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Abstract001

Memory-efficient learning is crucial for reduc-002
ing GPU consumption and enabling scalable003
training of large language models. Low-rank004
adaptation has proven effective for fine-tuning005
by injecting low-rank matrices into frozen pre-006
trained weights. However, these methods often007
degrade to full-rank training due to limited ex-008
pressiveness and disrupted optimization dynam-009
ics. Conversely, projecting gradient updates010
within a low-rank subspace improves both train-011
ing performance while simultaneously decreas-012
ing memory overhead. In this paper, we pro-013
pose Lotus, a method that speeds up gradient014
projection via randomized SVD and further re-015
duces memory cost. In addition, we propose an016
adaptive subspace switching strategy guided017
by the average displacement of the unit gradi-018
ent, which enables dynamic subspace updates019
for improved convergence performance. Exper-020
imental results demonstrate that Lotus is cur-021
rently the most efficient method, surpassing022
full-rank training in pre-training LLaMA-type023
models on the C4 dataset, as well as fine-tuning024
across multiple tasks. Our code will soon be025
available.026

1 Introduction027

With the rapid advancement of large language028

models (LLMs), GPU memory requirements for029

training have substantially increased. Specifically,030

strategies such as using larger batch sizes and031

longer sequence lengths—which enhance model032

stability and generalization—have significantly el-033

evated memory consumption. The memory foot-034

print during LLM training typically comprises four035

components: model weights, gradients, optimizer036

states and activations. Researchers have proposed037

various memory-efficient techniques addressing038

different aspects mentioned above, including ac-039

tivation recomputation (Korthikanti et al., 2023),040

mixed-precision training, memory-efficient opti-041

mizers (Shazeer and Stern, 2018; Dettmers et al.,042
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Figure 1: The comparison between previous method(e.g.
GaLore) with fixed switching frequency and our greedy
search strategy that update the subspace adaptively. G∗

is the displacement of the gradient in a subspace. When
the average displacement of unit gradient vector Gunit

is lower than γ, the subspace will be switched.

2021), and parameter-efficient fine-tuning (PEFT). 043

Among these methods, low-rank adaptations of 044

model weights, such as Lora (Hu et al., 2022) 045

and its variants (Lialin et al., 2023; Zhang et al., 046

2023), have gained attention due to their reduced 047

memory usage and comparable performance to full- 048

parameter fine-tuning. Recent researches increas- 049

ingly focus on leveraging low-rank matrix decom- 050

position methods like Singular Value Decomposi- 051

tion (SVD) on model weights to improve perfor- 052

mance (Meng et al., 2024; Lingam et al., 2024; Sun 053

et al., 2024). 054

From another perspective, the model weights 055

may not inherently possess a low-rank structure, 056
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so as to the representation of learned new feature,057

leading to inferior model performance (Chen et al.,058

2025). Compared with decomposing weight matrix,059

recent studies have proposed innovative approaches060

to activation (Chen et al., 2025), gradient, and opti-061

mizer states with low-rank paradigm. (Hao et al.,062

2024) first finds that LoRA updates can be viewed063

as performing random projection to the gradient.064

(He et al., 2025) improves the random projection065

matrix and initializes weights based on gradient in-066

formation. Meanwhile, GaLore(Zhao et al., 2024a)067

leverages low-rank gradients for subspace updates068

and optimizes weights by projection. Several Ga-069

Lore variants (Huang et al.; He et al., 2024; Chen070

et al., 2024) progress on relieving memory further.071

Nevertheless, previous methodologies often ex-072

hibit inherent trade-offs between memory, compu-073

tation time and performance, predominantly due074

to reliance on computationally intensive SVD pro-075

cesses and the frequent necessity to project gradi-076

ents between full-rank and low-rank spaces. Mean-077

while, GaLore requires specifying subspace update078

intervals based on subspace rank and prior knowl-079

edge, introducing ambiguity and practical difficul-080

ties. Issues arise when gradients oscillate within081

a subspace due to saddle points or minima, while082

fixed intervals may prematurely or belatedly trigger083

subspace changes. Such weaknesses are visualized084

in Figure 1. In contrast, recent adaptive approaches,085

like shrinking - rank strategies by (Refael et al.,086

2024), incur complex calculations.087

Our Approach To address the trade-off and lim-088

itations mentioned, we propose Lotus: Low-Rank089

Efficient LLM Training with Adaptive Subspace090

Switching to improve training efficiency (memory091

& speed) and model performance. We leverage ran-092

domized SVD proposed in (Halko et al., 2011) to093

reduce computational complexity and saving time094

for periodic updating of low-rank projection. In-095

spired by the physics concept that displacement per096

unit time represents speed, we analogously propose097

that the gradient displacement per unit time reflects098

convergence status. Consequently, our central idea099

is to adaptively update subspaces based on the av-100

erage displacement of unit gradient. We leverage101

the following theoretical insights:102

1. While gradient magnitudes fluctuate through-103

out optimization, unit gradient vectors typi-104

cally highlight stable optimization pathways.105

2. The alignment between the unit gradient vec-106

tor and subspace geometry significantly influ- 107

ences update effectiveness and efficiency. 108

Thus, we leverage an adaptive update strategy gov- 109

erned by the Euclidean distance of low-rank unit 110

gradients—dynamically switching subspaces when 111

directional consistency indicates diminishing re- 112

turns. The summary of our contributions is as fol- 113

lows: 114

1. We introduce Lotus, a greedy search strategy 115

to adaptively update subspace based on the av- 116

erage displacement of the unit gradient vector 117

for better performance. 118

2. We leverage a more memory and time efficient 119

method without offloading strategies based on 120

random SVD rather than random projection 121

or standard SVD to cooperate with update 122

strategy for boosting the performance. 123

3. Lotus can further save about 40 % memory 124

consumption on gradient and optimizer states, 125

and reduce 10 % to 30% time cost compared 126

with GaLore. To performance, Lotus also ex- 127

ceeds related algorithms greatly. 128

2 Related Works 129

Low-rank in Weight LoRA shows the poten- 130

tial of memory-efficient learning for LLM with 131

the intrinsic low-rank structure (Hu et al., 2022). 132

[(Schotthöfer et al., 2022)] constrains the rank of 133

weight matrices to find "winning-ticket" dynam- 134

ically in dense network. ReLoRA (Lialin et al., 135

2023) utilizes locally low-rank updates to train 136

high-rank networks. RandLoRA (Albert et al., 137

2025) updates a learned linear combinations of 138

low-rank, non-trainable random matrices. Dora 139

(Liu et al., 2024) decomposes weights to direc- 140

tional matrix and magnitude vector for fine-tuning. 141

Further works improve the low-rank adapter with 142

the help of SVD to the weights in the initialization 143

of the adapters (Meng et al., 2024), only training 144

the top-r singular values (Sun et al., 2024), or the 145

corresponding coefficients (Lingam et al., 2024). 146

Lora-Null (Tang et al., 2025) finds the null space of 147

representative activations and initializes the LoRA 148

adapter with the pre-trained weights in that null 149

space. (Wang et al., 2024) achieves high-rank up- 150

dates with low costs by selecting skeletons from 151

the pre-trained weight and learning a small matrix 152

instead. (Jaiswal et al., 2024) unifies weight com- 153

pression and memory-efficient fine-tuning as one 154

to do adaptive low-rank weight projection. 155

2



Low-rank in Optimizer States Except for pro-156

jecting the optimizer state to low-rank correspond-157

ing to the gradient structure, Fira (Chen et al., 2024)158

enables full-rank training under low-rank optimizer159

constraints by leveraging norm-based scaling and160

a gradient norm-growth limiter. Adapprox (Zhao161

et al., 2024b) finds the key effect of top singular val-162

ues in the second-order momentum of Adam and163

approximates it by random projection. APOLLO164

(Zhu et al., 2024) adopts low-rank scaling factors165

by projecting gradients randomly, and channel-166

wise updates instead of element-wise in Adam to167

reduce optimizer memory cost. Alice (Gong et al.,168

2025) leverages Fisher information matrix approx-169

imation to Adam for saving memory. COSMOS170

(Liu et al., 2025) merges full-second-order on domi-171

nant gradient subspace and Newton-Schulz approx-172

imation on residual directions.173

Low-rank in Gradient Flora first down-projects174

gradients by random projection matrix and up-175

projects low-rank gradients for optimization, and176

GoRA improves Flora by adaptive random projec-177

tion matrix and gradient-related initialization (Hao178

et al., 2024; He et al., 2025). GaLore (Zhao et al.,179

2024a) factorizes gradients based on SVD and op-180

timizes full-rank weights after projecting the low-181

rank update back to the original space, and its vari-182

ants try to use less memory and relieve the complex-183

ity by random projection or layer-wise adaptation184

to low-rank gradients (Huang et al.; He et al., 2024;185

Zhang et al., 2024). Adarankgrad (Refael et al.,186

2024) uses adaptive subspace based on lower intrin-187

sic rank with training process. (Torroba-Hennigen188

et al., 2025) leverages linear gradient transforma-189

tions meeting Kronecker-factored as equivalence190

to a linear adapter. (Liang et al., 2024) uses online191

PCA to update the projection matrix in subspace192

learning. (Chang et al., 2025) dynamically prunes193

and expands ranks based on gradient-derived im-194

portance scores. (Chen et al., 2025) approximates195

matrix multiplication with only critical rows and196

columns and improves back propagation. (Zhang197

et al., 2025) proposes importance sampling sub-198

space selection to improve the performance when199

projecting gradient.200

In contrast to previous methods, our approach201

focuses on enforcing low-rank structure in the gra-202

dients without altering the optimization process203

or switching subspaces based on rank heuristics.204

We determine the subspace switching frequency205

directly from the gradient information.206

3 Methodology 207

3.1 Randomized SVD with Power Iteration 208

Computing the full SVD for large matrices is 209

computationally intensive and memory demand- 210

ing. To enhance the optimization of this pro- 211

cess, we formulate the following optimization 212

problem minQ,U

∥∥G−QU⊤∥∥2
F

to find a low- 213

rank approximation of any gradient matrix G, 214

where Q ∈ Rn×r and U ∈ Rn×r. Our im- 215

plementation utilizes the Gaussian sampling vari- 216

ant of the randomized SVD algorithm (Halko 217

et al., 2011) , which is an effective approxima- 218

tion method so far. Then the optimization problem 219

becomes argminQ∈Rn×r

∥∥G−QQ⊤G
∥∥
F

, and ap- 220

proximates the gradient matrix G as Gapp,r ≈ 221

QQ⊤G. The computational complexity of random- 222

ized SVD mainly arises from matrix multiplication 223

and decomposition. For matrices G with slowly 224

decaying singular spectra, standard randomized 225

SVD can incur high approximation errors. Thus, 226

we enhance precision via power iterations, which 227

is particularly beneficial for large, spectrally flat 228

matrices. Formally, if the singular values of G 229

are Σ, the singular values of
(
GG⊤)q G are Σ2q+1. 230

Let G′ =
(
GG⊤)q G, G′ can be easily derived as 231

follows: 232

G′ =
(
QΣU⊤UΣQ⊤)q QΣU⊤ = QΣ2q+1U⊤ (1) 233

This method enhances the separation between 234

significant and insignificant singular vectors, 235

thereby increasing the precision of the resulting 236

low-rank approximation. 237

Theorem 3.1 (upper bound for the approxima- 238

tion error) Let the gradient matrix G ∈ Rm×n 239

and draw a Gaussian matrix Ω ∼ N (0, 1)n×(r+p) 240

with a oversampling parameter p ≈ 5. Define 241

Q = orth(GΩ). For any fixed rank r, randomized 242

SVD yields: 243

E
∥∥∥G−QQ⊤G

∥∥∥
2
≤

(
1 +

4
√
r + p

p− 1

)1/2

σr+1(G) (2) 244

with an analogous high-probability bound. Be- 245

cause σr+1(G) is precisely the spectral tail energy 246

that GaLore already truncates, replacing the de- 247

terministic SVD with rSVD perturbs the algorithm 248

only by an O (σr+1(G)) term and therefore pre- 249

serves both convergence properties and memory 250

savings. The proof of Theorem3.1 can be found in 251

Appendix A. Hence, replacing the SVD with ran- 252

domized SVD maintains GaLore’s memory foot- 253

print and convergence characteristics virtually un- 254

changed. The details are shown in Algorithm 1. 255
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Table 1: Comparison between GaLore, LoRA, and Lotus. Assume W ∈ Rn×m(n ≥ m) and r, p≪ min{m,n}.

GaLore LoRA Lotus

Weights mn mn+mr + nr mn

Optim States mr + 2nr 2mr + 2nr mr + 2nr

Temporary Memory kmn kmn (m+ n)(r + p)

Multi-Subspace ✓ ✘ ✓

Adaptive Subspace ✘ ✘ ✓

Pre-Training ✓ ✘ ✓

Fine-Tuning ✓ ✓ ✓

Algorithm 1: Efficient Low-rank Projector
Input: weight matrix W ∈ Rm×n with
m ≤ n, rank r

Gt ∈ Rm×n ← ∇Wφt(W )
Initialize Random Matrix Ω ∈ Rn×r

Y = G · Ω ∈ Rm×r

Q = QR Decomposition(Y ) ∈ Rm×r

B = QT ·W ∈ Rr×n

Û , S, V =
Singular Value Decomposition(B)
U = QÛ ∈ Rm×r

return U ∈ Rm×r

3.2 Adaptive Subspace Switching256

Refreshing the orthogonal projector with the lat-257

est full-rank gradient realigns the low-rank basis258

with the its current dominant directions, so the top259

r singular vectors reclaim energy that had drifted260

outside the stale subspace; the Frobenius norm of261

the compressed gradient therefore “jumps back up.”262

Yet because different spectral components of the263

gradient drift at different speeds, a fixed update264

frequency both wastes compute on already stable265

directions and allows fast-moving ones to leak en-266

ergy before the next refresh. An adaptive switching267

schedule throttles and accelerates the process ac-268

cording to subspace drift to solve this imbalance.269

To quantify how much displacement such a270

schedule can preserve, consider the ideal scenario271

in which every projected gradient step points in272

exactly the same direction; then the cumulative273

displacement after k steps is274

Dideal =

∥∥∥∥∥
k−1∑
i=0

−αĝt−i

∥∥∥∥∥
2

= α

∥∥∥∥∥
k−1∑
i=0

ĝt−i

∥∥∥∥∥
2

(3)275

In the “best-aligned” case where all ĝ are parallel276

and have unit norm, Dideal ≈ kα, where α is the 277

learning rate. Then the actual displacement would 278

be: 279

Dactual =

∥∥∥∥∥
k−1∑
i=0

∆wt−i

∥∥∥∥∥
2

=

∥∥∥∥∥
k−1∑
i=0

−αPkĝt−i

∥∥∥∥∥
2

(4) 280

Then, we define the path-efficiency ratio: 281

ρt =
Dactual

Dideal
=

∥∥∥∑k−1
i=0 Pkĝt−i

∥∥∥
2∥∥∥∑k−1

i=0 ĝt−i

∥∥∥
2

∈ [0, 1] (5) 282

when ρt ≈ 1, the gradients remain confined within 283

a narrow directional cone, indicating that the cur- 284

rent subspace Pk is sufficiently representative for 285

optimization. If ρt ≪ 1, significant cancellation 286

occurs between successive steps, suggesting that 287

the gradients exhibit substantial directional vari- 288

ation or extend beyond the span of the subspace 289

Pk. 290

Lotus adaptively switches the subspace when 291

ρt < γ and t − tlast ≥ Tmin, with threshold 292

γ ∈ (0, 1). Noticing that we set a minimum in- 293

terval condition, constraint t− tlast ≥ Tmin is im- 294

posed to prevent excessive subspace switches dur- 295

ing the initial noisy phase of optimization. Without 296

this safeguard, the metric ρt may frequently fall 297

below the threshold γ due to stochastic fluctua- 298

tions, triggering unnecessary subspace transitions. 299

Such premature switches would incur computa- 300

tional overhead without meaningful improvements 301

in convergence. Especially, k = 1 means that ρt 302

reduces to the single-step displacement-gradient 303

ratio. 304

Lemma 3.2 (one-step projected decrease) If ρt ≥ 305

ρ and the loss has standard L-smoothness. We 306

can apply the standard upper bound for L-smooth 307

functions to the subspace projected update rule, 308

then: 309

L (wt+1) ≤ L (wt)− αρ2 ∥gt∥22 +
1

2
α2L ∥gt∥22 (6) 310
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Where wt ∈ Rd is the parameter vector in itera-311

tion t and gt = ∇L (wt) is the gradient of the loss312

function at step t. Choosing α < 2ρ2/L guarantees313

a strict decrease.314

Corollary 3.3 (k-step block) If ρt−i ≥ ρ for i =315

0, . . . , k−1, a standard form generalized to k steps316

can be obtained:317

L (wt+1) = L (wt−k+1)− αρ2
k−1∑
i=0

∥gt−i∥22

+
1

2
α2L

k−1∑
i=0

∥gt−i∥22

(7)318

The preceding analysis demonstrates that the319

adaptive subspace switching method remains con-320

vergent throughout the training process. On this321

basis, a comparative assessment of the conver-322

gence speeds between the two methodologies can323

be conducted by examining their respective worst-324

case performances under fixed-step and adaptive325

strategies. Under the fixed policy ρt can linearly326

decay from 1 to a minimal value ρ. Assume327

ρt+i = 1 − i
T (1 − ρ), i = 0, . . . , T − 1. The328

average squared ratio over one block is:329

ρ̄2fix = ρ2 +
(1− ρ)2

3
(8)330

For strong rotation (ρ ≪ 1) one has ρ̄2fix ≈ (1 −331

ρ)2/3≪ 1.332

For worst-case behavior for Louts, the adaptive333

rule enforces ρt ≥ γ for all t, at most past steps in334

any window can violate this bound. Hence, ρ̄2ada ≥335

γ2. Selecting γ >
√
(1− ρ)2/3 to get the path-336

efficiency ratio comparison:337

ρ̄2ada > ρ̄2fix (9)338

Then, let ∆t = L(wt)− L∞, for fixed-interval339
over one switch of step T,340

∆t+T ≤ ∆t − αρ̄2fix

T−1∑
i=0

Gt+i +
1

2
α2L

T−1∑
i=0

Gt+i (10)341

With α < 2ρ̄2fix/L, we define cfix =342

α
(
ρ̄2fix −

1
2αL

)
> 0, the same for the adaptive343

scheme, The switch interval is at most k, analo-344

gously cada = α
(
γ2 − 1

2αL
)
. Since γ2 > ρ̄2fix,345

it can easily be deduced that cada > cfix. Hence,346

by combining the above results, we arrive at the347

formal statement of Theorem 3.3.348

Algorithm 2: Lotus Algorithm
Input: Full-rank gradient GF ∈ Rm×n;

avg. unit gradient displacement
threshold γ; verifying gap η

Initialize: Project count T ← 0

if Initialization or Subspace Update then
▷ initial step or triggered switch

OG ←
EFFI. LOW-RANK PROJECT(GF )

Ginit ← OG ·GF

dinit ← NORMALIZE(Ginit)
T ← 1

end
Gcur ← OG ·GF

dcur ← NORMALIZE(Gcur)
T ← T + 1

if T mod η = 0 then ▷ periodic check

∆d← dcur − dinit
∥d̄∥ ← ∥∆d∥/T ▷ avg. displace
if ∥d̄∥ < γ then ▷ convergence?

Trigger Subspace Update
end

end

Theorem 3.4 (faster convergence with adaptive 349

policy) Let Nfix and Nada denote the number of 350

iterations required by the fixed and adaptive step 351

size policies, respectively, to achieve the gradient 352

tolerance condition
∑N−1

t=0 Gt ≤ ϵ, where Gt = 353

∥gt∥22 and the step size constraint α < 2ρ2fix /L. 354

Then the following inequality holds: 355

Nada ≤
cfix
cada

k

T
Nfix < Nfix (11) 356

This result demonstrates that Lotus’s adaptive 357

subspace switching achieves the same convergence 358

criterion with strictly fewer iterations compared to 359

the fixed policy, highlighting its computational effi- 360

ciency. Please check Appendix A for more details. 361

3.3 Lotus 362

In this section, we introduce Lotus, a training strat- 363

egy designed to simultaneously accelerate computa- 364

tion and reduce memory usage. Lotus uses a power- 365

iteration-based randomized SVD to markedly ac- 366

celerate the gradient projection step. In addition, it 367
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Table 2: We compare the performance of several low-rank training algorithms with Lotus by pre-training LLaMA
models of varying sizes on the C4 dataset. Here, r denotes the rank of the low-rank factorization, and dmodel denotes
the hidden states dimension of each model size. We use NVIDIA H100 GPUs for this experiment.

Method 60M 130M 350M 1B

Full Rank 34.06 25.08 18.80 15.56

GaLore 34.88 25.36 18.95 15.64
Low Rank 78.18 45.51 37.41 142.53
LoRA 34.99 33.92 25.58 19.21
ReLoRA 37.04 29.37 29.08 18.33
AdaRankGrad 34.24 25.22 18.91 14.71
Lotus 33.75 24.87 18.91 15.33

r / dmodel 128 / 256 256 / 768 256 / 1024 512 / 2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

incorporates a novel, more flexible path-efficient368

switching policy: we define the path efficiency369

ρt of the accumulated gradient displacement, and370

whenever ρt drops below a preset threshold while371

the time since the previous switch exceeds Tmin,372

the algorithm triggers a subspace recomputation.373

The details are in Algorithm 2. This mechanism374

guarantees that, compared to fixed-interval sub-375

space switching, the adaptive strategy reaches the376

same gradient threshold in fewer iterations, thereby377

achieving faster convergence.378

Improved Computational Performance This379

conclusion can easily be concluded by a straightfor-380

ward analysis that the time complexity of SVD is381

O(mnmin{m,n}) while randomized SVD has a382

lower complexity of O
(
mn(r + p) +m(r + p)2

)
.383

When r, p ≪ min{m,n}, the complexity of384

randomized SVD simplifies to O(mn(r + p)),385

offering a substantial improvement over the386

O(mnmin{m,n}) complexity of standard SVD.387

This efficiency renders randomized SVD an attrac-388

tive choice for leading singular vector extraction in389

large-scale applications.390

Reduced Memory Analysis In GaLore, the SVD391

component typically requires an additional GPU392

workspace of size O(kmn), whereas Lotus only393

requires O((m+ n)(r+ p)) workspace during the394

gradient projection step. Since r ≪ min(m,n), in395

practice, the workspace used by Lotus is smaller396

by approximately a factor of r
min(m,n) compared397

to GaLore because the peak memory footprint398

only includes the current layer’s gradient plus the399

workspace. Under this circumstance, Lotus consis-400

tently achieves more than 40% memory reduction401

per layer. A comparison between GaLore, LoRA 402

and Lotus is in Table 1. 403

4 Experiments 404

Implementation Details We utilize GaLore 405

(Zhao et al., 2024a) as our codebase for model 406

training and evaluation. All model architectures 407

involved in the experiment are consistent with Ga- 408

Lore. The data format in training and validation 409

is BF16. We manually tune the hyper-parameters 410

needed in the experiments to achieve optimal per- 411

formance. Detailed hyperparameter settings are 412

provided in the Appendix B. 413

4.1 Pre-Training on C4 414

To assess the effectiveness of Lotus, we pre-train 415

LLaMA models of varying sizes on the C4 dataset, 416

following the experimental settings established by 417

GaLore. The C4 dataset (Raffel et al., 2020), a 418

clean version of the Common Crawl web corpus, 419

is widely used for pre-training language models. 420

We evaluate model performance using perplexity 421

as the primary metric. The corresponding experi- 422

mental results are reported in Table 2. Additionally, 423

we visualize the reduction in validation perplexity 424

for Lotus compared to the open-source baseline, 425

GaLore, during the initial 10k pre-training steps. 426

4.2 Fine-Tuning Tasks 427

We fine-tune RoBERTa-Base model on 8 GLUE 428

(Wang et al., 2018) tasks to compare the re- 429

sults with full rank fine-tuning, Lora, GaLore and 430

AdaRankGrad, showing the results in Table 3. We 431

report the overall (matched and mismatched) accu- 432

racy for MNLI, Matthew’s correlation for CoLA, 433
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Table 3: Evaluating Lotus on the GLUE fintuning tasks using pre-trained RoBERTa-Base. We compare Lotus with
various memory-efficient training methods and report the average metrics.

Method Memory CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP Avg

Full Fine-Tuning 747M 62.24 90.92 91.30 79.42 94.57 87.18 86.28 92.28 86.28

LoRA (rank=4) 257M 61.38 90.57 91.07 78.70 92.89 86.82 92.18 91.29 85.61
GaLore (rank=4) 253M 60.35 90.73 92.25 79.42 94.04 87.00 92.24 91.06 85.89
AdaRankGrad (rank=4) 202M 61.40 90.97 92.60 81.23 94.80 86.60 92.50 90.40 86.31
Lotus (rank=4) 251M 64.02 90.79 93.14 83.39 94.72 87.47 93.00 91.01 87.19

LoRA (rank=8) 264M 61.83 90.80 91.90 79.06 93.46 86.94 92.25 91.22 85.93
GaLore (rank=8) 257M 60.06 90.82 92.01 79.78 94.38 87.17 92.20 91.11 85.94
AdaRankGrad (rank=8) 237M 62.00 90.89 93.20 81.23 94.80 86.50 92.60 89.70 86.36
Lotus (rank=8) 254M 63.44 91.06 93.35 81.58 94.95 87.32 93.11 91.15 86.99

2k 4k 6k 8k 10k
Training Iterations

25

30

35

40

45

Pe
rp

le
xi

ty
 (

)

Galore (r=512)
Lotus (r=512)
Galore (r=1024)
Lotus (r=1024)

Figure 2: We apply Lotus and GaLore with the AdamW
optimizer to pre-train a LLaMA 1B model on the C4
dataset for 10K steps, reporting validation perplexity
throughout training. Results indicate that Lotus consis-
tently outperforms GaLore in perplexity, regardless of
whether the rank is set to 512 or 1024.

Pearson correlation for STS-B, F1 score for MRPC,434

and accuracy for other tasks. We set the thresh-435

old γ=0.1 and verifying gap η=50 as our baseline436

throughout the fine-tuning tasks. Lotus exceeds437

most of the tasks in previous methods and saves438

the memory cost. The hyper-parameters of the ex-439

periments would be shown in the Appendix C. We440

use NVIDIA RTX 4090 GPUs in all fine-tuning441

experiments.442

Furthermore, we present the time efficiency met-443

rics of GaLore, AdaRankGrad, and Lotus in Ta-444

ble 4. Our method demonstrates substantial time445

savings, particularly with an increased number of446

subspace updates. In this context, TSA refers to447

the total switching amount during training; TTC448

represents the total time cost (in minutes); and SSE449

(Subspace-Switching Efficiency) is defined as the450

ratio of TSA to TTC. ARG denotes AdaRankGrad.451

Notably, we report only the TTC for ARG, as452

Table 4: The consumption related to time for 8 tasks in
GLUE benchmark. The green figure indicates the effi-
ciency improvement ratio in comparison with GaLore.

Method TSA TTC SSE

GaLore (rank=4) 3536 2191 1.6
ARG (rank=4) - 1806 -
Lotus (rank=4) 11614 1771 6.5 ↑306%

GaLore (rank=8) 3544 2217 1.6
ARG (rank=8) - 1902 -
Lotus (rank=8) 11736 1843 6.3 ↑320%

its subspace update objective differs from that of 453

Lotus. Specifically, ARG requires more training 454

epochs to achieve optimal performance compared 455

to Lotus. 456

We also evaluate Lotus on the SQuAD (Ra- 457

jpurkar et al., 2016). The evaluation scores of Ga- 458

Lore and Lora are from GaLore(Zhao et al., 2024a). 459

Lotus outperforms GaLore in both Exact Match 460

and F1 score. 461

Table 5: Evaluating Lora, GaLore and Lotus on SQuAD
fine-tuning task using pre-trained BERT-Base model.

Method Exact Match F1

Baseline 80.83 88.41

LoRA (rank=16) 77.99 86.11
GaLore (rank=16) 80.52 88.29
Lotus (rank=16) 80.78 88.32
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4.3 Ablation Studies462

Analysis of Randomized SVD and Adaptive Sub-463

space Switching As shown in Table 6, we give464

the performance gap in fine-tuning RoBERTa-Base465

on GLUE. We find that gradient low-rank projec-466

tion with rSVD can achieve similar performance to467

the one without it, while adaptive subspace switch-468

ing is essential for improving the performance.469

Table 6: Ablation study of Lotus. Here, rSVD refers
to the randomized SVD, and AdaSS denotes adaptive
subspace switching, which are proposed in our paper.

Rank rSVD AdaSS Avg

4 85.89
4 ✓ 85.89
4 ✓ ✓ 87.19

8 85.94
8 ✓ 86.07
8 ✓ ✓ 86.99

Subspace Switching Frequency with Displace-470

ment We present the frequency distribution visu-471

alization from fine-tuning RoBERTa-Base on the472

STS-B dataset in Figure 3. The subspace update473

frequencies concentrate in 300 while exhibiting474

diversity in other 3 numbers, demonstrating both475

the effectiveness and independence of our adaptive476

subspace approach. The drifting trends share some477

similar patterns but have different subspaces update478

frequencies, which are shown in Figure 4.

250 275 300 325
Subspace switching count
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25

30
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11
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Figure 3: Visualization example of fine-tuning on STS-
B with average unit gradient displacement threshold
γ=0.005 and verifying gap η=25 under different rank.

479

What does the η and γ mean? The verifying480

gap η aims to avoid mistakenly updates of sub-481

space by fluctuated gradients and saving time. The482

Figure 4: Visualization of the average displacement of
unit gradient drifting trends (drift) in updated subspaces
for 4 fine-tuning tasks with rank=4.

threshold γ to average unit gradient norm serves 483

to regulate the optimization process. When γ is 484

set above 0.02, it imposes rigorous supervision on 485

the average displacement. Conversely, γ below 486

0.01 results in more lenient regulation. Notably, 487

γ should never be configured below 0.005, as this 488

would cause infrequent subspace updates compro- 489

mising optimization effectiveness. Comparative 490

analysis revealed that while values of γ within the 491

0.005-0.02 range, and η within the 25-100 produce 492

generally comparable results during fine-tuning, 493

they exhibit either marginally positive or negative 494

effects relative to the baseline. Detail experiments 495

are shown in Table 9 in Appendix C. 496

5 Conclusion 497

In this paper, we introduce Lotus, an algorithm that 498

not only speed up the gradient projection process, 499

save memory consumption in memory efficient 500

learning by randomized SVD, but also improve 501

the convergence performance further to surpass the 502

full-rank pretraining and fine-tuning. Specifically, 503

we leverage adaptive subspace switching frequency 504

guided by the average displacement of the unit gra- 505

dient. Unlike previous work focusing on the rank 506

of the subspace, we utilize the gradient itself to 507

update the subspace, which is more explainable 508

and effective. Lotus tackles the memory-efficiency 509

trade-off in LLM training through a novel approach 510

that boosts training speed, improves model perfor- 511

mance, and reduces memory footprint. 512
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6 Limitations513

Although we have done a comprehensive experi-514

ments to show the effectiveness of Lotus, there are515

still some aspects that requires improvements.516

Hyper-parameter Illustration In our experi-517

ments, we mainly set threshold around 0.01 and518

verifying gap as 50. There might be better combi-519

nation for the threshold γ, verifying gap η, learning520

rate, batch size, etc. We mainly inherit and tuning521

the hyper-parameter from GaLore, but it is lack of522

illustration.523

Stable Subspace Switching Our work inherits524

the limitation of low-rank gradient projection meth-525

ods: performance degradation during subspace526

switching due to abrupt gradient changes. While527

exponential moving average mitigates this issue,528

its effectiveness varies across tasks. The instability529

from gradient norm surges remains an open chal-530

lenge in this research line.531

Experiments on Scaling Models Lotus should532

be more friendly in FSDP environment for the533

reducing computational and memory budget by534

randomized SVD. We consider that the hyper-535

parameter should also work on the scaling models536

and distributed environments. Due to the limited537

resources, we leave this work in the future.538
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A Proofs709

A.1 Subspace-Approximation Error of710

Randomized SVD711

The two–stage Halko–Martinsson–Tropp scheme712

Y︸︷︷︸
m×(r+p)

= GΩ,

[P,− ] = qr(Y ), P ∈ Rm×(r+p),

713

Exact SVD in the reduced space decomposes B =714

P⊤G and lifts its left singular vectors UB by U =715

PUB716 ∥∥∥G− PP⊤G
∥∥∥
2
≤

(1 + C1)σr+1(G) + C2

∑
j>r

σ2
j (G)

1/2
717

with constants C1, C2 = O(
√
r/p). If the singular718

values decay polynomially or exponentially—an719

empirical fact for deep-network gradients—the720

right-hand side is negligible. Replacing Y by721 (
GG⊤)q GΩ rescales the singular values to σ2q+1

j722

and tightens the bound to σ
1/(2q+1)
r+1 .723

Let (P⋆, Q⋆) be the exact rank- r singular sub-724

spaces and (P,Q) their randomized counterparts.725

Davis-Kahan perturbation theory implies726

∥P − P⋆R∥2727

728

∥Q−Q⋆S∥2 ≤ δ :=

∥∥G− PP⊤G
∥∥
2

σr(G)
729

Because Adam, Adafactor, and similar optimizers730

are coordinate-wise 1-Lipschitz,731 ∥∥∥P⊤G− P⊤
⋆ G

∥∥∥
2
≤ δ∥G∥2732

733

∥Gupd −Gupd,⋆∥2 = O(δ)∥G∥2734

As GaLore’s linear convergence guarantee735

∥Rt∥F ≤ (1 − ηκ) ∥Rt−1∥F is now perturbed736

by an additive term εt = O (δ ∥Gt∥2). Standard737

noisy-gradient analysis yields738

∥Rt∥F ≤ (1− ηκ)t ∥R0∥F +
η

κ
sup
t

εt739

so convergence is retained provided δ ≪ κ/ ∥Gt∥2740

A.2 Proof of Lemma 3.1 741

Based on the gradient-Lipschitz property 742

L (wt+1) ≤ L (wt) + g⊤t (wt+1 − wt)

+
L

2
∥wt+1 − wt∥22

743

applied to the GaLore projected update 744

wt+1 = wt − ηPkg
proj
t , g

proj
t := P⊤

k gt 745

a single step descent 746

g⊤t (wt+1 − wt) = −ηg⊤t Pkg
proj
t

= −η
∥∥∥Pkg

proj
t

∥∥∥2
2

= −ηρ2t ∥gt∥
2
2

747

748

∥wt+1 − wt∥22 = η2
∥∥∥Pkg

proj
t

∥∥∥2
2

= η2ρ2t ∥gt∥
2
2

≤ η2 ∥gt∥22

749

where the last inequality simply drops the factor 750

ρ2t ≤ 1 so that the expression matches the unified 751

form 1
2η

2L ∥gt∥22, then Lemma 3.1 is proved. 752

Fix any ρt ≥ ρ > 0. Replacing ρt by its 753

lower bound ρ yields the projected-descent inequal- 754

ity. Whenever the stepsize satisfies η < 2ρ2

L the 755

negative term −ηρ2 ∥gt∥22 dominates the curva- 756

ture penalty 1
2η

2L ∥gt∥22, and the iteration achieves 757

strict single-step reduction in the objective. 758

B Details of the Pre-Training Experiment 759

Table 7: Hyperparameters of pre-training different size
of LLaMA models on C4 datasets. LR refers to the
learning rate, Min LR ratio refers to the minimal learn-
ing rate ratio of learning rate.

60M 130M 350M 1B

LR 0.02 0.02 0.02 0.025
Lotus α 0.3 0.3 0.3 0.3
Min LR ratio 0.2 0.2 0.2 0.1
Threshold γ 0.009 0.009 0.02 0.02

C Details of the Fine-Tuning Experiment 760

Table 8 shows the hyperparameters we used to fine- 761

tune RoBERTa-Base model on the GLUE bench- 762

mark. We also show the different combinations 763

of threshold γ and verifying gap η in fine-tuning 764

RoBERTa-Base on 4 GLUE tasks with previous 765

hyper-parameters. The average results of baseline 766

are the best. 767
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Table 8: Hyperparameters of fine-tuning RoBERTa-Base for Lotus.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
Epochs 30 30 30 30 30 30 30 30
Learning Rate 2E-05 1E-05 2E-05 3E-05 1E-05 1E-05 1E-05 1E-05
Lotus α 4
Rank Config. r = 4

Max Seq. Len. 512

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 32 16
# Epochs 30 30 30 30 30 30 30 30
Learning Rate 1E-05 2E-05 5E-05 3E-05 1E-05 2E-05 2E-05 1E-05
Lotus α 2 2 2 4 2 2 4 4
Rank Config. r = 8

Max Seq. Len. 512

Table 9: Ablation study to the combination of hyper-parameter settings to threshold γ and verifying gap η. The gray
lines represents the baseline in main body section.

γ η CoLA STS-B MRPC RTE Avg

Lotus(rank=4) 0.01 50 64.02 90.79 93.14 83.39 82.83

0.005 25 64.10 90.70 91.95 79.42 81.54
0.005 50 64.27 90.44 92.22 82.31 82.31
0.005 100 62.57 90.63 92.66 79.42 81.32

Lotus(rank=4) 0.01 25 63.31 90.67 92.73 78.70 81.35
0.01 100 64.22 90.50 92.72 78.70 81.53
0.02 25 62.90 90.80 92.16 77.97 80.95
0.02 50 63.84 90.73 92.25 79.06 81.47
0.02 100 64.22 90.50 92.72 79.78 81.80

Lotus(rank=8) 0.01 50 63.44 91.06 93.35 81.58 82.35

0.005 25 60.92 90.93 92.60 82.67 81.78
0.005 50 62.43 90.87 92.76 83.03 82.27
0.005 100 63.74 90.89 92.33 81.58 82.13

Lotus(rank=8) 0.01 25 63.26 90.79 92.74 81.58 82.09
0.01 100 62.92 90.91 92.49 82.31 82.15
0.02 25 61.73 90.90 93.47 81.58 81.92
0.02 50 63.10 90.73 93.14 80.50 81.86
0.02 100 62.92 90.91 92.49 82.31 82.15
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