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ABSTRACT

The frontier of visual reasoning is shifting toward models like OpenAl 03, which
can intelligently create and operate tools to transform images for problem-solving,
also known as thinking-with-images in chain-of-thought. Yet existing benchmarks
fail to fully capture this advanced capability. Even Visual Search, the most com-
mon benchmark for current thinking-with-images methods, tests only basic oper-
ations such as localization and cropping, offering little insight into more complex,
dynamic, and tool-dependent reasoning. We introduce TIR-Bench, a compre-
hensive benchmark for evaluating agentic thinking-with-images across 13 diverse
tasks, each requiring novel tool use for image processing and manipulation in
chain-of-thought. We evaluate 22 multimodal large language models (MLLMs),
from leading open-sourced and proprietary models to those with explicit tool-
use augmentation. Results show that TIR-Bench is universally challenging, and
strong performance requires genuine thinking-with-images capabilities. Finally,
we present a pilot study comparing direct versus agentic fine-tuning.

1 INTRODUCTION

The reasoning abilities of recent multimodal large language models (MLLMs) (Hurst & OpenAl,
2024} Gemini Team, [2025]) have advanced significantly, driven in large part by reasoning techniques
such as chain-of-thought (CoT) (Wei et al.| [2022). By decomposing reasoning of complex visual
questions into a series of textual steps, MLLMs are able to achieve improved performance. While
promising, these techniques are confined to the textual domain, conducting their reasoning solely
through language while treating the visual information as a static, unalterable input (Su et al | 2025b).

To effectively process visual information, thinking-with-images has been proposed (OpenAlL|2025¢;
Su et al., 2025b; |Hu et al.|,2024). This approach enables a model to generate new visual information
by actively manipulating input images with tools. For example, when faced with a complex visual
problem, OpenAI’s 03 model (OpenAll 2025¢) first writes code to create an image-processing tool,
then executes it to modify the image (e.g., cropping, flipping, or rotating). The transformed visual
data then informs the next stage of its linguistic reasoning.

To assess the agentic thinking-with-images capabilities of MLLMs, existing benchmarks (Wu &
Xiel [2024; [Wang et al., 2025) have largely centered on visual search and tasks requiring the analysis
of high-resolution images. These evaluations primarily validate a model’s ability to accurately lo-
calize and crop specific regions within an image for better capturing detailed information to answer
corresponding questions. However, these assessments tend to focus narrowly on the visual search
capabilities of agentic MLLMs, leaving a broader spectrum of thinking-with-images abilities un-
evaluated. Therefore, there is an urgent need for a benchmark that incorporates a diverse range of
tasks requiring sophisticated tool use to properly assess integrated multimodal reasoning.

In this paper, we introduce TIR-Bench, a comprehensive benchmark designed to evaluate the diverse
thinking-with-images capabilities of agentic MLLMs. Unlike previous benchmarks focusing solely
on visual search problems, TIR-Bench incorporates a diverse set of 13 tasks that require a wide range
of tool-based interactions, such as zooming, rotating, increasing image contrast, adding auxiliary
lines, and others to assess a model’s tool integrated reasoning capabilities. The design of each task
is predicated on the human intuition that solving it requires actively manipulating the visual input,
rather than relying on static observation alone. For example, in TIR-Bench, a math problem might
require the model to draw auxiliary lines or a coordinate system to find a solution, while a jigsaw
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Figure 1: Overview of performance of open models (left), proprietary models (middle), and agentic
tool-using models (right). SR: Symbolic Reasoning, WS: Word Search, LL-VQA: Low-Light VQA,
IR: Instrument Reasoning, SD: Spot Difference, JG: Jigsaw Game, VS: Visual Search, RG: Rotation
Game, Pro.: Proportion VQA. 03-TU: 03-tool-using, i.e., 03 with code interpreter.

puzzle task demands that it segment and then reassemble the image pieces. Consequently, TIR-
Bench enables a more holistic evaluation of a model’s thinking-with-images abilities, assessing a
spectrum of skills not limited to visual search.

Using TIR-Bench, we conduct a comprehensive performance evaluation of 22 leading MLLMs
across three categories: open-source models, proprietary models, and tool-using agents. The overall
experimental results, illustrated in Figure [1] reveal that TIR-Bench is a challenging benchmark for
thinking-with-images abilities, as the best performance achieved is only 46%. Moreover, traditional
non-agentic models perform poorly on TIR-Bench, with the best-performing model Gemini-2.5-pro
reaching an accuracy of merely 28.9%. These findings highlight the importance of the thinking-
with-images ability for this benchmark, as models equipped with tool-use capabilities, such as 03,
04-mini, and PyVision (Zhao et al.,|2025)), achieve much higher performance than other models.

Lastly, we assess the function-calling proficiency of various MLLMs and conduct a pilot study
contrasting direct supervised fine-tuning (SFT) with an agentic SFT approach on rotated image
OCR task. Many recent MLLMs are equipped with function-calling capabilities. Our evaluation on
rotation game task of TIR-Bench measures a model’s proficiency in accurately executing the correct
tool parameters as part of its reasoning chain. Results show that recent models like 03 perform well,
whereas earlier models such as GPT-40 perform significantly worse. The pilot study on the rotated
image OCR task compares two training methodologies and examines whether end-to-end SFT can
achieve strong performance across different data scales for tasks involving image operations. Our
findings indicate that the agentic SFT on full problem-solving trajectories with generated images is
significantly more effective than direct SFT on rotated OCR task. This implies that agentic fine-
tuning enables the emergence of more complex and robust problem-solving behaviors, allowing
models to tackle multi-step tasks that are intractable with direct fine-tuning alone.

2 RELATED WORKS

2.1 MULTIMODAL BENCHMARKS

As the capabilities of Multimodal Large Language Models (MLLMs) evolve rapidly, a variety of
benchmarks have been proposed to evaluate their performance, identify limitations, and guide future
improvements (Lu et al.l |2023; Zhang et al., 2024} Qiao et al., |2024; Wang et al., [2024ajb; |L1
et al.| 2024c} [Lu et al.l 2021} |Li et al., [2025). These benchmarks are typically either specialized for
specific domains (Wang et al., [2024b; |Li et al., [2024c; [Lu et al., [2021}; [Li et al.l [2025) or designed
to be versatile and cover a broad range of tasks (Li et al.l [2024b; [Liu et al.l 2023} Yue et al.
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2024; Wang et al., 2023). MLLMs often use CoT reasoning on these benchmarks, though solving
them only requires static image information. More recently, benchmarks such as V* Bench and
HR-Bench have been introduced to evaluate agentic capabilities, specifically for visual search in
high-resolution images (Wu & Xiel 2024} [Wang et all 2025)). While these benchmarks advance
agentic evaluation by requiring models to programmatically crop high-resolution images, their focus
is narrowly confined to visual search. Consequently, a broader spectrum of thinking-with-images
abilities, such as rotation and drawing, remains largely underexplored.

2.2 THINK WITH IMAGES

In previous works, Visual Sketchpad (Hu et al.|, [2024)), CoGCoM (Qi1 et al.,2025), DeepEyes (Zheng
et all 2025), Pixel Reasoner (Su et al., [2025a), OpenThinkIMG (Su et all 2025b), Chain-of-
Focus (Zhang et al. 2025a), Mini-03 (Lai et al., 2025) and REVPT (Zhou et al., 2025) gener-
ate and executes tool calling in a predefined visual-specific toolset. In the intermediate reasoning
steps, processed images are reinjected to the context, resulting in a multi-modal rational. How-
ever, these methods rely on a fixed collection of external visual parsers—such as detection models
(e.g., GroundingDINO (Liu et al.| 2024b)) and segmentation models (e.g., SAM (Kirillov et al.,
2023al))—which constrains their generality across diverse vision tasks and introduces bottlenecks
due to dependency on external models. In contrast, ViperGPT (Suris et al., |2023), 03 (OpenAlL
2025a)), 04-mini, Thyme (Zhang et al., 2025b)) and Py Vision (Zhao et al.,|2025) adopt Python as its
primitive tool. Capitalizing on the advanced coding and multimodal understanding capabilities of
modern MLLMs—such as Claude-4.0 (Anthropic, 2025) and GPT-4.1 (OpenAlL 2025b)), enables the
MLLM to dynamically write and execute code to construct complex, task-specific tools on demand,
thereby supporting more general and flexible reasoning. This aligns with the emerging paradigm
of “thinking with images” highlighted in 03’s blog (OpenAl, |2025c) as a powerful cognitive ca-
pability. To assess this important ability, we propose TIR-Bench, covering diverse tasks on which
multi-modal rationals are necessary.

3 TIR-BENCH

In this section, we introduce TIR-Bench. The overview of the benchmark is shown in Figure E}
We first introduce the task design strategy in[subsection 3.1] Next, we introduce the data collection

process in Finally, we present the benchmark summary in

3.1 TASK DESIGN

To extensively validate the model’s ability to think with images we design 13 tasks. The benchmark’s
tasks are designed to evaluate a model’s ability to perform active, tool-based visual reasoning, mov-
ing far beyond static image analysis. This includes tasks that require programmatic analysis, such as
calculating color proportions or calling external models for object segmentation. Other challenges
test the model’s ability to overcome suboptimal conditions by programmatically enhancing low-
light images or correcting the orientation of rotated text before performing OCR. The benchmark
also features complex spatial and algorithmic puzzles, requiring models to solve mazes, reassemble
jigsaw pieces, or draw auxiliary lines to solve geometric problems. Finally, it assesses fine-grained
perception through tasks like spotting differences between images, reading instruments via cropping
and zooming, and locating anomalies in visual puzzles. In every case, the model is forced to engage
in a dynamic, multi-step process of visual manipulation and reasoning to arrive at the correct answer.

More details about task design are introduced in

3.2 DATA COLLECTION

Guidelines. As previously mentioned, current benchmarks focus almost exclusively on visual
search, overlooking a wide range of other tool-using abilities. To bridge this evaluation gap, we de-
signed TIR-Bench in accordance with the following guidelines: (1) Diverse, Application-Grounded
Tasks: TIR-Bench covers 13 distinct tasks across multiple domains, including spatial reasoning, vi-
sual perception, and mathematics, to mirror the complexity of real-world applications where static
image analysis is insufficient. (2) Comprehensive Skill Assessment: The benchmark incorporates
diverse visual contexts and requires a range of programmatic skills—from drawing auxiliary lines in
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Figure 2: Benchmark Overview. TIR-Bench is composed of 13 tasks, meticulously designed to
evaluate a wide spectrum of thinking-with-images capabilities.

geometry to executing pixel-level analysis—to foster a well-rounded evaluation of a model’s agen-
tic capabilities. (3) Probing Model Limitations: Each task is designed to be unsolvable without a
multi-step, tool-based strategy. This intentional difficulty probes the limitations of current models,
effectively distinguishing true thinking-with-images reasoning from simpler visual recognition. (4)
Deterministic Evaluation: all tasks are designed with objectively verifiable answers, providing a ro-
bust framework for deterministic and reproducible evaluations. (5) Many samples in TIR-Bench are
newly annotated or generated, making it a more reliable benchmark that minimizes the risk of data
contamination from models’ pre-training corpora.

Collection. We briefly introduce the data collection process of the 13 tasks here, while the detailed
process can be found in The summary of data collection is shown in Table[I] Data
from existing benchmarks are covered by the Apache License 2.0 or other licenses that permit aca-
demic use. For newly annotated data, images were sourced from freely available platforms like
Wikimedia Commons and the National Gallery of Art, or were created by students using tools such
as GeoGebra.

(1). Collection of Math VQA, Symbolic Reasoning, Low-Light VQA, and Instrument Reading
tasks: Data from these tasks are newly created and annotated data. We tasked two Ph.D. students
with sourcing free images from the Internet and MathVista or create images using
Geogebra, and then creating corresponding question-answer pairs. The annotators were explicitly
instructed to design problems that, in their judgment, would necessitate tool-based image manipula-
tion for a solution, ensuring the tasks could not be solved by static observation alone. Both students
engaged in a reciprocal cross-checking process to verify the correctness of both the problems and
their respective answers.
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Attribute Color VQA Proportion VQA  Symbolic Reasoning Math Word Search  Rotated OCR
Image Source ColorBench RefCOCO VimsAreBlind + Web-sourced ~ Web-sourced Web-sourced ~ OCRBench

QA Construction  Human-annotated ~ Synthetic Human-annotated Human-annotated ~ Synthetic Dataset-provided
Samples 100 120 50 120 100 60

Answer Type Single-choice Single-choice Single-choice Single-choice Open-ended Open-ended
Attribute Maze Low-Light Instrument Reading  Spot the Difference  Jigsaw Visual Search  Rotation
Image Source Synthetic Web-sourced ‘Web-sourced ‘Web-sourced Synthetic ‘Web-sourced CVBench
QA Construction ~ Synthetic Human-annotated  Human-annotated Human-annotated Synthetic Synthetic Synthetic
Samples 120 50 80 100 120 120 75

Answer Type Single-choice  Open-ended Open-ended Open-ended Open-ended ~ Single-choice  Single-choice

Table 1: Overview of all tasks, grouped into reasoning-oriented (top) and perception-oriented (bot-
tom), with their sources, QA constructions, sample sizes, and answer types.

(2). Collection of Color VQA task: We tasked a Ph.D. student with curating samples from the
ColorBench (Liang et al., [2025)), specifically selecting instances that could not be solved by static
observation alone and therefore necessitate programmatic analysis to answer correctly. Finally, we
select 100 problems from ColorBench (Liang et al., [2025)).

(3). Collection of Jigsaw, Maze, Rotation, Word Search Tasks: The data for these tasks were
programmatically generated to create controlled and scalable challenges. For the Jigsaw Puzzle, we
selected 120 images from the RefCOCO dataset, chosen for their prominent objects. These images
were then segmented into grids ranging from 3x3 to 6x6 and shuffled to create puzzles of varying
difficulty. For the Maze task, we programmatically generated 100 mazes with sizes scaling from 5x5
to 62x62. For the Rotation Game, we utilized 75 images from CVBench (Tong et al.,[2024), to which
we applied random rotations. Three difficulty tiers were established based on the magnitude of the
rotation angle (e.g., 5, 10, or 15 degrees). Finally, for the Word Search task, we programmatically
generated 85 samples of different sizes and supplemented them with 15 complex puzzles sourced
from the internet.

(4). Collection of Spot the Difference: We sourced pairs of nearly identical cartoon and real-
world images from the internet, with one image in each pair containing subtle alterations. Both
images were then segmented into an m x n grid of corresponding patches. Finally, two annotators
reviewed the pairs to identify and label the specific patches that contained the differences. Both
students engaged in a reciprocal cross-checking process to verify the correctness of difference patch
numbers.

(5). Collection of Proportion VQA: For this task, we collected 120 images from the RefCOCO
dataset and used the ground-truth segmentation masks to calculate the correct object proportions.
The incorrect multiple-choice options were then generated by adding or subtracting eight percentage
points from the true value.

(6). Collection of Rotated Image OCR Task: We selected 60 images from OCRBench and applied
a rotation to each. The rotation probabilities were 25% for 90°, 25% for 270°, and 50% for 180°.

(7). Collection of Visual Search: Recognizing that problems in existing benchmarks like V*
Bench (Wu & Xie| [2024) are often too simple for current models, we curated a more challeng-
ing dataset for this task. We began by selecting 32 difficult problems from HR-Bench (Wang et al.,
2025). To supplement these, we collected 88 new samples, which include 25 high-resolution art
images and 63 high-resolution real-world images sourced from the internet. For each of these new
images, an annotator was tasked with generating a unique question-answer pair. In total, the Visual
Search task comprises 120 samples, 88 of which are newly created for this benchmark.

3.3 BENCHMARK SUMMARY

TIR-Bench consists of a total of 1215 examples divided into 13 diverse but essential tasks. Questions
in our benchmark are categorized into two types: multi-choice and free-form problems, counting
665 and 550, respectively. The average length for question text is 46.29 and the average length for
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answer text is 3.41. The distribution of each task is shown in Figure[7] Image and question examples

for each task are shown in

4 EXPERIMENTS

In this section, we detail our evaluation setup and results for 22 leading MLLMs, considering both
models with and without agentic tool-use capabilities. Our goal is to show that MLLMs lacking
the ability to think with images perform poorly on TIR-Bench. We describe the experimental setup

in [subsection 4.1} report the results in present experiments on function calling in
subsection 4.4} and compare agentic SFT with end-to-end SFT in[subsection 4.5

4.1 EXPERIMENT SETUP

Model selection. We categorize the MLLMs we use into open-source, proprietary, and tool-using.
For open-sourced, we evaluated 11 models across three widely used and up-to-date model families:
DeepSeek-VL-2 [Wu et al,| (2024), Kwai Keye-VL [Team et al| (2025), Phi-4-Multimodal |Aboue-
lenin et al.| (2025), LLaVA (Li et al. [2024a; [Liu et al., 2024a), Qwen2.5-VL (Bai et al., 2025)),
InternVL3 (Zhu et al., [2025)), and Qwen3-VL [Team| (2025), ranging from 3B to 78B. Results from
these models accurately reflect open-source MLLMs’ performance on thinking-with-image reason-
ing tasks. For proprietary models, we selected 7 models across 3 model families: GPT (Hurst &
OpenAl, |2024)), Gemini-2.5 (Gemini Team, |2025), and Grok-4 (xAll 2025). We test GPT series,
including GPT-4.1, GPT-40 (Hurst & OpenAll 2024), as well as o-series models (OpenAll 2025a),
including 03 and o4-mini. For these GPT models, we use Azure API for calling models w/o python
interpreter or sandbox (OpenAl, 2025c). For agentic tool-using (TU) MLLMs, we evaluate three
open-sourced frameworks: DeepEyes (Zheng et al) 2025)), and PyVision (Zhao et al.| [2025), and
2 proprietary models 04-mini-TU and 03-TU. We use the official OpenAl API and turn on code
interpreter and set the container parameter as auto.

Evaluation. We follow previous works (Lu et al.l [2023} |Li et al., 2025) to first generate answers
from models and subsequently using GPT-4o0 to extract the final answer from the answer content.
For multiple-choice and short-form answers, we compare the extracted value directly against the
ground-truth to calculate accuracy; for grounding type problems such as Jigsaw Game and Spot the
Difference with list type answer, we calculate the intersection over union (IoU).

Implementation details. We conduct all evaluations in zero-shot manner for fair comparison and
better generalization. For open models, all experiments are done on NVIDIA A100 GPUs. For
proprietary models, we use the official API. More details can be found in the

4.2 EXPERIMENTAL RESULTS

Both average and task-wise accuracies are reported in Table 2| We discuss several findings below.

Result 1: TIR-Bench is challenging for all model types. The highest performance observed
among all models is only 46%, a result that underscores the difficulty of the TIR-Bench. This
benchmark proves to be a significant challenge for assessing Thinking-with-Images capabilities,
even for advanced models such as 03-TU, which leverage a code interpreter.

Result 2: Traditional non-agentic models perform poorly on TIR-Bench. Across all tasks,
non-tool-using MLLMs show poor performance: the performance of most open-source models is
close to or slightly higher than the random guess performance while the top-performing MLLM,
Gemini-2.5-pro, surpasses random guess results by only 15%. These results highlight that, without
agentic tool-using abilities, MLLMs can not perform well on TIR-Bench.

Result 3: Agentic tool-using is essential for TIR-Bench. The 03-TU model (OpenAl, 2025a)
demonstrates the strongest overall performance, achieving the highest average accuracy at 46%.
This represents a substantial lead, outperforming the Gemini-2.5-Pro model by nearly 17% and the
03 model without a code interpreter by 19%. With tool-use enabled, it achieves state-of-the-art
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Table 2: Model Accuracy (%) Across Various Evaluation Tasks. SR: Symbolic Reasoning, WS:
Word Search, LL-VQA: Low-Light VQA, IR: Instrument Reasoning, SD: Spot Difference, JG:
Jigsaw Game, VS: Visual Search, RG: Rotation Game, Pro.: Proportion VQA. 03-TU: 03-tool-
using, i.e., 03 with code interpreter. 03: 03 without code interpreter.

Model | All | Color Pro. OCR SR Maze Math WS LL-VQA IR SD JG VS RG
Random Guess | 135 28,0 6.7 - 140 133 158 0.0 4.0 88 226 58 225 160
Open-Source MLLMs

DeepSeek-VL2-Direct 13.0 | 250 100 5.0 80 175 175 00 20.0 138 146 00 225 120
DeepSeek-VL2-Think 134 | 300 125 50 100 225 158 1.0 22.0 88 83 00 21.7 147
Keye-VL-8B 148 | 320 225 33 180 250 183 0.0 6.0 1.2 90 00 217 147
Phi-4-Multimodal 163 | 280 225 83 160 142 192 1.0 10.0 125 253 00 258 240
Qwen3-VL-8B-Instruct 169 | 300 100 417 140 308 183 2.0 20.0 162 98 00 225 147
Qwen3-VL-8B-Thinking | 15.8 | 29.0 20.8 333 160 200 208 0.0 10.0 138 1.5 00 258 160
Llava-1.6-M-7B 113 | 270 75 33 160 42 16.7 0.0 14.0 63 180 0.0 225 120
Llava-1.6-V-7B 11.5 | 270 108 00 100 150 125 1.0 8.0 75 122 00 242 133
Llava-1.6-34B 13.0 | 31.0 6.7 1.7 200 158 183 0.0 16.0 163 119 00 21.7 107
Llava-Next-72B 112 | 200 158 33 80 108 150 0.0 10.0 11.3 163 00 233 120
Qwen2.5-VL-3B 17.7 | 270 200 31.7 120 21.7 208 0.0 12.0 138 297 00 267 120
Qwen2.5-VL-7B 16.0 | 21.0 10.8 483 140 150 242 00 22.0 11.3 244 00 21.7 93
Qwen2.5-VL-32B 187 | 260 192 250 100 183 233 20 14.0 150 13.1 54 483 133
Qwen2.5-VL-72B 19.7 | 370 150 333 240 350 225 3.0 32.0 125 141 00 258 120
InternVL3-8B 169 | 230 11.7 0.0 6.0 333 217 20 22.0 88 166 45 367 173
InternVL3-38B 19.1 | 240 108 33 260 233 292 80 28.0 138 146 51 442 133
InternVL3-78B 214 | 250 217 33 240 325 233 80 28.0 163 189 58 392 267
Proprietary MLLMs
GPT-4.1 188 | 360 75 117 120 175 250 4.0 24.0 11.3 309 51 342 227
GPT-40 173 | 260 225 100 100 200 158 0.0 26.0 75 194 62 350 200
Gemini-2.5-Flash 252 | 340 200 300 260 175 308 10.0 42.0 138 185 80 558 293
Gemini-2.5-Pro 289 | 440 217 250 340 242 308 120 42.0 200 285 104 583 30.7
Grok-4 225 | 350 533 67 200 258 192 2.00 22.0 125 270 100 258 187
o4-mini 212 | 390 175 83 120 133 21.7 5.0 30.0 188 330 80 392 267
03 269 | 360 342 83 340 292 242 40 28.0 17.5 372 108 475 333
Tool-Using MLLMs
Qwen2.5-VL-72B-TU 240 | 390 267 417 200 233 208 3.0 36.0 188 192 53 458 213
Qwen3-VL-235B-TU 249 | 480 200 483 200 175 225 110 32.0 175 224 73 433 253
DeepEyes 173 | 220 67 417 199 167 200 1.0 16.0 38 199 39 508 120
PyVision 31.8 | 53.0 267 633 540 158 258 10.0 32.0 17.5 364 7.6 550 467
04-mini-TU 375 | 53.0 21.7 533 580 342 31.7 550 44.0 13.8 389 11.8 475 520
03-TU 46.0 55.0 317 533 660 425 50.0 64.0 42.0 21.3 41.0 164 575 713

results on the majority of the tasks, winning 10 out of the total 14 categories. The 03-TU and 04-
TU models demonstrate a large performance improvement on tasks involving straightforward image
manipulation or processing, including the rotation game, rotated image OCR, and word search.
Similar phenomenon appears in PyVision, which implements thinking-with-images abilities based
on GPT-4.1. PyVision brings 13% accuracy improvement compared with GPT-4.1.

We also observe that, although 03-TU excels in most categories, the improvements are not uniform.
For example, for complex tasks such as Jigsaw game, the performance of 03-TU is still very low. On
Proportion VQA, performance surprisingly decreases from 34.2% to 31.7%. This task requires call-
ing external segmentation models such as Segment Anything (Kirillov et al.,2023b) to obtain a good
rough estimate of the object segments. However, the current 03-TU model can only write executable
code to manipulate images, but lacks the capability to call segmentation models specifically.

4.3 QUALITATIVE ANALYSIS

We present several examples of 03-TU responses here and examples of other model responses in
Appendix. |G} . Since the responses from the OpenAl API contain no reasoning process, we re-ran
the questions in the web-based ChatGPT interface and analyzed the responses. Figure ] shows an
case of instrument reading. The model repeatedly crops the region around the pointer, checks its
position, and guesses the answer (highlighted in blue). After several cycles of cropping, observing,
and reflecting, 03 finally confirms its answer as “400,” which is correct. Figure [5] shows a case of
jigsaw puzzle involved a lot of ineffective attempts. The model first divided the complete image
into segments, then tried to compare and judge similarity by “understanding” the image as a whole.
In the early empirical stage, the model made nearly 55 iterations, but failed to obtain any usable
partial results. After that, it began to use edge comparison, sampling the borders of image pieces
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I see the user provided an image of a voltmeter reading
and is asking for the voltage value.
0 to 450, with the red mark near 4. e pointer seems
to be around the 380 mark, so I'll estimate the
voltage to be approximately 380 volts. I'll try to
confirm by inspecting the image more closely to double-
check if my estimation looks correct.

e scale goes from

03 then plot the original image

3. Third guessing by the cropped
image

.. It looks like the pointer isn't too close to 450 but is

more between 300 and 450 ....... rd emmmc rhepamter

is between the 300 and 415 marks, pointing near
380. Lel me make sure my estimate alu]m with lhe
image’s details ...

To make sure, I'll z00m in on the image and focus on
thmspe(‘zfm area. ...

03 then crop the area around the tick more precisely

77 ////
GENERAL@) ELECTRIC o
® ///

MADE IN U.S.A

450

[OLT

5. 03 successfully get the correct
answer

“I need to calibrate and clarify the measurements. The
difference between 450 and 415 is 35, with
smaller ticks possibly representing 5 or 10
units. I think the pointe: ently pointing at a
major tick around 400, likely correlating with the next
major value after 415.

There might be ticks spaced every 50 units, like 0, 100,
200, 300, 400, and 450. Given this, the pointer
mark at 400 seems to align with a major scale tick,
Just below the highlighted 415.”

Figure 4: An example of 03 solving an case of instrument reading from TIR-Bench.

and comparing them pair by pair, which also did not produce effective outcomes. The model then
started to develop algorithms, applying brute-force permutations to explore possible arrangements
and calculate similarity. However, the initial algorithm did not work. After modifying the sampling
method, the model, through more than 36,000 attempts, achieved a high similarity score that cor-
responded to the correct solution. This demonstrates that relying solely on the model’s raw visual
capabilities is insufficient; only code-based perception proves to be reliable.
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0. Question:

3. The initial algorithm of border matching

6. 03 found the best arrangement
obtained from the first algorithm is

Please complete the jigsaw puzzle dife_botton_top = {

shown in the image. Ta, b; edge dirt (plecesia], pisces(b), ‘botton-top’) wrong, and start to make a refinement.

- “... But when I checked the visual plausibilit
ige_diff (pieces[a], pieces[b], 'right-left') pieces 3, 7, and 8—piece 3 is cake, and pi
for a in pieges for b in pieces if a != b

tablecloth bottom—it doesn’t make sen

f top row

Please provide your answer as a sequence AR s

indicating where each numbered piece should be
placed in the final arrangement

best_score, best_arr = math.inf, None
istlpieces.keys ()

“... Perhaps the margins with white borders are
interfering with the calculation.
recaleulating by excluding a 10-
the accuracy.”

o, Lll try,
border to improve

for perm in itertools.permutations(piece_ids):
score = (

ght_left((perm(r * 3 + cl,
Thc o+

diff_bottom_top[(perm[r * 3 + cl,
pernl(r + 17 * 3 + cl)
for r in range(2) for c in range(3))

7. The Refined algorithm

Tbest_arr = score, perm

score, best_arr)

4. Execution Results of Initial Algorithm

count / best score / best arrangement

50000 8.550860719874803 (1,4, 5,3,7.8,6,2,9)
100000 8.129890453834115 (3, 4, 1,2,9
150000 7.807511737089203 (3. .5)
200000 7.807511737089203 (3, 7, 8,6, 1,2,9,4,5)
250000 7.807511737089203 (3, 7. 8,6, 1,2,9,4,5)
300000 7.807511737089203 (3, 7, 8,6, 1,2,9,4,5)
350000 7.807511737089203 (3,7, 8,6,1,2,9,4,5)

1. 03 randomly rearrange the segmants
of first 55 iterations

1. Divide the entire image into 9 equal segments.
2. Analyze and interpret each segment individually.
3. Randomly rearrange the segments.

4. Evaluate the outcomes of the rearrangement.

5. Best arrangement
7.807511737089203 (3,7, 8, 6,1, 2,9, 4, 5)

8. Correct arrangement obtained
314.0688575899844, (9,8,2,4,6,1,7,3,5)

No meaningful results were obtained in this part.

2. 03 attempts to match two segments
at a time by calculating their border
similarity, which takes 19 iterations.
“.. By treating each piece as pixel arrays and

computing the differences, I can figure out the best
matches. ...”

“... bottom-to-top direction means comparing the
bottom edge of piece A with the top edge of piece B ...”

After few steps, 03 wrote the following_ code.

Figure 5: The 03 model’s reasoning process for a jigsaw puzzle task in TIR-Bench involved a large
number of ineffective attempts. To describe 03’s reasoning process more clearly and concisely,
we summarize its key behaviors as TITLES for each stage in the illustration. Important thought
processes are highlighted in orange, and the main code implementations along with their corre-
sponding output results are provided.

4.4 FUNCTION CALL EXPERIMENT RESULTS

In this subsection, we report the results on the function calling ability of different MLLMs.

Set-up. Using the Rotation Game task as a case study, we experimented with two distinct function-
calling strategies: (1) providing the model with a predefined rotate function, requiring it only to
output the degree parameter; and (2) requiring the model to generate the full image rotation code
itself. Additionally, we tested three prompt variations to assess the impact of guidance: (1) a baseline
prompt containing only the question (Prompt 1); (2) a prompt including a hint to leverage the rotation
function (Prompt 2); and (3) a more explicit prompt instructing the model to systematically test each
degree from the answer choices (Prompt 3). The specific function definitions and prompts used in
this analysis are provided in [Appendix D} During inference, we repeatedly call functions until the
model produces a final answer without requiring any function parameters.

Results. We report the experimental results in Figure. [3|and report the average number of calling
for each problem in Table.[3] Since Gemini-2.5-flash does not write code for all three prompts, we
do not report it for writing code. We brief discuss some key findings here: (1). Clear Performance
Hierarchy. 03 emerges as the top performer, achieving the highest accuracy, with o4-mini following
closely. (2). Prompting Strategy is Key. The prompt strategy hinting to check each degree choice
(prompt 3) works best. The performance of most models increases with prompt 3 compared to the
other two prompts. This implies that models may not know how to best utilize the functions without
explicit guidance. (3). Increased function call number in Newer Models. The average number of
function calls for more recent advanced models (e.g., 03) is much higher than for previous models
(e.g., GPT-40). This implies that recent models are better trained for iterative function calling.
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Figure 6: Comparison of change of loss and accuracy between direct SFT and tool-use SFT.

4.5 FINE-TUNING COMPARISON EXPERIMENT RESULTS

In this subsection, we report the experimental results on the different fine-tuning strategies on rotated
OCR task.

Setup. We use the rotated image OCR task as a case study to evaluate data scaling performance.
We created training sets of varying sizes: 1k, 5k, 10k, and 15k samples—by randomly selecting and
rotating images from the OCRDataset (Minh, |2024). We then compared two distinct training strate-
gies: (1). Direct SFT: A standard supervised fine-tuning approach where the model is trained to map
the rotated image directly to the ground-truth text. (2). Tool-Use SFT: An agentic approach where
the model first learns to output the correct rotation degree. The restored image is then concatenated
with the original context, and the model is subsequently trained to read the text from this corrected
visual input. We use Qwen-2.5-VL-7B and fully fine-tune all parameters with 5 epochs.

Results. We report accuracy on the Rotated OCR task in Figure [6b]and the loss curves on 15k sam-
ples in Figure[6al Overall, Tool-use SFT significantly outperforms Direct SFT. For Tool-use SFT,
performance scales positively with data size, whereas Direct SFT shows no such trend. This sug-
gests that simply scaling data for Direct SFT is ineffective on tasks requiring image-based reasoning.
We also observe that Tool-use SFT’s loss decreases much faster despite starting from a higher ini-
tial value. This is likely because Qwen-2.5-VL was not pretrained with function-calling, leading
to higher initial loss. Furthermore, since Qwen-2.5-VL was trained mostly on correctly oriented
OCR data, fine-tuning it directly on rotated data may cause forgetting. In contrast, restoring image
orientation before text output avoids this issue, which may explain the faster loss reduction.

5 CONCLUSION

In this paper, we propose TIR-Bench, a comprehensive benchmark designed to evaluate the thinking-
with-images ability of agentic MLLMs. TIR-Bench is composed of 13 meticulously collected tasks
that assess a wide range of tool-assisted reasoning skills. By assessing diverse MLLMs on TIR-
Bench, including both standard models and those augmented with tool- use capabilities, we find that
TIR-Bench is a challenging benchmark for all models that necessitates thinking-with-images capa-
bilities for successful completion. Lastly, we conduct a pilot study comparing direct and agentic fine-
tuning for image-operation tasks and evaluating the function-calling abilities of various MLLM:s.

6 LIMITATION

(1). The pilot study experiment comparing agentic SFT and directly SFT was conducted on only
one task from our benchmark (Rotated-OCR). This task specifically tests an image manipulation-to-
extraction pipeline. It remains an open question whether the superiority of agentic SFT would hold
for the other 12 tasks in TIR-Bench. (2). We also note that some tasks, such as word search, are
less common in real-world settings. We leave the inclusion of more real-world data for testing these
abilities (e.g., pixel comparison) for future work.
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Figure 7: Task Distribution of TIR-Bench.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we only used LLMs to correct the grammar and spelling errors in the writing. All the
results are produced by authors.

B DETAILED TASK DESIGN AND COLLECTION

B.1 TASK DESIGN

To extensively validate the model’s ability to think with images we design 13 tasks. The overview
of the benchmark is shown in Figure 2] We describe these 13 tasks below:

Color VQA task: This task assesses the model’s ability to answer questions related to an image’s
color composition. Answering these questions requires the model to programmatically process
the image to obtain visual information—for instance, by writing and executing code to calculate
the proportion of a specific color. The data in this task are from ColorBench|Liang et al| (2025)

Referring Object Proportion VQA: This task assesses the model’s agentic capabilities, requir-
ing it to call a powerful external segmentation model to obtain an object’s mask and then pro-
grammatically calculate its proportion relative to the entire image. The images are from Ref-
COCO Kazemzadeh et al.|(2014)

Rotated Image OCR: This task evaluates a model’s ability to execute a multi-step visual reason-
ing process. The model must first identify that an image containing text is incorrectly oriented,
then use a tool to rotate the image to its correct position, and finally perform optical character
recognition (OCR) to accurately read the content. The images are from OCRBench

(2024¢).

Symbolic Reasoning: This task assesses the model’s ability to apply abstract, rule-based logic to
visual information. For instance, when asked to count the edges of a complex polygon, the model
cannot simply guess; it must systematically identify and enumerate each distinct edge, a process
that may require internal algorithms for vertex or line detection to arrive at the correct count. The
data on this task are from human-annotated or Rahmanzadehgervi et al|(2024)
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* Maze: This task assesses the model’s ability for advanced spatial planning and algorithmic exe-
cution. The model must analyze the visual structure of the maze, devise a solution using image
processing tools (such as morphological operations), and apply a pathfinding algorithm to solve
it. Finally, it must draw the solution path onto the image, demonstrating its ability to translate an
abstract plan into a concrete visual action. Images and questions on this task are fully synthesized.

e Math Problems: This task assesses the model’s ability to solve geometric problems by pro-
grammatically augmenting the visual input. To find a solution, the model must use tools to draw
auxiliary constructs, such as adding lines to a diagram or imposing a coordinate system to define
and calculate properties like relative lengths. Images and questions from this task are human-

annotated or from MathVista|Lu et al] (2023).

* Word Search Puzzle: This task evaluates the model’s ability to perform fine-grained visual dis-
crimination and anomaly detection. The image presents a field of numerous, nearly identical
characters, with only a few subtle differences. Standard OCR is designed to fail in this scenario,
forcing the model to devise a programmatic solution. To succeed, the model must write and
execute code to perform a more fundamental analysis, such as a pixel-level comparison or a tar-
geted visual search, to locate and identify the characters that deviate from the pattern. Images are
synthesized or from free Internet platform (Wikipedia Common).

* Low-Light Image VQA: This task evaluates the model’s ability to overcome suboptimal visual
conditions. Given a low-light image where details are obscured, the model must first recognize
the issue and then programmatically enhance the image, for instance, by writing and executing
code to increase its contrast or brightness, before it can accurately answer questions about the

content. Images are from [Wei et al| (2018)) and questions are annotated by humans.

* Instrument Reading: This task evaluates the model’s ability to perform a sequential, tool-
assisted analysis. To succeed, the model must first locate the key areas for reading the in-
strument, then programmatically crop and enlarge these specific regions for clarity, and finally,
accurately read the value from the enhanced view. Images are from Wipipedia Common and
https://unsplash.com/, questions are annotated by humans.

* Spot the Difference: This task evaluates the model’s ability to perform precise, programmatic
visual comparison. To identify the differences between two nearly identical images, the model
must execute a tool-based strategy, such as programmatic image subtraction, to highlight differing
regions at a pixel level. After locating the discrepancies, the model must then isolate and identify
the specific image patches that contain these alterations. Images are from bought spot different
puzzle books.

o Jigsaw Puzzle: This task assesses the model’s ability to perform complex spatial reasoning
through an iterative, tool-based approach. The model is required to programmatically segment
an image into pieces and then repeatedly attempt to reassemble them. This process involves a
continuous loop of action and self-correction, where the model must evaluate each configuration
to determine if the image has been successfully restored, continuing the cycle until the solution is
achieved. Images are from RefCOCO Kazemzadeh et al.|(2014).

* Visual Search: This task evaluates the model’s ability to locate specific targets within a complex
or high-resolution image through deep, multi-turn reasoning. To succeed, the model must engage
in an iterative search process, strategically using tools to repeatedly zoom in on and analyze
different regions until the object or information is found. Data are from https://unsplash.com/,
National Gallery of Art, and HRBench Wang et al.| (2025).

* Rotation Game: This task assesses the model’s ability to perform iterative orientation correc-

tion (Xie et al 2025). To restore a rotated image to its upright position, the model must pro-
grammatically test various rotation angles. After each transformation, it must visually evaluate

the result to determine if the orientation is correct, engaging in a trial-and-error loop of tool-based
action and visual judgment until the problem is solved. Images are from CVBench

(2024).
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C DETAILED TASK EXAMPLE

C.1

C.2

COLOR

How many colors are
there in this flag?
Select from the
following choices. (A)
8 (B)9 (€)10 (D) 11c

How many colors are
there in this image?
Select from the
following choices. (A)
7(B)8(€)9(d)10

Does the horizontal
bar have a uniform
color? Select from
the following choices.
(A) Hard to tell (B)

What is closest to
the proportion of the
color green in the
image? Select from
the following choices.

Yes (C) No (A) 9% (B) 13% (C)
17% (D) 21%
Answer: D Answer: D Answer: C Answer: B
Figure 8: Additional example of “Color” task.
Low-LIGHT

How many people are
in the image?

Answer: 5

How many bowls are
placed vertically in
the image?

Answer: 9

How many people are
in the image?

Answer: 3

What is the most
likely license plate
number of the yellow
car?\nA. 565
1597\nB. 665
1123\nC. 78S
8234\nD. 89S
9921\nE. 00S 9834

Answer:

Figure 9: Additional example of “Low-Light” task.

17




Under review as a conference paper at ICLR 2026

C.3 INSTRUMENT READING

Approximately what is
the thermometer reading
in Celsius shown in the
image?\nA 37.4-37.5\nB
37.5-37.6\nC
37.6-37.7\nD
37.7-37.8\nE 37.9-38\nF
38-38.1\nG 38.1-38.2

Answer: E

According o the
image, what is the
current room
temperature in
Celsius as an integer?

Answer: 16

What is the gauge
reading in psi?
Provide one decimal
place (e.g., 1.1).

Answer: 9

According to the
thermometer in the
image, approximately
what is the current
room temperature in
Celsius?\nA 37\nB
38\nC 39\nD 40\nE
41

Answer: C

Figure 10: Additional example of “Instrument Reading” task.

C.4 Jicsaw

Instructions: Please complet
the jigsaw puzzle shown in the
image. The original image has
been divided into {n}x{n}

. \n\nQuestion: In what order
should the numbered pieces be
arranged fo reconstruct the
original image...top to
bottom).\nFor example, 1, 16,
15,2,14,8,13,5,6,7,3,9,
10,11, 4, 12.

Answer: [9,1,6,8,7,
2,5,3,4]

N d |
EEE=
L Sl

Instructions: Please complet
the jigsaw puzzle shown in the
image. The original image has

been divided ... ng where each
numbered piece should be
placed in the final
arrangement (reading from
left to right, top to
bottom).\nFor example, 1, 16,
15,2,14,8,13,5,6,7,3,9,
10,11, 4,12,

Answer: [9, 10, 16, 11, 13,
1,5,6,2,8,15,4,14, 3,
7,12]

Instructions: Please complet
the jigsaw puzzle shown in the
image. The original image has
been divided into {n}x{n}
pieces and scrambled. In the
image, ...piece should be placed
in the final arrangement
(reading from left to right,
top to bottom).\nFor example,
1,16,15,2,14,8,13,5,6,7, 3,
9,10, 11, 4, 12.

Answer: [7,3,1,2, 4,
9,.5,8,6]

=T

Iﬁmman
2 U5 A

=h AT AR
¥ o NG

Instructions: Please complet
the jigsaw puzzle shown in the
image. The original image has
been divided into {n}x{n}
pieces ... (reading from left to
right, fop to bottom).\nFor
example, 1,16, 15, 2, 14, 8, 13,
5,6,7,3,9,10,11, 4, 12.

Answer: [7, 34,12, 31, 33,19, 13, 16,
28,4,17,36,30,15,27,1,2,5, 21, 3,
22,18,32,29,35,25,14,9,11, 20,
24,26,6,8,10,23]

Figure 11: Additional example of “Jigsaw” task.
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C.5 MATH

0

|
t) 500 10004 J

BRBEHNAFRNFH
SEBAA () K. \nA.
1200\nB. 1000\nC.
800\nD. 600\nE.
400\nF. 200\nG.

Sky Blue and
Chartreuse intersect
at approximately x=
(O\nA. 100\nB. 42\nC.
90\nD. 76\nE. 87\nF.

The area of the white
part in the square on the
right is how many times
the area of the white
part in the square on the
left2\nA. 3\nB. 3.3\nC.

What is the shortest
distance the cat
needs to travel to eat
all the fish? Answer
with a single number,

1400 57 3.6\nD. 3.9\nE. 4.2\nF. suchas 1,2, 3.
45\nG. 5
Answer: B Answer: A Answer: D Answer:
Figure 12: Additional example of “Math” task.

C.6 MAZE

Please complete a maze
game shown in the figure.
Starting from the ...
RDRRDDDRDRDRDURRD
RDRRLRDUDRRRDRURRD
DLRDDDDDRDRLUDDRR
DRURDRDDRDRRLDRL\N
F. No answer

Answer: F

Please complet ...
DDRRRUDRDDDLDRDRLLRDR
URRDDURDRDDRDRDLRURDL
RRUUURDDRDLRRRDLUDLDR
RUDRDRRRULDDRRDDUDDRR
DDRUDRLRUUDRRLRURUDRD
DLLDDRRDRRDDRDLDDDDRD
RDDDDDURDRDDLRDRDRLRD
UDRRDDDDRDLLRDDDLDDDD
RLLDRRLURRRRRRDURDR\NF.
No answer

Answer: B

Please complete ...
UURDLULRDLRUUDUUD
DRLDDURLUDDRRRDURL
DRDLLRDUR\RE.
RRDDDDDDRRRRUVUUU
URRRRDDRRDDLLLLDDR
RDDLLLLLLDDLLUULLDD
DDDDRRDDRRRRUURRU
UUURRDDDDRRDDRRRR
\nF. No answer

Answer: E

Please complete
UDRRDRLRDLUUDLULDULLLD
DDDLDLRRDDUDD\ND.
ULRLURRDLLURDULRDDRLUD
LLRDLRDDDURLLLLUDRDLLYU
URRLLDUDDRURRUULLDLUU
\nE.
RRRRRRDDDDDDDDDDLLUUL
LLLDDRRODRRRRRRUURRRRD
D\nF. No answer

Answer: E

Figure 13: Additional example of “Maze” task.
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C.7 ROTATED OCR

what is written in the
image?

Answer: fitnuf

what is the number in
the image?

Answer: 17100

"what is written in
the image?

Answer: every

what is written in the
image?

Answer: DOINVSDA

Figure 14: Additional example of “Rotated OCR” task.

C.8 PROPORTION

Which of the following
values is the closest to
the proportion of the
image occupied by right
bird?\nA: 47%\nB:
39%\nC: 23%\nD:
15%\nE: 31%\nF: 7%

Answer: D

Which of the following
values is the closest to
the proportion of the
image occupied by man
with red tie?\nA:
28%\nB: 20%\nC:
44%\nD: 36%\nE:
4%\nF: 12%

Answer: F

Which of the following
values is the closest to
the proportion of the
image occupied by right
side bananas?\nA:
34%\nB: 18%\nC:
42%\nD: 2%\nE:
26%\nF: 10%

Answer: B

Which of the following
values is the closest to
the proportion of the
image occupied by cow on
far right?\nA: 0%\nB:
16%\nC: 32%\nD:
40%\nE: 24%\nF: 8%

Answer: F

Figure 15: Additional example of “Proportion” task.
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C.9 ROTATION

How many degrees should
you rotate this image
CLOCKWISE to restore
it to its original
orientation?\n\nA.
240°\nB. 230°\nC.
255°\nD. 235°\nE.
250°\nF. 245°\n

Answer: F

How many degrees should
you rotate this image
CLOCKWISE to restore
it to its original
orientation?\n\nA.
130°\nB. 145°\nC.
140°\nD. 150°\nE.
155°\nF. 135°\n

Answer: B

How many degrees should
you rotate this image
CLOCKWISE to restore
it to its original
orientation?\n\nA.
25°\nB. 35°\nC. 45°\nD.
15°\nE. 55°\nF. 20°\n

Answer: B

How many degrees should
you rotate this image
CLOCKWISE to restore
it to its original
orientation?\n\nA.
285°\nB. 240°\nC.
255°\nD. 270°\nE.
235°\nF. 225°\n

Answer: C

Figure 16: Additional example of “Rotation” task.

C.10 SPOT THE DIFFERENCE

**Task Description:**\nGiven two
images of identical dimensions,
each divided by thin white lines
into n rows and m columns,
resulting in nxm small patches. ...
be:\n\n* " json\n{\n
\"different_patches\": [2,5, 6,
10]\n}\n" * * \n\n---\n\n**Problem
**\nQutput the list of patch
indices where the two images
differ.\nNote that in this image,
nis3and mis 4

Answer: 1, 3,7, 8,10, 12

**Task Description:**\nGiven two
images of identical dimensions,
each divided by thin white lines
into n rows and m columns,
resulting in nxm small patches. ...
bex\n\n" " json\n{\n
\"different_patches\": [2,5, 6,
10]\R}\N" * * \n\n---\n\n**Problem
**\nQutput the list of patch
indices where the two images
differ.\nNote that in this image,
nis3andmis 4

Answer: 6, 8,9, 10, 11, 12

Thisis a
spot-the-difference
game. How many
places differ between
the top and bottom
images?

Answer: 6

images of identical dimensions,
each divided by thin white lines
into n rows and m columns,
resulting in nxm small patches.
The numbering rules are as
follows:\n\nl. Patches are
numbered from 1 to nxm.\n2.
Numbering follows row-major
order: the first row from left to
right is 1, 2, .., m: the first patch
of the second row is m+1, and so
on\m\nThe i-th...

Answer: 7,11, 12,13, 14,15, 19

Figure 17: Additional example of “Spot the Difference” task.
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SYMBOLIC REASONING

- o o°
.‘ A
ol

e

- oo’

[ ] A

How many shapes are
there in this image?
Provide your final
answer as an integer,
suchas 1,2, 3.

Answer: 21

C
How many connected
single-colored paths
go from A to
C2\nA.0\nB.1\nC.2\n
D.3\nE.4

Answer: A

How many nested
squares are there in
this
image?\nA.8\nB.10\n
C.9\nD.11\nE.12

Answer: B

Which of these three
arrows has the
longest horizontal
part?\nA. The upper
one.\nB. The middle
one.\nC. The lower
one.

Answer: B

Figure 18: Additional example of “Symbolic Reasoning” task.

C.12 VISUAL SEARCH

Q: How many colors are
there in this flag? Select
from the following Is a
brown sheep present to
the left of the central
white
horse?\nA.Yes\nB.No.
(A)8(B)9(C)10 (D) 11c

Answer: B

Which lantern text listed
below is furthest from the
woman dressed in purple?\nA
The leftmost lantern labeled
7"1) Z\nB The rightmost
lantern labeled # X 44t 4 &
\nC The fifth lantern from
the right labeled ##b% \nD
The leftmost lantern labeled
H #\NE The rightmost lantern
labeled bk

Answer: B

BF A0 RS2 %
Y BB MR
\n

Answer: O

What is the time shown
on the clock?\nA.
Approximately 12:15\nB.
Approximately 11:00\nC.
Approximately 11:10\nD.
Approximately 12:00

Answer: B

Figure 19: Additional example of “Visual Search” task.

22



Under review as a conference paper at ICLR 2026

C.13 WORD SEARCH

In the figure, in which row and
column does the number 9
appear? The final answer
should output fwo number list.
The first number represents
the row count from top to
bottom, and the second
number represents the column
count from left to right. For
example, [1, 2] means the first
row and the second column

Answer: [54, 50]

RS ETONE T
B—AEF, Bldel, 2
, 3.

Answer: 9

B AT AL I
FEILI R SR
LIS CHESS
FREMLEAET % V47
| BEAHFREAL
EA4 5 Hlae[l, 21K
KA =)

Answer: [31, 6]

How many times does
the number 9 appear

in this image? Answer
with an integer, such

as 1,2,3.

Answer: 8

Figure 20: Additional example of “Word Search” task.

D DETAILED PROMPTS

D.1 WRITE CODE
prompt_being is the prompt for the beginning turn and prompt_return is the prompt for
returning processed images to models.

Prompt strategy 1:

prompt_1 = user_prompt
prompt_2 = "The returning status and the processed image or text
(if any) of the code is attached.”

Prompt strategy 2:

prompt_being = user_prompt + ’\nPlease consider to write code to
process the image.’

prompt_return = ’The returning status and the processed image or
text (if any) of the code is attached, you can continue to write
code to process the original image for better understanding or
proceed to answer the question.’

For prompt 3:

prompt_1 = user_prompt + "\nPlease try to write code to rotate the
original image with the rotation degree in the options to verify
the correctness. You can try as many as you can."

prompt_2 = "The returning status and the processed image or text
(1f any) of the code is attached, you can continue to write code
to rotate the original image with a degree of other difference
options for better understanding or proceed to answer the question
if you have meet the correct option."

D.2 FUNCTION CALLING

For prompt strategy 1:
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prompt_1 = user_prompt
prompt_2 = "The rotated image is attached."

For prompt strategy 2:

prompt_-1 = user.prompt + ’‘\nPlease consider to call the rotation
function.’
prompt_2 = ’'The rotated image is attached, you can continue to

call the function to rotate the original image with a difference
degree for better understanding or proceed to answer the
question.”’

For prompt strategy 3:

prompt_1 = user_prompt + "\nPlease try to call the rotation
function with the rotation degree in the options to verify the
correctness. You can try as many as you can."

prompt_2 = "The rotated image is attached, you can continue to

call the function to rotate the original image with a degree of
other difference options for better understanding or proceed to
answer the question if you have meet the correct option."

Table 3: Average number of function calling across different prompt strategies and calling stratefies.

Model Function Write Code
Prompt 1 Prompt2 Prompt3 Promptl Prompt2 Prompt3

GPT-4.1 0.00 1.15 4.68 1.32 1.68 3.95
GPT-40 0.00 1.12 4.29 2.15 1.87 4.07
Gemini-2.5-flash 0.64 1.05 1.73 - - -
Gemini-2.5-pro 0.75 0.87 1.09 0.25 0.28 0.21
04-mini 0.07 1.52 2.87 3.43 3.68 2.68
03 0.33 1.57 3.59 6.05 5.77 5.76

E IMPLEMENTATION DETAILS

We conduct all evaluations in zero-shot manner for fair comparison and better generalization. For
open models, all experiments are done on NVIDIA A100 GPUs. For proprietary models, we use
the official API. We set do sample = False, temperature = 0, max new tokens = 2048 for all open
models.

F MORE EXPERIMENTAL RESTULS

In this section, we discuss the results from synthetic data and human-annotated data. The re-
sults are shown in Table ] First, models across all categories—from open-source to propri-
etary—consistently find Synthetic tasks more challenging than Annotated tasks. The average ac-
curacy for Synthetic tasks (e.g., Maze, Jigsaw, Word Search) is significantly lower than for Anno-
tated tasks (e.g., Color, Math, OCR). This suggests that current MLLMs struggle more with abstract
spatial and logical reasoning than with recognition-based problems.

Second, the integration of tools provides a dramatic performance boost, especially for the difficult
Synthetic tasks. The tool-using models, particularly 03-TU, dominate the benchmark. For example,
03-TU (43.1% Synthetic) achieves nearly double the synthetic-task accuracy of its non-tool-using
counterpart, 03 (22.1%). This highlights that a tool-augmented architecture is critical for tackling
these complex reasoning challenges.
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Table 4: Model Accuracy (%) on Synthetic and Annotated data

Model Synthetic Acc. (%) Hand-Annotated Acc. (%)
Random Guess 8.0 18.2
Open-Source MLLMs

Llava-1.6-M-7B 4.3 16.8
Llava-1.6-V-7B 7.8 14.4
Llava-1.6-34B 6.5 18.1
Llava-Next-72B 7.6 15.0
Qwen2.5-VL-3B 11.0 22.9
Qwen2.5-VL-7B 7.1 23.0
Qwen2.5-VL-32B 11.9 24.1
Qwen2.5-VL-72B 13.5 24.6
InternVL3-8B 13.9 19.2
InternVL3-38B 12.2 24.5
InternVL3-78B 18.7 23.5
Proprietary MLLMs

GPT-4.1 10.7 25.3
GPT-40 13.7 20.1
Gemini-2.5-Flash 16.2 32.3
Gemini-2.5-Pro 19.2 36.5
Grok-4 23.0 22.2
04-mini 13.4 27.4
03 22.1 30.8
Tool-Using MLLMs

DeepEyes 8.0 254
PyVision 19.7 41.4
04-mini-TU 32.8 41.3
03-TU 43.1 48.2

G EXAMPLES OF MODEL RESPONSES

In this section, we provide the response of different models.

H ERROR ANALYSIS

We found that approximately 37% of PyVision’s erroneous responses stem from perception errors,
such as cropping incorrect image patches or misinterpreting visual content. For example, in visual
search and instrument-reading tasks, PyVision may crop the wrong regions or misread instrument
values. Another 61% arise from tool-generation and reasoning errors, including language-reasoning
mistakes and flawed logic when generating code for image processing (e.g., producing tools that fail
to solve the target problem). For instance, in jigsaw tasks, PyVision may incorrectly split the image
into patches or rearrange the patches only once, resulting in wrong answers. The remaining 2

I SUMMARY OF PYVISION RESPONSE TOOL USAGE

Because the OpenAl API does not provide intermediate reasoning or code, we have summarized the
Pyvision model’s tool usage. We use GPT-40 to summarize and extract the tool of generated code.
We describe these 13 tasks below:

* Color VQA task: pixel color counting, pixel searching, color thresholding, crop, drawing color

channel histogram, image enhancement, converts an image to grayscale, color proportion calcu-
lation, pixel color analysis.
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‘gf/ |

| S W—
0 40 80 km

Question: Measure the distances of AC and CB according to the scale. Driving from point
A to point C and then from point C to point B, with a speed of 60 km/h, how many hours
are needed? Answer with a single number, such as 1, 2, 3.

Ground Truth: 4.

Response from 03-TU: 4

Response from 03: 3.

Response from 04-mini-TU: 3

Response from 04-mini: 2

Response from Gemini-2.5-Pro: By measuring the distances using the provided scale, we
find that the line segment CB is equal in length to the scale bar representing 80 km, so
Distance CB = 80 km. The segment AC is shorter than the full 80 km scale; it appears to
be three-quarters of the scale, giving Distance AC = 0.75 x 80 = 60 km, or equivalently,
1.5 times the 0—40 km portion of the scale, which also gives 60 km. Therefore, the total
distance is Total Distance = Distance AC + Distance CB = 60 + 80 = 140 km. Assuming
a driving speed of 60 km/h, the time needed is Time = W = 10 ~ 2.33 hours,
which rounded to the nearest whole number gives 2 hours.

Response from Gemini-2.5-flash: To solve this problem, we first determine the map
scale: the scale bar shows that 223 pixels correspond to 80 km, so 1 pixel ~ 0.3587 km.
The pixel coordinates are A(112,102), C(352,417), and B(686,417). Using the dis-

tance formula, the pixel length of AC is /(352 — 112)2 + (417 — 102)2 ~ 396.01 pix-
els, and CB is /(686 — 352)2 + (417 — 417)2 = 334 pixels. Converting to kilometers,

AC = 396.01 x % ~ 142.06 km and CB = 334 x % ~ 119.82 km. Thus, the total
distance is 142.06 4+ 119.82 = 261.88 km. With a driving speed of 60 km/h, the travel time

is 265688 = 4.36 hours, which rounds to 4 hours. Therefore, the final answer is .

* Referring Object Proportion VQA: Color-Channel Histogram Drawing, crop, display image
with scale guide line, Color Space Conversion, Color Thresholding, Mask Visualization, Mask
Proportion Calculation, Drawing a Bounding Box,

* Rotated Image OCR: Image Rotation, Image Display, Enhances the contrast of an image.

» Symbolic Reasoning: Cropping, Zooming into Regions, Pixel color analysis, Grayscale Conver-
sion, Edge Detection, Pixel Thresholding, Corner Detection, Pixel Counting, Contour Detection,
Pixel Value Plotting, Grid Line Detection.

e Maze: Crop, Image display with scale guide line, pixel color counting, pixel searching, drawing
points.

* Math Problems: Color Thresholding, Cropping, Pixel Counting, Ratio Calculation, Pixel Color
Counting, Marks specific points on the image, Drawing lines, Zooming, Plotting Color Channels,
Image display with scale guide line, Drawing a Rectangle, Displaying with a Scale Guide.

* Word Search Puzzle: Cropping, Text Extraction via OCR, pixel comparison, horizontal and
vertical pixel projections, Converts the image to grayscale, Pixel Value Inspection, Two Images
Difference Calculation, Pixle Peak Detection, Pixel Intensity Summation, Outlier Detection.

* Low-Light Image VQA: Cropping, Image Brightness and Contrast Enhancement, Image Dis-
playing, Zooming.
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Question: If the length of AB is 1, what is the length of BC? Provide your answer as an
integer.
Ground Truth: 3.
Response from 03-TU: 3
Response from 03: 2.
Response from 04-mini-TU: From the picture the segment BC is three times as long as
AB. Hence if AB =1 then BC = 3.
Response from 04-mini: 8
Response from Gemini-2.5-Pro: Based on the visual representation of the line segments,
the length of segment BC' is twice the length of segment AB. Given that |AB| = 1, we
calculate:

|IBC|=2x |AB|=2x1=2.

Response from Gemini-2.5-flash: We are given that the length of segment AB is 1. From

the visual representation, it is clear that |[AB| ~ |BC|. Therefore, if |[AB| = 1, then
|BC| = 1. The final answer is

The final answer is

Figure 21: Examples of model responses.

* Instrument Reading: Cropping, Displaying, Zooming.

* Spot the Difference: Patch Division, Image Patch Comparison, Difference Detection, Image
Splitting, Cropping, Image and Pixel Thresholding, Image Displaying.

* Jigsaw Puzzle: Cropping, Image Displaying, Image Patch Rearranging or Reconstruction.
¢ Visual Search: Cropping, Displaying, Zooming, Contrast Enhancement.

* Rotation Game: Image Rotation, Image displaying, Cropping, Drawing Reference Line,
Grayscale Conversion, Pixel Thresholding, Principal Component Analysis (PCA), Angle Cal-
culation.

J EFFICIENCY ANALYSIS

We further investigate the efficiency of the agentic framework by analyzing the number of interac-
tion turns across tasks. The result of the number of interaction turns for PyVision models is shown
in[Figure 26] On average, PyVision requires 4.72 turns per problem to arrive at a solution. However,
a detailed breakdown reveals an inverse correlation between interaction length and task success.
For tasks where the model demonstrates mastery, the reasoning process is decisive and efficient:
Rotated OCR and Color VQA require only 3.12 and 3.23 turns respectively, yet achieve state-
of-the-art accuracies of 63.3% and 53.0%. In contrast, tasks with the highest interaction overhead
often signal ineffective reasoning or error loops rather than successful deep thinking. The Maze
and Word Search tasks incur the highest computational costs—averaging 8.58 and 7.34 turns—but
yield the lowest performance (15.8% and 10.0%). This indicates that while the agentic loop allows
for self-correction, prolonged interactions (exceeding ~5 turns) often reflect the model struggling to
find a valid solution path.
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Question: How m
integer, such as 1,2,
Ground Truth: 4.
Response from 03-TU: 4

Response from 03: 10

Response from 04-mini-TU: 4

Response from o4-mini: 2

Response from Gemini-2.5-Pro: §

Response from Gemini-2.5-flash:Let’s carefully examine the image to count the occur-
rences of the number 6.

Scanning the original image row by row: 1. Row 1: All 5s. 2. Row 2: All 5s. 3. Row 3:
All 5s. 4. Row 4: All 5s. 5. Row 5: All 5s. 6. Row 6: 5555*%*6%*5555555555 (Found 1
’6’) 7. Row 7: All 5s. 8. Row 8: All 5s. 9. Row 9: All 5s. 10. Row 10: All 5s. 11. Row
11: 55555**6**555555555 (Found 1 ’6’) 12. Row 12: All 5s. 13. Row 13: All 5s. 14.
Row 14: All 5s. 15. Row 15: All 5s. 16. Row 16: 5**6**5555555555555 (Found 1 ’6’)
17. Row 17: All 5s. 18. Row 18: All 5s. 19. Row 19: All 5s. 20. Row 20: All 5s.

By carefully checking all rows, we find three instances of the number 6. The provided crops
also highlight these same three instances.

The total number of times the number 6 appears in the image is 3.

imes

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
ny number 6 appear in this image? Answer with an
3.

Figure 22: Examples of model responses.
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Question: In the figure, in which row and column does the number 9 appear? The
final answer should output two number list. The first number represents the row
count from top to bottom, and the second number represents the column count from
left to right. For example, [1, 2] means the first row and the second column.

Ground Truth: [54, 50].

Response from 03-TU: [54, 50]

Response from 03: [27, 80]

Response from 04-mini-TU: The odd-one-out “9” falls in the 54th row from the top and
the 50th column from the left. So the answer is

[54, 50]

Response from o4-mini: The grid only contains the digit “4” in every position— there is
no “9” anywhere. Hence no row/column coordinate can be given for a 9.

Response from Gemini-2.5-Pro: 1. **Analyze the image:** The image is a large grid
composed almost entirely of the number ’4’. The task is to find the single occurrence of the
number ’9’. The hint images, particularly the last one, help to zoom in on the relevant area.
2. **Locate the *9’:** By examining the last hint image, we can clearly see the number *9’
embedded among the *4’s.

3. **Determine the row:** We need to find the row number of the ’9’ in the original, full
image. We count the rows from the top down, starting with row 1. * Counting the rows one
by one, we find that the line containing the 9’ is the 34th row from the top.

4. **Determine the column:** Now, we need to find the column number of the ’9’ in that
34th row. We count the numbers from left to right, starting with column 1. * In the 34th
row, let’s count the position of the ’9’: ‘444444444444449 .. .°* Counting from the
left, we can see there are 14 ’4’s before the ’9’. Therefore, the *9’ is in the 15th position.
5. **Final Answer:** The number 9 is in the 34th row and the 15th column. The output
should be a list of these two numbers.

[34, 15]

Response from Gemini-2.5-flash:The number 9 appears in the figure. To find its location,
we need to count the rows from top to bottom and the columns from left to right.

1. **Count the total number of rows:** By carefully examining the original image, we
can count that there are 50 rows of numbers. 2. **Locate the row of the number 9:**
Observing the last provided hint image, which clearly shows the number 9, we can see
that it is located in the 8th row from the bottom of that specific crop. If we apply this to
the full 50-row image, the row containing the 9 is 50 - 8 + 1 = 43rd row from the top.
(Alternatively, if we count from the bottom, the 9 is in the 8th row from the bottom. So,
50 - 7 = 43rd row from the top). 3. **Locate the column of the number 9:** In the
43rd row, let’s count the characters from left to right. The sequence for the 43rd row is:
4444444444444444444444444444444444444944444444444 Counting from the left, the
number 9 is the 38th character in this row.

Therefore, the number 9 appears in the 43rd row and the 38th column.

The final answer is | [43, 38]

Figure 23: Example%gof model responses.
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0. Question:

What is closest to the proportion of the
color azure in the image? Select from
the following

(A) 20% (B) 30% (C) 40% (D) 50%

4. Execution Results
0.34511009720293595

5. Adjust the defined thresholds of the
RGB channel

... thresholds might slightly vary—including edges in
the analysis—so I'll consider adjusting the threshold a
bit to account for minor variations. ...”

9. Calculate Azure percentage using
adjusted thresholds

1_pixels - np.sum(white_mask)
te s / total pixels

A ____ & |
L |
w
¥

1. Azure colors are defined by the
threshold of the RGB channel

“... I'll define a condition where the blue channel is
greater than 150 and the red channel is below 50, which
could signify azure. ...”
Write code to Azure percentage using
defined thresholds.

6. Calculate Azure percentage using
adjusted thresholds

b Tl z,

10. Execution Results
0.4222376512596707

7. Execution Results
0.3684784764927594

11. Answer:

The azure (blue) stripes occupy a bit
under half of the image—roughly four-
tenths of the total pixels—so the
closest option is (C) 40 %.

2. Calculate Azure percentage using
defined thresholds

blue_mask = (ar

azure_pixels =

ixels

8. The proportion of auzre is
determined by subtracting the
proportion of white from the total.

“... To refine, I could define an "azure” pixel as one with
excluding white (defined by RGB values >=
240 across all channels). T'll count non-white pixels and
see if this helps clarify how to set the threshold ...”

Figure 24: Response from 03, case a proportion estimation from TIR-Bench.

0. Question:

How many times does the number 6
appear in this image? Answer with an
integer, such as 1,2,3.

556555555555555555555
556555555555555555555
556555555555555555555
556555555555555555555
556555555555555555555
556556555555555555555
556555555555555555555
556555555555555555555
556555555555555555555
556555555655555555555
556555555555555555555
555655555555555555655
56555555555555555555
556555555555555555555
556555555555555555555
556555555555555555555
556555555555555555555
556555555555555555555
556555555555555555555
556555555555555555555

Few wrong step with wrong answer or
meeting errors, for assuming wrong
numbers of columns ....

2. Classify numbers by calculating
differences between first glyph as
template and others

I'm working with a 20x20 grid of glyphs, each about
12px wide, and yph is separated by a consistent
space. I'll use th lyph as a template to compare
against the others. To find matching cells, I'll extract the
average image for the first cell and check the difference
using XOR calculations, since I can’t simply subtract the
values. If the difference exceeds a threshold, I'll mark
cells as °6.” Time to implement this logic and see if it
works!

5. Check the distribution of differences

When the
marked as "6. c
to ensure accuracy.

s a threshold, a cell will be
k the distribution of differences
me to implement!

6. Check the distribution of differences

counts={}
di

1. Understanding the question

I'm thinking of using a method in Python to analyze
glyphs, where I compare a grid of glyphs to a template
of I'll start by segmenting the grid and determining
how many columns there are, assuming a 540px width
and a 30px per glyph, so probably 18 columns. I'll use
this template from the first cell, and then I'll compute
differences between each cell and the template. If the

1 nce is above a threshold, I'll label it as a "6". Let's
test this out!

3. Check the differences

7. Execution Results
([(0, 396), (69, 4)], 400)

8. Answer
4

4. Execution Results
(0, 69)

Figure 25: Response from 03, case a word searching from TIR-Bench.
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- Scores by Category with Average Line

—&— Score
=== Average: 4.72

Score

Category

Figure 26: Number of interaction turns for the Py Vision model.
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