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Abstract

Memory-efficient learning is crucial for reduc-
ing GPU consumption and enabling scalable
training of large language models. Low-rank
adaptation has proven effective for fine-tuning
by injecting low-rank matrices into frozen pre-
trained weights. However, these methods often
degrade to full-rank training due to limited ex-
pressiveness and disrupted optimization dynam-
ics. Conversely, projecting gradient updates
within a low-rank subspace improves both train-
ing performance while simultaneously decreas-
ing memory overhead. In this paper, we pro-
pose Lotus, a method that speeds up gradient
projection via randomized SVD and further re-
duces memory cost. In addition, we propose an
adaptive subspace switching strategy guided
by the average displacement of the unit gradi-
ent, which enables dynamic subspace updates
for improved convergence performance. Exper-
imental results demonstrate that Lotus is cur-
rently the most efficient method, surpassing
full-rank training in pre-training LLaMA-type
models on the C4 dataset, as well as fine-tuning
across multiple tasks. Our code will soon be
available.

1 Introduction

With the rapid advancement of large language
models (LLMs), GPU memory requirements for
training have substantially increased. Specifically,
strategies such as using larger batch sizes and
longer sequence lengths—which enhance model
stability and generalization—have significantly el-
evated memory consumption. The memory foot-
print during LLM training typically comprises four
components: model weights, gradients, optimizer
states and activations. Researchers have proposed
various memory-efficient techniques addressing
different aspects mentioned above, including ac-
tivation recomputation (Korthikanti et al., 2023),
mixed-precision training, memory-efficient opti-
mizers (Shazeer and Stern, 2018; Dettmers et al.,
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Figure 1: The comparison between previous method(e.g.
GaLore) with fixed switching frequency and our greedy
search strategy that update the subspace adaptively. G*
is the displacement of the gradient in a subspace. When
the average displacement of unit gradient vector G ;¢
is lower than +, the subspace will be switched.

2021), and parameter-efficient fine-tuning (PEFT).
Among these methods, low-rank adaptations of
model weights, such as Lora (Hu et al., 2022)
and its variants (Lialin et al., 2023; Zhang et al.,
2023), have gained attention due to their reduced
memory usage and comparable performance to full-
parameter fine-tuning. Recent researches increas-
ingly focus on leveraging low-rank matrix decom-
position methods like Singular Value Decomposi-
tion (SVD) on model weights to improve perfor-
mance (Meng et al., 2024; Lingam et al., 2024; Sun
et al., 2024).

From another perspective, the model weights
may not inherently possess a low-rank structure,



so as to the representation of learned new feature,
leading to inferior model performance (Chen et al.,
2025). Compared with decomposing weight matrix,
recent studies have proposed innovative approaches
to activation (Chen et al., 2025), gradient, and opti-
mizer states with low-rank paradigm. (Hao et al.,
2024) first finds that LoRA updates can be viewed
as performing random projection to the gradient.
(He et al., 2025) improves the random projection
matrix and initializes weights based on gradient in-
formation. Meanwhile, GaLLore(Zhao et al., 2024a)
leverages low-rank gradients for subspace updates
and optimizes weights by projection. Several Ga-
Lore variants (Huang et al.; He et al., 2024; Chen
et al., 2024) progress on relieving memory further.

Nevertheless, previous methodologies often ex-
hibit inherent trade-offs between memory, compu-
tation time and performance, predominantly due
to reliance on computationally intensive SVD pro-
cesses and the frequent necessity to project gradi-
ents between full-rank and low-rank spaces. Mean-
while, Galore requires specifying subspace update
intervals based on subspace rank and prior knowl-
edge, introducing ambiguity and practical difficul-
ties. Issues arise when gradients oscillate within
a subspace due to saddle points or minima, while
fixed intervals may prematurely or belatedly trigger
subspace changes. Such weaknesses are visualized
in Figure 1. In contrast, recent adaptive approaches,
like shrinking - rank strategies by (Refael et al.,
2024), incur complex calculations.

Our Approach To address the trade-off and lim-
itations mentioned, we propose Lotus: Low-Rank
Efficient LLM Training with Adaptive Subspace
Switching to improve training efficiency (memory
& speed) and model performance. We leverage ran-
domized SVD proposed in (Halko et al., 2011) to
reduce computational complexity and saving time
for periodic updating of low-rank projection. In-
spired by the physics concept that displacement per
unit time represents speed, we analogously propose
that the gradient displacement per unit time reflects
convergence status. Consequently, our central idea
is to adaptively update subspaces based on the av-
erage displacement of unit gradient. We leverage
the following theoretical insights:

1. While gradient magnitudes fluctuate through-
out optimization, unit gradient vectors typi-
cally highlight stable optimization pathways.

2. The alignment between the unit gradient vec-

tor and subspace geometry significantly influ-
ences update effectiveness and efficiency.

Thus, we leverage an adaptive update strategy gov-
erned by the Euclidean distance of low-rank unit
gradients—dynamically switching subspaces when
directional consistency indicates diminishing re-
turns. The summary of our contributions is as fol-
lows:

1. We introduce Lotus, a greedy search strategy
to adaptively update subspace based on the av-
erage displacement of the unit gradient vector
for better performance.

2. We leverage a more memory and time efficient
method without offloading strategies based on
random SVD rather than random projection
or standard SVD to cooperate with update
strategy for boosting the performance.

3. Lotus can further save about 40 % memory
consumption on gradient and optimizer states,
and reduce 10 % to 30% time cost compared
with GaLore. To performance, Lotus also ex-
ceeds related algorithms greatly.

2 Related Works

Low-rank in Weight LoRA shows the poten-
tial of memory-efficient learning for LLM with
the intrinsic low-rank structure (Hu et al., 2022).
[(Schotthofer et al., 2022)] constrains the rank of
weight matrices to find "winning-ticket" dynam-
ically in dense network. ReLoRA (Lialin et al.,
2023) utilizes locally low-rank updates to train
high-rank networks. RandLoRA (Albert et al.,
2025) updates a learned linear combinations of
low-rank, non-trainable random matrices. Dora
(Liu et al., 2024) decomposes weights to direc-
tional matrix and magnitude vector for fine-tuning.
Further works improve the low-rank adapter with
the help of SVD to the weights in the initialization
of the adapters (Meng et al., 2024), only training
the top-r singular values (Sun et al., 2024), or the
corresponding coefficients (Lingam et al., 2024).
Lora-Null (Tang et al., 2025) finds the null space of
representative activations and initializes the LoRA
adapter with the pre-trained weights in that null
space. (Wang et al., 2024) achieves high-rank up-
dates with low costs by selecting skeletons from
the pre-trained weight and learning a small matrix
instead. (Jaiswal et al., 2024) unifies weight com-
pression and memory-efficient fine-tuning as one
to do adaptive low-rank weight projection.



Low-rank in Optimizer States Except for pro-
jecting the optimizer state to low-rank correspond-
ing to the gradient structure, Fira (Chen et al., 2024)
enables full-rank training under low-rank optimizer
constraints by leveraging norm-based scaling and
a gradient norm-growth limiter. Adapprox (Zhao
et al., 2024b) finds the key effect of top singular val-
ues in the second-order momentum of Adam and
approximates it by random projection. APOLLO
(Zhu et al., 2024) adopts low-rank scaling factors
by projecting gradients randomly, and channel-
wise updates instead of element-wise in Adam to
reduce optimizer memory cost. Alice (Gong et al.,
2025) leverages Fisher information matrix approx-
imation to Adam for saving memory. COSMOS
(Liu et al., 2025) merges full-second-order on domi-
nant gradient subspace and Newton-Schulz approx-
imation on residual directions.

Low-rank in Gradient Flora first down-projects
gradients by random projection matrix and up-
projects low-rank gradients for optimization, and
GoRA improves Flora by adaptive random projec-
tion matrix and gradient-related initialization (Hao
et al., 2024; He et al., 2025). GaLore (Zhao et al.,
2024a) factorizes gradients based on SVD and op-
timizes full-rank weights after projecting the low-
rank update back to the original space, and its vari-
ants try to use less memory and relieve the complex-
ity by random projection or layer-wise adaptation
to low-rank gradients (Huang et al.; He et al., 2024,
Zhang et al., 2024). Adarankgrad (Refael et al.,
2024) uses adaptive subspace based on lower intrin-
sic rank with training process. (Torroba-Hennigen
et al., 2025) leverages linear gradient transforma-
tions meeting Kronecker-factored as equivalence
to a linear adapter. (Liang et al., 2024) uses online
PCA to update the projection matrix in subspace
learning. (Chang et al., 2025) dynamically prunes
and expands ranks based on gradient-derived im-
portance scores. (Chen et al., 2025) approximates
matrix multiplication with only critical rows and
columns and improves back propagation. (Zhang
et al., 2025) proposes importance sampling sub-
space selection to improve the performance when
projecting gradient.

In contrast to previous methods, our approach
focuses on enforcing low-rank structure in the gra-
dients without altering the optimization process
or switching subspaces based on rank heuristics.
We determine the subspace switching frequency
directly from the gradient information.

3 Methodology

3.1 Randomized SVD with Power Iteration

Computing the full SVD for large matrices is
computationally intensive and memory demand-
ing. To enhance the optimization of this pro-
cess, we formulate the following optimization

problem ming ¢y HG — QUTH? to find a low-
rank approximation of any gradient matrix G,
where Q € R™" and U € R™". Our im-
plementation utilizes the Gaussian sampling vari-
ant of the randomized SVD algorithm (Halko
et al., 2011) , which is an effective approxima-
tion method so far. Then the optimization problem
becomes arg mingegnxr |G — QQTGHF, and ap-
proximates the gradient matrix G' as Gapp,r =~
QQ " G. The computational complexity of random-
ized SVD mainly arises from matrix multiplication
and decomposition. For matrices G with slowly
decaying singular spectra, standard randomized
SVD can incur high approximation errors. Thus,
we enhance precision via power iterations, which
is particularly beneficial for large, spectrally flat
matrices. Formally, if the singular values of G
are ¥, the singular values of (GG'T)? G are 2471,
Let G’ = (GGT)q G, G’ can be easily derived as
follows:

G'=(QxUTUEQ") QU =¥ UT (1)

This method enhances the separation between
significant and insignificant singular vectors,
thereby increasing the precision of the resulting
low-rank approximation.

Theorem 3.1 (upper bound for the approxima-
tion error) Let the gradient matrix G € R"™*"
and draw a Gaussian matrix Q ~ N(0,1)"*("+p)
with a oversampling parameter p ~ 5. Define
Q = orth(GSY). For any fixed rank r, randomized
SVD yields:

E Hcf QQTGH2 < (1 + 4;{?)1” ori1(G) ()

with an analogous high-probability bound. Be-
cause o,+1(Q) is precisely the spectral tail energy
that GaLore already truncates, replacing the de-
terministic SVD with rSVD perturbs the algorithm
only by an O (0,4+1(G)) term and therefore pre-
serves both convergence properties and memory
savings. The proof of Theorem3.1 can be found in
Appendix A. Hence, replacing the SVD with ran-
domized SVD maintains GalL.ore’s memory foot-
print and convergence characteristics virtually un-
changed. The details are shown in Algorithm 1.



Table 1: Comparison between GaLore, LoRA, and Lotus. Assume W € R"*"™(n > m) and r, p < min{m, n}.

GaLore LoRA Lotus
Weights mn mn +mr +nr mn
Optim States mr + 2nr 2mr + 2nr mr + 2nr
Temporary Memory kmn kmn (m+n)(r+p)
Multi-Subspace v X v
Adaptive Subspace b 4 b 4 v
Pre-Training v b 4 v
Fine-Tuning v v v

Algorithm 1: Efficient Low-rank Projector

Input: weight matrix W € R"*" with
m < n, rank r

Gy € R™*" «— Vo (W)
Initialize Random Matrix 2 € R™*"
Y =G - QeR™"
@ = OR Decomposition(Y') €
B = QT W € R™*n
U8,V =

Singular Value Decomposition(B)
U=QU e R™*"

RmX’I‘

return U € R™*"

3.2 Adaptive Subspace Switching

Refreshing the orthogonal projector with the lat-
est full-rank gradient realigns the low-rank basis
with the its current dominant directions, so the top
r singular vectors reclaim energy that had drifted
outside the stale subspace; the Frobenius norm of
the compressed gradient therefore “jumps back up.”
Yet because different spectral components of the
gradient drift at different speeds, a fixed update
frequency both wastes compute on already stable
directions and allows fast-moving ones to leak en-
ergy before the next refresh. An adaptive switching
schedule throttles and accelerates the process ac-
cording to subspace drift to solve this imbalance.

To quantify how much displacement such a
schedule can preserve, consider the ideal scenario
in which every projected gradient step points in
exactly the same direction; then the cumulative
displacement after & steps is

k—1 k—1
Digear = Z —agi—i|l| =« Z Ji—i 3)
i—0 2 i=0 2

In the “best-aligned” case where all § are parallel

and have unit norm, Djgeq =~ ko, where « is the
learning rate. Then the actual displacement would
be:

Dicwat = “4)
2
Then, we define the path-efficiency ratio:
k=1 p »
D HZ'—O Pkgt—i
or = actual 4 — E [0’ 1] (5)
1deal HZ@ o0 t—i

when p; =~ 1, the gradients remain conﬁned within
a narrow directional cone, indicating that the cur-
rent subspace Py is sufficiently representative for
optimization. If p, < 1, significant cancellation
occurs between successive steps, suggesting that
the gradients exhibit substantial directional vari-
ation or extend beyond the span of the subspace
P.

Lotus adaptively switches the subspace when
pr < v and t — tpg > Tnin, With threshold

€ (0,1). Noticing that we set a minimum in-
terval condition, constraint t — t1u5¢ > Tpnin 1S iM-
posed to prevent excessive subspace switches dur-
ing the initial noisy phase of optimization. Without
this safeguard, the metric p; may frequently fall
below the threshold ~ due to stochastic fluctua-
tions, triggering unnecessary subspace transitions.
Such premature switches would incur computa-
tional overhead without meaningful improvements
in convergence. Especially, & = 1 means that p;
reduces to the single-step displacement-gradient
ratio.

Lemma 3.2 (one-step projected decrease) If p; >
p and the loss has standard L-smoothness. We
can apply the standard upper bound for L-smooth
functions to the subspace projected update rule,
then:

1
’Llgll;  ©

L (th) < ﬂ(wt) - ap2 Hgtng + 2



Where w; € R is the parameter vector in itera-
tion t and g, = VL (w;) is the gradient of the loss
function at step . Choosing o < 2p? /L guarantees
a strict decrease.

Corollary 3.3 (k-step block) If p;—; > pfori =
0,...,k—1, a standard form generalized to k steps
can be obtained:

k-1

L (wi1) = £ (we—p1) — ap* > llgeill3
i=0

, 1 @)
2 2
+ 5 L Z% llge—ill5

1=

The preceding analysis demonstrates that the
adaptive subspace switching method remains con-
vergent throughout the training process. On this
basis, a comparative assessment of the conver-
gence speeds between the two methodologies can
be conducted by examining their respective worst-
case performances under fixed-step and adaptive
strategies. Under the fixed policy p; can linearly
decay from 1 to a minimal value p. Assume
ptri =1 —5(1—p), i=0,...,7—1. The
average squared ratio over one block is:

1— 2
A=t 122 ®
For strong rotation (p < 1) one has e~ (1—
p)?/3 < 1.

For worst-case behavior for Louts, the adaptive
rule enforces p, > ~ for all ¢, at most past steps in
any window can violate this bound. Hence, ﬁgda >

72, Selecting v > /(1 — p)?/3 to get the path-

efficiency ratio comparison:

Prda > Piix ©)

Then, let A; = L(w;) — Lo, for fixed-interval
over one switch of step T,

T-1 T-1

1
Apyr < Ay — iy Z Giqi + QOéQL Z Geye  (10)

=0 =0

With « < 2p2 /L, we define cg, =
a (ﬁ%x — %aL) > 0, the same for the adaptive
scheme, The switch interval is at most k, analo-
gously cyga = a( 2 %ozL). Since 72 > ﬁ%x,
it can easily be deduced that c,q, > cpx. Hence,
by combining the above results, we arrive at the
formal statement of Theorem 3.3.

Algorithm 2: Lotus Algorithm
Input: Full-rank gradient Gp € R™*";
avg. unit gradient displacement
threshold +; verifying gap n
Initialize: Project count 7" < 0

if Initialization or Subspace Update then
>initial step or triggered switch

OG —
EFFI. LOW-RANK PROJECT(GF)
Ginit <+ Og - GF
dinit < NORMALIZE(Gipit)
T+1
end
chr — OG : GF
deyr <~ NORMALIZE(G o)
T+ T+1

if I mod n = 0 then > periodic check
Afl <~ dcur - dinit
]l [Ad]|/T
if ||d|| <  then

> avg. displace
> convergence?

‘ Trigger Subspace Update
end

end

Theorem 3.4 (faster convergence with adaptive
policy) Let Nj, and Nyg, denote the number of
iterations required by the fixed and adaptive step
size policies, respectively, to achieve the gradient
tolerance condition Zi\;l Gi < € where Gy =
lg:||3 and the step size constraint @ < 2pﬁx /L.
Then the following inequality holds:

Cix Kk

Nada < — Ngyx < Ngyx
ada Tﬁ< fi

)
ada

This result demonstrates that Lotus’s adaptive
subspace switching achieves the same convergence
criterion with strictly fewer iterations compared to
the fixed policy, highlighting its computational effi-
ciency. Please check Appendix A for more details.

3.3 Lotus

In this section, we introduce Lotus, a training strat-
egy designed to simultaneously accelerate computa-
tion and reduce memory usage. Lotus uses a power-
iteration-based randomized SVD to markedly ac-
celerate the gradient projection step. In addition, it



Table 2: We compare the performance of several low-rank training algorithms with Lotus by pre-training LLaMA
models of varying sizes on the C4 dataset. Here, r denotes the rank of the low-rank factorization, and d,,,4.; denotes
the hidden states dimension of each model size. We use NVIDIA H100 GPUs for this experiment.

Method 60M 130M 350M 1B
GaLore 34.88 25.36 18.95 15.64
Low Rank 78.18 45.51 37.41 142.53
LoRA 34.99 33.92 25.58 19.21
ReLoRA 37.04 29.37 29.08 18.33
AdaRankGrad 34.24 25.22 18.91 14.71
Lotus 33.75 24.87 18.91 15.33
! dmodel 128 /256 256 /768 256 /1024 51272048
Training Tokens 1.1B 2.2B 6.4B 13.1B

incorporates a novel, more flexible path-efficient
switching policy: we define the path efficiency
p¢ of the accumulated gradient displacement, and
whenever p; drops below a preset threshold while
the time since the previous switch exceeds Tiin,
the algorithm triggers a subspace recomputation.
The details are in Algorithm 2. This mechanism
guarantees that, compared to fixed-interval sub-
space switching, the adaptive strategy reaches the
same gradient threshold in fewer iterations, thereby
achieving faster convergence.

Improved Computational Performance This
conclusion can easily be concluded by a straightfor-
ward analysis that the time complexity of SVD is
O(mn min{m,n}) while randomized SVD has a
lower complexity of O (mn(r + p) + m(r + p)?).
When 7,p < min{m,n}, the complexity of
randomized SVD simplifies to O(mn(r + p)),
offering a substantial improvement over the
O(mn min{m,n}) complexity of standard SVD.
This efficiency renders randomized SVD an attrac-
tive choice for leading singular vector extraction in
large-scale applications.

Reduced Memory Analysis In GalLore, the SVD
component typically requires an additional GPU
workspace of size O(kmn), whereas Lotus only
requires O((m + n)(r + p)) workspace during the
gradient projection step. Since r < min(m,n), in
practice, the workspace used by Lotus is smaller
by approximately a factor of min(”;nm) compared
to GalLore because the peak memory footprint
only includes the current layer’s gradient plus the
workspace. Under this circumstance, Lotus consis-
tently achieves more than 40% memory reduction

per layer. A comparison between GaLore, LoORA
and Lotus is in Table 1.

4 Experiments

Implementation Details We utilize GalLore
(Zhao et al., 2024a) as our codebase for model
training and evaluation. All model architectures
involved in the experiment are consistent with Ga-
Lore. The data format in training and validation
is BF16. We manually tune the hyper-parameters
needed in the experiments to achieve optimal per-
formance. Detailed hyperparameter settings are
provided in the Appendix B.

4.1 Pre-Training on C4

To assess the effectiveness of Lotus, we pre-train
LLaMA models of varying sizes on the C4 dataset,
following the experimental settings established by
GaLore. The C4 dataset (Raffel et al., 2020), a
clean version of the Common Crawl web corpus,
is widely used for pre-training language models.
We evaluate model performance using perplexity
as the primary metric. The corresponding experi-
mental results are reported in Table 2. Additionally,
we visualize the reduction in validation perplexity
for Lotus compared to the open-source baseline,
Gal ore, during the initial 10k pre-training steps.

4.2 Fine-Tuning Tasks

We fine-tune RoBERTa-Base model on 8 GLUE
(Wang et al., 2018) tasks to compare the re-
sults with full rank fine-tuning, Lora, GaLore and
AdaRankGrad, showing the results in Table 3. We
report the overall (matched and mismatched) accu-
racy for MNLI, Matthew’s correlation for CoLA,



Table 3: Evaluating Lotus on the GLUE fintuning tasks using pre-trained ROBERTa-Base. We compare Lotus with
various memory-efficient training methods and report the average metrics.

Method

Memory CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP Avg

LoRA (rank=4) 257TM  61.38 90.57 91.07 78.70 92.89 86.82 92.18 91.29 85.61
Gal ore (rank=4) 253M  60.35 90.73 9225 79.42 94.04 87.00 92.24 91.06 85.89
AdaRankGrad (rank=4) 202M 61.40 90.97 92.60 81.23 94.80 86.60 92.50 90.40 86.31
Lotus (rank=4) 251M  64.02 90.79 93.14 83.39 94.72 87.47 93.00 91.01 87.19
LoRA (rank=8) 264M  61.83 90.80 91.90 79.06 93.46 86.94 92.25 91.22 85.93
Gal ore (rank=8) 257TM  60.06 90.82 92.01 79.78 94.38 87.17 92.20 91.11 85.94
AdaRankGrad (rank=8) 237M 62.00 90.89 93.20 81.23 94.80 86.50 92.60 89.70 86.36
Lotus (rank=8) 254M  63.44 91.06 93.35 81.58 94.95 87.32 93.11 91.15 86.99
T Table 4: The consumption related to time for 8 tasks in
45 1 | — = Galore (=512) GLUE benchmark. The green figure indicates the effi-
—~ '\ Lotus (r=512) ciency improvement ratio in comparison with GaLore.
> 401 ‘N Galore (=1024)
g N Lotus (r=1024) Method TSA TTC  SSE
30 sl GaLore (rank=4) 3536 2191 1.6
2 —— ARG (rank=4) - 1806 -
2k 4k 6k sk 10k Lotus (rank=4) 11614 1771 6.5 1306%
Training Iterations
Galore (rank=8) 3544 2217 1.6
Figure 2: We apply Lotus and GaLore with the AdamW ARG (rank=8) - 1902 -
optimizer to pre-train a LLaMA 1B model on the C4 Lotus (rank=8) 11736 1843 6.3 1320

dataset for 10K steps, reporting validation perplexity
throughout training. Results indicate that Lotus consis-
tently outperforms Galore in perplexity, regardless of
whether the rank is set to 512 or 1024.

Pearson correlation for STS-B, F1 score for MRPC,
and accuracy for other tasks. We set the thresh-
old v=0.1 and verifying gap =50 as our baseline
throughout the fine-tuning tasks. Lotus exceeds
most of the tasks in previous methods and saves
the memory cost. The hyper-parameters of the ex-
periments would be shown in the Appendix C. We
use NVIDIA RTX 4090 GPUs in all fine-tuning
experiments.

Furthermore, we present the time efficiency met-
rics of GalLore, AdaRankGrad, and Lotus in Ta-
ble 4. Our method demonstrates substantial time
savings, particularly with an increased number of
subspace updates. In this context, TSA refers to
the total switching amount during training; TTC
represents the total time cost (in minutes); and SSE
(Subspace-Switching Efficiency) is defined as the
ratio of TSA to TTC. ARG denotes AdaRankGrad.
Notably, we report only the TTC for ARG, as

its subspace update objective differs from that of
Lotus. Specifically, ARG requires more training
epochs to achieve optimal performance compared
to Lotus.

We also evaluate Lotus on the SQuAD (Ra-
jpurkar et al., 2016). The evaluation scores of Ga-
Lore and Lora are from Gal.ore(Zhao et al., 2024a).
Lotus outperforms Galore in both Exact Match
and F1 score.

Table 5: Evaluating Lora, GaLore and Lotus on SQuAD
fine-tuning task using pre-trained BERT-Base model.

Method Exact Match F1

LoRA (rank=16) 77.99 86.11
GalLore (rank=16) 80.52 88.29
Lotus (rank=16) 80.78 88.32




4.3 Ablation Studies

Analysis of Randomized SVD and Adaptive Sub-
space Switching As shown in Table 6, we give
the performance gap in fine-tuning ROBERTa-Base
on GLUE. We find that gradient low-rank projec-
tion with rSVD can achieve similar performance to
the one without it, while adaptive subspace switch-
ing is essential for improving the performance.

Table 6: Ablation study of Lotus. Here, rSVD refers
to the randomized SVD, and AdaSS denotes adaptive
subspace switching, which are proposed in our paper.

Rank rSVD AdaSS Avg
4 85.89
4 v 85.89
4 v v 87.19
8 85.94
8 v 86.07
8 v v 86.99

Subspace Switching Frequency with Displace-
ment We present the frequency distribution visu-
alization from fine-tuning RoBERTa-Base on the
STS-B dataset in Figure 3. The subspace update
frequencies concentrate in 300 while exhibiting
diversity in other 3 numbers, demonstrating both
the effectiveness and independence of our adaptive
subspace approach. The drifting trends share some
similar patterns but have different subspaces update
frequencies, which are shown in Figure 4.

304 29 rank=4
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Figure 3: Visualization example of fine-tuning on STS-
B with average unit gradient displacement threshold
~v=0.005 and verifying gap n=25 under different rank.

What does the  and v mean? The verifying
gap 1 aims to avoid mistakenly updates of sub-
space by fluctuated gradients and saving time. The
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Figure 4: Visualization of the average displacement of
unit gradient drifting trends (drift) in updated subspaces
for 4 fine-tuning tasks with rank=4.

threshold v to average unit gradient norm serves
to regulate the optimization process. When 7 is
set above 0.02, it imposes rigorous supervision on
the average displacement. Conversely, v below
0.01 results in more lenient regulation. Notably,
~ should never be configured below 0.005, as this
would cause infrequent subspace updates compro-
mising optimization effectiveness. Comparative
analysis revealed that while values of v within the
0.005-0.02 range, and n within the 25-100 produce
generally comparable results during fine-tuning,
they exhibit either marginally positive or negative
effects relative to the baseline. Detail experiments
are shown in Table 9 in Appendix C.

5 Conclusion

In this paper, we introduce Lotus, an algorithm that
not only speed up the gradient projection process,
save memory consumption in memory efficient
learning by randomized SVD, but also improve
the convergence performance further to surpass the
full-rank pretraining and fine-tuning. Specifically,
we leverage adaptive subspace switching frequency
guided by the average displacement of the unit gra-
dient. Unlike previous work focusing on the rank
of the subspace, we utilize the gradient itself to
update the subspace, which is more explainable
and effective. Lotus tackles the memory-efficiency
trade-off in LLM training through a novel approach
that boosts training speed, improves model perfor-
mance, and reduces memory footprint.



6 Limitations

Although we have done a comprehensive experi-
ments to show the effectiveness of Lotus, there are
still some aspects that requires improvements.

Hyper-parameter Illustration In our experi-
ments, we mainly set threshold around 0.01 and
verifying gap as 50. There might be better combi-
nation for the threshold ~, verifying gap 7, learning
rate, batch size, etc. We mainly inherit and tuning
the hyper-parameter from GalLore, but it is lack of
illustration.

Stable Subspace Switching Our work inherits
the limitation of low-rank gradient projection meth-
ods: performance degradation during subspace
switching due to abrupt gradient changes. While
exponential moving average mitigates this issue,
its effectiveness varies across tasks. The instability
from gradient norm surges remains an open chal-
lenge in this research line.

Experiments on Scaling Models Lotus should
be more friendly in FSDP environment for the
reducing computational and memory budget by
randomized SVD. We consider that the hyper-
parameter should also work on the scaling models
and distributed environments. Due to the limited
resources, we leave this work in the future.
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A Proofs

A.1 Subspace-Approximation Error of
Randomized SVD

The two—stage Halko—Martinsson—Tropp scheme

Y =aQ,
~~
mXx (r+p)

[P_]=qr(Y), P e Rm*(r+p),

Exact SVD in the reduced space decomposes B =
PTG and lifts its left singular vectors Up by U =
PUp

fo-ric], =
: 1/2

(1+C1) or1(G) +Ca | D 02(G)

j>r

with constants C, Cy = O(+/r/p). If the singular
values decay polynomially or exponentially—an
empirical fact for deep-network gradients—the
right-hand side is negligible. Replacing Y by

(GGT)q G rescales the singular values to 0]2-'7“

and tightens the bound to ai 4(12 atl),
Let (Py, Q,) be the exact rank- r singular sub-
spaces and (P, Q) their randomized counterparts.

Davis-Kahan perturbation theory implies

1P = PR,

¢ - PPTG]|,
or(G)

Because Adam, Adafactor, and similar optimizers
are coordinate-wise 1-Lipschitz,

HQ - Q*SH2 < 0=

|PTa-rlc| <dlcl,

1Gupd = Gupd,x[l; = OO)[|Gll2

As Galore’s linear convergence guarantee
Rl < (1 — nK)||Ri—1|| is now perturbed
by an additive term ¢, = O (§ ||G¢||,). Standard
noisy-gradient analysis yields

n
Rl < (1= k)" | Roll p + p Sltlpst

so convergence is retained provided § < /|| G¢l|,
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A.2  Proof of Lemma 3.1
Based on the gradient-Lipschitz property

L (wi1) < L(wy) + g/ (wes1 — wy)
L 9
+ 5 lwer1 — well5

applied to the GaLore projected update

wir = wy —nPegl™, g =Pl g
a single step descent
9 (W1 — wy) = —ngy Pegi™
= HPkgfmj z
= —np; ll9:ll3

wipr — w3 = n° HPkgfrOJ

2
A B

< llgell3
where the last inequality simply drops the factor
p? < 1 so that the expression matches the unified
form 1n?L ||g, Hg, then Lemma 3.1 is proved.

Fix any p1 > p > 0. Replacing p; by its
lower bound p yields the projected-descent inequal-
ity. Whenever the stepsize satisfies n < % the
negative term —np?||g¢||> dominates the curva-
ture penalty $n°L ||g; ||, and the iteration achieves
strict single-step reduction in the objective.

B Details of the Pre-Training Experiment

Table 7: Hyperparameters of pre-training different size
of LLaMA models on C4 datasets. LR refers to the
learning rate, Min LR ratio refers to the minimal learn-
ing rate ratio of learning rate.

60M 130M 350M 1B
LR 0.02 0.02 0.02 0.025
Lotus « 0.3 0.3 0.3 0.3
Min LR ratio 0.2 0.2 0.2 0.1
Thresholdy  0.009 0.009 0.02 0.02

C Details of the Fine-Tuning Experiment

Table 8 shows the hyperparameters we used to fine-
tune ROBERTa-Base model on the GLUE bench-
mark. We also show the different combinations
of threshold v and verifying gap 7 in fine-tuning
RoBERTa-Base on 4 GLUE tasks with previous
hyper-parameters. The average results of baseline
are the best.



Table 8: Hyperparameters of fine-tuning RoBERTa-Base for Lotus.

MNLI SST-2 MRPC CoLA OQNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
Epochs 30 30 30 30 30 30 30 30
Learning Rate 2E-05 1E-05 2E-05 3E-05 1E-05 1E-05 1E-05 1E-05
Lotus « 4

Rank Config. r=4

Max Seq. Len. 512

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 32 16
# Epochs 30 30 30 30 30 30 30 30
Learning Rate  1E-05 2E-05 S5E-05 3E-05 1E-05 2E-05 2E-05 1E-05
Lotus « 2 2 2 4 2 2 4 4
Rank Config. r=2_8

Max Seq. Len. 512

Table 9: Ablation study to the combination of hyper-parameter settings to threshold -y and verifying gap 7. The gray
lines represents the baseline in main body section.

0% n CoLA STS-B MRPC RTE Avg
Lotus(rank=4) 0.01 50 64.02 90.79 93.14 83.39 82.83

0.005 25 64.10 90.70 9195 79.42 81.54
0.005 50 6427 9044 9222 8231 8231
0.005 100 6257 90.63 9266 79.42 81.32
Lotus(rank=4) 0.01 25 6331 90.67 9273 78.70 81.35
0.01 100 64.22 9050 9272 78.70 81.53
002 25 6290 9080 92.16 77.97 80.95
0.02 50 63.84 90.73 9225 79.06 81.47
0.02 100 64.22 9050 9272 79.78 81.80

Lotus(rank=8) 0.01 50 63.44 91.06 9335 81.58 82.35

0.005 25 6092 9093 9260 82.67 81.78
0.005 50 6243 90.87 9276 83.03 82.27
0.005 100 63.74 90.89 9233 81.58 82.13
Lotus(rank=8) 0.01 25 63.26 90.79 9274 81.58 82.09
0.01 100 62.92 9091 9249 8231 82.15
002 25 61.73 9090 9347 81.58 8192
0.02 50 63.10 90.73 93.14 80.50 81.86
0.02 100 62.92 9091 9249 8231 82.15
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