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Abstract

We consider the problem of sampling transition paths between two given metastable
states of a molecular system, e.g. a folded and unfolded protein or products and
reactants of a chemical reaction. Due to the existence of high energy barriers
separating the states, these transition paths are unlikely to be sampled with standard
Molecular Dynamics (MD) simulation. Traditional methods to augment MD with
a bias potential to increase the probability of the transition rely on a dimensionality
reduction step based on Collective Variables (CVs). Unfortunately, selecting
appropriate CVs requires chemical intuition and traditional methods are therefore
not always applicable to larger systems. Additionally, when incorrect CVs are
used, the bias potential might not be minimal and bias the system along dimensions
irrelevant to the transition. Showing a formal relation between the problem of
sampling molecular transition paths, the Schrödinger bridge problem and stochastic
optimal control with neural network policies, we propose a machine learning
method for sampling said transitions. Unlike previous non-machine learning
approaches our method, named PIPS, does not depend on CVs. We show that our
method successful generates low energy transitions for Alanine Dipeptide as well
as the larger Polyproline and Chignolin proteins.

1 Introduction
Molecular Dynamics (MD) is a central tool in the (bio-)chemistry toolbox. By integrating Newton’s
equations of motion on a molecular scale, MD can provide insight into chemical processes and
systems without requiring expensive lab testing [Frenkel and Smit, 2001, Hollingsworth and Dror,
2018]. However, MD is limited when interested in transitions between two metastable configurations
of a system, such as the folding of a protein, general conformational changes, and chemical reactions.
These meta-stable states are separated by regions of high energy which are unlikely to be sampled
within a reasonable timespan. While machine learning based approximations of the interatomic forces
using neural force fields [Unke et al., 2021] have pushed the boundary in terms of system scale, it
does not address the problem of sampling molecular transition paths directly [Fu et al., 2022].

To overcome this issue, prior work in computational and physical chemistry has developed several
methods for the enhanced sampling of molecular transitions such as transition path sampling [Bolhuis
et al., 2002], umbrella sampling[Torrie and Valleau, 1977] and meta-dynamics [Laio and Parrinello,
2002]. Most of these methods speed up the sampling of transition paths by augmenting the MD
simulation with a (learned) bias potential that pushes the system to cross the energy barrier separating
two states. However, due to the large configuration space of molecular trajectories, finding such a
bias potential is in itself a computationally expensive task.
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Figure 1: Free-energy surface of Alanine
Dipeptide as a function of CV dihedral angles
ϕ and ψ highlighting the high energy barrier
separating the two metastable states. White
stars indicate saddle points in the high energy
barrier where the transition is likely to occur.

To circumvent this problem, prior methods depend
on Collective Variables (CVs). CVs are functions
of atomic coordinates that have been identified as
playing a role within the transition period. Biasing
methods rely on these CVs to reduce the complex-
ity of the bias potential by only biasing the system
along them. Limiting the bias potential to act on the
CVs is an intuitive approach since the most common
reason to sample transition paths, deriving transition
dependent quantities such as reaction free-energy and
reaction rate, are functions of CVs themselves [Bussi
and Branduardi, 2015]. See fig. 1 for an illustration
of the free-energy barrier separating two metastable
states of the Alanine Dipeptide protein for which the
dihedral angles ϕ and ψ are known to be CVs.

However, while sensible, depending on CVs to reduce
the dimensitionality of bias potential search space is
not always suitable. While some methodological ap-
proaches are available [Hooft et al., 2021] for smaller
systems, selecting CVs relies on prior expert knowledge. This limits the applicability of bias potential
enhanced sampling to systems for which this information is available. Additionally, when CVs are
incorrectly chosen, depending the bias potential on these CVs might result in errors in determining
dependent quantities [Bolhuis et al., 2000] and incorrect interpretation of the transition process.

For this purpose, we propose PIPS, a Path Integral stochastic optimal control [Kappen, 2005, Kappen
and Ruiz, 2016] method for Path Sampling of molecular transitions. PIPS leverages stochastic
optimal control theory to train a parameterised bias potential that, unlike previous methods from
computational chemistry, operates on the entire geometry of the molecule instead of depending on
predetermined CVs. This way, PIPS can be scaled to larger systems.

Contributions and outline Our contributions are organised as follows. First, we introduce the
problem of sampling transition paths in section 2. Second, we formally show in section 3 the
relationship between the problem of sampling transitions paths, the Schrodinger Bridge Problem
(section 3.1) and Stochastic Optimal Control (SOC) (section 3.3). Following this, we use the gained
insights regarding SOC in section 4 to propose PIPS; a method based on the PICE algorithm designed
for sampling molecular transition paths that does not depend on Collective Variables. Lastly, we
demonstrate the efficacy of PIPS on conformational transitions in three molecular systems of varying
complexity, namely Alanine Dipeptide, Polyproline, and Chignolin in section 5.

2 Preliminaries, Problem Setup, and Related Work
2.1 Molecular Dynamics

Given the state of a molecular system xt := (rt,vt) consisting of positions rt ∈ R3n and
velocities vt ∈ R3n at time t with n atoms sampled from the Gibbs distribution πG(xt) =
exp(− 1

kBT H(rt,vt)), Molecular Dynamics (MD) describe the time evolution of the state over time.
H is known as the Hamiltonian H(rt,vt) = U(rt) +K(vt), where U(rt) and K(vt) =

1
2mv2,

with mass m, respectively denote the Potential and Kinetic Energy of the system. The potential
energy of a system is defined by a parameterized sum of pairwise empirical potential functions, such
as harmonic bonds, angle potentials, inter-molecular electrostatic and Van der Waals potentials.

One common approach of integrating the molecular dynamics is Langevin Dynamics [Bussi and
Parrinello, 2007] which couple the deterministic Newtonian equations of motion with a stochastic
thermostat that acts like a heat bath. Langevin dynamics obey the following SDEs

dr = v · dt (1)

dv =
−∇rU(r)

m
· dt− γv · dt+

√
2mγkBT dW , (2)

where kB is the Boltzmann constant, T the temperature of the heath bath, and dW standard Brownian
Motion. γ, the friction term, couples the dynamics and the heat bath. Following this SDE samples
samples from the Canonical of NVT ensemble with constant temperature.
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2.2 Sampling Transition Path Sampling

By sampling an initial configuration x0 = (r0,v0) ∼ πG and following the MD simulation for
a fixed amount of time, one can generate trajectories x0:τ = {x0, . . . ,xτ}, of length τ . These
trajectories represent samples from the probability distribution over trajectories given by:

π(x0:τ ) = πG(x0) ·
τ∏

t=1

N (xt|µt−1,Σt−1), (3)

with µt = (vt · dt, −∇rU(rt)
m · dt− γvt · dt)T and Σ = diag(0, 2mγkBT ).

However, in the context of sampling transition paths, we are interested in trajectories with a predefined
an initial and final state. Ie. r0 ∈ R ⊂ R3n and rτ ∈ P ⊂ R3n. For example, R can describe the set
of reactants and P the set of products of a chemical reaction. Or, R can be the set of stable native
states of a protein while P is the set of folded proteins.

We will refer to the distribution over trajectories with restricted initial and target states as the
Transition Path (TP) distribution [Dellago et al., 1998].
Definition 1 (Transition Path (TP) distribution). Given a set of initial states R, target states P ,
potential energy U and a transition length τ the Transition Path (TP) distribution is defined as;

π∗(x0:τ ) =
1

Z
1R(r0) · π(x0:τ ) · 1P (rτ ) (4)

where 1R and 1P are indicator functions and π(x0:τ ) is defined according to eq. (3).

We can naively apply rejection sampling to sample from the TP distribution by sampling a system
x0 ∼ 1R(r0) · πG(x0), evolving it for τ steps according to the MD in eq. (1) and rejecting it when
rτ /∈ P . Unfortunately, when using standard molecular dynamics, it is very unlikely for any trajectory
starting in a state r0 ∈ R to terminate with rτ ∈ P due to the two sets of states being separated by
a high-energy barrier. Ie. for all x0:τ ∼ π∗ some xt has U(rt) >> U(r0). To be able to obtain a
representative number of trajectories, one is thus forced to generate a high number of trajectories,
making naive sampling from the TP distribution computationally very expensive.

2.3 Bias Potential Enhanced Sampling

To solve the problem caused by high-free energy barriers and to sample from the TP distribution
various enhanced sampling approaches are available. These will be further discussed in the related
work section. In this work, we will focus on a specific branch of enhanced sampling methods
called Bias Potential Enhanced Sampling (BPES). In BPES approaches, the stochastic dynamics are
enhanced with a bias potential b(r,v) such that when a system x0 ∼ 1R(r0) ·πG(x0) is transformed
according to the biased dynamics

dr = v · dt (5)

dv =
−∇r

(
U(r) + b(r,v)

)
m

· dt− γv · dt+
√
2mγkBT dW , (6)

a trajectory, of length τ , always terminates with rτ ∈ P .

Trajectories sampled by following these bias potential enhanced dynamics are sampled according to
what we refer to as the Bias Potential enhanced Transition Path (BPTP) distribution

πb(x0:τ ) = 1R(r0) · πG(x0) ·
τ∏

t=1

N (xt|µ̂t−1, Σ̂t−1), (7)

with µ̂t = (vt · dt,
−∇r

(
U(rt)+b(rt,vt)

)
m · dt− γvt · dt)T and Σ̂ = diag(0, 2mγkBT ).

Finding the bias potential b(r,v) such that trajectories sampled from the BPTP distribution are
distributed according to the TP distribution is referred to as the BPTP problem.
Definition 2 (BPTP problem). Given a set of initial states R, target states P and a Potential
Energy function U , the BPTP problem describes the task of finding an optimal bias potential b∗ such
that trajectories sampled from the BPTP distribution πb∗ are close to samples sampled to the TP
distribution π∗, ie.

b∗ = argmin
b

DKL(π
b|π∗). (8)
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2.3.1 Related Enhanced Sampling Methods

CV dependent Enhanced Sampling Most closely related to our work are the metadynamics [Laio
and Parrinello, 2002, Bussi and Branduardi, 2015, Barducci et al., 2008] and the Adaptive Biasing
Force (ABF) methods [Darve and Pohorille, 2001, Comer et al., 2015]. In metadynamics, the bias
potential is iteratively built as a sum of Gaussians centered at conformational states previously visited
during the MD simulation. This consecutively pushes the system outwards to regions of higher energy
not previously visited. Contrarily to metadynamics, ABF does not aim to learn the bias potential
b(r,v), but instead aims to control the system through the bias force b(r,v) = ∇rb(r,v) ∈ R3n.
The intuition behind ABF is to learn a bias force that cancels out the deterministic force from
the molecular potential. As a result, the only remaining driving force is the stochastic Langevin
thermostat which is not affected by the high energy barriers. Other approaches to sampling transition
paths using a bias potential include umbrella sampling Torrie and Valleau [1977], hyper-MD [Voter,
1997], the Wang-Landau method [Wang and Landau, 2001] and various less commonly applied
others [Sprik and Ciccotti, 1998, Grubmüller, 1995, Huber et al., 1994, Carter et al., 1989]. All these
methods depend on dimensionality reduction steps using CVs while our proposed method does not.

CV free Enhanced Sampling In addition to the CV dependent methods a different family of MCMC
based approaches for direct sampling from the TP distributions is available. These methods, such
as Transition Path Sampling [Dellago et al., 1998, Bolhuis et al., 2002] and Nudge Elastic Band
sampling [Henkelman et al., 2000], generally do not use a bias potential or CVs.

Recently, several machine learning solutions for the BPTP and related problems have been proposed.
For example, Das et al. [2021] use Reinforcement Learning to sample from the TP distribution under
Brownian dynamics, Schneider et al. [2017] consider the modelling of the free-energy surface using
neural networks, and both Sultan et al. [2018] and Sun et al. [2022] use neural networks find CVs.

3 Sampling Transition Paths using Stochastic Optimal Control theory

In this section we will formally discuss the relationship between the BPTP problem and two topics
from the machine learning literature; the Schrodinger Bridge problem and Stochastic Optimal Control.

3.1 The BPTP problem is a Schrodinger Bridge Problem

First introduced by Schrodinger [Schrödinger, 1931, 1932], the Schrodinger Bridge (SB) problem
studies the transition between two distributions over time under some fixed drift and diffusion
components. Formally, the SP problem is defined as
Definition 3 (Schrodinger Bridge (SB) problem). Given a reference distribution π

(
x0:τ

)
over

trajectories with predefined marginals π0 and πτ , the Schrodinger Bridge (SB) Problem aims to find
an alternative distribution π̂

(
x0:τ

)
such that

π̂∗(x0:τ

)
:= argmin

π̂(x0:τ )∈D(π0,πτ )

DKL

(
π̂
(
x0:τ

)
∥π

(
x0:τ

))
(9)

where D(π0, πτ ) is the space of path measures with marginals π0 and πτ .

Recently, machine learning approaches for parameterizing this alternative distribution π̂ to approxi-
mate the reference distribution π have received attention [Vargas et al., 2021, De Bortoli et al., 2021].
In the following theorem, we show that these approaches also provide a solution to the BPTP problem
when the correct marginal distributions are specified.
Theorem 3.1 (BPTP problem is a SB problem). Let b be the set of functions such that π0 =
πG(x0) · 1R(r0) and πτ = πG(xτ ) · 1R(rτ ), we have that a solution to the SB problem with
reference distribution π∗ is also a solution to the BPTP problem, ie.

argmin
b

DKL(π
b|π∗) = argmin

πb∈D(π0,πτ )

DKL

(
πb

∥∥π∗
)

(10)

Proof. This follows from the definition of the BPTP and SB problems.

Following this theorem, we can use proposed solutions for solving the SBP to solve the BPTP
problem using a bias potential. In this work, we will specifically focus on Stochastic Optimal Control
theory, which has been shown to solve the SBP in [Chen et al., 2016].
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3.2 Background: Stochastic Optimal Control

Before formally introducing the relation between Stochastic Optimal Control (SOC) and the BPTP
problem we first review some of the basic concepts of SOC and, more specifically, the Path Integral
Stochastic Optimal Control (PISOC) branch of SOC theory.

Given an arbitrarily controlled dynamical system

dxt = f(xt) dt+G(xt) ·
(
u(xt) dt+ dW

)
, x0 ∼ π0, (11)

where f : Rd × R+ → Rd and G : Rd × R+ → Rd×d are deterministic functions representing the
drift and volatility of the system and dW is Brownian Motion with variance ν, Stochastic Optimal
Control theory aims to find a policy u(xt) that minimizes some expected cost C over the trajectories:

u∗ = argmin
u

Ex0:τ∼πu

[
C(x0:τ )

]
(12)

Here πu represents the distribution over trajectories similar to eq. (7) with µt = xt + f(xt, t) dt+
G(xt)(u(xt) dt) and Σt = G(xt)

T νG(xt).

In this work we will specifically rely on a branch of SOC called Path Integral Control (PISOC), first
introduced by Kappen [2007]. In PISOC the cost of a trajectory is defined as

C(x0:τ ) =
1

λ

(
φ(xτ ) +

τ−1∑
t=0

1

2
u(xt)

TRu(xt) + u(xt)
TRεt

)
(13)

where εt = G−1(xt)(dx− f(xt) dt)−u(xt), φ denotes the terminal cost, λ is a constant and R is
the cost of taking action u in the current state and is given as a weight matrix for a quadratic control
cost. To clarify, εt ∼ dW is the noise introduced into the trajectories by the Langevin thermostat.

The last term in the cost function in eq. (13) relating the Brownian motion and the control is unusual
and devoid of a clear intuition. However, this term plays an important role when relating the cost to
a KL-divergence which we will establish next. Additionally, as discussed by Thijssen and Kappen
[2015], the additional cost vanishes under expectation (Ex0:τ∼πu

[u(xt)
TRεt] = 0) and thus, does

not influence the optimal control u∗ given by eq. (12).

3.3 Stochastic Optimal Control solves the BPTP problem

We can see that SOC dynamical system (eq. (11)) is similar to the dynamics of the BPTP distribution
(eq. (5)). In fact, as we will see next, with a properly defined φ, minimizing the trajectory cost
(eq. (13)) results in finding a control u that solves the BPTP problem.

Theorem 3.2 (SOC solves the BPTP problem). Given xt = (rt,vt)
T , f(xt) = (vt,

−∇rtU(rt)

m −
γvt)

T , G(xt) = (03n, I3n)T , u(xt) =
−∇rtb(rt,vt)

m , ν = 2mγkBT , and π0 = πG, such that the
SOC dynamics (eq. (11)) describe the dynamics of the BPTP distribution πb (eq. (5)).

If we define φ(xτ ) = −λ log(1P (rτ )), R = λν−1 = λ(2mγkBT )
−1 and assume r0 ∈ R, we have

argmin
b

Ex0:τ∼πb

[
C(x0:τ )

]
= argmin

b
DKL(π

b|π∗), (14)

where π∗ is the TP distribution.

Proof. See appendix A. The proof relates πb and π0 using Girsanov’s theorem to rewrite the expecta-
tion over cost C as the summation of the terminal cost and a KL divergence.

Using the established connection we now thus have a tool to solve the BPTP problem by learning a
parameterized control uθ(xt) =

−∇rtbθ(rt,vt)

m and consequentially the parameterized bias potential
bθ using SOC theory. In the following section we will look at one specific approach for doing so.
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4 PIPS: Path Integral SOC for Path Sampling

Following the formal construction of the relationship between SOC and the BPTP problem, we now
introduce our proposed method to find the parameterized bias potential bθ based on this connection.We
refer to this method as PIPS: Path Integral Path Sampling. PIPS is an adaptation of the Path Integral
Cross Entropy (PICE) [Kappen and Ruiz, 2016] method to the setting of sampling molecular transition
paths where we have a single initial R = {r∗0} and target P = {r∗τ} system.

Background: Path Integral Cross Entropy Kappen and Ruiz [2016] introduced the Path Integral
Cross Entropy (PICE) method for solving Equation (12). The PICE method derives an explicit
expression for the distribution πu∗

under optimal control u∗ when λ = νR given by:

πu∗
=

1

η(x, t)
πu

(
x0:τ

)
exp(−C(x0:τ )) (15)

where η(τ) = Ex0:τ∼π0 [exp(− 1
λφ(xτ )] is the normalization constant. This establishes the optimal

distribution πu∗
as a reweighing of any distribution induced by an arbitrary control u.

PICE, subsequently, achieves this by minimizing the KL-divergence between the optimal controlled
distribution πu∗

and a parameterized distribution πuθ using gradient descent as follows:

∂DKL(π
u∗ |πuθ )

∂θ
= −1

η
Ex0:τ∼πuθ

[exp(−C(x0:τ ,uθ))

τ∑
t=0

(Rεt ·
∂uθ

∂θ
)] (16)

Similar to the optimal control in eq. (15), the gradient used to minimize the KL-divergence is found
by reweighing for each sampled trajectory, x0:τ , the gradient of the control policy uθ by the cost of
the trajectory. See Algorithm 1 in the appendix for an algorithmic description of PICE.

4.1 Adaptations to PICE

In this section we will specify the adaptations made to the PICE algorithm to apply it to solve the
BPTP problem for the molecular transition path setting.

Smoothing the loss function As shown in the previous section, when using the target loss φ(xτ ) =
−λ log(1P (rτ )), SOC solves the BPTP problem. However, while optimal, this loss function is hard
to use in the PICE optimization task as it is infinite for all x0:τ where rτ ̸= r∗τ . As such, we instead
use a smoothed version φ(rt) = exp

∑n
i,j

(
dij(rt)− dij(rτ )

)2
where dij(rt) = ∥(rt)i − (rt)j∥22.

This exponentiated pairwise distance between the atoms is a commonly used distance metric [Shi
et al., 2021] that is invariant to rotations and translations of the molecular system.

Architectural considerations The learnable component of PIPS is the bias potential b. However,
as the BPTP dynamics show in eq. (5), instead of using the bias potential directly, MD depends on
the bias force — the gradient of the bias potential b(r,v) = ∇rb(r,v) ∈ R3n. This consideration
allows for two different modelling approaches for the bias force similar to the distinction between
metadynamics and adaptive bias force discussed in section 2.3.1. One can either parameterise the bias
force directly b(r,v) = bθ(r,v) or , alternatively, model bθ(r,v) the bias potential and calculate
the corresponding bias force by backpropagation, b(r,v) = ∇rbθ(r,v). The advantage of the latter
is that the forces are conservative by construction.

In section 5.1 we will compare both these modelling approaches. In both cases we will use a MLP
with ReLU activation for either the parameterized bias force or bias potential. Alternatively, bθ or bθ
could be implemented using recent advances in physics inspired equivariant neural networks [Cohen
and Welling, 2016, Satorras et al., 2021] that take into account the SE(3) symmetry of the system.
We provide details for training the control network uθ in Appendix B.

Integration with MD simulation frameworks To efficiently calculate the Potential U(x) and
integrate the MD in eq. (1), various optimized simulation frameworks are available. In our work
we use the OpenMM framework [Eastman et al., 2017]. The bias force b(r,v) is integrated in
OpenMM as a custom external force. Implementing the control this way allows us to use the
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optimized configuration capabilities of OpenMM, such as forcefield definitions (the potential function
description) and integrators (for the time-discretization of our dynamics).

One downside of using OpenMM for integrating the MD is that it does not provide access to the noise
εt ∼

√
2mγkBT dW used in the Langevin thermostat that is needed to calculate the update to the

policy weights. To circumvent this, we instead sample an additional exploratory noise term ε̂t ∼ dW
with variance ν̂ that is used to optimize the policy and assume the Langevin noise to be part of the
drift of the system f . While this loses the formal guarantees presented in section 3, we found this to
be experimentally stable and provide close to optimal trajectory paths (as shown in section 5.1).

5 Experiments

We evaluate PIPS using three molecular systems, namely (i) Alanine Dipeptide, to compare PIPS
to CV free and CV dependent baselines, (ii) Polyproline, to evaluate PIPS as a method to select
candidate CVs, and (iii) Chignolin, as a use-case of PIPS scalabilty to proteins without knowns CVs.

We report the molecule specific OpenMM configuration as well as the used neural network architecture
to learn the bias potential/force in appendix C. Generally, we run our simulations at 300K and use
6 layer MLP with the width of the layers dependent on the number of atoms in the molecule under
consideration. Our code, including a full stand-alone notebook re-implementation, is available here:
https://github.com/LarsHoldijk/SOCTransitionPaths.

5.1 Alanine Dipeptide

In this section we evaluate PIPS on the extensive studied Alanine Dipeptide (AD) molecule. AD
is a relatively small protein for which the CVs (two dihedral angles ϕ and ψ) are readily available
and is therefore well suited for the development of enhanced sampling methods that require CVs.
While PIPS does not use the CVs during training, their availability does come in useful to evaluate
the sampled transition. The transition evaluated here have a 500 fs time horizon.

5.1.1 Quantitative comparison to CV free baselines

As discussed, our work is the first to consider CV free sampling of transition paths at this scale and
as such other baselines or metrics are not available. In table 1 we therefore evaluate PIPS using
MD simulations with extended time-horizon and increased system temperature as baselines and
introduce three metrics to evaluate the quality of the transition paths. (i) Expected Pairwise Distance
(EPD) measures the euclidean distance between the final conformation in the trajectory and the
target conformation, reflecting the goal of the transition to end in the target state, (ii) Target Hit
Percentage (THP) assures that the final configuration is also close in terms of CVs by measuring the
percentage of trajectories correctly transforming these CVs, and (iii) Energy Transition Point (ETP)

τ Temp. EPD (↓) THP (↑) ETP (↓)
fs K nm× 10−3 % kJmol−1

Bias Force Prediction 500 300 2.56 ± 0.34 45.0 % 0.55 ± 11.30
Bias Potential Prediction 500 300 1.21 ± 0.31 63.5 % -8.35 ± 8.04

MD w. fixed timescale 500 300 8.50 ± 0.67 0% -
500 1500 7.75 ± 1.72 0% -
500 4500 6.77 ± 2.41 0.1% 317.79 ± 0.00
500 9000 6.99 ± 2.56 1.6 % 772.57 ± 108.55

MD w/ fixed timescale 6818.4 ± 5420.8 1500 3.08 ± 0.68 100% 393.76 ± 68.67
3471.7 ± 1646.5 4500 6.42 ± 2.67 100% 1186.84 ± 212.00

Table 1: Benchmark scores for the proposed method and extended MD baselines. From-left-to-right:
Time-horizon τ representing the trajectory length (note that we take one policy step every 1 fs),
simulation temperature, Expected Pairwise distance (EPD), Target Hit Percentage (THP), and Energy
Transition Point (ETP). ETP can only be calculate when a trajectory reaches the target. All metrics are
averaged over 1000 trajectories except for MD w/ fixed timescale which is ran only for 10 trajectories.
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Figure 2: Visualization of a trajectory sampled with PIPS. Left: The sampled trajectory projected
on the free energy landscape of AD as a function of two CVs Right: Conformations along the
sampled trajectory: A) starting conformation showing the CV dihedral angles, B-D) intermediate
conformations with C being the highest energy point on the trajectory, and E) final conformation,
which closely aligns with the target conformation. Bottom: Potential energy during transition.

which evaluates the capacity of each method to find transition paths that cross the high-energy barrier
at a low point by taking the maximum potential energy of the molecule along the trajectory. A good
trajectory will be one that passes through the minimal high-energy barrier and ETP aims to measure
this. We provide more details in Appendix C.2.1.

Results: We find that the trajectories generated by both the policy networks outperform the MD
baselines, but the more physics-aligned potential predicting policy performs best under our metrics.
This policy network consistently reaches the target conformation both in terms of full geometry and
the CVs orientation. Furthermore, our policy network generates these trajectories in a significantly
shorter time than temperature enhanced MD simulations without a fixed timescale. When we do limit
MD to run for the same timescale as the proposed method, we found that, in contrast to the proposed
method, temperature enhanced MD simulations are unable to generate successful trajectories. We
will use the bias potential predicting policy in the following.

5.1.2 Qualitative comparison to CV dependent metadynamics

In fig. 2 we visualise an AD transition sampled by PIPS using the bias potential predicting policy. In
the top left, we overlay the transition projected onto CV space on the free-energy surface generated
using metadynamics. The free-energy surface thus serves as a ground-truth generated using a method
that requires extensive domain knowledge. We aim to show that the trajectory sampled using PIPS
aligns with the saddle points of the metadynamics free-energy surface.

Results: The trajectory in Figure 2 demonstrates that the bias potential control policy transforms the
molecule from the initial position (A) to the final position (E) by transitioning over the same saddle
point in the free-energy barrier found by metadynamics (C). This shows that the trajectory follows
the same transition in CV space as metadynamics despite, contrarily to metadynamics, not being
biased to do so. The potential energy goes up during the transition until it reaches the lowest point of
the energy barrier (C) and consecutively settles down in its new low-energy state.

5.2 Polyproline Helix

Second, we consider a Polyproline trimer with 3 proline residues. Polyproline is a more complex
protein then AD and as such its CVs are less well understood. We therefore use this protein to
determine if PIPS biases the system along the correct CVs when a collection of candidate CVs are
available. Specifically, we consider the peptide bond orientation (ω) and two backbone dihedral
angles (ϕ and ψ). As initial and target state we provide a single example of Polyprolines PP-I form
(with cis-isomer peptide bonds) and PP-II form (with trans-isomer peptide bonds) respectively. For
this transition it is known that the CV of interest are the peptide bond orientation. Additionally, to
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Figure 3: Visualization of the Polyproline transformation from PP-II to PP-I. From-top-to-bottom
5 stages of the transition, ψ, ϕ, ω candidate CVs, and Potential Energy. For the candidate CVs
multiple instances of the same dihedral angles can be found in a single molecule. Stars indicate target
candidate CV states. Colored bonds represent the bonds involved in the ω CV.

study PIPS resilience to target misspecification, the supplied PP-II form also contains a transformation
in one of the ψ-dihedral angles which is irrelevant to the transition. The transition time is 5000 fs.

Results: We visualize the transformation of the three collective variables (ω, ϕ, ψ) as well as the
corresponding potential energy of the conformation in Figure 3 for a sampled transition path. We
observe that the transition correctly occurs along the ω CV going from 180◦ to 0◦. This suggest
that PIPS could be used for testing the validity of candidate CVs. However, we also observe that in
addition to the peptide bonds PIPS also biases the system along one of the ψ-dihedral angles due to
the introduced target misspecification. As the small fluctuations are to be expected when sampling
a single target from the Boltzmann distribution, alternative methods for specifying the target state
should be explored in future work.

5.3 Chignolin

Lastly, we consider the small β-hairpin protein Chignolin. Chignolin was artificially constructed to
study protein folding mechanisms [Honda et al., 2004, Seibert et al., 2005]. Due to its small size, its
folding process is easier to study than larger scale proteins while being similar enough to shed light
on this complex process. In contrast to Alanine Dipeptide and Polyproline, there is no agreement on
the transition mechanism describing the folding of Chignolin. Both the CVs involved [Satoh et al.,
2006, Paissoni and Camilloni, 2021], as well as the sequence of steps [Harada and Kitao, 2011, Satoh
et al., 2006, Suenaga et al., 2007, Enemark et al., 2012] describing the folding process have multiple
different interpretations. Chignolin thus serves as a usecase study for scaling PIPS beyond traditional
CV-based approaches to solve the BPTP-problem. We sample transition paths between the folded
and unfolded state of the Chignolin protein using a total time horizon of 5000 fs. Note that the typical
folding time of Chignolin is recorded to be 0.6 µs [Lindorff-Larsen et al., 2011].

Results: In Figure 4, we visualize the transition of Chignolin at 5 different timesteps during the
transition path. We observe that to transition the protein from its low energy unfolded state to
the folded conformation, the proposed method guides the protein into a region of higher energy.
This increase is initially more steep (0→1500) than in the later stages. Additionally, most of the
finer-grained folding (2500→4000) occurs with a high potential energy before settling into the lower-
energy folded state. We notice that for the restricted folding time we use in our experiments (5000 fs
vs 0.6 µs), the molecule does not end at the final configuration but reaches close to it as shown by the
plot on pairwise distance. Furthermore, the learned policy network is able to transition through the
high energy transition barrier in this restricted time. We do not encounter this for molecules with a
shorter natural transition time (as illustrated by the potential energy of Alanine Dipeptide in fig. 2).
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Figure 4: Visualization of the Chignolin folding process. Top: 5 stages of the folding process, Middle:
Pairwise distance wrt to the target conformation of the molecule, Bottom: Potential Energy.

6 Discussion
In this work, we have proposed PIPS—a path integral stochastic optimal control method for the
problem of molecular sampling transition paths using a bias potential. In contrast to prior work, PIPS
does not require prespecifying CVs along which the system should be biased. We show the benefits
of PIPS using three different molecular systems of varying sizes. In passing, we gave an introductory
description of the problem of sampling transition paths and related it to the stochastic optimal control
and the Schrodinger bridge problem. With this, we hope to not only have motivated our own work but
also provided a starting point for future work consideration of this important problem by the machine
learning community. For future work, we specifically note that the use of PIPS for CV discovery and
the exploration of other approaches for specifying the target state, possibly using an ensemble of
samples, is a promising direction as exemplified by our Polyproline experiment.

Acknowledgements

We would like to thank Rianne van den Berg for their valuable feedback. Lars Holdijk is supported
by the EPSRC Centre for Doctoral Training in Autonomous Intelligent Machines and Systems
(EP/S024050/1).

References
Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to applications,

volume 1. Elsevier, 2001.

Scott A. Hollingsworth and Ron O. Dror. Molecular Dynamics Simulation for All. Neuron, 99(6):
1129–1143, September 2018.

Oliver T. Unke, Stefan Chmiela, Huziel E. Sauceda, Michael Gastegger, Igor Poltavsky, Kristof T.
Schütt, Alexandre Tkatchenko, and Klaus-Robert Müller. Machine Learning Force Fields. Chemi-
cal Reviews, 121(16):10142–10186, August 2021.

Xiang Fu, Zhenghao Wu, Wujie Wang, Tian Xie, Sinan Keten, Rafael Gomez-Bombarelli, and Tommi
Jaakkola. Forces are not enough: Benchmark and critical evaluation for machine learning force
fields with molecular simulations. arXiv preprint arXiv:2210.07237, 2022.

Peter G Bolhuis, David Chandler, Christoph Dellago, and Phillip L Geissler. Transition path sampling:
Throwing ropes over rough mountain passes, in the dark. Annual review of physical chemistry, 53
(1):291–318, 2002.

Glenn M Torrie and John P Valleau. Nonphysical sampling distributions in Monte Carlo free-energy
estimation: Umbrella sampling. Journal of Computational Physics, 23(2):187–199, 1977.

Alessandro Laio and Michele Parrinello. Escaping free-energy minima. Proceedings of the National
Academy of Sciences, 99(20):12562–12566, October 2002.

10

https://www.elsevier.com/books/understanding-molecular-simulation/frenkel/978-0-12-267351-1
https://linkinghub.elsevier.com/retrieve/pii/S0896627318306846
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01111
https://arxiv.org/abs/2210.07237
https://arxiv.org/abs/2210.07237
https://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.53.082301.113146
https://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.53.082301.113146
https://www.sciencedirect.com/science/article/pii/0021999177901218
https://www.sciencedirect.com/science/article/pii/0021999177901218
https://pnas.org/doi/full/10.1073/pnas.202427399


Giovanni Bussi and Davide Branduardi. Free-Energy Calculations with Metadynamics: Theory and
Practice. In Abby L. Parrill and Kenny B. Lipkowitz, editors, Reviews in Computational Chemistry,
pages 1–49. John Wiley & Sons, Inc, May 2015.

Ferry Hooft, Alberto Pérez de Alba Ortíz, and Bernd Ensing. Discovering collective variables of
molecular transitions via genetic algorithms and neural networks. Journal of chemical theory and
computation, 17(4):2294–2306, 2021.

Peter G. Bolhuis, Christoph Dellago, and David Chandler. Reaction coordinates of biomolecular
isomerization. Proceedings of the National Academy of Sciences, 97(11):5877–5882, May 2000.

Hilbert J Kappen. Path integrals and symmetry breaking for optimal control theory. Journal of
statistical mechanics: theory and experiment, 2005(11):P11011, 2005.

Hilbert Johan Kappen and Hans Christian Ruiz. Adaptive importance sampling for control and
inference. Journal of Statistical Physics, 162(5):1244–1266, 2016.

Giovanni Bussi and Michele Parrinello. Accurate sampling using Langevin dynamics. Physical
Review E, 75(5):056707, May 2007.

Christoph Dellago, Peter G. Bolhuis, Félix S. Csajka, and David Chandler. Transition path sampling
and the calculation of rate constants. The Journal of Chemical Physics, 108(5):1964–1977,
February 1998.

Alessandro Barducci, Giovanni Bussi, and Michele Parrinello. Well-Tempered Metadynamics: A
Smoothly Converging and Tunable Free-Energy Method. Physical Review Letters, 100(2):020603,
January 2008.

Eric Darve and Andrew Pohorille. Calculating free energies using average force. The Journal of
Chemical Physics, 115(20):9169–9183, November 2001.

Jeffrey Comer, James C. Gumbart, Jérôme Hénin, Tony Lelièvre, Andrew Pohorille, and Christophe
Chipot. The Adaptive Biasing Force Method: Everything You Always Wanted To Know but Were
Afraid To Ask. The Journal of Physical Chemistry B, 119(3):1129–1151, January 2015.

Arthur F. Voter. A method for accelerating the molecular dynamics simulation of infrequent events.
The Journal of Chemical Physics, 106(11):4665–4677, March 1997.

Fugao Wang and D. P. Landau. Efficient, Multiple-Range Random Walk Algorithm to Calculate the
Density of States. Physical Review Letters, 86(10):2050–2053, March 2001.

Michiel Sprik and Giovanni Ciccotti. Free energy from constrained molecular dynamics. The Journal
of Chemical Physics, 109(18):7737–7744, November 1998.

Helmut Grubmüller. Predicting slow structural transitions in macromolecular systems: Conforma-
tional flooding. Physical Review E, 52(3):2893–2906, September 1995.

Thomas Huber, Andrew E. Torda, and Wilfred F. Van Gunsteren. Local elevation: A method for
improving the searching properties of molecular dynamics simulation. Journal of Computer-Aided
Molecular Design, 8(6):695–708, December 1994.

E.A. Carter, Giovanni Ciccotti, James T. Hynes, and Raymond Kapral. Constrained reaction coordi-
nate dynamics for the simulation of rare events. Chemical Physics Letters, 156(5):472–477, April
1989.

Graeme Henkelman, Blas P. Uberuaga, and Hannes Jónsson. A climbing image nudged elastic band
method for finding saddle points and minimum energy paths. The Journal of Chemical Physics,
113(22):9901–9904, December 2000.

Avishek Das, Dominic C Rose, Juan P Garrahan, and David T Limmer. Reinforcement learning of
rare diffusive dynamics. The Journal of Chemical Physics, 155(13):134105, 2021.

Elia Schneider, Luke Dai, Robert Q. Topper, Christof Drechsel-Grau, and Mark E. Tuckerman.
Stochastic Neural Network Approach for Learning High-Dimensional Free Energy Surfaces.
Physical Review Letters, 119(15):150601, October 2017.

11

https://onlinelibrary.wiley.com/doi/10.1002/9781118889886.ch1
https://onlinelibrary.wiley.com/doi/10.1002/9781118889886.ch1
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00981
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00981
https://pnas.org/doi/full/10.1073/pnas.100127697
https://pnas.org/doi/full/10.1073/pnas.100127697
https://iopscience.iop.org/article/10.1088/1742-5468/2005/11/P11011/meta
https://link.springer.com/article/10.1007/s10955-016-1446-7
https://link.springer.com/article/10.1007/s10955-016-1446-7
https://link.aps.org/doi/10.1103/PhysRevE.75.056707
http://aip.scitation.org/doi/10.1063/1.475562
http://aip.scitation.org/doi/10.1063/1.475562
https://link.aps.org/doi/10.1103/PhysRevLett.100.020603
https://link.aps.org/doi/10.1103/PhysRevLett.100.020603
https://pubs.aip.org/aip/jcp/article/115/20/9169-9183/442127
https://pubs.acs.org/doi/10.1021/jp506633n
https://pubs.acs.org/doi/10.1021/jp506633n
https://pubs.aip.org/aip/jcp/article/106/11/4665-4677/182008
https://link.aps.org/doi/10.1103/PhysRevLett.86.2050
https://link.aps.org/doi/10.1103/PhysRevLett.86.2050
https://pubs.aip.org/aip/jcp/article/109/18/7737-7744/183350
https://link.aps.org/doi/10.1103/PhysRevE.52.2893
https://link.aps.org/doi/10.1103/PhysRevE.52.2893
http://link.springer.com/10.1007/BF00124016
http://link.springer.com/10.1007/BF00124016
https://linkinghub.elsevier.com/retrieve/pii/S0009261489873142
https://linkinghub.elsevier.com/retrieve/pii/S0009261489873142
https://pubs.aip.org/aip/jcp/article/113/22/9901-9904/185050
https://pubs.aip.org/aip/jcp/article/113/22/9901-9904/185050
https://aip.scitation.org/doi/abs/10.1063/5.0057323
https://aip.scitation.org/doi/abs/10.1063/5.0057323
https://link.aps.org/doi/10.1103/PhysRevLett.119.150601


Mohammad M. Sultan, Hannah K. Wayment-Steele, and Vijay S. Pande. Transferable Neural Net-
works for Enhanced Sampling of Protein Dynamics. Journal of Chemical Theory and Computation,
14(4):1887–1894, April 2018.

Lixin Sun, Jonathan Vandermause, Simon Batzner, Yu Xie, David Clark, Wei Chen, and Boris
Kozinsky. Multitask machine learning of collective variables for enhanced sampling of rare events.
Journal of Chemical Theory and Computation, 18(4):2341–2353, 2022.

Erwin Schrödinger. Über die umkehrung der naturgesetze. Verlag der Akademie der Wissenschaften
in Kommission bei Walter De Gruyter u . . . , 1931.

Erwin Schrödinger. Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique.
In Annales de l’institut Henri Poincaré, volume 2, pages 269–310, 1932.

Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving schrödinger
bridges via maximum likelihood. Entropy, 23(9):1134, 2021.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion Schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34, 2021.

Yongxin Chen, Tryphon T Georgiou, and Michele Pavon. On the relation between optimal transport
and Schrödinger bridges: A stochastic control viewpoint. Journal of Optimization Theory and
Applications, 169(2):671–691, 2016.

Hilbert J Kappen. An introduction to stochastic control theory, path integrals and reinforcement
learning. In AIP conference proceedings, volume 887, pages 149–181. American Institute of
Physics, 2007.

Sep Thijssen and H. J. Kappen. Path integral control and state-dependent feedback. Phys. Rev. E, 91:
032104, Mar 2015. doi: 10.1103/PhysRevE.91.032104. URL https://link.aps.org/doi/10.
1103/PhysRevE.91.032104.

Chence Shi, Shitong Luo, Minkai Xu, and Jian Tang. Learning gradient fields for molecular
conformation generation. In International Conference on Machine Learning, pages 9558–9568.
PMLR, 2021.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference
on machine learning, pages 2990–2999. PMLR, 2016.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural networks.
arXiv preprint arXiv:2102.09844, 2021.

Peter Eastman, Jason Swails, John D Chodera, Robert T McGibbon, Yutong Zhao, Kyle A Beauchamp,
Lee-Ping Wang, Andrew C Simmonett, Matthew P Harrigan, Chaya D Stern, et al. OpenMM 7:
Rapid development of high performance algorithms for molecular dynamics. PLoS computational
biology, 13(7):e1005659, 2017.

Shinya Honda, Kazuhiko Yamasaki, Yoshito Sawada, and Hisayuki Morii. 10 residue folded peptide
designed by segment statistics. Structure, 12(8):1507–1518, 2004.

M Marvin Seibert, Alexandra Patriksson, Berk Hess, and David Van Der Spoel. Reproducible
polypeptide folding and structure prediction using molecular dynamics simulations. Journal of
molecular biology, 354(1):173–183, 2005.

Daisuke Satoh, Kentaro Shimizu, Shugo Nakamura, and Tohru Terada. Folding free-energy landscape
of a 10-residue mini-protein, chignolin. FEBS letters, 580(14):3422–3426, 2006.

Cristina Paissoni and Carlo Camilloni. How to determine accurate conformational ensembles by
metadynamics metainference: a chignolin study case. Frontiers in molecular biosciences, 8:491,
2021.

Ryuhei Harada and Akio Kitao. Exploring the folding free energy landscape of a β-hairpin minipro-
tein, chignolin, using multiscale free energy landscape calculation method. The Journal of Physical
Chemistry B, 115(27):8806–8812, 2011.

12

https://pubs.acs.org/doi/10.1021/acs.jctc.8b00025
https://pubs.acs.org/doi/10.1021/acs.jctc.8b00025
https://pubs.acs.org/doi/full/10.1021/acs.jctc.1c00143
https://www.mdpi.com/1099-4300/23/9/1134
https://www.mdpi.com/1099-4300/23/9/1134
https://proceedings.neurips.cc/paper/2021/hash/940392f5f32a7ade1cc201767cf83e31-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/940392f5f32a7ade1cc201767cf83e31-Abstract.html
https://link.springer.com/article/10.1007/s10957-015-0803-z
https://link.springer.com/article/10.1007/s10957-015-0803-z
https://aip.scitation.org/doi/abs/10.1063/1.2709596
https://aip.scitation.org/doi/abs/10.1063/1.2709596
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.032104
https://link.aps.org/doi/10.1103/PhysRevE.91.032104
https://link.aps.org/doi/10.1103/PhysRevE.91.032104
https://arxiv.org/abs/2105.03902
https://arxiv.org/abs/2105.03902
http://proceedings.mlr.press/v48/cohenc16.html
https://arxiv.org/abs/2102.09844
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005659
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005659
https://pubmed.ncbi.nlm.nih.gov/15296744/
https://pubmed.ncbi.nlm.nih.gov/15296744/
https://pubmed.ncbi.nlm.nih.gov/16236315/
https://pubmed.ncbi.nlm.nih.gov/16236315/
https://febs.onlinelibrary.wiley.com/doi/full/10.1016/j.febslet.2006.05.015?casa_token=bKSJOf87m2AAAAAA%3AnYkoSOTQ49OFu4n9nsMXaipIiAHU7CUb2wJEDXAOorDvNviRVdzAYkUSkVYpLviQNYjCHiMURx5GowzF
https://febs.onlinelibrary.wiley.com/doi/full/10.1016/j.febslet.2006.05.015?casa_token=bKSJOf87m2AAAAAA%3AnYkoSOTQ49OFu4n9nsMXaipIiAHU7CUb2wJEDXAOorDvNviRVdzAYkUSkVYpLviQNYjCHiMURx5GowzF
https://www.frontiersin.org/articles/10.3389/fmolb.2021.694130/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.694130/full
https://pubs.acs.org/doi/abs/10.1021/jp2008623
https://pubs.acs.org/doi/abs/10.1021/jp2008623


Atsushi Suenaga, Tetsu Narumi, Noriyuki Futatsugi, Ryoko Yanai, Yousuke Ohno, Noriaki Okimoto,
and Makoto Taiji. Folding dynamics of 10-residue β-hairpin peptide chignolin. Chemistry–An
Asian Journal, 2(5):591–598, 2007.

Søren Enemark, Nicholas A Kurniawan, and Raj Rajagopalan. β-Hairpin forms by rolling up from
C-terminal: Topological guidance of early folding dynamics. Scientific Reports, 2(1):1–6, 2012.

Kresten Lindorff-Larsen, Stefano Piana, Ron O Dror, and David E Shaw. How fast-folding proteins
fold. Science, 334(6055):517–520, 2011.

Robert H Cameron and William T Martin. Transformations of weiner integrals under translations.
Annals of Mathematics, pages 386–396, 1944.

David A Sivak, John D Chodera, and Gavin E Crooks. Using nonequilibrium fluctuation theorems to
understand and correct errors in equilibrium and nonequilibrium simulations of discrete Langevin
dynamics. Physical Review X, 3(1):011007, 2013.

Kresten Lindorff-Larsen, Stefano Piana, Kim Palmo, Paul Maragakis, John L Klepeis, Ron O Dror,
and David E Shaw. Improved side-chain torsion potentials for the Amber ff99SB protein force
field. Proteins: Structure, Function, and Bioinformatics, 78(8):1950–1958, 2010.

Ulrich Essmann, Lalith Perera, Max L Berkowitz, Tom Darden, Hsing Lee, and Lee G Pedersen. A
smooth particle mesh Ewald method. The Journal of chemical physics, 103(19):8577–8593, 1995.

13

https://onlinelibrary.wiley.com/doi/full/10.1002/asia.200600385
https://www.nature.com/articles/srep00649
https://www.nature.com/articles/srep00649
https://www.science.org/doi/10.1126/science.1208351
https://www.science.org/doi/10.1126/science.1208351
https://www.jstor.org/stable/1969276
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.3.011007
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.3.011007
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.3.011007
https://pubmed.ncbi.nlm.nih.gov/20408171/
https://pubmed.ncbi.nlm.nih.gov/20408171/
https://aip.scitation.org/doi/10.1063/1.470117
https://aip.scitation.org/doi/10.1063/1.470117


A Proof theorem: SOC solves the BPTP problem

Theorem A.1 (SOC solves the BPTP problem). Given xt = (rt,vt)
T , f(xt) = (vt,

−∇rtU(rt)

m −
γvt)

T , G(xt) = (03n, I3n)T , u(xt) =
−∇rtb(rt,vt)

m , ν = 2mγkBT , and π0 = πG, such that the
SOC dynamics (eq. (11)) describe the dynamics of the BPTP distribution πb (eq. (5)).

If we define φ(xτ ) = −λ log(1P (rτ )), R = λν−1 = λ(2mγkBT )
−1 and assume r0 ∈ R, we have

argmin
b

Ex0:τ∼πb

[
C(x0:τ )

]
= argmin

b
DKL(π

b|π∗), (17)

where π∗ is the TP distribution.

Proof. Let πb be the BPTP distribution as defined in eq. (7). Crucially, πb can be factored into a
position and velocity component based on the conditional independence of rt+1 and vt+1 given rt
and vt, respectively, as

πb
(
x0:τ

)
= πb

r

(
x0:τ

)
· πb

v

(
x0:τ

)
(18)

with

πb
r

(
x0:τ

)
=

τ∏
t=0

1[rt+1=rt+vt](rt+1) (19)

πb
v

(
x0:τ

)
=

τ∏
t=0

N (vt+1|µt,Σt). (20)

where µt = (vt · dt,
−∇r

(
U(rt)+b(rt,vt)

)
m · dt− γvt · dt)T and Σ = diag(0, 2mγkBT ).

Now, if we define π0 to be the BPTP distribution where no additional bias potential is applied, i.e.
b(rt,xt) = 0 such that π0(x0:τ ) = 1R(r0) · π(x0:τ ), we observe that the position component of the
factorization are equal: πb

r

(
x0:τ

)
= π0

r

(
x0:τ

)
.

Following, we use Girsanov’s [Cameron and Martin, 1944] theorem to relate πb
v

(
x0:τ

)
and π0

v

(
x0:τ

)
as

πb
v

(
x0:τ

)
= π0

v

(
x0:τ

)
· exp

( 1

λ

τ−1∑
t=0

1

2
u(xt)

TRu(xt) + u(xt)
TRεt

)
(21)

where ε = G−1(xt)(dx − f(xt) dt) − u(xt). Which, given the previously established equality
between the velocity components of the BPTP factorization, gives us

log
πb

(
x0:τ

)
π0

(
x0:τ

) =
1

λ

τ−1∑
t=0

1

2
u(xt)

TRu(xt) + u(xt)
TRεt (22)

where ε = G−1(xt)(dx− f(xt) dt)− u(xt).

This allows us to rewrite the control cost eq. (13) as

C(x0:τ ) =
1

λ

(
φ(x0:τ )

)
+ log

πb
(
x0:τ

)
π0

(
x0:τ

) (23)
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Finally, this gives

argmin
b

Ex0:τ∼πb

[
C(x0:τ )

]
= argmin

b
Ex0:τ∼πb

[ 1
λ

(
φ(xτ )

)
+ log

πb
(
x0:τ

)
π0

(
x0:τ

) ] (24)

= argmin
b

Ex0:τ∼πb

[
− log(1P (rτ )) + log

πb
(
x0:τ

)
π0

(
x0:τ

) ] (25)

= argmin
b

Ex0:τ∼πb

[
log

πb
(
x0:τ

)
1R(rτ ) · π

(
x0:τ

)
· 1P (rτ )

] (26)

= argmin
b

Ex0:τ∼πb

[
log

πb
(
x0:τ

)
π∗

(
x0:τ

) ] (27)

= argmin
b

DKL(π
b|π∗) (28)

where π∗ is the TP distribution as defined in definition 1.

B Algorithms

Algorithm 1: Training Policy uθ

Input: r0, rT : Initial and target molecular positions,
U(·): Potential Energy function,
γ: Langevin Friction,
φ(·): Terminal cost,
uθ(·, ·): Initial parameterized policy,
N : Number of trajectories sampled per update,
τ : Time horizon,
ν: Variance of Brownian noise,
R: Control cost matrix,
µ: Learning rate,
dt: Time discretization step

while not converged do
▷ Generate trajectories with current policy uθ

λ← Rν ;
n← 0 ;
while n < N do

▷ Initialize initial trajectory state
(rn,0,vn,0, t)← (r0,0, 0);
while t < (τ/dt) do

▷ Sample Brownian noise and action
εn,t ∼ N (0,

√
2mγkBT );

ε̂n,t ∼ N (0, ν);
un,t ← uθ(rn,t, t);
▷ Update positions and velocity
rn,t+1 ← rn,t + vn,t · dt;
vn,t+1 ← vn,t +

(
−∇rU(r)

m
+ un,t − γv + εn,t + ε̂n,t

)
· dt;

t← t+ 1;
end
▷ Determine trajectory cost and gradient
Cn ← 1

λ
(φ(rn,τ ) +

∑τ
i=0 u

T
n,iRun,i + uT

n,iRεn,i);
∆θn ← exp(−Cn) +

∑τ
i=0

∂un,i

∂θ
Rεn,i;

n← n+ 1 ;
end
▷ Determine gradient normalization and perform policy update
η ←

∑N
i=0 exp(−Ci);

θ ← θ + µ
η

∑N
i=0 ∆θi;

end
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C Extension Experimental section

C.1 OpenMM

General setup: We use the Velocity Verlet with Velocity Randomization (VVVR) integrator [Sivak
et al., 2013] within OpenMM at a temperature of 300K with a collision rate of 1.0 ps-1. All code is
implemented in Pytorch and ran on a single GPU (either an NVIDIA RTX3080 or RTX2080).

Alanine Dipeptide: We use the amber 99sb-ildn force field [Lindorff-Larsen et al., 2010] without
any solvent, a time-step of 1.0 fs for the VVVR integrator and a cutoff of 1 nm for the Particle Mesh
Ewald (PME) method [Essmann et al., 1995]. The policy network for 15000 roll-outs with a time
horizon of 500 fs each consisting of 16 samples. A gradient update was made to the policy network
after each roll-out with a learning rate of 10−5. The Brownian motion has a standard deviation of 0.1.

Polyproline Helix: We initialize OpenMM with the amber protein.ff14SBonlysc forcefield and
gbn2 as the implicit solvent forcefield. The VVVR integrator had a timestep of 2.0 fs and a cutoff
of 5 nm for PME. The proposed method was ran for a total of 10.000 fs (resulting in 5,000 policy
steps). The policy networks was trained over 500 rollouts with 25 samples each using a learning rate
of 3× 10−5 and a standard deviation of 0.1 for the Brownian motion.

Chignolin: To sample transition paths between the folded and unfolded state of the Chignolin
protein, we initialize OpenMM using the same forcefield and VVVR integrator as for Polyproline
with the exception that we sample a new force from our policy network every 1.0 fs. We do this
5000 times for each rollout for a total time horizon of 5000 fs. The policy network is trained for 500
roll-outs of 16 samples with a learning rate of 10−4 and a standard deviation of 0.05 for the Brownian
motion.

C.2 Alanine Dipeptide

C.2.1 Discussion Baselines and Evaluation Metrics

Metrics Three different metrics are used for the comparison covering multiple desiderata for the
sampled transition trajectories. For each metric we report the score over 1000 trajectories with the
exception of the Molecular Dynamics without fixed timescale baseline which is only ran until 10
trajectories are successfully generated.

Expected Pairwise Distance (EPD) The EPD measures the similarity between the final conformation
in the trajectory and the target conformation taking into account the full 3D geometry of the molecule.
Note that the expected pairwise distance for uncontrolled MD with the target as the starting conforma-
tion has a EPD of 2.25× 10−3. All trajectories with an EPD of less than this can thus be considered
to transition the molecule within one standard deviation of the target distribution.

Target Hit Percentage (THP): The second metric under which we evaluate the proposed Transition
Path Sampler measures the similarity of the final and target conformation in terms of the collective
variables. The THP measures the percentage of generated trajectories/paths that reach the target state.
As such, higher hit percentages are preferred. We determine a trajectory to have hit the target in CV
space when ϕ and ψ are both within 0.75 of the target.

Energy Transition Point (ETP): The final metric looks at the potential energy of the transition
point—the conformation in the trajectory with the highest potential energy. This directly evaluates
the capability of the method to find the transition path that crosses the boundary at the lowest saddle
point.

Baselines We compare the proposed Transition Path Sampling method with extended Molecular
Dynamics simulation using different time-scales and temperature points. As discussed earlier, there
are currently no other methods available for Transition Path Sampling using the full 3D geometry of
the molecules.

Molecular Dynamics with fixed timescale: This set of baselines is limited to the same timescale
as the proposed Transition Path Sampler, 500 femtoseconds, but uses varying temperatures. With
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Figure 5: Visualization of a trajectory sampled with the proposed force prediction method. Left:
The sampled trajectory projected on the free energy landscape of Alanine Dipeptide as a function
of two CVs Right: Conformations along the sampled trajectory: A) starting conformation showing
the CV dihedral angles, B-D) intermediate conformations with D being the highest energy point on
the trajectory, and E) final conformation, which closely aligns with the target conformation. Bottom:
Potential energy during transition. Letters represent the same configurations in the transition.

higher temperatures we should have a higher probability of crossing the barrier and hitting the target
configuration.

Molecule Dynamics without fixed timescales: In contrast to the other set of baselines, the MD simu-
lation for this set is not limited to 500 femtoseconds, but is instead ran until the target conformation
is reached. We consider a trajectory to have reached its target if the following two conditions have
been met: 1) the current conformation classifies as having hit the target under the conditions of the
metric described above and 2) the current conformation is within one standard deviation of the target
distributions mean.

By running the MD simulations until the target is reached we aim to gain intuition into the speed-up
that it achieved by the fixed timescale of the proposed Transition Path Sampler.

C.2.2 Additional results: Visualization Force Prediction

We observe that the force predicting policy has learned a different trajectory then the energy predicting
model presented in the main body of the paper. While different, both of the trajectories pass the high
energy barrier in a locally low point. Previous work on finding transition path has also observed that
multiple viable paths can be found for Alanine Dipeptide [Hooft et al., 2021].
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