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Abstract
We pretrain a 7-billion-parameter autoregressive transformer language model,
which we refer to as a metagenomic foundation model (MGFM), on a novel corpus
of diverse metagenomic DNA and RNA sequences comprising over 1.5 trillion base
pairs. This dataset is sourced from a large collection of human wastewater samples,
processed and sequenced using deep metagenomic (next-generation) sequencing
methods. Unlike genomic models that focus on individual genomes or curated sets
of specific species, the aim of MGFM is to capture the full distribution of genomic
information present within this wastewater. We carry out byte-pair encoding (BPE)
tokenization on our dataset, tailored for metagenomic sequences, and then pretrain
our model. In this paper, we first detail the pretraining dataset, tokenization strategy,
and model architecture, highlighting the considerations and design choices that
enable the effective modeling of metagenomic data. We then show results of
pretraining this model on our metagenomic dataset, providing details about our
losses, system metrics, and training stability over the course of pretraining. Finally,
we demonstrate the model’s capabilities through empirical results on an initial
set of genomic benchmark and out-of-distribution detection tasks, showcasing its
potential for various metagenomic applications.

1 Introduction

The development of large language models trained on internet-scale text datasets has revolutionized
natural language processing, finding increasingly broad applications across numerous domains. In
recent years, this modeling technology has been adapted to genomic sequences—e.g., DNA or
RNA strands that carry genetic information—leveraging the wealth of data generated by advances
in genome sequencing over the past few decades [14, 21, 9, 36, 12]. These genomic language
models aim to harness modeling power for tasks such as genome classification, phenotype prediction,
gene network inference, human genome analysis, and biological design for medical and therapeutic
applications. To date, most of these models have been trained on either the human genome or carefully
curated collections of genomes from selected species [7, 1].

Parallel to these developments, there has been significant work on large-scale health monitoring
driven largely by widespread public health crises, such as the COVID-19 pandemic [26, 23]. One
notable example of this is the genomic monitoring of wastewater, which involves sequencing material
from samples of municipal sewage [11, 8]. Wastewater contains a complex mix of organic materials
generated from human activities and, when collected across multiple time points and locations, can
reveal valuable information about the microbiome at a societal scale [2, 16]. Consequently, there have
been various efforts to collect wastewater and sequence metagenomic information, i.e., information
about the diverse collections of organisms and organic material present in these samples [19, 17, 18].
A key motivation for much of this work is the potential to track the prevalence of human pathogens,
effectively creating an early warning system for pandemics. Multiple ongoing initiatives are collecting
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vast amounts of metagenomic information to monitor genomic trends, estimate the prevalence of
sequences of interest, and detect new or emerging potential pathogens [8, 15, 16].

These wastewater metagenomic sequencing efforts present two significant opportunities. First, they
provide a novel and rich source of metagenomic data, rivaling the scale of datasets used to pretrain
large language models (i.e., trillions of nucleic acid base pairs), encompassing highly diverse genomic
information across the broad human-adjacent microbiome [4, 30]. This metagenomic data often
exhibits unique distributional characteristics in terms of genomic sequence length, heterogeneity, and
composition/type of organisms, distinguishing it from previous genome modeling datasets. Second,
this data opens up a new domain area for downstream applications of foundation models trained on
this information. Such models could be fine-tuned for various tasks crucial to pathogen monitoring,
including tracking frequencies, trends, and growth of different sequence types; representation learning
for sequenced metagenomic reads; sequence alignment, error-correction, and infilling; and human
pathogen detection and taxonomic classification [8].

In this paper, we take an initial step toward developing a foundation model for metagenomic data by
pretraining a model on a large, new dataset sequenced from wastewater. This metagenomic dataset,
which has never before been used for model training, provides a unique resource for modeling the
broad distribution of sequences present in the human microbiome. Specifically, we pretrain a 7-billion-
parameter autoregressive transformer model, which we refer to as a Metagenomic Foundation Model
(MGFM), on a diverse corpus of DNA and RNA sequences comprising over 1.5 trillion base pairs
sourced from wastewater samples, which were processed and sequenced using deep metagenomic
(next-generation) sequencing [3, 8]. The MGFM adopts a decoder-style language model architecture,
similar to those found in the GPT and Llama families of models [22, 31], which we describe and
motivate in more detail in Sec. 3.3. This choice allows us to take advantage of the broad (and rapidly
growing) ecosystem of techniques and infrastructure focused on this class of models.

In the following sections, we first describe our metagenomic dataset and detail the BPE tokenization
strategy used to process the sequence data. We then provide comprehensive details of our MGFM
model architecture and of the pretraining process on our dataset. Subsequently, we demonstrate the
model’s performance over the course of pretraining and on metagenomic test data. Additionally, we
demonstrate that our pretrained MGFM achieves reasonable scores on standard genomic evaluation
tasks—designed to evaluate models trained on human and animal genomes—highlighting its general-
ization capabilities. As an initial demonstration of downstream application potential, we construct a
novel detection benchmark and show that MGFM performs well on this out-of-distribution detection
task. We hope our paper serves as an initial step toward a foundation model for metagenomic data,
which in the future can be fine-tuned to aid in public health applications such as pathogen monitoring
and early detection of emerging health threats.

2 Related Work

Language models trained on genomic sequences have been an area of active research, with many
aiming to train on long DNA sequences from specific species, gained from publicly available sources.
For instance, models such as DNABERT [14], HyenaDNA [21], GROVER [27], and Caduceus [28]
are examples primarily trained on long sequences of human DNA. These models typically use encoder-
based architectures or decoder-only non-transformer architectures, aiming to handle long sequence
lengths. In terms of tokenization, these initial human-focused genome models have commonly
employed either k-mer tokenization (with fixed values like k=3) or single-nucleobase tokenization.

Recently, the scope of genomic models has expanded to include multi-species datasets, with mod-
els like DNABERT-2 [36], NucleotideTransformer [9], GENA-LM [12], SpliceBERT [5], and
DNAGPT [35] being trained on a mix of human genome data and manually curated sets from
other species (for example, mixes of species from a taxonomic class, such as collections of mam-
mals). Some of these models have also explored alternative tokenization strategies, such as byte-pair
encoding, learned for their particular genomic distributions [36, 12, 27, 37].

Our metagenomic foundation model differs from these prior works in a few important ways. First,
our pretraining dataset comprises shorter metagenomic sequences (arising from metagenomic next-
generation/massively-parallel sequencing methods) performed on samples of human wastewater
collected across many locations; these samples contain potentially tens-of-thousands of species across
a wide range of taxonomic ranks, and capture a representative distribution of the full human-adjacent
microbiome. This includes both recognized species and many unknown or unclassified sequences
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(see Sec. 3.1). Another distinction is the model architecture: we use a decoder-only transformer
model, akin to the Llama/GPT families, which we further motivate in Sec. 3.3.

3 Metagenomic Foundation Model (MGFM)

We pretrain a 7-billion-parameter autoregressive transformer language model, which we refer to as
a metagenomic foundation model (MGFM), on a novel corpus of diverse metagenomic DNA and
RNA sequences comprising over 1.5 trillion base pairs. This dataset is sourced from a diverse set of
human wastewater samples, which were processed and sequenced using deep metagenomic (next-
generation) sequencing methods. Before training, we carry out byte-pair encoding (BPE) tokenization
on our dataset, tailored for these nucleic acid sequences. The following sections provide detailed
descriptions of the pretraining dataset, tokenization strategy, and model architecture, highlighting the
considerations and design choices that enable the effective modeling of metagenomic data.

3.1 Metagenomic Dataset

One of the goals of our metagenomic foundation model is to train on a genomic dataset that captures
the immense diversity of the microbiome surrounding humans. To achieve this, we leverage a newly
collected metagenomic dataset—never before used in model training—comprising a broad range
of organisms, including bacteria, human cells, human-infecting pathogens, and a diverse array of
other species, which was collected via metagenomic sequencing of human wastewater (i.e., municipal
influent). This approach contrasts with prior genomic language models, which often focus on specific
species or genomic types. By incorporating DNA and RNA sequences collected from wastewater, we
aim to model the complexity of microbial and viral interactions in human-associated environments.

The dataset was generated using deep metagenomic sequencing, specifically leveraging Illumina se-
quencing technology, commonly referred to as next-generation sequencing (NGS) or high-throughput
sequencing, in which billions of nucleic acid fragments are simultaneously sequenced in a massively
parallel manner.

Figure 1: Metagenomic composition of the MGFM pre-
training dataset, estimated via Kraken 2 [32] sequence
classification. See Fig. 5 for a more-detailed view.

This method produces paired-end reads, where
each read consists of two contiguous sequences
of base pairs from opposite ends of a DNA or
RNA fragment. Paired-end reads canoffer ad-
vantages in accuracy and alignment over single-
end reads,particularly for complex metagenomic
samples. Notably, the nature of metagenomic
NGS results in much shorter reads compared
to datasets used in many previous genomic lan-
guage models. In our dataset, most reads range
from 100 to 300 base pairs in length (after
adapter removal and quality trimming), which
introduces unique challenges for modeling, but
also provides a rich diversity and large set of
biological information.

This metagenomic sequence corpus was col-
lected over a six-month period by the Nu-
cleic Acid Observatory (NAO) [8] in collabo-
ration with partners (Marc Johnson and Clayton
Rushford at the University of Missouri and Ja-
son Rothman in Katrine Whiteson’s lab at the
University of California, Irvine). Samples of
wastewater were sourced from various locations
across the United States, namely from cities in
California, Missouri, and Massachusetts. After wastewater samples were collected, the material was
filtered and nucleic acids extracted [25, 24] before undergoing metagenomic sequencing. In full,
the metagenomic dataset for pretraining comprises over 1.5 trillion base pairs. Our hope is that

Where RNA sequences are first converted into DNA via reverse transcription. 2https://bondlsc.
missouri.edu/person/marc-johnson. 3https://jasonrothman.weebly.com/
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this careful sampling and processing approach yields a clean dataset for sequence modeling, which
captures a wide array of genomic content, offering a strong foundation for the training of MGFM.

We show an estimate of the metagenomic composition of this pretraining set in Fig. 1, using the
Kraken 2 [32] sequence classification software (see Fig. 5 for a more-detailed view). At the highest
level, this visualization shows that 55% of reads are hits for bacteria, 2% of reads are eukaryotes
(predominantly Homo sapiens), 2% of reads are viruses, and 41% of reads have no hits and are
unclassified or of unknown origin.

3.2 Tokenization

Model Details MGFM

Architecture Llama-2-7B

Embedding Size 4096

Intermediate Size 11008

Number of Attention Heads 32

Number of Hidden Layers 32

Vocabulary Size 1024

Sequence Length 512

Normalization RMSNorm

Regularization z-loss

Position Embedding Rotary

Bias None

Warmup Steps 2000

Batch Size 30720

Weight Decay 0.1

Learning Rate Schedule Cosine Decay

Initial Learning Rate 6 × 10−4

β1 , β2 0.9, 0.95

Table 1: MGFM architecture details.

In developing our metagenomic foundation model, we sought a
tokenization strategy that would enable high-accuracy sequence
modeling, accommodate novel nucleic acid sequences, and align
with best practices in modern large language models. We opted
for byte-pair encoding (BPE) as our tokenization method, as it
satisfies these criteria, and drawing inspiration from its successful
application in recent language models.

BPE offers several advantages for our MGFM. Unlike fixed-
length k-mer tokenization, it allows for flexible token sizes, which
is beneficial for capturing varying levels of genomic information,
and can allow the model to adapt to different sequence patterns
and structures. Moreover, BPE’s ability to tokenize novel se-
quences is particularly valuable for modeling diverse metage-
nomic sequences containing unknown, varied, and possibly novel
organisms. The method also has the potential to capture semantic
information within a vocabulary of tokens, which can lead to
more nuanced representations of genomic data.

To implement this strategy, we first trained a BPE tokenizer on
a uniformly-at-random sampled subset of our pretraining dataset,
comprising 2 billion base pairs. After analyzing the distribution
of token sizes and considering training efficiency, we settled
on a vocabulary size of 1,024 unique tokens. This vocabulary size strikes a balance between
capturing sufficient genomic complexity, maintaining sufficiently long sequence lengths (based on
the distribution of token sizes), and allowing for computational efficiency. Following this tokenizer
training, we applied this BPE tokenizer to our entire pretraining dataset, effectively preparing it for
model ingestion and training, yielding a set of over 300 billion tokens for pretraining. We give a table
showing full tokenizer details, including a list of all special tokens, in Appendix B.

3.3 MGFM Architecture

For our metagenomic foundation model, we pretrain a 7-billion-parameter autoregressive language
model, using a standard dense transformer architecture, similar to the architecture used in popular
language models such as the GPT and Llama model families [22, 31]. Specifically, we implement a
decoder-only style transformer with a causal language modeling objective, where the model aims to
predict the next token in a sequence based on the previous tokens.

This architecture choice for MGFM stands in contrast to some of the alternative approaches explored
in recent genomic models, which include BERT-style bidirectional encoders [14, 36, 37] or non-
attention based architectures [21, 20]. Our decision to use this particular model architecture was
driven by the following motivations:

1. Ecosystem: By aligning with this widely-adopted architecture, we can take advantage of the
growing ecosystem of techniques and associated implementations developed for autoregres-
sive decoder-only transformer models. This extends to both pretraining optimizations and
downstream applications in fine-tuning and inference.

2. Infrastructure: Given our large dataset size, this architecture allows us to leverage scalable
pretraining infrastructure specifically designed for distributed training of this model type. This
infrastructure has demonstrated success in recent language models, enabling efficient training
on massive datasets.

4



3. Data characteristics: The nature of our metagenomic sequence data, which primarily consists of
short sequences, does not necessitate architectures designed for extremely long context lengths.
This makes the transformer a suitable and efficient choice for our use case.

We next describe some of the specific configuration details of MGFM. First, the model operates
with a context length of 512 tokens, which is sufficient for all of the metagenomic sequences in our
pretraining dataset. For efficiency, we pack shorter sequences within this context window, a process
detailed in Section 4.3 below. We use an attention mask which prevents attention between the distinct
packed sequence reads. MGFM consists of 32 layers and 32 attention heads, with an embedding
size of 4096 and a hidden layer size of 11008. We employ root mean square layer normalization
throughout the model, with a normalization epsilon of 1e-5. These configurations result in a model
with approximately 7 billion parameters in total. All architecture details are summarized in Table 1.

4 Pretraining MGFM

4.1 Training Infrastructure

Our model is trained on four nodes, each equipped with 8 H100 SXM5 GPUs interconnected via
Ethernet with 40 GB/s bandwidth. This interconnect bandwidth poses a significant performance
bottleneck, as it is an order of magnitude slower than NVIDIA’s InfiniBand and faster Ethernet inter-
connects. Despite this limitation, we were able to achieve 40% model FLOPS utilization (MFU) [6]
by employing a hybrid sharding strategy. Specifically, we use PyTorch’s HYBRID_SHARD_ZERO2
strategy implemented in its Fully Sharded Data Parallel (FSDP) utilities. This design choice provides
the benefit of model and optimizer state sharding within each node, while practicing standard data
parallelism across nodes to reduce the inter-node communication overhead. In practice, it only
requires an all-reduce operation on the gradient buckets during the optimizer step.

For training, we use a global batch size of 30,720, a sequence length of 512, and a micro-batch size of
48. We observe this combination to offer the best trade-off between high MFU and reduced memory
usage; it also allows us to shard the optimizer state and gradients within a single node. Further tests
on fewer nodes yield MFU values of 0.51 and 0.47 for 1-node and 2-node setups, respectively. These
results suggest that interconnect bandwidth was the main bottleneck in our training environment.

Node failure. During training, we experienced three node failures, one GPU failure, one network
failure, and one disk failure. All failures required us to restart the training from the latest checkpoint.

4.2 Stability

Foundation model pretraining is prone to suffer from training instability, which can be more pro-
nounced when scaling models to billions of parameters [33]. Such instabilities often arise during the
middle or late stages of training, and are often characterized by a sudden spike in loss and/or other
divergent behaviors. Failure to identify these problems can result in considerable wasted compute
resources. Additionally, the characteristics of the input data have been shown to influence training
stability, as highlighted by recent work in large multimodal language models [29].
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Figure 2: We show z-loss during pretraining,
which aids and gives an indicator of stability.

Given that we scaled directly from sub-billion pa-
rameters to a 7 billion parameter model, and that
training on metagenomic sequences is less studied
compared to natural language, we anticipated a rel-
atively high risk of encountering stability issues. To
mitigate such risks, we followed best practices from
Wortsman et al. and implemented a variant of the
z-loss, referred to as max-z-loss, introduced by Yang
et al. with a coefficient of 2e-4. We opted against the
recommendation of QK-layer normalization [29] to
preserve the Llama architecture and leverage opti-
mized inference pipelines.

During training, we monitored the norms of the lan-
guage model head, the query, key, and value outputs,
as well as the gradient norms. Wortsman et al. empirically shows that a significant increase in
any of these metrics may signify potential instability, allowing us to intervene early by restarting
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Figure 3: MGFM loss curves during pretraining. We show training loss (left), and validation loss on
a held out metagenomic sample (right).

the training. Fortunately, no stability issues were observed, and the monitored metrics remained
consistent throughout the training process.

4.3 Context Stuffing

A significant portion of our dataset contains sequences with fewer tokens than our model’s context
length. To optimize compute efficiency and avoid wasting resources on padding tokens, we pack
the sequence dimension with multiple samples, where applicable. We modify the attention mask to
ensure that tokens from different samples cannot attend to one another. This is implemented using
the variable length function in FlashAttention-2 [10] which avoids materializing the full mask, which
would have been inefficient.

5 Empirical Results

5.1 Pretraining Performance

As an initial analysis of MGFM, in Figure 3, we show two loss curves generated over the course
of pretraining. On the left, we show the training loss over one epoch of our 1.5-trillion-base-pair
pretraining dataset. On the right, we show the validation loss, computed on a held-out portion of our
metagenomic dataset. In the training curve we note that there are slight systematic oscillations over
the course of training, which occur due to pseudo-random data shuffling (implemented for efficiency
reasons); however, these do not appear in our validation loss curve.

5.2 Fine-Tuning Performance on Out-of-Distribution Data

We now investigate the viability of MGFM as a general-purpose foundation model. Importantly,
we aim to show reasonable performance on nucleotide sequences sampled from out-of-domain
distributions. One such example is long-sequence full-animal-genome datasets. In many prior
genomic language models’ pretraining datasets, this type of genomic data is found in abundance [9,
14, 21, 36]. As a pilot study, we perform fine-tuning experiments on the GUE benchmark [36], which
comprises 28 sequence-level classification tasks curated from this type of genomics data.

As a minimal setup, we fine-tune low-rank adapters (LoRA) [13] and a linear classification head that
projects average-pooled representations from the last hidden layer to the class logits. This setup is
aimed to emulate downstream users with a limited compute budget. For each experiment, we choose
the learning rate between 1e-3 and 1e-4 based on the convergence behavior of the training loss. The
LoRA parameters are only introduced to the query and value projections for all but the epigenetic
marks predictions (EMP) tasks. For the latter, additional adapters are added to the the key and dense
layers. All other hyperparameters are fixed across all tasks. We report final test performances after
5 epochs of training. Additional details on training hyperparameters can be found in Appendix C.
Following Zhou et al., we report Matthews correlation coefficient (MCC) on all but the COVID task,
which uses the F1 score. These results are presented in Table 2.

Named function flash_attn_varlen_func in the FlashAttention-2 Python package.
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CNN HyenaDNA DNABERT NT-2.5B-Multi DNABERT-2 MGFM
TF-MOUSE 45.3 51.0 57.7 67.0 68.0 65.9

0 31.1 35.6 42.3 63.3 56.8 55.4
1 59.7 80.5 79.1 83.8 84.8 80.0
2 63.2 65.3 69.9 71.5 79.3 78.1
3 45.5 54.2 55.4 69.4 66.5 73.1
4 27.2 19.2 42.0 47.1 52.7 43.0

TF-HUMAN 50.7 56.0 64.4 62.6 70.1 66.3

0 54.0 62.3 68.0 66.6 72.0 67.9
1 63.2 67.9 70.9 66.6 76.1 69.6
2 45.2 46.9 60.5 58.7 66.5 62.6
3 29.8 41.8 53.0 51.7 58.5 54.8
4 61.5 61.2 69.8 69.3 77.4 76.7

EMP 37.6 44.9 49.5 58.1 56.0 53.7

H3 61.5 67.2 74.2 78.8 78.3 75.2
H3K14AC 29.7 32.0 42.1 56.2 52.6 50.3

H3K36ME3 38.6 48.3 48.5 62.0 56.9 54.5
H3K4ME1 26.1 35.8 43.0 55.3 50.5 41.9
H3K4ME2 25.8 25.8 31.3 36.5 31.1 38.8
H3K4ME3 20.5 23.1 28.9 40.3 36.3 37.8

H3K79ME3 46.3 54.1 60.1 64.7 67.4 61.3
H3K9AC 40.0 50.8 50.5 56.0 55.6 52.0

H4 62.3 73.7 78.3 81.7 80.7 78.7
H4AC 25.5 38.4 38.6 49.1 50.4 46.8

PD 77.1 35.0 84.6 88.1 84.2 79.4

ALL 75.8 47.4 90.4 91.0 86.8 82.6
NO-TATA 85.1 52.2 93.6 94.0 94.3 92.6

TATA 70.3 5.3 69.8 79.4 71.6 62.9

CPD 62.5 48.4 73.0 71.6 70.5 67.2

ALL 58.1 37.0 70.9 70.3 69.4 62.7
NO-TATA 60.1 35.4 69.8 71.6 68.0 66.8

TATA 69.3 72.9 78.2 73.0 74.2 72.0

SSD 76.8 72.7 84.1 89.3 85.0 82.2

COVID 22.2 23.3 62.2 73.0 71.9 69.7

Table 2: Fine-tuning results on the GUE benchmark. Non-MGFM results are adapted from Zhou
et al.. The metrics used for evaluation is MCC, except for the COVID task, which uses F1 score. The
header rows report macro-averaged performance metrics.

We observe MGFM to attain comparable performance to strong baselines reported in Zhou et al..
On the human transcription factor (HUMAN-TF) prediction tasks, MGFM consistently outperforms
adapter-tuned NucleotideTransformer models, a family of encoder-style foundation models pretrained
on genomics distributions similar to those in the GUE benchmark. On the other hand, MGFM
trails behind state-of-the-art performances in select tasks from EMP and promoter detection (PD).
While these performances may benefit from a more careful round of hyperparameter tuning, this gap
highlights the importance of in-distribution pretraining dataset to downstream applications. As the
exploratory analysis in Figure 5 suggests, while our metagenomic sequences offer a rich profile of
microorganisms, they lack long/full genome sequences from diverse animal species. An effort to
improve the GUE performance of MGFM, via full-model fine-tuning and continual pretraining on a
mixture of our metagenomics dataset and public genomics datasets, is currently underway.

Benefits of pretraining. To ablate the benefits of pretraining for downstream performance, we
perform LoRA fine-tuning from randomly initialized model weights. These experiments are trained
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with the same hyperparameters, but we double the number of training epochs (i.e., 10 epochs) to
compensate for the lack of pretraining. Additionally, we report the best test performance from
evaluations after every epoch, in order to provide an accurate lower bound of performance gains from
pretraining. We show experiments on the transcription factor prediction tasks from mouse and human
genomes, and report the ablation results in Table 3.

TF-MOUSE TF-HUMAN

0 1 2 3 4 0 1 2 3 4
MGFM w/o PT 31.7 67.7 72.6 50.7 24.6 55.6 57.7 40.5 32.0 51.2
MGFM 55.4 80.0 78.1 73.1 43.0 67.9 69.6 62.6 54.8 76.7

PT ∆ 23.7 12.3 5.5 22.4 18.4 12.3 11.9 22.1 22.8 25.5

Table 3: Ablation results on the performance gain from pretraining on our metagenomics dataset.
First row: LoRA fine-tuning results for MGFM without pretraining. Second row: LoRA fine-tuning
results for standard MGFM. Third row: the performance gain from pretraining.

We observe a sizable performance gap between ablation and pretraining results. Our findings indicate
that pretraining offers concrete benefits in terms of downstream performance, even if there exists a
mismatch in terms of data distributions. Despite this gap, it is worth noting that LoRA fine-tuning
from random weights can achieve non-trivial performance, and is often comparable to the CNN
baselines. This observation could be attributed to the positive inductive bias introduced from the
transformer architecture for sequence modeling.

5.3 Anomaly Detection from Wastewater

Our final experiment aims to show the feasibility of MGFM to detect out-of-distribution (OOD) data
at scale, as it serves as a primer for reliable anomaly detection from wastewater samples. In this early
study, we respectively sample 5000 sequences from our metagenomics pretraining data, the mouse
and human genomes from the GUE dataset, as well as random sequences as a control group. All
sequences are truncated to 100 base pairs in accordance with the sequence lengths from the GUE
dataset. As a baseline, we implement a threshold-based anomaly detector, which classifies samples
with length-normalized cross entropy losses below a certain threshold as non-anomalies, and vice
versa. We select a threshold of 3 based on our observations from the validation curve in Figure 3.

1 2 3 4 5 6 7
Length-Normalized Cross Entropy Loss
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metagenomics random human mouse

Figure 4: Distribution of the length-normalized cross entropy loss across all datasets.

Figure 4 indicates a clear separation between metagenomics sequences and other data sources. The
in-distribution data behaves within our expectation; the human and mouse genomic data both attain a
similar mode and spread, and their loss distributions are more similar to that of random sequences,
compared to our in-distribution data. Table 4 reports numerical results of our OOD detection tests.
MGFM achieves strong performance for separating metagenomics sequences from other data sources.
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Group F1 Loss (Std. Err) Tokenized Seq Len (Std. Dev)
Metagenomics - 1.24 (1.31) 24.91 (3.35)
Random 0.91 5.83 (0.29) 27.16 (1.32)
Human 0.94 5.22 (0.22) 27.29 (1.33)
Mouse 0.91 5.38 (0.54) 27.2 (1.34)

Table 4: OOD detection performance between metagenomics sequences and other data sources.

6 Discussion, Limitations, Conclusion

We have reported our current progress on pretraining and evaluating MGFM, the first large-scale
foundation model pretrained from metagenomic sequences. We detail our dataset construction, model
training, and fine-tuning procedure to facilitate open-science research. We will open-source our
datasets, training code, and model checkpoints in the near future.

Our downstream performance over genomics benchmarks suggests the viability of our approach even
in the face out-of-domain distributions. The performance gaps with state-of-the-art approaches on
these benchmarks indicate that MGFM may benefit from continual pretraining with a diverse mixture
of data sources (at least on tasks similar to these genomic benchmarks). We are actively exploring
this direction, such as incorporating human reference genomes and multi-species genomic datasets.

In addition, we are actively developing a standardized evaluation suite consisting of classification, em-
bedding, out-of-distribution detection, and pandemic monitoring tasks for metagenomics sequences.
We hope our effort can facilitate objective evaluation of MGFM, and we invite both domain experts
and the machine learning community to contribute to this research.
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Appendix

A Additional Details on the Metagenomic Training Dataset

In Figure 5, we show a visualization of (a relatively small subset of) the composition of metagenomic
information contained in our pretraining dataset. This composition is estimated through the Kraken
2 metagenomic sequence classification software [32], which gives taxonomic hits for reads in our
pretraining set (where taxonomic classification is performed using exact k-mer matches) . We show
three plots in Figure 5: first, the full pretraining dataset distribution (top); then, as an example subset
of this, the distribution of viruses (middle); and finally, as an example subset of this, the distribution
of the Steitzviridae family of viruses (bottom).

B Tokenizer Details

Our tokenizer implementation is adapted from minbpe. It is trained on a subset of sequences
consisting of 2 billion base pairs. These sequences are uniformly sampled from all of the available
wastewater sequencing runs from our data sources. Similarly to BPE tokenizers trained on natural
language datasets, we treat the beginning of each sequence differently, in our case by prepending
a ‘_’ character to the beginning of each read. During pretraining, we postpend a [BOS] token to
separate each sequence. Our tokenizer consists of the following special tokens: [PAD], [UNK],
[SEP], [BOS], [EOS], and [MASK] to allow for diverse applications during fine-tuning. In total, it
has of a vocabulary size of 1024.

In our preliminary experiments, we have also experimented with a larger vocabulary size of 4096,
but this design choice results in many short tokenized sequences that may not be able to provide
meaningful learning signal. We have thus decided to move forward with a vocabulary size of 1024 to
balance efficiency and downstream performance.

C Fine-Tuning Experiment Details

In Table 5, we show our choices of hyperparameters for fine-tuning experiments.

LoRA modules query, valueΛ

LoRA rank 8
LoRA α 16
LoRA dropout 0.05

Optimizer AdamW
Optimizer momentum β1, β2 = 0.9, 0.999
Learning rate 1e-3Ω

LR Scheduler Linear Warmup + Constant LR
Warmup Steps 50
Weight Decay 0.01
Denominator ϵ 1e-8
Precision BF16-mixed

Batch size 32
Epochs 5
Epochs (Ablation) 10
Hardware NVIDIA A100 80GB

Table 5: Hyperparameter settings for fine-tuning experiments. Λ: LoRA is applied to query and
value projections for all except for the epigenetic marks prediction tasks, in which case LoRA is
applied to the query, key, value, and dense matrices. Ω: we use a learning rate of 1e-4 for tasks
HUMAN-TF-0, EPM-H3K36ME3, and EPM-H3K4ME2, as we otherwise observe non-convergent
behavior in terms of training loss.

https://github.com/karpathy/minbpe
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Figure 5: A visualization of the composition of metagenomic information contained in our pretraining
dataset, based on Kraken 2 metagenomic sequence classification hits [32]. We first show the full
pretraining dataset distribution (top), and then as an example show the distribution of viruses (middle),
and finally the distribution of the Steitzviridae family of viruses (bottom).
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