feature j.

B.2 OPTIMIZATION METHODS

Notation: We assume that we have a dataset with features F = {f1, f2, ...fk}. Each feature can
either be continuous Fcon ⊂ F or categorical Fcat ⊂ F . Each continuous feature f con

i takes
values in the range [rmin

i , rmax
i], which we discretize to integer values. For a continuous feature fi,

we define the range Q(fi) = {k ∈ Z : k ∈ [rmin
i , rmax

i]} and for a categorical feature fi, we define it
as Q(fi) = {qfi1 , qfi2 , ..., qfidi

}, where qfi(.) are the states that feature fi can take. Features can either be
mutable (Fm), conditionally mutable (Fcm), or immutable (F⊘), according to the real-world causal

21

Under review as a conference paper at ICLR 2023

Algorithm 2 Sampling procedure for Percentile Transition Costs
Input: State vector s, Optional: Feature Preference Scores p
Output: Percentile based Transition Cost functions C.
function PerCost(s,p = None)

forall fi ∈ F do
// si value of feature fi in s.

if pfi = 0 then
C(fi, si, .) =∞
C(fi, si, si) = 0

else
if fi is ordered then

if fi can only increase then

C(fi, si, x) =


|getPercentile(x)− getPercentile(si)| ∀x > si
0 ∀x = si
∞ ∀x < si

else if fi can only decrease then

C(fi, si, x) =


|getPercentile(si)− getPercentile(x)| ∀x < si
0 ∀x = si
∞ ∀x > si

else if fi can both increase or decrease then

C(fi, si, x) =


|getPercentile(x)− getPercentile(si)| ∀x > si
0 ∀x = si
|getPercentile(si)− getPercentile(x)| ∀x < si

else if fi is unordered then
C(fi, si, .) = Uniform(0, 1)

end
if p is not None then
C(fi, si, .)← C(fi, si, .) ∗ (1− pfi)

return C
end

processes that generate the data. Mutable features can transition from between any pair of states in
Q(fi); conditionally mutable features can transition between pairs of states only when permitted
by certain conditions; and immutable features cannot be changed under any circumstances. For
example, Race is an immutable feature (Mothilal et al., 2020), Age and Education are conditionally
mutable (cannot be decreased under any circumstances), and number of work hours is mutable (can
both increase and decrease). Lastly, while continuous features inherently define an ordering in its
values, categorical features can either be ordered or unordered based on its semantic meaning. For
instance, Age is an ordered feature that is conditionally mutable (can only increase).

B.2.1 HIERARCHICAL COST SAMPLING PROCEDURE

To optimize for EMC, we need a plausible distribution which can model users’ cost functions. We
propose a hierarchical cost sampling distribution which provides cost samples that are a linear com-
bination of percentile shift cost (Ustun et al., 2019) and linear cost, where the weights of this com-
bination are user-specific. Percentile shift cost for ordered features is proportional to the change in a
feature’s percentile associated with the change from an old feature value to a new one. E.g., if a user
is asked to increase the number of work hours from 40 to 70, then given the whole dataset, we can
estimate the percentile of users working 40 and 70 hours a week. The cost incurred is then propor-
tional to the difference in these percentiles. The Linear cost for ordered features is proportional to
the number of intermediate states a user will have to go through while transitioning from their cur-
rent state to the final state. E.g., if a user is asked to change their education level from High-school to
Masters then there are two steps involved in the process. First, they need to get a Bachelors degree
and then a Masters degree in which case, the user’s cost is proportional to 2 because of the two steps
involved in the process.

22

Under review as a conference paper at ICLR 2023

Algorithm 3 Sampling procedure for Linear Transition Costs
Input: State vector s, Optional: Feature Preference Scores p
Output: Linear change based Transition Cost functions C.
function LinCost(s,p = None)

if pfi = 0 then
C(fi, si, .) =∞
C(fi, si, si) = 0

else
if fi is ordered then

if fi can only increase then

C(fi, si, x) =


|{y | y>si∧y≤x}|

|{y | y>si}| ∀x > si

0 ∀x = si
∞ ∀x < si

else if fi can only decrease then

C(fi, si, x) =


|{y | y<si∧y≥x}|

|{y | y<si}| ∀x < si

0 ∀x = si
∞ ∀x > si

else if fi can both increase or decrease then

C(fi, si, x) =


|{y | y>si∧y≤x}|

|{y | y>si}| ∀x > si

0 ∀x = si
|{y | y<si∧y≥x}|

|{y | y<si}| ∀x < si
else if fi is unordered then
C(fi, si, .) = Uniform(0, 1)

if p is not None then
C(fi, si, .)← C(fi, si, .) ∗ (1− pfi)

return C
end

Algorithm 4 Sampling Cost Functions from Dmix.
Input: State vector s, Optional: Preferred features Fp, feature preference scores p, cost-type mixing weight α
Output: Preference scores p and the cost functions C.
function sampleCost(s, α = None,Fp = {}, p = None)

if Fp is {} then
Fp ∼ RandomSubset(Fmutable)

if p is None then
concentration = [1 if f ∈ Fp else 0 for f in F]
p ∼ Dirichlet(concentration)

if α is None then
α ∼ Uniform(0, 1)

C = {}
▷ Get means and variance for costs.

C(Lin) ← LinCost(s, p(fi), fi,Fp)

C(Perc) ← PerCost(s, p(fi), fi,Fp)

C(Mix) ←− α ∗ C(Lin) + (1− α) ∗ C(Perc)

▷ Beta parametrized with mean and variance

Cp ←− Beta(C(Mix), σ = 0.01)
return p, Cp

end

B.2.2 MERGING COUNTERFACTUAL SETS

When searching for a good solution set, it would be useful to have the option of improving on the
best set we have obtained so far using individual counterfactuals in the next candidate set we see,
rather than waiting for a new, higher-scoring set to come along. While optimizing for objectives
like diversity, which operate over all pairs of elements in the set, it is computationally complex to

23

Under review as a conference paper at ICLR 2023

Algorithm 5 Algorithm for Theorem 3.1

Input: Cb,C ∈ RN×M matrices containing the costs with respect to all cost samples..
Output: B ∈ RN×N , matrix containing the benefits of replacing pairs from Sbestt−1 × St
function computeBenefits(Cb,C)

Initialize
B ∈ RN×N ← 0

// Find the indices of the best and second best counterfactual in Sbest

for each of the M cost function.

b1 ∈ RM = argmaxi Cb
ij

b2 ∈ RM = arg second maxiC
b
ij

// Iterate over all pairs of counterfactuals.
forall p, q ∈ [N]× [N] do

// Iterate over cost functions for which pth counterfactual in Sbest

has the minimum cost.

forall r ∈ {i ∈ [M] | b1i = p} do
if Cb

pr > Cqr then
// This replacement reduces the cost of Sbest by Cb

pr − Cqr.

Bpq+ = Cb
pr − Cqr

else
// Cb

b2r,r
= cost of second best counterfactual in Sbest for rth

cost function.

Bpq+ = Cb
pr −min(Cqr,Cb

b2
r,r

)

end
end
return B

end

24

Under review as a conference paper at ICLR 2023

evaluate the change in the objective function if one element of the set is replaced by a new one. To
evaluate the change in objective in such cases, we need iterate over all pairs of element in the best
and the candidate set and then evaluate the objective for the whole set again. The iteration over both
the sets here is not the hard part but the computation that needs to be done within. For our objective,
we can compute costs for individual recourses rather than sets, meaning we can do a trivial operation
to compute the benefits of each pair replacement. But, if we wanted to do this with diversity then for
each pair of replacement we need to compute additional S distances for each replacement because
the distance of the new replace vector needs to be computed with respect to all the other vectors,
for each iteration of the nested loop. This quickly makes it infeasible to improve the best set by
replacing individual candidates with the best set elements. However, for metrics where it is easy to
evaluate the effect of individual elements on the objective function, we can easily merge the best set
and any other set St from time t to monotonically increase the objective function value.

In our objective function, EMC, we can compute the goodness of individual counterfactuals with
respect to all the Monte Carlo samples (Robert & Casella, 2010). Given a set of counterfactuals we
can obtain a matrix of incurred cost C ∈ RN×M , which specifies the cost of each counterfactual
for each of the Monte Carlo samples. We can use this to update the best set Sbest using elements
from the perturbed set St at time t. This procedure is defined in algorithm 5. It iterates over all
pairs of element in si ∈ Sbest and sj ∈ St and computes the change that will occur in the objective
function by replacing si → sj . Note that we are not recomputing the costs here. Given Sbest, St,
Cb and C, we can guarantee that we will update the best set Sbest in a way to improve the mean of
the minimum costs incurred for all the Monte Carlo samples. This is shown in algorithm 5 and the
monotonicity of the EMC objective under this case can be formally stated as,

Theorem B.1 (Monotonicity of Cost-Optimized Local Search Algorithm). Given the best set,
Sbestt−1 ∈ RN×d, the candidate counterfactual at iteration t, St ∈ RN×d, the matrix Cb ∈ RN×M

and C ∈ RN×M containing the incurred cost of each counterfactual in Sbestt−1 and St with respect to
all the M sampled cost functions {Ci}Mi=1, there always exist a Sbestt constructed from Sbestt−1 and St
such that

EMC(su,Sbestt ; {Ci}Mi=1) ≤ EMC(su,Sbestt−1 ; {Ci}Mi=1)

Proof. To prove this theorem, we construct a procedure that ensures that the EMC is monotonic. For
this procedure, we prove that the monotonicity of EMC holds. Check algorithm 5 for a constructive
procedure for this proof, which is more intuitive to understand.

We start off by noting that each element of Cb
ij is the cost of the ith counterfactual sbi in the best set

Sbestt−1 with respect to the cost function Cj given by Cost(su, sbi ; Cj). Similarly Cij = Cost(su, si; Cj)
where si is the ith candidate counterfactual. Note that, the EMC is the average of the MinCost with
respect to all the sampled cost function Cj . What this means is that given a pair of counterfactual
from Sbestt−1 × St and for each Cj , we can compute the change in the MinCost which we describe
later. These replacements can lead to an increase in the cost with respect to certain cost function
but the overall reduction depend on the aggregate change over all the cost functions. Given this, for
each replacement candidate pair in Sbestt−1 × St, we can compute the change in EMC by summing
up the changes in the MinCost across all cost functions Cj ; this is called the cost-benefit for this
replacement pair. The cost benefit can be negative for certain replacements as well if the candidate
counterfactual increases the cost across all the cost functions. The pairs with the highest positive
cost benefits are replaced to construct the set Sbestt , if no pair has a positive benefit then we keep set
Sbestt−1 = Sbestt . Hence, this procedure monotonically reduces EMC. We now specify how the change
in MinCost can be computed to complete the proof.

To compute the change in MinCost for a single cost function Ci, first we find the counterfactual
in Sbestt−1 with the lowest and second lowest cost which we denote by sbl1 and sbl2 . These are the
counterfactuals which can affect the MinCost with respect to a particular cost function Ci. This is
true because when we replace the counterfactual sbl1 which has the lowest cost for Cj with a new
candidate counterfactual si, there are two cases. Either, Cb

l1j > Cij or Cb
l1j ≤ Cij . In case when

the candidate si has lower cost for Cj than Cb
l1j , i.e. Cb

l1j > Cij , then the replacement reduces the
cost by Cb

l1j − Cij . In case when the candidate cost for Cj , Cij , is higher than the lowest cost in
the best set Cb

l1j , i.e. Cb
l1j ≤ Cij , it means that this replacement will increase the cost for Ci by

25

Under review as a conference paper at ICLR 2023

Cb
l1j − min(Cij ,Cb

l2j). Here, Cb
l2j is the second lowest cost counterfactual for Ci. Note that the

change in this case will be negative and also depend on the second best counterfactual because once
the sbl1 is removed from the set, the best cost for Ci will either be for sbl2 or si, hence we take the
minimum of those two and then take the difference as the increase in cost. Please refer to Algorithm
5 for a cognitively easier way to understand the proof.

B.2.3 OTHER METHODS

In this section, we describe some of the optimization methods used by relevant baselines.

1. DICE (Mothilal et al., 2020) perform gradient-based optimization in this continuous space while
optimizing for objective defined in Section B.1.1. Their final objective function is defined as

C(x) = argmin
c1,...,ck

1

k

k∑
i=1

loss(f(ci), y) +
λ1

k

k∑
i=1

dist(ci,x)− λ2 dpp_diversity(c1, . . . , ck)

where ci is a counterfactual, k is the number of counterfactuals, f(.) is the black box ML model,
yloss(.) is the metric which minimizes the distance between models prediction and the desired
outcome y. dpp_diversity(.) is the diversity metric as defined in Section B.1.1 and λ1 and λ2 are
hyperparameters to balance the components in the objective. Please refer to Mothilal et al. (2020)
for more details.

2. FACE (Poyiadzi et al., 2020) operates under the idea that to obtain actionable counterfactuals they
need to be connected to the user state via paths that are probable under the original data distribution
aka high-density path. They construct two different types of graphs based on nearest neighbors
(Face-knn) and the ϵ-graph (Face-Eps). They define geodesic distance which trades-off between
the path length and the density along this path. Lastly, they use the Shortest Path First Algorithm
(Dijkstra’s algorithm) to get the final counterfactuals. Please refer to (Poyiadzi et al., 2020) for more
details.

3. Actionable Recourse (Ustun et al., 2019) tries to find an action set a for a user such that taking
the action changes the black-box models decision to the desired outcome class, denoted by +1. They
try to minimize the cost incurred by the user while restricting the set of actions within an action set
A(x). The set A(x) imposes constraints related to feasibility and actionability with respect to fea-
tures. They optimize the log-percentile shift objective (see Section B.1.1). Their final optimization
equation is

min cost(a;x) s.t. f(x+ a) = +1, a ∈ A(x)

which is cast as an Integer Linear Program (Mittleman, 2018) to provide users with recourses. Their
publicly available implementation is limited to a binary case for categorical features,4 hence we
demonstrate results on the binarized version of the dataset.

4Please refer to the this example where they mention about these restricted abilities
https://github.com/ustunb/actionable-recourse/blob/master/examples/ex_01_quickstart.ipynb

26

https://github.com/ustunb/actionable-recourse/blob/master/examples/ex_01_quickstart.ipynb

