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ABSTRACT

Recent advances in text-to-video (T2V) generation have yielded impressive
progress in resolution, duration, and prompt fidelity, with models such as Pika,
Gen-3, and Sora producing clips that appear compelling at first glance. Yet, in
everyday use and public demos, generated people often “look right but move
wrong,” exhibiting artifacts like foot sliding, joint hyperextension, and desynchro-
nized limbs. Such failures are not cosmetic: 1) unsafe motions can be copied by
viewers, especially juveniles, raising injury risks; 2) in clinical and sports con-
texts, implausible kinematics corrupt analytics for angle, cadence, and phase,
causing misdiagnosis and unsafe return-to-play; and 3) in simulation pipelines,
non-physical motion distributions contaminate training and evaluation, degrad-
ing sim-to-real transfer. However, existing benchmarks remain inadequate: 1)
they lack kinematics awareness, rewarding visual resemblance while joint trajec-
tories violate physiological ranges; 2) they lack rhythm- and body-level tempo-
ral metrics, overlooking gait-cycle timing, symmetry, and inter-limb coordina-
tion; and 3) they fail to disentangle camera from body motion, letting pans and
zooms mask biomechanical errors. To address these gaps, we present Movo,
the first kinematics-centric benchmark for T2V motion realism. Movo unifies
three components: 1) a posture-focused dataset with camera-aware prompts that
isolate representative upper- and lower-body actions; 2) skeletal-space metrics,
Joint Angle Change (JAC), Dynamic Time Warping (DTW), and Motion Consis-
tency Metric (MCM), that operationalize biomechanical plausibility across joints,
rhythms, and constraints; and 3) human validation studies that calibrate thresh-
olds and show strong correlation between skeletal scores and perceived realism.
Evaluating 14 leading T2V models reveals persistent gaps: some excel in spe-
cific motions but struggle with cross-action consistency, and performance varies
widely between open-source and proprietary systems. Movo provides a rigorous,
interpretable foundation for improving human motion generation and for integrat-
ing biomechanical realism checks into model development, selection, and release
workflows. The code and scripts are available at Supplementary Material.

1 INTRODUCTION

Text-to-video (T2V) systems have made striking gains in resolution, duration, and prompt following
(Wu et al., 2023; Blattmann et al., 2023b; Ho et al., 2022a; Singer et al., 2022; Luo et al., 2023;
Wang et al., 2023b; Xing et al., 2023a; Wang et al., 2023a; Esser et al., 2023; An et al., 2023; Chen
et al., 2023b; Zhang et al., 2023b; Xing et al., 2023b; Fei et al., 2023; Ho et al., 2022b; Gu et al.,
2023; Wang et al., 2023f;c; Zhang et al., 2023a; Zhao et al., 2023; Qiu et al., 2023; Li et al., 2023; Ge
et al., 2023; Chen et al., 2023a;c). Models such as Pika, Gen-3, and Sora (Pika, 2024; Runway Re-
search, 2024; OpenAI, 2024) often produce clips that look compelling at first glance. Over the past
year, text-to-video has moved from niche demos to mass distribution. Runway raised 308Mat 3B
valuation, while YouTube integrated Google’s Veo 3 (Sharma et al., 2025) directly into Shorts, plac-
ing prompt-to-video generation inside a product that now averages 200 billion daily views, which
is such a step change in reach for synthetic video. Applications of T2V systems are already visi-
ble. Many creators monetize generative videos on platforms like TikTok and YouTube Shorts (Hu,
2024; Zhang, 2023), turning synthetic clips into ad revenue at scale. Meanwhile, researchers employ
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Figure 1: Overview of the Movo benchmark for evaluating human motion realism in text-to-video
generation. The benchmark assesses lower- and upper-body movements (e.g., deadlift, side leg raise,
hand punch, waist twist). Videos are collected or recorded, labeled, and used to create prompts. Out-
puts from open-source and proprietary models are evaluated with Joint Angle Change (JAC), Dy-
namic Time Warping (DTW), and Motion Consistency Metric (MCM). Human validation includes
data preparation, pairwise comparison, and annotation.

generated videos in simulation experiments, from robotics training to controlled behavioral studies,
where synthetic footage offers safe and reproducible environments (Qin et al., 2024).

In everyday use and public T2V demos, people frequently “look right but move wrong.” Typical
artifacts include foot sliding during supposed stance, joint hyperextension, discontinuous velocities,
desynchronized upper–lower limbs, and props or body parts that break contact constraints (Louis
et al., 2025). These are not cosmetic glitches, they carry real consequences. 1) In the short video
settings, viewers may copy faulty motions which raise injury risk, especially for juveniles who are
pervasively exposed to online videos but lack the motor control and judgment to detect unsafe form
(Kianifar et al., 2017). 2) In clinical pre-screening, rehab, and sports assessment, implausible mo-
tion corrupts analytics for angle, cadence and phase. causing misclassification, poor prescriptions,
delayed gait-issue detection, and unsafe return-to-play (e.g., masked fall risk), with downstream
reinjury, unnecessary imaging, and liability (Nakano et al., 2020; Louis et al., 2025). 3) In simula-
tion and synthetic-data pipelines either in industries or labs, non-physical motion distributions con-
taminate training and evaluation, worsening sim-to-real transfer and negatively affecting industrial
production as well as academic research (Doersch & Zisserman, 2019). 4) For platforms and pol-
icy, unrealistic human motion complicates quality gates and disclosure, leading to under-disclosure,
unjustified fines and takedowns, viral misuses, likeness-rights disputes, and trust erosion (YouTube,
2024; TikTok, 2024; European Union, 2024). Therefore, the takeaway is simple: “looking like”
the action is not enough. We must measure whether generated people move in a biomechanically
plausible way and integrate such checks into model selection and release workflows.

General-purpose leaderboards emphasize breadth, overall aesthetics, text–video alignment, optical-
flow smoothness, and sometimes action recognition, but they miss three things that matter for hu-
man motion. 1) First, lack of kinematics awareness. Pixel or semantics metrics commonly used in
T2V benchmarks reward clips that resemble “walking” while joint trajectories violate physiolog-
ical ranges, exhibit abnormal angle amplitudes, or break inter-limb phase relationships. In some
specific domains, decisions are made on joints, angles, and phases. When those are implausible,
smooth-looking videos still produce wrong conclusions (Huang et al., 2024; Liu et al., 2023). 2)
Second, lack of rhythm-aware and body-level temporal metrics. Common smoothness proxies such
as optical flow consistency and warping error quantify frame-to-frame pixel continuity but not gait-
cycle timing, symmetry or cadence. Without rhythm-sensitive measures, periodic behaviors can
drift in tempo or exhibit off-phase coordination yet still score well on flow-based metrics (Liao
et al., 2024; Alfarano et al., 2024). 3) Third, lack of camera-motion disentanglement. Many existing
T2V benchmarks operate in raw pixel space, so pans, zooms, and shake confound temporal signals

2
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and can mask contact errors, rigid-body violations, bone-length instability, and abnormal velocities
or accelerations. Without body-centric stabilization or skeletal-space analysis, metrics are contam-
inated by camera motion rather than body dynamics. Methods that “pass” such tests often yield
unstable pose estimates and unreliable downstream analytics (Kocabas et al., 2024; Ye et al., 2023).

To address these, we introduce Movo, a kinematics-centric benchmark that asks whether gener-
ated people move plausibly, not just look plausible. Movo directly addresses the three gaps above.
1) Posture-focused dataset with camera-aware prompts. To reduce confounds and isolate human
motion, we cover representative lower-body and upper-body actions with prompt templates that dis-
courage gratuitous camera motion and keep the mover in focus. 2) Skeletal metrics that operational-
ize biomechanical realism: JAC (Joint Angle Change) quantifies joint-angle trajectories relative to
typical ranges and checks plausible evolution over time—making the evaluation kinematics-aware.
DTW (Dynamic Time Warping) on pose dynamics measures temporal phasing and rhythm align-
ment—capturing cadence and inter-limb timing beyond pixel smoothness. MCM (Motion Con-
sistency Metric) enforces constraint-aware consistency, foot–ground contact, velocity/acceleration
continuity, and bone-length stability, so camera motion cannot hide structural violations. 3) Human
validation that calibrates thresholds. We conduct pairwise preference studies showing Movo’s skele-
tal scores correlate with perceived motion realism, enabling actionable quality gates that align with
emerging platform policies for realistic synthetic depictions. Using Movo, we extensively evaluate
14 leading T2V models, including 8 open-source and 6 propriety solutions. Our findings reveal that
while some models excel in specific tasks, such as hand rotations, they struggle to maintain con-
sistent quality across diverse motion types. Performance scores vary significantly, highlighting the
need for specialized strategies to improve human motion generation.

2 RELATED WORK

2.1 TEXT-TO-VIDEO GENERATION DATASET

Text-to-video generation has advanced significantly, supported by various datasets. MSR-VTT
dataset(Xu et al., 2016) provides 10,000 videos paired with textual annotations, allowing open-
domain video description but not focusing on human motion. InternVid dataset (Wang et al., 2023d)
scales multimodal data with more than 7 million videos but focuses on general scenarios rather
than specific human actions. Recent works like the EvalCrafter dataset (Liu et al., 2024a) and the
VideoFactory dataset (Wang et al., 2023a) aim to improve the quality and alignment of text-to-
video generation but still lack data sets centered on human motion. The existing UCF101 dataset
(Soomro, 2012) focuses on human action recognition with 101 action classes but lacks textual de-
scriptions, which limits its use for generative tasks. In contrast, our proposed Movo dataset is the
first text-to-video generation dataset to focus on human motion. It offers detailed textual descrip-
tions of dynamic movements, filling a crucial gap in generating motion-driven videos, and enabling
advances in applications like virtual reality and animation.

2.2 TEXT-TO-VIDEO GENERATION MODEL

In recent years, text-to-video generation has made remarkable progress, driven by advances in gen-
erative models and the increasing availability of computational resources. The early text-to-vision
methods relied primarily on Generative Adversarial Networks (GANs) (Balaji et al., 2019; Sko-
rokhodov et al., 2022; Tulyakov et al., 2018; Wang et al., 2020; 2023e) and Variational Autoencoders
(VAEs) (Van Den Oord et al., 2017), demonstrating the feasibility of video generation within simple
closed set domains (Gupta et al., 2018; Li et al., 2018; Liu et al., 2019). However, these methods
struggle to generate videos in more complex contexts (Wang et al., 2023a). The latest breakthroughs
in generative AI has progressed from tokenized Transformer pipelines (Hong et al., 2022; Villegas
et al., 2022; Wu et al., 2021; 2022) to diffusion-based models that deliver higher fidelity under prac-
tical compute (Ho et al., 2022b; Blattmann et al., 2023b; Singer et al., 2022). Controllability has
improved via structural conditioning and planning (Wang et al., 2024b; Lin et al., 2023; Wu et al.,
2023). Scaling with Diffusion Transformers further advances quality (Peebles & Xie, 2023; Bao
et al., 2023; Gao et al., 2023), inspiring systems such as Latte and Sora (Ma et al., 2024; OpenAI,
2024). See Appendix E for an extended survey.

3
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Ground Truth

The individual is dressed in a black outfit, consisting of a long coat, a black top, and black pants. They 
are also wearing black boots and carrying a black handbag. The person's hair is long and appears to 
be flowing as they walk. The background shows other people walking in the same direction.

Prompt

(b) Comparison of generation results from different
models on the “black outfit walking” prompt.

Figure 2: From data to outputs: corpus statistics and model generations on a walking prompt

3 POSTURE DATASET

The aim of our posture dataset is to introduce a new and challenging benchmark for the action
understanding community. In previous research, most existing fitness datasets (Fieraru et al., 2021;
Verma et al., 2020; Zhao et al., 2022) amalgamate various activities without clear distinctions. A
primary challenge in constructing the posture dataset lies in developing a systematic taxonomy to
organize diverse human activities. We present a more detailed categorical lexicon that includes
various possible body postures below the neck.

3.1 TAXONOMY

Classification. For the first level, we adopt the approach suggested by Humman (Cai et al., 2022),
which categorizes activities based on the primary muscles involved. However, given the large num-
ber of fine-grained muscles in the human body and the fact that a single activity can engage multiple
muscle groups, we consulted with kinesiologists to streamline these categories. As a result, we de-
cided to simplify the activity categories into two main groups: upper body activities (e.g., pressing,
hand rotation) and lower body activities (e.g., squatting, jumping), to provide a clearer classification
of different types of activity and better align with the synergistic functions of muscle groups in real
activities, as shown in Table 3. Although most physical activities engage multiple body regions
(e.g., deadlifting involves both the lower and upper body), our classification is based solely on the
primary regions responsible for the movement. This focus is particularly relevant for our bench-
mark, which evaluates whether the movements are executed correctly. For instance, some video
generation models produce outputs where, from the camera’s perspective, only the leg movements
are shown during running. By categorizing activities according to their main active body regions,
our taxonomy provides clearer guidance for evaluation.

Physical Activity. Building on the primary body regions from the first level, the second level cate-
gorizes activities into ten specific exercise groups, encompassing the 10 common physical activities
shown in Table 3. These activities were selected because they represent typical movement patterns
found in both daily life and fitness settings, and they clearly demonstrate the distinct movement
mechanics of the upper and lower limbs. For instance, the Side Leg Raise activity primarily engages
lower body muscle groups, including the gluteus maximus, gluteus medius, and gluteus minimus
(collectively known as the ”glute muscles”), as well as the biceps femoris (hamstrings) and core
abdominal muscles. The classification of each activity considers not only the primary muscles in-
volved but also the functional purpose of the movement and its application context in training sce-
narios, thereby providing a more comprehensive framework for evaluating the quality of movements
generated by models.

To ensure a comprehensive dataset for evaluating human motion in text-to-video generation, we de-
veloped a structured data collection and description process, as shown in Figure 2a. Our approach
emphasizes the diversity of movement types, clarity of video quality, and accuracy of motion de-
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scriptions. This section outlines our methods for collecting and organizing video data, along with
the steps taken to generate high-quality descriptions that accurately reflect each recorded action.

Description Collection. We use a multi-stage strategy to collect detailed descriptions for each
video. The process involves the following steps:

Action Identification. We use Gemini-2.5 pro to locate each complete action accurately—instances
containing multiple body parts—in the video recordings and label them with the appropriate event
tags. During this stage, we discard all incomplete actions, such as those containing interruptions.
And then, the Gemini-2.5 Pro model generates a series of candidate descriptions for each qualified
video, capturing both the overall action flow and fine-grained motion details. To further refine
these descriptions into concise and effective video prompts, we employ GPT-4o to rewrite them
by aligning the textual content with the actual video context. This two-stage process ensures that
the final prompts are both semantically faithful to the videos and directly usable for downstream
text-to-video generation tasks.

Description Validation. Our team manually reviewed and corrected any inaccuracies, ambigui-
ties, or incomplete descriptions, paying special attention to unclear action orientations or imprecise
movement details. This validation process ensured that each description was both accurate and
distinctive enough to properly identify the specific movement being performed.

4 MOVO BENCHMARKING METRICS

We propose three complementary metrics to comprehensively evaluate the similarity between mo-
tion sequences: Joint Angle Change (JAC), Dynamic Time Warping Similarity (DTW), and Mo-
tion Consistency Metric (MCM). These metrics are designed to capture different aspects of motion
similarity, from low-level joint dynamics to high-level semantic consistency. A pose estimation
model (Insafutdinov et al., 2016; Zhang et al., 2019; Jiang et al., 2023) is used to obtain the skeletal
keypoints and joint features required for these metrics, ensuring accurate representation of human
motion across frames.

Joint Angle Change (JAC). To capture joint articulation across frames, we define the Joint Angle
Change (JAC) metric. For each frame t, the angle θ between selected joint vectors v⃗1 and v⃗2 (e.g.,
upper arm and forearm) is calculated as:

θ̄ =
1

T

T∑
t=1

(
1

N

N∑
i=1

arccos

(
v⃗i,1 · v⃗i,2

∥v⃗i,1∥∥v⃗i,2∥

))
(1)

where T is the total number of frames in the video, N is the total number of joint pairs for angle
calculation, v⃗i,1 and v⃗i,2 are vectors representing the joint pair i, · denotes the dot product, and ∥ · ∥
represents the vector magnitude. To ensure consistency across frames, we calculate each joint’s
relative position r⃗i,t with respect to a reference joint (e.g., the hip) as:

σpos =
1

N

N∑
i=1

Var ({p⃗i,t − p⃗ref,t | t = 1, . . . , T}) (2)

where p⃗i,t is the position of joint i at frame t, p⃗ref,t is the position of the reference joint at frame t,
Var(·) denotes the variance operation over all frames. For two videos, we calculate the Euclidean
distance between their mean angle changes ∆θ = |θ̄1 − θ̄2|, where θ̄1 and θ̄2 are the mean angle
changes of the two videos, and position variances ∆σ = |σpos,1−σpos,2|, where σpos,1 and σpos,2 are
the mean position variances of the two videos:

distance =
√

(∆θ)2 + (∆σ)2 (3)

Finally, the similarity score JAC is normalized to the range [0, 1] to indicate action similarity:
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JAC = 1− distance
max distance

(4)

where max distance is a threshold indicating complete dissimilarity. This normalization provides an
intuitive similarity metric, with higher scores indicating closer action resemblance.

Dynamic Time Warping Similarity (DTW). To quantify the similarity between the movements
in two videos, we compute the Dynamic Time Warping distance between their skeletal keypoint
sequences. For each video frame t, the positions of skeletal keypoints are extracted and represented
as vectors k⃗t. We then compute the relative change in keypoints across consecutive frames to capture
motion dynamics:

∆k⃗t = k⃗t − k⃗t−1 (5)

where ∆k⃗t is the relative feature representing motion between frames t and t − 1. This process
is repeated for all frames in each video to obtain a sequence of motion dynamics. Next, we flat-
ten each frame’s relative feature vector into a one-dimensional representation to facilitate distance
computation. For a video with T frames, the feature vector for each frame t is defined as:

flattenedt = flatten(∆k⃗t) (6)

where flatten(·) denotes the operation of reshaping the vector into one dimension. To compute the
similarity between two videos, we apply Dynamic Time Warping to measure the alignment cost be-
tween their sequences of flattened vectors. Given two videos with frame sequences {flattened1,t}T1

t=1

and {flattened2,t}T2
t=1, the DTW distance D is calculated as:

D =
∑

(t1,t2)∈Path

d(flattened1,t1 , flattened2,t2) (7)

where Path is the optimal alignment path minimizing cumulative Euclidean distance, and d(·, ·)
denotes the Euclidean distance between two frames’ flattened vectors.

Finally, to obtain a similarity score S, we normalize D with a maximum allowable distance
max distance, ensuring the score falls between 0 and 1:

DTW = 1− D

max distance
(8)

where DTW represents the degree of similarity between the two videos, with higher values indicat-
ing greater alignment of movements.

Motion Consistency Metric (MCM). To assess whether two videos exhibit the same motion, we
leverage a multi-modal large language model (MLLM) as a judge. The MLLM evaluates the videos
and outputs a categorical result, indicating either “similar” or “not similar” based on the consistency
of movements between the two videos (see Supplementary Materials for detailed prompt design).

The Motion Consistency Metric MCM is defined as:

MCM =

{
1, if MLLM outputs ”similar”
0, if MLLM outputs ”not similar”

where MCM yields a binary score representing the consistency of motion, with MCM = 1 indi-
cating similar motions and MCM = 0 indicating dissimilar motions between the videos.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 HUMAN VALIDATION

We conduct extensive human preference labeling on generated videos to validate whether our eval-
uation metrics align with human perception. Our annotation process follows a systematic pairwise
comparison approach.

Data Preparation. For each movement type in our dataset, we generate videos using four different
models: CogVideo, SVD, Open-Sora-Plan, Kling and compose them into groups. Specifically,
given a text description pi describing a particular movement, we collect ten groups of Movement
List videos, as shown in Table 3. Each group contains four videos generated by different models:
VA, VB , VC , VD, where A,B,C,D represent different models.

Pairwise Comparison. Within each group, we create all possible pairs of videos for comparison.
Given M models, the number of pairs for each group is

(
M
2

)
= M(M−1)

2 . In our case with M = 4,
this results in six pairs: (VA, VB), (VA, VC), (VA, VD), (VB , VC), (VB , VD), (VC , VD). The order
of videos within each pair is randomized to prevent potential bias. For a prompt suite of N text
descriptions, this setup produces N × 10×

(
4
2

)
= 60N pairwise comparisons in total.

Annotation Process. Human annotators are asked to evaluate each video pair based on the realism
of motion generation. For each comparison, annotators indicate their preference between the two
videos. We ensure each pair receives ratings from multiple annotators to enhance reliability. The
collected preferences are used to compute win ratios for each model and validate the alignment
between our automated metrics and human perception.

Win Ratio. Based on human labels, we compute the win rate for each model through pairwise
comparisons. The superior model received 1 point, the inferior model received 0 points, and in the
case of a tie, both models received 0.5 points. Each model’s win rate was calculated as the total
score divided by the total number of pairwise comparisons it participated in, as detailed at Figure 6.

6 EXPERIMENT SETUP

6.1 MODELS

Deadlift

Jump

Running

Side Leg Raise

Squat

Walking

Hand Punch

Hand Rotation

Press

Waist Twist

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

CogVideo2B

CogVideo5B
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Gen2

HunyuanVideo

Kling

Open-Sora-Plan

Pika 1.5

SVD
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Veo 3

Wan 2.1

Wan 2.2
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Figure 3: Average of JAC, DTW, and MCM for lower and upper body
movements (excluding Sora due to limited evaluation data).

We selected 14 exemplary
T2V models for evaluation,
including both open-source
and propriety models,
including CogVideo (Hong
et al., 2022), SD3+SVD
(Blattmann et al., 2023a),
Open-Sora-Plan (PKU-
Yuan Lab and Tuzhan AI
et al., 2024), Zeroscope
(cerspense, 2023), Gen2
(Runway Research, 2023),
Dream Machine (Luma AI,
2024), Kling (Kuaishou
Technology, 2024), Pika
1.5 (Pika, 2024),Wan 2.1
(Team Wan et al., 2025),
Wan 2.2 (Wan-Video Team, 2025), Veo 3 (Google DeepMind, 2025), HunyuanVideo (Kong et al.,
2025) and Sora (OpenAI, 2024). For more detailed, please refer to the Supplementary Materials.

6.2 EXPERIMENT DESIGN

In this experiment, we used the prompts from the Posture Dataset for inference on 14 tested mod-
els. Each model generated 893 videos. Subsequently, using the metrics defined in Section 4, the
generated videos were compared with the videos in the Posture Dataset (Ground Truth) to compute
the evaluation metrics. Due to OpenAI’s restrictions on Sora, only 10 randomly selected prompts

7
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Figure 4: An overview of the evaluation results across all models. This figure summarizes 14 T2V
models, where each model forms a group of three stacked bars (JAC, DTW and MCM) and the stack
segments correspond to the 10 actions. The bar height equals to the sum of normalized scores when
higher is better. Models are arranged from open-source to proprietary, and Sora* is reported with
limited data. The plot makes it easy to see per-model trade-offs and where strengths concentrate by
action family.

per category were used for video generation, making the evaluation results preliminary and for ref-
erence only. For Veo 3, we accessed the model via the official API (self-hosting unavailable), and
generations reflect the API’s default settings at evaluation time.

7 EVALUATION RESULTS

We employed YOLO-X (Gillani et al., 2022) to detect humans in the videos, feeding the detected
regions into the RTMPose-X (Jiang et al., 2023) model to extract skeletal structures and keypoint
information. For evaluation, we compared the skeletal structures in the generated videos to those
in our dataset videos, which served as Ground Truth. This comparison was based on keypoint
coordinates for each frame, enabling us to compute metrics that evaluate the quality of the generated
videos and their similarity to real-world videos, as shown in Figure 2b. If the prompt for generating
the video includes “hand,” we applied the RTMPose-M simcc hand5 (Jiang et al., 2023) model to
specifically extract skeletal structures and keypoints for the hands. This allows for a more granular
analysis of hand movements, enhancing the precision of our evaluation metrics for videos with a
focus on hand gestures or actions. We computed the unnormalized maximum distances for the
JAC and DTW metrics and set max distance to 1000. For all open-source models, we set the seed
parameter to 88, while keeping all other hyperparameters at their default values. The results are
shown in Figure 4. For more detailed results, such as experiments on more complex motions and
pose estimation models, please refer to Appendix F.

7.1 JAC EVALUATION ON MOVO

Table 4 reports joint-articulation consistency (JAC). We observe strong intra-model variability across
actions: models that score well on upper-body tasks often drop on lower-body control. For instance,
Open-Sora-Plan reaches 0.371 on hand punch yet shows weaker articulation on legs. Pika 1.5 il-
lustrates the gap when it gains 0.467 on running but 0.145 on side leg raise. Sora is comparatively
balanced: moderate on deadlift and squat, and stronger on continuous lower-body motions, with
mixed results on faster upper-body actions. Current models capture gross motion classes but strug-
gle with fine-grained joint articulation, especially for lower limbs requiring precise coordination.

7.2 DTW EVALUATION ON MOVO

Table 5 evaluates temporal alignment via dynamic time warping similarity (DTW). Proprietary mod-
els (Kling 1.0, Pika 1.5) show strong alignment on complex actions, yet consistency is not universal:
Pika 1.5 performs well on walking with a score of 0.701 but drops to 0.300 on side leg raise, indicat-
ing difficulty with isolated or abrupt motions. Sora maintains comparatively even alignment across

8
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Figure 5: Correlation of Movo Evaluation (Average of JAC, DTW and MCM Metrics) with Human
Annotations Across Different Human Motion Types

both dynamic and controlled actions. In all, Flow-like continuity is easier to achieve in steady peri-
odic movements than in actions with discrete phases or brief holds.

7.3 MCM EVALUATION ON MOVO

Table 6 reports structural consistency using the Motion Consistency Metric (MCM). In general,
Kling 1.0 leads on most movements. Among open-source baselines, Open-Sora-Plan and Zeroscope
are competitive on select classes. Sora is uniformly strong, with scores tightly clustered around
0.88–0.90 across both lower- and upper-body actions, suggesting robust preservation of overall mo-
tion structure. MCM also reveals weaknesses in nuanced upper-body control. Moreover, the binary
nature of MCM can mask subtle fidelity gaps even when structures look similar. Overall, preserving
coarse structure is increasingly reliable, but capturing fine-grained coherence remains challenging,
motivating joint- and phase-aware diagnostics.

7.4 VALIDATING HUMAN ALIGNMENT OF MOVO

Human scores were calculated the models’ win rates over 1200 comparisons (N=2), providing a
robust dataset to evaluate these correlations. For each type of human motion, we based on Movo’s
evaluation results (Average of JAC, DTW and MCM Metrics) and human scores results, as shown in
Figure 5. The human scores for different models are displayed across various motion categories. In
each figure, we observe the correlation coefficient ρ between Movo’s metrics and human evaluations,
such as 0.9859 in Hand Punch and 0.9897 in Walking. Notably, high correlations are observed in
motions like Running (ρ = 0.9822), Walking (ρ = 0.9897), Hand Rotation (ρ = 0.9808), and Press
(ρ = 0.9859). The results reveal an overall high consistency between automated evaluation scores
and human annotations, with average correlation values supporting the validity of Movo as a metric.

8 CONCLUSION

Based on the evaluation metrics and experimental results presented, we derive the following
key insights: (1) Performance varies by motion type. Lower-body actions score higher on
JAC/DTW/MCM than upper-body actions. Sora is comparatively balanced across both groups in
Fig. 3. (2) Non-uniformity and bias across models. Proprietary systems generally outperform open-
source baselines, but gains concentrate on upper-body tasks under MCM, suggesting specialization
rather than robustness in Table 4 and Table 5. Sora shows more even performance despite limited
accessible data. (3) Missing fine-grained dynamics. Open-source models often fail to capture subtle
joint articulation; DTW exposes rhythm drift even when videos appear smooth. Sora is not exempt.

We present Movo, a kinematics-centric benchmark for human-motion realism in T2V. Movo cou-
ples posture-focused, camera-aware prompts with three skeletal metrics to yield interpretable, body-
centric scores. Evaluating a representative set of leading open and proprietary models, Movo ex-
poses persistent gaps in biomechanical plausibility and temporal consistency, providing actionable
diagnostics for model selection, quality gating, and future research.

9
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ETHICS STATEMENT

This work focuses on evaluating human motion realism in text-to-video (T2V) generation. All video
data collected in the posture dataset were either sourced from public platforms with permissive li-
censes or recorded with informed consent from participants. Before recording, volunteers were
shown instructional materials and provided written consent, with the option to withdraw at any time.
Personally identifiable information was excluded, and only body movements relevant to evaluation
were retained. We acknowledge that T2V systems pose potential ethical and societal risks, includ-
ing the generation of misleading or unsafe human motions. Implausible motions may encourage
viewers, particularly juveniles, to imitate harmful behaviors, while synthetic videos can also be mis-
used for disinformation or unauthorized likeness replication. Our benchmark does not generate or
distribute harmful content; rather, it aims to surface biomechanical errors and promote safer, more
realistic human motion generation. By releasing Movo, we intend to provide the community with
tools to improve the safety, reliability, and transparency of T2V models. We encourage responsible
use of our dataset and benchmark, and we explicitly discourage applications that could compromise
human well-being, propagate misinformation, or violate privacy or likeness rights.

REPRODUCIBILITY STATEMENT

To promote transparency and reproducibility, we release all the code and scripts accompanying this
paper in the Supplementary Materials.
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A SIMPLIFICATION OF MOTION TAXONOMY

To ensure a clear and practical classification, we categorized human activities based on the primary
body parts involved. While this taxonomy simplifies complex human motions, it remains effective
for analyzing movements that significantly influence joint positions and biomechanical dynamics.
Below, we elaborate on the rationale for our choices and the exclusions.

Exclusion of Facial Movements Facial movements, while important in human communication
and emotional expression, were excluded from this taxonomy. This decision was made because
facial motions primarily involve micro-expressions and small-scale muscular changes, which are
insufficient to produce measurable joint displacement or contribute to broader body kinematics.

Focus on Major Muscle Groups The taxonomy divides movements into upper and lower body ac-
tivities, which aligns with the natural grouping of muscle synergies in physical activities. Although
some exercises, like deadlifts, engage the entire body, they are categorized under lower body move-
ments due to the dominant involvement of leg and hip muscles. For similar reasons, activities such
as pull-ups, while engaging the upper body extensively, could also be conceptually grouped under
”deadlift” due to overlapping muscle recruitment patterns. However, for simplicity, we kept them
distinct under the upper body classification to emphasize specificity.

Simplification for Practicality While the human body contains many fine-grained muscle groups,
analyzing activities at such granularity adds complexity without significant benefits in typical mo-
tion analysis applications. Thus, we opted for broader categories that better align with real-world
activities and the synergistic functions of muscle groups. For example: 1) Upper Body Movements:
This category includes activities such as pressing and hand rotation, which highlight the dominant
role of the shoulders and arms. 2) Lower Body Movements: Activities such as squats and jumping
focus on the legs and hips as primary movers.

Exclusion of Other Specialized Movements Movements involving smaller muscle groups (e.g.,
fingers, toes) or specialized actions (e.g., fine motor skills) were excluded. These activities have
minimal impact on joint displacement and are less relevant to the core physical activities that this
taxonomy aims to address.

Upper Body Inclusion of Compound Movements Compound movements like deadlifts or pull-
ups were considered for their overlap between upper and lower body categories. For example,
deadlifts, though categorized under lower body activities, involve substantial engagement of the
upper body, such as grip strength and spinal stabilization. These nuances were carefully accounted
for while simplifying the taxonomy.

This streamlined taxonomy ensures that the classification is easy to interpret, aligns with kinesiolog-
ical principles, and remains relevant for most applications, from biomechanics research to physical
activity monitoring.

B MLLMS FOR VIDEO DESCRIPTION

The task of generating accurate and detailed video descriptions is critical for applications ranging
from video retrieval to content analysis and accessibility enhancement. Multimodal large language
models (MLLMs) have emerged as powerful tools for this task by combining visual and textual
modalities to produce coherent and informative descriptions. This section discusses the role of
MLLMs in video description tasks and introduces a set of structured prompts designed to guide the
models’ outputs effectively.

Role of Prompts in Video Description Prompts play a pivotal role in shaping the responses of
MLLMs, particularly in complex tasks like video description. A well-designed prompt can guide
the model to focus on specific aspects of the video content, ensuring that the generated descriptions
are not only accurate but also relevant to the intended application. For this purpose, we created a set
of 10 prompts tailored to elicit detailed, action-oriented descriptions while avoiding unnecessary or
biased information (see Table 1).

Objectives of Prompt Design The prompts in Table 1 are carefully crafted to achieve the following
objectives: 1. Focus on Actions and Events: Each prompt emphasizes the actions and sequences
occurring in the video, ensuring that the descriptions remain centered on the core content. 2. Inclu-
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Table 1: Prompts for video description tasks

ID Prompt

1 Describe this video focusing on the actions being performed. Where is the camera positioned? Ignore
the gender of the people in the video.

2 Explain what is happening in the video with an emphasis on the sequence of actions and their purpose.
Camera details like angles and movement are important.

3 Provide a detailed description of the video content, focusing only on the actions and camera positioning.
Avoid mentioning any physical appearances.

4 What activities are being performed in the video? Mention the camera’s perspective and movement,
while ignoring the subjects’ identity.

5 Focus on describing the events and actions in the video. Where is the camera placed, and what angles are
used? Do not include details about the participants’ gender or appearance.

6 Summarize the video by explaining the actions taking place. Note the camera’s position and transitions,
but do not consider any personal attributes of the people involved.

7 Identify the key actions occurring in this video. Emphasize the camera’s role in capturing the actions,
excluding personal details of the individuals.

8 Analyze the video for the activities being shown. Pay attention to camera angles and positioning while
disregarding the participants’ physical descriptions.

9 What movements and actions are captured in this video? Highlight the camera’s perspective, avoiding
any focus on the individuals’ appearance or gender.

10 Describe the sequence of actions in this video, focusing on the activities and the camera’s placement.
Avoid any mention of the participants’ personal characteristics.

Table 2: Comparison of Movo with widely used T2V benchmarks

Benchmark Kinematics Contact/Phys. Temporal Camera Ctrl. Human Eval.

VBench ✗ ✗ △ △ △
EvalCrafter ✗ ✗ △ ✗ △
T2V-CompBench ✗ ✗ ✗ △ △
Video-Bench ✗ ✗ △ △ △
PhyGenBench ✗ ✓ △ ✗ △
Movo (ours) ✓ ✓ ✓ ✓ ✓

Legend: ✓ explicitly covered; △ indirect or limited coverage; ✗ not covered.

sion of Camera Details: Understanding the role of the camera in capturing video content, such as its
placement, movement, and perspective, is crucial. The prompts explicitly encourage the model to
include these aspects. 3. Exclusion of Personal Attributes: To ensure objectivity and ethical use, the
prompts explicitly instruct the model to avoid describing personal characteristics such as the gender
or appearance of individuals in the video. This mitigates potential biases and ensures privacy.

Application Scenarios The prompts were designed to cater to a wide range of video types, in-
cluding: 1. Instructional Videos: Where sequences of actions and their purpose are central to the
description. 2. Surveillance Footage: Where camera positioning and actions captured are crucial
for analysis. 3. Sports and Performance: Where the emphasis is on the movements and activities
performed.

Model Selection and Implementation Finally, we selected the state-of-the-art model, Qwen2-vl
(Wang et al., 2024a), to describe our collected text-video dataset. For each video, a random prompt
from the ten provided in Table 1 was used to ensure diverse and context-appropriate descriptions.

C HUMAN ANNOTATION

In this study, we employed a rigorous human annotation process to evaluate the effectiveness of
video content in matching given tags. Ten PhD student volunteers, comprising an equal distribution
of five male and five female participants, were selected to conduct the annotations. The participants
were trained in video analysis to ensure consistent and accurate evaluations.

For the annotation process, the volunteers were presented with pairs of videos, as shown in the
figure, along with a corresponding tag such as ”Boxing.” Their task was to determine which video
better matched the tag based on the visual and contextual content of the videos. Each pair of videos
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Tag: Boxing
Question: Which one 
better match the tag?

Figure 6: Annotation interface for video evaluation: Annotators compare two video clips with the
tag ’Boxing’ and select the better match using options ’Up,’ ’Almost Same,’ or ’Down.

was displayed alongside three options for evaluation: ”Up” (indicating the top video matches better),
”Down” (indicating the bottom video matches better), or ”Almost Same” (indicating both videos are
equally relevant), as shown in Figure 6.

The annotation interface was designed to minimize cognitive load and maximize accuracy by pro-
viding a clear layout and intuitive options. The volunteers were instructed to carefully consider the
movements, settings, and actions depicted in each video before making their decisions. Each anno-
tation task was independently performed by all ten participants to ensure diversity in perspectives
and reduce bias.

The collected annotations were aggregated and analyzed to measure inter-annotator agreement, pro-
viding a reliable foundation for assessing the quality of the videos in relation to their tags. This
human-centered evaluation approach contributed significantly to validating the results of our study.

Our hiring criteria for manual verification are:

1) A 45-minute training session covering common motion failures produced by current T2V mod-
els, such as missing fingers, duplicated limbs, joint misplacement, unrealistic bone structure, and
inconsistent arm–leg articulation.

2) Set a quiz about a calibration exam of 30 videos, requiring ¿=90% agreement with verified an-
swers before annotation.

3) Clear category-specific guidelines for valid vs. invalid actions, with visual example

D DATASET VISUALIZATION

The dataset visualization aims to provide an overview of the ground truth data used for human mo-
tion analysis. Figure 7 presents videos depicting different exercises with overlaid skeletal keypoints.
These keypoints represent the critical joints and body parts tracked during the movements, offering
a detailed view of pose estimation and motion tracking accuracy.

The visualizations include a variety of motion. Each activity is captured across multiple frames to
demonstrate the temporal progression of the actions. The skeletal keypoints are color-coded and
connected to highlight joint positions and limb orientations, enabling clear interpretation of the
body’s posture and motion dynamics.

This visualization helps to validate the quality of the dataset by showcasing its ability to capture
diverse human motions with high precision. The overlaid skeletons indicate that the pose estimation
aligns well with the physical movements depicted in the images, supporting its application in motion
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Figure 7: Supplement

Figure 8: Visualization of motion analysis scenes.

analysis tasks. Furthermore, the variety in activities underscores the dataset’s comprehensiveness
and versatility for studying a broad range of human actions.

E EXTENDED RELATED WORK

The latest breakthroughs in generative AI, particularly with the development of Transformer models
(Hong et al., 2022; Villegas et al., 2022; Wu et al., 2021; 2022; Gupta et al., 2022; Yu et al., 2023)
and diffusion models (Ho et al., 2022a;b; Blattmann et al., 2023b; He et al., 2022; Khachatryan et al.,
2023; Luo et al., 2023; Singer et al., 2022; Wang et al., 2023f; Sun et al., 2024), have significantly
advanced open-domain video generation. Transformer-based approaches encode videos as discrete
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Table 3: Movement classification

Category Movement list

Lower body movements Deadlift; Jump; Running; Side leg raise; Squat; Walking

Upper body movements Hand punch; Hand rotation; Press; Waist twist

Table 4: Lower and Upper Body Movements Evaluation Using JAC Metric (* limited data)

Model Lower Body Movements Upper Body Movements

Deadlift Jump Running Side Leg Raise Squat Walking Hand Punch Hand Rotation Press Waist Twist

Open-source Models
CogVideo2B 0 0 0.170 0.097 0 0 0.306 0.138 0.027 0.008
CogVideo5B 0 0 0 0.277 0 0.006 0.077 0.147 0 0.224
SVD 0.083 0.207 0.213 0.401 0 0 0.105 0.476 0.061 0.180
Open-Sora-Plan 0.197 0.479 0.135 0.257 0 0 0.371 0.649 0.285 0
Zeroscope 0.028 0.211 0 0 0 0 0.360 0.103 0.065 0.051
Wan 2.1 0.152 0.410 0.295 0.338 0.142 0.211 0.284 0.512 0.278 0.143
Wan 2.2 0.163 0.432 0.311 0.352 0.157 0.227 0.297 0.539 0.293 0.158
HunyuanVideo 0.141 0.384 0.276 0.319 0.132 0.198 0.261 0.481 0.254 0.131

Proprietary Models
Gen2 0.136 0.179 0.243 0.113 0.158 0.191 0.189 0.172 0.193 0.179
Dream Machine 0.167 0.191 0.118 0.158 0.129 0.362 0.142 0.154 0.172 0.362
Kling 0.197 0.370 0.169 0.401 0.138 0.673 0.156 0.649 0.198 0.761
Pika 1.5 0.192 0.374 0.467 0.145 0.182 0.138 0.177 0.374 0.467 0.148
Veo 3 0.344 0.445 0.432 0.391 0.264 0.528 0.323 0.621 0.406 0.598
Sora* 0.219 0.422 0.438 0.382 0.179 0.584 0.338 0.612 0.414 0.682

visual tokens, which are then generated automatically (Yuan et al., 2024; Liu et al., 2024b). On the
other hand, diffusion models have been widely explored for this task to reduce the high computa-
tional cost of video generation, demonstrating superior capabilities (Ho et al., 2022a;b; Blattmann
et al., 2023b).

Diffusion models, such as Make-A-Video (Singer et al., 2022), leverage pre-trained image diffusion
models and enhance their video generation capabilities by fine-tuning temporal attention mecha-
nisms. VideoLDM (Blattmann et al., 2023b) introduces a multi-stage alignment process in latent
space to generate high-resolution videos. Similarly, GEST (Masala et al., 2023) employs graph-
based representations to encode the spatio-temporal relationships between text and video, generating
contextually rich content.

To enhance controllability, methods such as VideoComposer (Wang et al., 2024b) incorporate addi-
tional guidance signals, such as depth maps, ensuring that the generated videos align more closely
with textual prompts. Meanwhile, VideoDirectorGPT (Lin et al., 2023) leverages GPT-4 (Achiam
et al., 2023) to create scene layouts and control specific video compositions. Other approaches,
such as Tune-A-Video (Wu et al., 2023), implement temporal self-attention modules in pre-trained
diffusion models, achieving higher fidelity in text-driven video generation.

The introduction of diffusion transformers (Peebles & Xie, 2023; Bao et al., 2023; Gao et al., 2023)
has further revolutionized video generation, leading to advanced methods like Latte (Ma et al., 2024)
and Sora (OpenAI, 2024). These methods have been applied in various domains.

F ADDITIONAL EXPERIMENTS

In this section, we address the constructive feedback provided by reviewers regarding dataset di-
versity, metric robustness, and evaluation fairness. We have significantly expanded the benchmark
with new challenge categories and conducted rigorous ablation studies to validate the stability and
instructional value of our metrics.

F.1 EXPANSION OF DATASET: CHALLENGE CATEGORIES

To resolve that the original Movo dataset, while a robust starting point, was limited to structured
fitness motions and might not represent the full complexity of human movement. We appreciate this
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Table 5: Lower and Upper Body Movements Evaluation Using DTW Metric (* limited data)

Model Lower Body Movements Upper Body Movements

Deadlift Jump Running Side Leg Raise Squat Walking Hand Punch Hand Rotation Press Waist Twist

Open-source Models
CogVideo2B 0.381 0.724 0.513 0.663 0.465 0.431 0.524 0.678 0.667 0.461
CogVideo5B 0.451 0.730 0.608 0.684 0.538 0.441 0.508 0.637 0.754 0.494
SVD 0.459 0.634 0.739 0.642 0.666 0.498 0.598 0.729 0.812 0.483
Open-Sora-Plan 0.497 0.797 0.734 0.594 0.762 0.503 0.655 0.762 0.802 0.499
Zeroscope 0.498 0.805 0.770 0.793 0.747 0.516 0.623 0.737 0.847 0.480
Wan 2.1 0.572 0.892 0.853 0.909 0.834 0.596 0.685 0.839 0.959 0.528
Wan 2.2 0.603 0.944 0.927 0.961 0.902 0.624 0.751 0.877 1.009 0.574
HunyuanVideo 0.532 0.870 0.861 0.852 0.808 0.549 0.669 0.787 0.939 0.509

Proprietary Models
Gen2 0.641 0.719 0.717 0.520 0.418 0.637 0.464 0.452 0.446 0.681
Dream Machine 0.632 0.689 0.773 0.630 0.673 0.797 0.384 0.444 0.351 0.561
Kling 0.770 0.794 0.686 0.803 0.812 0.800 0.457 0.847 0.866 0.747
Pika 1.5 0.747 0.691 0.835 0.300 0.670 0.701 0.457 0.444 0.223 0.725
Veo 3 0.764 0.899 0.851 0.611 0.529 0.800 0.744 0.827 0.830 0.736
Sora* 0.751 0.783 0.822 0.768 0.790 0.784 0.638 0.824 0.853 0.736

Table 6: Lower and Upper Body Movements Evaluation Using MCM Metric (* limited data)

Model Lower Body Movements Upper Body Movements

Deadlift Jump Running Side Leg Raise Squat Walking Hand Punch Hand Rotation Press Waist Twist

Open-source Models
CogVideo2B 0.85 0.88 0.86 0.84 0.83 0.82 0.84 0.85 0.82 0.84
CogVideo5B 0.86 0.89 0.88 0.87 0.85 0.83 0.84 0.85 0.82 0.85
SVD 0.88 0.86 0.89 0.86 0.86 0.84 0.86 0.88 0.86 0.84
Open-Sora-Plan 0.89 0.90 0.88 0.86 0.87 0.84 0.89 0.89 0.87 0.85
Zeroscope 0.88 0.90 0.89 0.88 0.87 0.83 0.86 0.87 0.86 0.84
Wan 2.1 0.90 0.91 0.90 0.89 0.89 0.85 0.88 0.89 0.88 0.86
Wan 2.2 0.91 0.92 0.91 0.90 0.90 0.86 0.89 0.90 0.89 0.87
HunyuanVideo 0.87 0.89 0.88 0.87 0.86 0.83 0.85 0.86 0.85 0.83

Proprietary Models
Gen2 0.90 0.89 0.90 0.85 0.84 0.89 0.85 0.85 0.84 0.87
Dream Machine 0.90 0.88 0.90 0.86 0.86 0.90 0.84 0.84 0.83 0.86
Kling 0.91 0.90 0.89 0.91 0.91 0.90 0.85 0.91 0.92 0.90
Pika 1.5 0.90 0.88 0.91 0.81 0.86 0.88 0.85 0.84 0.81 0.88
Veo 3 0.92 0.91 0.90 0.89 0.89 0.91 0.88 0.89 0.88 0.92
Sora* 0.90 0.89 0.90 0.89 0.90 0.89 0.88 0.90 0.90 0.89

perspective and fully agree that broader coverage is valuable. While Movo was designed as a foun-
dational benchmark for atomic actions, we acknowledge the need to test models on more chaotic
scenarios.

To address this, we manually collected and annotated 486 additional videos sourced from Motion-
X and YouTube to represent four new “Challenge Categories.” These categories were specifically
selected to target the weaknesses identified:

• Falling: Represents non-periodic, physics-driven, and reactive motion where gravity and
momentum are critical (simulating “slipping”).

• Ball Games: Represents dynamic human-object interaction and hand-eye coordination.

• Playing Instruments: Represents fine-grained control and precise limb positioning.

• Dance: Represents high-degree-of-freedom (DoF) kinematics and diverse, non-standard
poses.

We re-evaluated all models on this expanded benchmark. The results, presented in Tables 7, 8, and 9,
reveal a significant performance drop compared to the original categories. For instance, even state-
of-the-art models like Sora 2 and Veo 3 show a ∼30-50% drop in JAC scores on “Falling” compared
to “Walking.” This confirms that while models may master basic patterns, they struggle significantly
with emergent, physics-based scenarios.
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Table 7: Evaluation of “Challenge Categories” (Complex/Everyday Motion) Using JAC Metric

Model Challenge Categories
Falling Ball Games Instruments Dance

Open-source Models
CogVideo2B 0.004 0.015 0.038 0.091
CogVideo5B 0.013 0.031 0.067 0.121
SVD 0.045 0.084 0.119 0.149
Open-Sora-Plan 0.093 0.147 0.179 0.214
Zeroscope 0.017 0.027 0.059 0.089
Wan 2.1 0.103 0.201 0.223 0.244
Wan 2.2 0.128 0.213 0.236 0.268
HunyuanVideo 0.099 0.192 0.209 0.227

Proprietary Models
Gen2 0.081 0.122 0.138 0.173
Dream Machine 0.088 0.109 0.131 0.152
Kling 0.152 0.238 0.298 0.322
Pika 1.5 0.119 0.161 0.188 0.236
Veo 3 0.214 0.298 0.331 0.401
Sora 2 0.309 0.425 0.447 0.518

Table 8: Evaluation of “Challenge Categories” Using DTW Metric (Temporal Alignment)

Model Falling Ball Games Instruments Dance

Open-source Models
CogVideo2B 0.148 0.202 0.217 0.244
CogVideo5B 0.182 0.229 0.243 0.279
SVD 0.199 0.261 0.278 0.287
Open-Sora-Plan 0.221 0.276 0.288 0.318
Zeroscope 0.185 0.245 0.268 0.297
Wan 2.1 0.251 0.302 0.344 0.365
Wan 2.2 0.268 0.333 0.358 0.387
HunyuanVideo 0.229 0.306 0.321 0.349

Proprietary Models
Gen2 0.218 0.256 0.284 0.301
Dream Machine 0.211 0.243 0.262 0.294
Kling 0.326 0.368 0.374 0.402
Pika 1.5 0.243 0.292 0.314 0.343
Veo 3 0.347 0.366 0.405 0.430
Sora 2 0.364 0.398 0.423 0.439

F.2 ROBUSTNESS OF METRICS AND ESTIMATORS

To prove that the benchmark did not relies on the RTMPose-X estimator, suggesting that genera-
tion artifacts might cause pose estimation errors that propagate into the scores. We fundamentally
argue that estimator failure is a signal instead of a noise. In current T2V systems, pose extraction
fails primarily when motion is physically implausible. For example, limb hallucinations cause es-
timator flickering, and blurred limbs break tracking. These artifacts directly reflect biomechanical
implausibility, and our metrics explicitly measure this instability.

To empirically validate that our rankings are not biased by a specific estimator, we re-evaluated the
benchmark using two alternative architectures: BlazePose (Bazarevsky et al., 2020) and YOLOv8l-
pose (Jocher & Qiu, 2024). As shown in Table 10, the results demonstrate high agreement with our
primary RTMPose-X evaluation, yielding a Spearman rank correlation of ρ > 0.94 for both JAC and
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Table 9: Evaluation of “Challenge Categories” Using MCM Metric (Semantic Consistency)

Model Falling Ball Games Instruments Dance

Open-source Models
CogVideo2B 0.21 0.27 0.26 0.31
CogVideo5B 0.25 0.33 0.29 0.36
SVD 0.34 0.39 0.35 0.43
Open-Sora-Plan 0.38 0.44 0.41 0.48
Zeroscope 0.32 0.35 0.34 0.41
Wan 2.1 0.47 0.55 0.52 0.59
Wan 2.2 0.54 0.57 0.60 0.63
HunyuanVideo 0.43 0.50 0.46 0.56

Proprietary Models
Gen2 0.38 0.47 0.42 0.49
Dream Machine 0.44 0.45 0.43 0.51
Kling 0.59 0.67 0.61 0.70
Pika 1.5 0.46 0.52 0.49 0.57
Veo 3 0.65 0.69 0.67 0.72
Sora 2 0.67 0.73 0.70 0.75

DTW. This confirms that the relative quality ranking of T2V models is consistent regardless of the
pose estimator used.

Table 10: Cross-validation of Movo metrics across different pose estimators. The high consistency
(ρ > 0.94) confirms that rankings are not dependent on a specific pose model.

Model JAC Metric DTW Metric
RTMPose BlazePose YOLOv8 RTMPose BlazePose YOLOv8

CogVideo5B 0.073 0.069 0.071 0.585 0.573 0.579
Open-Sora-Plan 0.237 0.221 0.228 0.661 0.647 0.653
Wan 2.2 0.293 0.281 0.289 0.817 0.802 0.812
Kling 0.371 0.356 0.362 0.758 0.742 0.750
Veo 3 0.435 0.419 0.431 0.759 0.744 0.752

Additionally, to address questions regarding sensitivity to video quality, we conducted a robustness
study using real-world degradations: low-bitrate H.264 compression (480p) and simulated motion
blur (7-pixel kernel). As presented in Table 11, the results show small absolute variations across
all metrics, and most importantly, the ranking of models remains unchanged. This indicates that
Movo reliably distinguishes between artifact-heavy and clean motion without collapsing under im-
perfect video conditions.

F.3 METHODOLOGY CLARIFICATION AND FAIRNESS

To prove that the transparency of the Motion Consistency Metric (MCM) and the disentanglement
of camera motion, we provide the following clarifications. MCM is not designed to replace JAC or
DTW, but to complement them as a semantic safeguard (e.g., preventing “upside-down walking”).
To reduce bias, we adopt a 3-model voting scheme combining GPT-5, Claude-4 Sonnet, and Gemini
2.5 Pro. A majority vote is taken to determine if the motion matches the textual description.

Regarding camera motion, we argue that Movo achieves disentanglement through theoretical invari-
ance (root-centering). To empirically prove this, we conducted a “Camera Injection Study” compar-
ing stable tripod prompts against dynamic handheld prompts. As shown in Table 12, the variance in
skeletal scores was < 2% across models. This confirms that our metrics capture biological motion
degradation rather than camera shake.
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Table 11: Robustness of Movo scores under video quality degradation (480p compression and Mo-
tion Blur). Rankings remain stable.

Model Original 480p Motion Blur
CogVideo5B 0.5039 0.4981 0.4917
Open-Sora-Plan 0.5906 0.5832 0.5724
HunyuanVideo 0.6181 0.6077 0.5989
Wan 2.2 0.6684 0.6589 0.6493
Kling 0.6765 0.6659 0.6551
Veo 3 0.6978 0.6872 0.6748

Table 12: Camera Injection Study: Impact of camera motion on kinematic scores. The low variance
(< 2%) confirms that Movo effectively disentangles body motion from camera movement.

Model Stable Camera Dynamic Camera Variance
CogVideo5B 0.5039 0.4952 -1.7%
Open-Sora-Plan 0.5906 0.5814 -1.5%
HunyuanVideo 0.6181 0.6103 -1.2%
Wan 2.2 0.6684 0.6591 -1.4%
Kling 0.6765 0.6688 -1.1%
Veo 3 0.6978 0.6910 -0.9%

Finally, regarding the fairness of comparing API-based models (Veo 3) and the limited preliminary
evaluation of Sora, we have updated our benchmark. We gained access to the Sora 2 API and com-
pleted the full Movo evaluation (893 videos) under identical settings. Table 13 confirms that while
Sora 2 achieves the highest overall scores, it is fully comparable within our standard framework.

Table 13: Updated full benchmark results for Sora 2 (via API) compared to Veo 3.

Model Avg JAC Avg DTW Avg MCM Overall Avg
Veo 3 0.4352 0.7591 0.899 0.6978
Sora 2 0.5521 0.8021 0.911 0.7551

F.4 INSTRUCTIONAL VALUE: MOVO AS TRAINING DATA

We demonstrate the instructional value of our dataset. We partitioned the Movo dataset into a 7:3
split (Training/Test) and fine-tuned the Wan 2.2 model on the training set. As shown in Table 14,
fine-tuning yields substantial gains across all kinematics metrics compared to the base model (JAC
+30.2%, DTW +8.5%), proving that Movo serves as high-quality data for motion alignment.

Table 14: Impact of fine-tuning Wan 2.2 on the Movo dataset.

Metric Wan 2.2 (Base) Wan 2.2 (Movo-FT) Improvement
JAC 0.293 0.595 +30.2%
DTW 0.817 0.902 +8.5%
MCM 0.895 0.925 +3.0%
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G USE OF LLMS

In the preparation of this manuscript, we employed large language models (LLMs), specifically
GPT-5 and GPT-4o, solely for the purpose of polishing and refining the writing. These models as-
sisted in improving readability, grammar, and stylistic clarity of the text. Importantly, they were not
involved in the design, construction, implementation, or evaluation of the proposed methods and ex-
periments. All conceptual contributions, dataset construction, algorithmic design, and experimental
analyses were carried out independently by the authors.
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