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ABSTRACT

Quantization is an effective technique to reduce the deployment cost of large lan-
guage models (LLMs), and post-training quantization (PTQ) has been widely
studied due to its efficiency. However, existing PTQ methods are limited by
their inability to fine-tune model parameters and often suffer significant accu-
racy loss in low-bit scenarios. Quantization-aware training (QAT) provides a
more principled solution, but its reliance on backpropagation incurs prohibitive
memory costs, limiting its practicality for LLM deployment. To address these
challenges, we propose ZeroQAT, a zeroth-order optimization-based QAT frame-
work that supports both weight and activation quantization. ZeroQAT leverages
forward-only gradient estimation to eliminate backpropagation, substantially re-
ducing computational and memory overhead while retaining the benefits of end-
to-end optimization. We further introduce a lightweight variant of ZeroQAT for
quantized fine-tuning, which freezes and pre-quantizes most parameters to further
cut memory usage. Experiments show that ZeroQAT consistently outperforms
representative PTQ and QAT baselines while requiring significantly less mem-
ory. For example, ZeroQAT enables fine-tuning of a 13B model at extremely low
bit-widths (e.g., 2-4 bits) on a single 8GB GPU, and even allows fine-tuning a
6.7B model on a OnePlus 12 smartphone, demonstrating its practicality for end-
to-end QAT on resource-limited edge devices. Our code is released at https:
//anonymous.4open.science/r/ZO_quantization-2DEB.

1 INTRODUCTION

Large language models (LLMs) have emerged as essential tools for advancing natural language
understanding and generation, driving progress in both research and industrial applications (Yang
et al., 2019; Liu et al., 2019; Talmor et al., 2018; Chowdhery et al., 2023; Zheng et al., 2020).
Despite their transformative potential, training and deploying these models incur extremely high
computational and memory costs. Such requirements not only constrain accessibility and scalability
but also limit practicality in resource-constrained environments, including mobile and edge devices,
embedded systems, and even enterprise servers with strict hardware or budget limitations (Zeng
et al., 2024; Chen et al., 2024a; Tan et al., 2025).

To address these challenges, model compression has been widely studied, with quantization being
one of the most effective and indispensable techniques for deployment. Quantization methods are
generally divided into post-training quantization (PTQ) and quantization-aware training (QAT). PTQ
is simple and widely adopted as it avoids retraining, while QAT usually achieves higher accuracy
when resources permit. However, for LLMs the memory demand of QAT is prohibitive (Team et al.,
2025). For example, fine-tuning LLama-7B may require hundreds of gigabytes of GPU memory,
and larger models often need multi-node clusters, which severely limits practicality. As a result,
PTQ dominates in practice, not for its superiority but feasibility.

In low-bit scenarios, the adaptation capability for distribution shifts and mitigate performance degra-
dation becomes the key factor that determines whether a quantization method can preserve model
quality. This adaptation capability reflects how well the method can handle the distortions introduced
by quantization, with stronger adaptation generally leading to more reliable performance. Range-
based PTQ (Jacob et al., 2018; Nagel et al., 2019; Xiao et al., 2023), which derives parameters from
activation or weight ranges, offers limited adaptation and often loses accuracy. More advanced PTQ
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Table 1: Comparison of our method with existing methods. PEFT indicates parameter-efficient fine-
tuning. WO and WA indicate weight-only and weight-activation quantization, respectively.

Method Category Quant
Support

Low-bit performance Memory
EfficiencyPre-train Fine-tune

SmoothQuant Range PTQ WA ✗ ✗ High
GPTQ Approx PTQ WO ✗ ✗ High
OmniQuant Approx PTQ WA ✓ ✗ Moderate

LLM-QAT Full QAT WA ✓ ✓ Low
QLoRA PEFT QAT WO ✓ ✓ Moderate
EfficientQAT PEFT QAT WO ✓ ✓ High
ZeroQAT Full/PEFT QAT WA ✓ ✓ High

methods, such as approximation-based approaches (Nagel et al., 2020; Li et al., 2021; Frantar et al.,
2022; Shao et al., 2023), better align with full-precision outputs but are still not end-to-end opti-
mization schemes. As a result, they often introduce two characteristic issues: cumulative errors and
objective inconsistency, hinder accuracy especially in low-bit settings. These issues are amplified in
fine-tuned models, which are highly task-specific and sensitive to quantization perturbations (Dong
et al., 2021). Consequently, PTQ often delivers unsatisfactory accuracy in deployment.

QAT provides a principled solution by modeling quantization effects during training, allowing the
model to mitigate quantization errors. While QAT shows strong robustness in low-bit regimes (be-
low 8 bits), its prohibitive memory footprint from backpropagation limits applicability to large-scale
models. Recent advances in zeroth-order (ZO) optimization, which estimate gradients using only
forward passes (e.g., finite differences), significantly reduce memory usage by avoiding storage of
activations and optimizer states, offering a promising path for memory-efficient fine-tuning. This
naturally raises the question: Can ZO be combined with QAT to achieve high-quality low-bit quan-
tization of LLMs, with memory efficiency comparable to inference?

In this work, we propose ZeroQAT, the first end-to-end QAT framework supporting both low-bit
weight and activation on-device quantization. As shown in Table 1, ZeroQAT reduces the re-
source burden of conventional QAT while mitigating the accuracy loss commonly seen in PTQ.
Unlike prior methods that require massive computing resources (Liu et al., 2023), ZeroQAT up-
dates model parameters using gradients estimated purely from forward passes, reducing memory
usage to inference-level and making QAT feasible even on edge devices. It further integrates learn-
able weight clipping and activation transformations, optimized jointly with model parameters via
ZO. Moreover, a lightweight variant is devised for further memory reduction. Experiments on both
quantized pre-training and fine-tuning show that ZeroQAT consistently outperforms representative
PTQ and QAT baselines. For instance, it improves accuracy by 5.1% on average over five zero-shot
tasks and 9.1% on four downstream tasks under 2-bit weight-only quantization. More importantly,
ZeroQAT overcomes the memory barrier of QAT, enabling training of 13B LLM on a single 8GB
low-end GPU and even fine-tuning 6.7B model on OnePlus 12 smartphone. This capability makes
end-to-end on-device QAT practical on resource-constrained edge devices.

In summary, our major contributions are as follows: 1) We conduct a preliminary study of PTQ
and QAT in low-bit pre-training and fine-tuning, revealing their weaknesses and causes of perfor-
mance degradation. 2) We propose ZeroQAT, a novel end-to-end zeroth-order QAT framework that
achieves high-quality low-bit quantization with inference-level cost. 3) We conduct extensive evalu-
ation across LLM architectures, datasets, and quantization settings, showing consistent accuracy and
memory improvements over prior PTQ and QAT baselines. 4) We validate on mobile devices, where
ZeroQAT can fine-tune OPT-6.7B on OnePlus 12 smartphone while full-precision ZO fine-tuning is
infeasible, demonstrating its practicality for real-world deployment.

2 BACKGROUND AND RELATED WORKS

Quantization. In this work, we mainly study the widely used uniform quantization (Jacob et al.,
2018) for its better efficiency. The quantization process can be formulated by:

XINT = clamp(
⌈
XFP16

∆

⌋
+ z,QN , QP )
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Larger deep layer
loss decrease 

Figure 1: Comparison of the layer-wise reconstruction loss reduction between OmniQuant (Shao
et al., 2023) and our method. X-axis is the index of layer, Y-axis measures the ratio of loss decrease.

where X is the floating-point tensor, X is the quantized counterpart, ⌈·⌋ is rounding operation, N
is the target bit number, ∆ and z denote the step size and zero-point offset value respectively. For
symmetric quantization, QN = −2N−1, QP = 2N−1 − 1, ∆ = max(|X|)

QP
and z = 0. Whereas for

asymmetric quantization, QN = 0, QP = 2N − 1, ∆ = max(|X|)−min(|X|)
QP

and z = −⌈min(|X|)
∆ ⌋.

In this paper, we focus on the asymmetric quantization scheme for its better accuracy.

Layer-wise calibration. Layer-wise calibration strategy is the most widely adopted approach in
approximation-based PTQ, because it is relatively efficient in terms of memory, computation, and
data usage. The key idea is to minimize quantization error via reconstruction objectives. For ex-
ample, the widely used layer-wise reconstruction loss minimizes the squared error, relative to the
full precision layer output (Li et al., 2021; Shao et al., 2023). Formally, when both weights and
activations are quantized, this can be stated as

argmin
W

l
∥W lX l −W

l
X

l∥22. (1)

where W,X are the quantized version of weight and activations, l indicates the l-th layer.

We present our related works section in Appendix B.

3 CHALLENGE OF EXISTING QUANTIZATION METHODS

3.1 CHALLENGE OF EXISTING POST TRAINING QUANTIZATION METHODS

Range-based PTQ. These methods rescale or clip weight and activation ranges to reduce quantiza-
tion error. They are computationally efficient and perform reasonably well at moderate bit-width.
For example, SmoothQuant (Xiao et al., 2023) achieves a perplexity of 6.20 in W6A6 (i.e., quanti-
zation using 6 bits weight and 6 bits activation), close to the full-precision 5.47 (Table 2). However,
their limited adaptation to distributional and semantic characteristics leads to severe degradation at
low bit-widths. For example, under W4A4, SmoothQuant’s perplexity deteriorates to 83.12 versus
5.47 in full precision.

Approximation-based PTQ. These methods narrow the gap between quantized and full-precision
outputs via techniques such as learned rounding or reconstruction, adapting to data distributions
and model behavior. However, there are two issues still remain and are exacerbated in low-bit
quantization settings.

Figure 2: Objective inconsistency between
the reconstruction loss used by approximation-
based PTQ and final evaluation metrics.

Here, we take a representative approximation-
based PTQ method, OmniQuant (Shao et al.,
2023), as an example to illustrate the two is-
sues. 1) Cumulative error propagation. To mea-
sure error propagation, we compute relative loss
reduction across layers, ∆Loss = (Lbefore −
Lafter)/Lbefore, where Lbefore and Lafter de-
note reconstruction loss before and after optimiza-
tion. As shown in Figure 1, OmniQuant improves
shallow layers but benefits diminish in deeper
ones, since each layer is optimized on activations
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Table 2: Results of applying different quantization methods on LLama2-7B. ‡ indicates that the
method is intrinsically not suitable for the setting; we report these results to illustrate its limitations.

Method Category Quantized Pre-training (PPL ↓) Quantized Fine-tuning (Acc ↑)
W6A6 W2A16 W4A4 W6A6 W2A16g128 W4A4

ZO (FP16) - 5.47 66.0
Zero-shot - - 41.3

SmoothQuant Range-based PTQ 6.20 100.23‡ 83.12 57.2 27.7‡ 32.9‡

OmniQuant Approx-based PTQ 5.87 37.37 14.26 63.9 40.6‡ 38.8‡

EfficientQAT QAT 5.60 33.40 76.32‡ 66.4 45.4 28.6‡

ZeroQAT QAT 5.76 29.61 12.95 65.3 54.1 55.7

already perturbed by prior quantization noise, making it increasingly difficult to suppress the re-
construction error. This cumulative error propagation constrains overall quantization quality. 2)
Objective inconsistency. OmniQuant uses layer-wise reconstruction loss (see Eq.1) as training ob-
jective, assuming lower reconstruction loss is aligned with lower perplexity and better downstream
accuracy. However, as shown in Figure 2, this alignment does not always hold, in several training
stages (highlighted in red), reconstruction loss decreases while perplexity fluctuates. This indicates
that local layer-level improvements do not reliably translate into global task-level gains, making
reconstruction loss a suboptimal proxy for end-to-end performance, especially under low-bit quan-
tization.

Failure on fine-tuned model. When PTQ is applied to fine-tuned LLMs, it often fails to preserve
task accuracy under low-bit settings. As shown in Table 2, SmoothQuant maintains moderate ac-
curacy at W6A6 (57.2% vs. 66.0% in FP16) but drops to 32.9% at W4A4. Similarly, OmniQuant
achieves 63.9% at W6A6, close to FP16, yet falls to 38.8% at W4A4 despite optimization-based
techniques. These results indicate that while PTQ remains viable at moderate bit-widths, its effec-
tiveness collapses under aggressive compression, in some cases nearly destroying task performance.

3.2 CHALLENGE OF EXISTING QUANTIZATION-AWARE TRAINING METHODS

Compared with PTQ, QAT offers stronger adaptation by compensating for quantization errors dur-
ing training. However, its computational and memory costs are prohibitive for LLMs (Liu et al.,
2023). To reduce this overhead, later works combine QAT with parameter-efficient methods such
as LoRA (Dettmers et al., 2023; Xu et al., 2023; Li et al., 2023) or update only quantizer parame-
ters (Chen et al., 2024b), achieving competitive results in weight-only quantization. Yet their effec-
tiveness drops in low-bit joint weight-activation settings, as shown in Table 2, EfficientQAT main-
tains reasonable perplexity at W6A6 (5.60) and W2A16 (33.40), but degrades sharply at W4A4
(76.32), highlighting the difficulty of modeling dynamic activations.

Overall, although QAT methods can surpass PTQ in some settings, they have not consistently deliv-
ered strong results for both weight and activation quantization at aggressive bit-widths under realistic
resource constraints. Recent efforts that combine zeroth-order (ZO) optimization with quantization
primarily target weight-only scenarios (Zhou et al., 2025; Shang et al., 2025), thus leaving the chal-
lenges of low-bit activation quantization unresolved. Motivated by this gap, we develop a ZO-based
QAT framework that, to the best of our knowledge, is the first to maintain superior accuracy in both
low-bit weight and activation settings.

4 ZEROQAT

In this section, we present ZeroQAT, which enables adaptive fine-tuning of both model and quantiza-
tion parameters with low memory requirements. We employ zeroth-order stochastic gradient descent
to estimate gradients solely from quantized model inference, and introduce adaptive smoothing and
weight quantization strategies to improve low-bit performance. Unlike prior works that rely on
hand-crafted or layer-wise local objectives, ZeroQAT jointly optimizes model and quantization pa-
rameters in an end-to-end manner, yielding superior accuracy. In addition, we propose a lightweight
variant to further cut memory cost during quantized fine-tuning.
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4.1 QUANTIZATION-AWARE ZEROTH-ORDER OPTIMIZATION

Unlike conventional first-order optimization that computes gradients via backpropagation, zeroth-
order (ZO) optimization estimates them using only function queries through finite differences (Chen
et al., 2023; Liu et al., 2018; Ye et al., 2018). This avoids storing activations, backward gradients,
and optimizer states, greatly reducing memory costs in LLM fine-tuning. For each random direction,
ZO requires only two forward passes to approximate the gradient, given a mini-batch B:

∇̂L(W ;B) = 1

q

q∑
i=1

[
L (Q(W + ϵui);B)− L (Q(W − ϵui);B)

2ϵ
ui

]
, (2)

where Q is the quantizer, W is the quantized parameters, ui ∈ N (0, I) is a random perturbation, q
is the number of directions, and ϵ > 0 is a small scalar.

Following QAT practice, we maintain full-precision weights while using their quantized counter-
parts in forward passes. Unlike FO-QAT, ZeroQAT does not require the straight-through estimator
(STE) (Bengio et al., 2013), since gradients are estimated directly via zeroth-order finite differences,
bypassing the non-differentiability of the quantizer. Given a learning rate η and a mini-batch Bt at
iteration t, the update rule becomes:

Wt+1 = Wt − η∇̂L(W t;Bt). (3)

In ZeroQAT, the ZO estimator remains unbiased with respect to the gradient of a smoothed quantized
objective, which ensures standard convergence guarantees. In contrast, QAT methods based on the
STE rely on a hand-crafted surrogate gradient that introduces inherent bias. This bias becomes
particularly severe in low-bit regimes, where the true smoothed gradients are already small but STE
still produces large surrogate updates, leading to unstable or suboptimal convergence. A formal
analysis and quantitative bounds on this bias are provided in Appendix G.

4.2 ADAPTIVE OUTLIER SMOOTHING AND WEIGHT QUANTIZER

Adaptive outlier smoothing. Due to the quantization error caused by the extreme activation outliers
in specific channels, which expand the dynamic range and degrade quantization precision for normal
activation values, the previous methods (Xiao et al., 2023; Wei et al., 2022; Shao et al., 2023) migrate
the difficulty of activation quantization to weight quantization with a mathematically equivalent
smoothing, as the weights are generally more uniform and thus easier to be quantized. However,
relying on either hand-crafted smoothing parameters or layer-wise calibrated smoothing often results
in suboptimal performance, due to the lack of end-to-end joint optimization.

In contrast, our QAT framework enables end-to-end joint optimization of smoothing parameters
along with model parameters, thereby improving consistency and reducing quantization error. In-
spired by previous works such as SmoothQuant (Xiao et al., 2023) and Outlier Suppression+ (Wei
et al., 2022), which statically manipulate activation distributions via channel-wise scaling and shift-
ing, we adapt these techniques into a jointly optimized framework to dynamically mitigate activation
outliers during training, providing an effective solution for the outlier issue. Specifically, we repre-
sent the computation of a linear layer as:

Y = XW +B = [(X− δ)⊘ s︸ ︷︷ ︸
X̄

] · [s⊙W︸ ︷︷ ︸
W̄

] + [B+ δW︸ ︷︷ ︸
B̄

] (4)

where X ∈ RT×D1 , the T is the sequence length, W ∈ RD1×D2 is the weight matrix and
B ∈ R1×D2 is the bias. Here, s and δ are learnable channel-wise scaling and shifting parame-
ters, jointly optimized during training, X̄,W̄ and B̄ represent the smoothed activation, weight and
bias, respectively, ⊘ and ⊙ are element-wise division and multiplication.

Adaptive weight quantizer. As demonstrated by previous work, some weights play a significant
role in the performance of the model, naive uniform quantization can cause significant performance
degradation. Similar to previous QAT methods that adopt learnable step size and zero-point parame-
ters (Esser et al., 2019; Bhalgat et al., 2020), we also conduct weight quantization with the learnable
step size and offset. However, due to the activation-weight smoothing introduced in our framework,
the weight distributions in some channels become skewed, resembling the activation distributions

5
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and deviating from the typically assumed uniformity. Therefore, we jointly learn clipping thresholds
to adaptively determine the optimal clipping range for weights.

Specifically, considering asymmetric quantization, the quantization of weights as formulated by

W = clamp(⌈W
∆

⌋+ z, α ·QP , β ·QP ) (5)

where ∆ and z are learnable step size and zero-point, respectively, initialized based on the default
asymmetric quantization scheme. α and β are learnable clipping coefficients (with α < β), and
QP denotes the maximum positive quantization level. Intuitively, for weights with near-uniform
distributions after smoothing, α and β converge to similar values, resulting in a tight clipping range
that preserves precision. In contrast, for biased weight distributions, α and β adapt to asymmetrically
clip the dynamic range, thereby mitigating the impact of outliers.

4.3 LIGHTWEIGHT ZEROQAT FOR MEMORY REDUCTION IN QUANTIZED FINE-TUNING

OVQ K

Q K V intOint

FC2FC1

FC2FC1int int

~27%

100%

Figure 3: lightweight Zero-
QAT for fine-tuning.

We further propose a lightweight variant of ZeroQAT designed
specifically for quantized fine-tuning, to substantially reduce the
fine-tuning memory footprint. It is worth noting that this strategy
is effective only in fine-tuning, applying it to quantized pre-training
leads to noticeable performance degradation (see Appendix D.3).

Unlike backpropagation-based methods, where memory is domi-
nated by weights, activations, and optimizer states, ZeroQAT’s cost
mainly comes from the parameters actively updated during fine-
tuning. Pre-quantizing the entire model could further reduce mem-
ory, but this fails in practice. As small ZO perturbations are rounded
away while large ones destabilize training, making naive full-model
pre-quantization unsuitable.

To overcome this, we introduce a lightweight variant. Most pa-
rameters are frozen and pre-quantized, while only the query (Q)
and value (V) matrices of attention layers are kept in full preci-
sion, as illustrated in Figure 3. Thus, memory use comes from the
full-precision Q and V plus quantized frozen weights. This design
substantially reduces the fine-tuning footprint while retaining sufficient trainable capacity for adap-
tation. This enables fine-tuning large models such as OPT-13B under low-bit settings with memory
as low as 6.8 GB (in Table 7), far lighter than existing QAT baselines.

5 EXPERIMENT

We present a comprehensive evaluation of ZeroQAT, reporting results on both quantized pre-training
and quantized fine-tuning (Sections 5.1 and 5.2), followed by ablation studies to assess the contribu-
tions of different design (Section 5.3). We then provide an efficiency analysis including memory and
speed (Section 5.4). Hyperparameter settings are detailed in Appendix C.1. GPU-end experiments
are conducted on an NVIDIA A100, and device-end experiments are conducted on a OnePlus 12
smartphone with a Snapdragon 8 Gen 3 SoC and 16GB RAM. All results are averaged over three
runs.

5.1 ZEROQAT FOR QUANTIZED PRE-TRAINING

Training and evaluation. For the parameters of smoothing and weight clipping, we leverage re-
construction loss for a lightweight initialization, and then jointly train with the model via ZO. For
LLama-series weight-only quantization, we retain only weight clipping. Pre-training uses mixed
segments from WikiText2 and C4, with perplexity measured on three pretraining context datasets.
We further evaluate zero-shot accuracy on five datasets under GPTQ settings with lm-eval-harness.
More details including baselines are provided in Appendix C.2.

Perplexity Results. We target to examine the intrinsic language modeling performance of the quan-
tized model. The perplexity results of LLama-series and OPT-series models are presented in Table 3
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Table 3: Weight-only and weight-activation quantization results of Llama-series models on two
datasets: WikiText2 (WIKI), and C4. The results on OPT models is reported in Table E.1.

Llama / PPL ↓ Llama1-7B Llama1-13B Llama2-7B Llama2-13B
Task WIKI C4 WIKI C4 WIKI C4 WIKI C4

FP16 - 5.68 7.08 5.09 6.61 5.47 6.97 4.88 6.46

W2A16

RTN 1.1e5 1.3e5 6.8e4 5.6e4 3.8e4 4.8e4 5.6e4 7.2e4
GPTQ 5.6e4 689.13 5.5e3 6.97 7.7e3 NAN 2.1e3 323.12
OmniQuant 15.47 24.89 13.21 18.31 37.37 90.64 17.21 26.76
ZeroQAT 12.85 17.47 10.29 15.37 29.61 55.34 15.97 24.68

W6A6
SmoothQuant 6.03 7.47 5.42 6.97 6.20 7.76 5.18 6.76
OmniQuant 5.96 7.43 5.28 6.84 5.87 7.48 5.14 6.74
ZeroQAT 5.85 7.47 5.96 7.01 5.76 8.81 5.10 6.70

W4A4
SmoothQuant 25.25 32.32 40.05 47.18 83.12 77.27 35.88 43.19
OmniQuant 11.26 14.51 10.87 13.78 14.26 18.02 12.30 14.55
ZeroQAT 11.10 14.78 10.04 12.65 12.95 16.73 10.41 12.43

and Table E.1 respectively. Under the rather easier quantization setting W6A6, the baselines and our
method achieve similar, almost lossless performance compared with full precision, absolute perplex-
ity gap is smaller than one. More importantly, under the hard quantization setting W2A16(g128) and
W4A4, because our method has better adaptation capability by enabling fine-tuning of the whole
model, one can see that ZeroQAT consistently outperforms the baseline methods, yielding lower
perplexity across both model families and datasets. This highlights the effectiveness of ZeroQAT in
preserving model quality under aggressive quantization.

Table 4: Weight-only and weight-activation quantization results of LLama models. This table reports
the accuracy of 5 zero-shot tasks. Results of Llama-1-13B are shown in Table E.2.

Llama / Acc ↑ #Bits Method PIQA ARC-e ARC-c HellaSwag Winogrande Avg.

Llama-1-7B

FP16 - 77.47 72.38 41.46 73.00 67.07 65.26
W2A16 RTN 47.33 28.17 25.17 25.10 47.50 34.67
W2A16 GPTQ 57.38 36.62 25.00 42.50 49.38 40.35
W2A16 EfficientQAT 62.25 48.12 27.75 47.50 53.37 47.65
W2A16 ZeroQAT 68.25 53.87 27.62 51.62 57.38 51.75
W4A4 SmoothQuant 49.80 30.40 25.80 27.40 48.00 38.41
W4A4 LLM-QAT 51.50 32.57 28.63 31.10 51.90 41.39
W4A4 LLM-QAT+SQ 55.93 35.90 30.60 44.80 50.60 46.72
W4A4 OS+ 62.70 39.20 32.64 47.89 52.96 49.60
W4A4 OmniQuant 67.38 53.87 30.63 53.12 55.25 52.15
W4A4 ZeroQAT 66.98 54.12 32.19 57.85 54.37 53.11

Zero-shot Accuracy Results. Moreover, Table 4 reports the zero-shot results of LLama-7B on five
downstream datasets evaluated by accuracy. As expected, the FP16 setting achieves the highest
average accuracy, serving as the upper bound. Under both the W2A16 and W4A4 configurations,
ZeroQAT consistently outperforms other quantization approaches, yielding higher average accuracy
across both model scales, for instance, significantly increasing 5.1% accuracy in 2-bit weight-only
quantization. This result demonstrates that ZeroQAT maintains strong task generalization even when
quantization is pushed to low-bit precision.

5.2 ZEROQAT FOR QUANTIZED FINE-TUNING

Training and Evaluation. Following prior work, we fine-tune models on a small subset of Al-
paca and evaluate across multiple benchmarks, including commonsense reasoning, classification,
and question answering tasks. We adopt a few-shot fine-tuning protocol with fixed quantization
parameters and report averaged results over three runs. Full experimental details and baselines are
provided in Appendix C.3.
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Table 5: Experimental results of quantized fine-tuning on OPT models.

OPT / Acc ↑ OPT-2.7B OPT-6.7B OPT-13B
Task SST-2 CB SQuAD DROP SST-2 CB SQuAD DROP SST-2 CB SQuAD DROP

Zero-shot 56.3 50.0 29.8 10.0 64.2 50.0 37.9 13.1 58.8 46.4 46.2 14.6
FP16 (ZO) - 90.0 69.6 68.7 22.9 90.2 71.4 76.0 26.4 91.4 67.9 84.7 30.9

W2A16g128

RTN 44.4 44.6 0.0 0.0 59.2 50.0 0.0 0.0 53.5 50.0 0 0
QLoRA 61.2 51.8 0.0 8.2 64.8 58.9 0.0 0.0 63.8 69.6 0 0
OmniQuant 72.8 55.4 16.5 4.4 61.6 55.3 27.7 12.6 62.6 29.8 38.8 16.4
EfficientQAT 76.6 57.1 29.0 12.6 75.6 58.9 32.4 14.6 81.2 62.5 46.7 16.9
ZeroQAT 85.2 62.5 36.9 16.6 84.8 67.8 46.7 18.9 85.6 64.2 59.6 22.9

W4A4
SmoothQuant 56.0 55.4 7.6 5.4 58.8 50.0 12.8 6.2 57.5 52.4 13.4 7.1
OmniQuant 59.2 60.7 22.1 6.7 61.2 48.2 24.7 11.7 59.2 50.0 28.8 13.5
ZeroQAT 87.8 66.1 47.8 13.3 87.9 64.3 51.1 19.3 88.2 62.1 62.4 24.3

Results. We evaluate quantized fine-tuning on OPT models (2.7B, 6.7B, and 13B) across two clas-
sification tasks (SST-2, CB) and two QA generation tasks (SQuAD, DROP). For PTQ methods such
as SmoothQuant and OmniQuant, we first fine-tune the models in full precision using ZO to en-
sure comparable starting points, and then apply the corresponding quantization method. In contrast,
QAT methods, including ZeroQAT, directly produce quantized models during fine-tuning without
the need for a separate PTQ stage.

Table 6: Averaged accuracy over 5 datasets af-
ter fine-tuning. Evaluation on MMLU is pre-
sented in Appendix F

Method #Bits 7B 13B

- FP 67.0 69.3

QLoRA w/GPTQ W2A16 31.8 32.4
QA-LoRA W2A16 34.6 37.3
IR-QLoRA W2A16 34.4 36.3
PEQA W2A16 35.2 34.8
EfficientQAT W2A16 49.1 52.1
ZeroQAT W2A16 53.9 55.7

SmoothQuant W4A4 37.4 41.6
OmniQuant W4A4 52.3 54.2
ZeroQAT W4A4 54.8 57.4

The results are summarized in Table 5. Fine-
tuning adapts model parameters to narrow task-
specific optima (Dong et al., 2021), which in-
creases their sensitivity to quantization noise.
Consequently, less adaptive PTQ methods suffer
from severe degradation in low-bit settings. By
comparison, ZeroQAT consistently delivers higher
accuracy across all tasks and model scales, in some
cases approaching FP16 performance. For exam-
ple, under the W4A4 setting, ZeroQAT achieves
about 88% accuracy on SST-2 across the three
OPT models, whereas baseline methods remain
around 60%. We also fine-tuned LLama-1 mod-
els on Alpaca, with results shown in Table 6. Ze-
roQAT again outperforms prior methods across
different bit-widths and model sizes. For in-
stance, when quantizing LLama-7B and LLama-
13B weights to 2 bits, ZeroQAT achieves absolute accuracy improvements of 4.8% and 3.6% over
the best baseline EfficientQAT, illustrating the effectiveness of our approach.

5.3 ABLATION STUDY

In this section, we conduct ablation study to examine the effectiveness of the strategies adopted in
our method. More experiments are shown in Appendix D.

Effect of initialization for Smoothing Parameters. We initialize the smoothing parameters by
minimizing reconstruction loss before applying ZO, to examine the impact of initialization quality,
we conduct an ablation study by varying the number of initialization epochs, as reported in Ta-
ble D.5. The results show that initialization has a clear effect on performance. With 0 epochs of
initialization, performance drops noticeably across different models, while additional epochs (e.g.,
20) can further improve accuracy. However, considering both performance gains and computational
cost, we adopt two epochs as the default initialization setting.

5.4 EFFICIENCY OF ZEROQAT

To highlight the advantage that our method enables generating a quantized and fine-tuned model in
a lightweight end-to-end pipeline, we evaluate the efficiency of ZeroQAT on both a GPU server and
a mobile device to demonstrate its practicality across deployment scenarios.
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Table 7: Memory consumption and wallclock time per update during quantized pre-training under
the W2A16g128 setting. Since ZeroQAT only stores the weights in memory, its memory usage
remains unaffected by batch size.

Method OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B
Memory Time Memory Time Memory Time Memory Time

Quantized Pre-training (avg sequence length = 2048)

LLM-QAT (bsz=1) 28.8GB 1.00s 58.6GB 1.64s ∼166GB ∼5.0s ∼337GB ∼15.5s
OmniQuant (bsz=1) 6.1GB 0.92s 7.4GB 1.49s 12.3GB 2.65s 16.8GB 4.77s
ZeroQAT (bsz=1) 3.1GB 0.58s 6.1GB 0.98s 14.2GB 1.77s 26.6GB 3.12s
OmniQuant (bsz=4) 14.7GB 2.55s 16.2GB 4.03s 22.5GB 6.35s 28.5GB 11.81s
ZeroQAT (bsz=4) 3.1GB 1.72s 6.1GB 2.76s 14.2GB 4.48s 26.6GB 7.74s

Quantized Fine-tuning (max sequence length = 384)

EfficientQAT (bsz=1) 2.1GB 0.13s 3.1GB 0.21s 4.4GB 0.36s 7.3GB 0.67s
ZeroQAT (bsz=1) 0.8GB 0.04s 1.5GB 0.07s 3.7GB 0.18s 6.8GB 0.32s
EfficientQAT (bsz=16) 5.9GB 0.69s 8.1GB 1.10s 11.9GB 1.70s 17.2GB 3.26s
ZeroQAT (bsz=16) 0.8GB 0.31s 1.5GB 0.53s 3.7GB 0.94s 6.8GB 1.73s

Server-side Efficiency. Table 7 compares memory requirements and wallclock time per update
across QAT and PTQ methods. For quantized pre-training, ZeroQAT reduces memory usage by
89-92% relative to the costly LLM-QAT, while also accelerating training. Compared to the PTQ
method OmniQuant, ZeroQAT offers clear advantages, for instance, it halves memory use (OPT-
1.3B: 6.1GB to 3.1GB) and achieves about 1.5× faster updates (OPT-2.7B: 1.49s to 0.98s). For
quantized fine-tuning, ZeroQAT’s memory-efficient design requires storing only weights, making
usage independent of batch size. Against EfficientQAT, it consistently saves memory and improves
throughput, especially on smaller models such as OPT-1.3B, reducing memory by 86% (5.9GB to
0.8GB) and wallclock time by 55% (0.69s to 0.31s) with the same batch size.

Table 8: Evaluation of memory consumption and speed on a OnePlus 12 smartphone under W4A4
quantization. Prompts of 384 tokens are used in inference, and OOM indicates out of memory.

Stage Metrics OPT-1.3B OPT-2.7B OPT-6.7B
FP16 ZeroQAT FP16 ZeroQAT FP16 ZeroQAT

Fine-tuning
Latency 11.2s 7.8s 19.6s 12.3s / 29.1s
Weight memory 2.6GB 0.9GB 5.4GB 1.8GB 13.4GB 4.6GB
Running memory 3.5GB 1.2GB 8.1GB 2.6GB OOM 6.4GB

Inference Token / s 10.9 15.4 7.58 11.0 3.13 4.76
Speed up 1.0× 1.41× 1.0× 1.45× 1.0× 1.52×

On-device Efficiency. Table 8 compares FP16 baseline with ZeroQAT under W4A4 for OPT-1.3B,
2.7B, and 6.7B models. The results were collected on a OnePlus 12 smartphone with a Snapdragon
8 Gen 3 SoC and 16GB RAM. ZeroQAT reduces fine-tuning latency by 30% and 37% for OPT-1.3B
and OPT-2.7B, respectively, while cutting running memory from 3.5GB to 1.2GB and from 8.1GB to
2.6GB. For OPT-6.7B, FP16 fine-tuning is infeasible (OOM), whereas ZeroQAT runs within 6.4GB
memory with 29.1s latency. During inference, ZeroQAT further achieves 1.41×-1.52× higher token
throughput, demonstrating its practicality on resource-constrained devices.

6 CONCLUSION

In this paper, we proposed ZeroQAT, a zeroth-order-based quantization-aware training framework
supporting both weight and activation quantization under extremely low bit-widths. We further
introduced adaptive smoothing and an adaptive weight quantizer to reduce errors, and a lightweight
variant that freezes and quantizes part of the model to lower fine-tuning memory cost. Experiments
on quantized pre-training, fine-tuning, and on-device deployment show that ZeroQAT consistently
outperforms PTQ and QAT baselines in both accuracy and efficiency, and even enables fine-tuning
large LLMs on OnePlus 12 smartphone under strict memory constraints.
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A CLAIM OF LLM USAGE

In this work, large language models (LLMs) were used solely as a general-purpose writing assistant.
Their role was limited to correcting grammar, fixing typographical errors, and polishing the language
for clarity and readability.

B RELATED WORK

B.1 MODEL QUANTIZATION

Quantization techniques aim to properly map the original continuous real values to a discrete low-bit
format (e.g., INT8 or INT4), leading to significant memory saving and inference acceleration while
maintaining the performance (Zhou et al., 2016). Quantization techniques can be generally divided
into two categories: Post-training quantization (PTQ) and quantization-aware training (QAT). The
QAT method generally yields better results due to better adaptation capability, but the high retrain-
ing cost (in both memory and computation) has discouraged many researchers. Therefore, most of
the LLM quantization works focus on PTQ methods, which can be mainly divided into range-based
PTQ (Jacob et al., 2018; Nagel et al., 2019; Xiao et al., 2023) and approximation-based PTQ meth-
ods (Nagel et al., 2020; Li et al., 2021; Frantar et al., 2022; Shao et al., 2023). The range-based
PTQ typically relies on static analysis, where the range (e.g., minimum and maximum values) of
weights or activations is collected to determine quantization parameters. The approximation-based
PTQ methods, with more adaptation, explicitly frame quantization as an error minimization prob-
lem, optimizing quantized parameters to closely approximate the full-precision model outputs.

B.2 ZEROTH-ORDER OPTIMIZATION

Zeroth-order optimization (ZO), which estimates gradients using only function evaluations, has
emerged as an attractive alternative to classical first-order (FO) methods. Compared to FO ap-
proaches, ZO eliminates the need for backpropagation, thereby simplifying implementation and
significantly reducing memory consumption. This makes it appealing in scenarios such as adver-
sarial attack and defense (Chen et al., 2017; Ye et al., 2018; Verma et al., 2023), machine learning
explainability (Dhurandhar et al., 2018; 2019), reinforcement learning (Vemula et al., 2019), and
on-chip training (Gu et al., 2021). Despite these successes, ZO optimization has been primarily ap-
plied to relatively small-scale problems, since its convergence is generally slower and suffers from
high variance due to random search. These challenges are exacerbated in large-scale settings such
as LLM fine-tuning, where dimensionality and resource constraints amplify the difficulty. To ac-
cess further acceleration and compression, there are some works that focus on combining ZO with
quantization (Zhou et al., 2025; Shang et al., 2025), while our method is the first to overcome the
accuracy degradation in both low-bit weight and activation quantization scenarios.

C EXPERIMENTAL SETTINGS

Quantization settings. To comprehensively evaluate our method, we consider both weight-only
and weight-activation quantization, as they represent distinct deployment scenarios. For weight-
activation quantization, we adopt per-channel weight quantization and per-token activation quanti-
zation, following prior work (Dettmers et al., 2022; Shao et al., 2023). For weight-only quantization,
we apply a group-wise strategy, where the weight matrix is partitioned into groups of a fixed size,
and each group is assigned its own scale and zero point. Formally, for example, W2A16g128 refers
to 2-bit weight-only quantization with 128 as the group size. When g is omitted (e.g., W2A16), the
default group size is set to the number of channels, corresponding to per-channel quantization.

C.1 HYPERPARAMETER SETTING

We use the hyperparameters in Table C.1 for experiments on quantized pre-training and quantized
fine-tuning. Specifically, pre-training prefers smaller learning rate and smaller perturbation for stable
convergence, while for fine-tuning, we can use more aggressive optimization. Moreover, larger
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Table C.1: The hyperparameter for experiments. For DiZO and DiZO LoRA, we only show the
setting of extra hyperparameters, and have the same setting in other common hyperparameters with
MeZO and MeZO LoRA respectively.

Experiment Hyperparameters Values

Quantized Pre-training

Batch size 4
Iteration 10K

Learning rate {5e-7, 1e-8}
Lr for smothing 5e-6
Lr for clipping 1e-5

Lr schedule Linear Decay
ϵ in ZO {1e-3, 5e-4 1e-4}

Quantized Fine-tuning

Batch size {32, 16}
Iteration 8K

Learning rate {1e-6, 5e-7}
Lr schedule Constant
ϵ in ZO 1e-3

models prefers smaller learning rate and smaller perturbation, while smaller models tend to have the
opposite.

C.2 SETTINGS OF QUANTIZED PRE-TRAINING

Training and evaluation Zeroth-order optimization has been shown to benefit from strong initial-
ization (Malladi et al., 2023). To provide a stable starting point, we adopt a lightweight initialization
strategy based on channel-wise scaling and shifting. Specifically, we pre-train quantized models
with OmniQuant (Shao et al., 2023) for a few epochs (2 epochs in the W4A4 setting and 4 epochs in
the W2A16 setting), which corresponds to roughly 10% of the full OmniQuant training cost. This
initialization enables ZO to more effectively refine the quantization scales and shift factors. But for
LLama-series weight-only quantization, we remove the smoothing scalar and only maintain weight
clipping as smoothing only provides limited improvement. For quantized pre-training, we randomly
select token segments with length 2048 and than calculate perplexity over WikiText2 (Merity et al.,
2016), PTB (Marcus et al., 1994), and C4 (Raffel et al., 2020). To avoid overfitting on one spe-
cific dataset, half segments samples from WikiText2 and half from C4, while the total data size is
keep same with previous work (Shao et al., 2023; Dettmers et al., 2022) and set as 128. We fur-
ther assess zero-shot accuracy on a range of tasks including PIQA (Bisk et al., 2020), ARC (Clark
et al., 2018), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021). We adhere
to the GPTQ (Frantar et al., 2022) settings for language generation experiments, and leverage the
lm-eval-harness (Gao et al., 2024) tool for the evaluation of all zero-shot tasks.

Baselines We mainly compared with post-training quantization methods. For weight-only quantiza-
tion, we compare with the vanilla round-to-nearest (RTN), GPTQ (Frantar et al., 2022). For weight-
activation quantization, we compare our method with SmoothQuant (Xiao et al., 2023), RPTQ (Yuan
et al., 2023), OutlierSupression+ (OS+) (Wei et al., 2022), OmniQuant (Shao et al., 2023), and one
QAT method LLM-QAT (Liu et al., 2023). We keep the quantization setting of SmoothQuant and
Outlier Suppression+ with per-channel weight quantization and per-token activation quantization for
fair comparisons.

C.3 SETTINGS OF QUANTIZED FINE-TUNING

Training and evaluation. Following existing works (Chen et al., 2024b), we fine-tune models on
a small subset of Alpaca dataset (Taori et al., 2023), and report the average accuracy on datasets
including PIQA, ARC, HellaSwag and Winogrande. Moreover, we fine-tune and evaluate on two
classification datasets, SST-2 (Socher et al., 2013) and CB (De Marneffe et al., 2019), and two
question answering datasets, SQuAD (Rajpurkar et al., 2016) and DROP (Dua et al., 2019). For
these tasks, we randomly sample 1,000 examples for training, 500 for validation, and 1,000 for
testing, following the common few-shot fine-tuning protocol (Malladi et al., 2023). Performance is
measured using accuracy for classification tasks and F1 scores for question answering tasks. The
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initialization of quantization parameters is identical to that used in quantized pre-training, and these
parameters are frozen during fine-tuning. This design allows us to directly perform quantized fine-
tuning without an additional quantized pre-training stage. For all fine-tuning experiments, we run
our experiments three times with different seeds and report the averaged results.

Baselines. Beside the baseline methods used in quantized pre-training (in Section 5.1), we addi-
tionally compare our method with several leading QAT methods, including QLoRA (Dettmers et al.,
2023), QA-LoRA (Xu et al., 2023), PEQA (Kim et al., 2023), IR-QLoRA (Qin et al., 2024), and
EfficientQAT (Chen et al., 2024b).

D MORE ABLATION STUDY ON ZEROQAT

In this section, we conduct comprehensive ablation study on ZeroQAT to illustrate the effectiveness
of the components or strategies we used. Specifically, the results include:

• Effect of learnable outlier smoothing and weight clipping (Table D.1).
• Effect of using fine-tuned checkpoint by first-order as PTQ’s starting point (Table D.2).
• Effect of using lightweight ZeroQAT for quantized pre-training (Table D.3).
• Effect of the layer selection in lightweight ZeroQAT (Table D.4).
• Effect of quantize parameter initialization and number of training samples (Table D.5 and

Table D.6).

D.1 EFFECT OF LEARNABLE OUTLIER SMOOTHING AND WEIGHT CLIPPING

In ZeroQAT, we introduce learnable smoothing scalar and weight clipping threshold to effectively
relieve the outlier issue in low-bit quantization. We conduct experiments to ablate the effectiveness
of these two learnable components. As shown in Table D.1, both components positively influence
performance, but learnable smoothing proves essential for weight activation quantization. Disabling
it for W4A4 results in a marked increase in perplexity, mainly due to challenges with activation
quantization outliers. For weight-only quantization, smoothing only offer slight improvement for
less outlier occurs (Shao et al., 2023), therefore the smoothing is not used for weight-only quantiza-
tion.

Table D.1: Effect of each component. WikiText2 perplexity is reported in this table. W/O indicates
removing the corresponding learnable components.

PPL ↓ Llama-7B Llama2-13B
Leanable Components W4A4 W2A16 W4A4 W2A16

Smoothing + Clipping 12.95 29.32 10.41 16.04

W/O Smoothing 1.4e3 29.61 5.2e3 15.97
W/O Clipping 16.64 9.4e3 18.7 2.8e3
W/O Smoothing & Clipping 2.1e3 1.2e4 1.7e4 4.6e3

D.2 EFFECT OF USING FIRST-ORDER FINE-TUNED MODEL FOR PTQ

When comparing our method with PTQ methods, the starting points is the full-precision fine-tuned
model using ZO, therefore we investigate if the PTQ method can perform better when using fine-
tuned model by first-order (FO) optimization. As shown in Table D.2, when using first-order fine-
tuned model as starting point, the memory cost of fine-tuning will dramatically increase to around
100 GB, while also not enhance the performance of PTQ, yielding much lower accuracy compared
with FP ZO and ZeroQAT.

D.3 EFFECT OF USING LIGHTWEIGHT ZEROQAT FOR QUANTIZED PRE-TRAINING

In ZeroQAT fine-tuning, we devise a lightweight variant that keeps the query and value matrices
in full precision while freezing and quantizing the remaining parameters. This design substantially
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Table D.2: Compare with PTQ method with different fine-tuned model as starting points. Results of
fine-tuning OPT-6.7B under W4A4 setting. ZO and FO indicates the starting fine-tuned checkpoint
is from first-order and zeroth-order optimization respectively.

Method Fine-tuning Memory PTQ memory SST-2 CB SQuAD DROP
FP ZO 14.2 GB - 90.2 71.4 76.0 26.4
OmniQuant (ZO) 14.2 GB 4.4 GB 61.2 48.2 24.7 11.7
OmniQuant (FO) 98.6 GB 4.4 GB 58.7 55.3 31.8 13.5
ZeroQAT 3.7 GB - 87.9 64.3 51.1 19.3

reduces memory cost without sacrificing downstream task accuracy. However, when we apply the
same strategy in quantized pre-training, we observe a clear performance drop, as shown in Table D.3.
For example, on WikiText2, lightweight ZeroQAT yields perplexity of 41.05 and 21.97 for LLama2-
7B and Llama2-13B under W2A16, compared to 29.61 and 15.95 without lightweight strategy.

This degradation can be attributed to the different optimization dynamics in pre-training versus fine-
tuning. Pre-training requires updating a much larger parameter space to capture broad linguistic
patterns. Freezing most of the model limits the ability to adapt quantization parameters and com-
pensate for quantization noise, leading to accumulated errors and higher perplexity. In contrast,
fine-tuning operates on narrower task-specific distributions, where updating Q and V alone is suffi-
cient to preserve performance. These results highlight that while selective fine-tuning is effective for
downstream adaptation, full-parameter optimization remains crucial in the pre-training stage under
quantization.

Table D.3: Effect of using lightweight ZeroQAT in quantized pre-training. LW indicates lightweight.
Perplexity on Wikitext2 is reported.

PPL ↓ LLama2-7b LLama2-13b
Method W2A16 W4A4 W2A16 W4A4

ZeroQAT (LW) 41.05 19.34 21.97 15.45
ZeroQAT 29.61 12.95 15.95 10.41

D.4 EFFECT OF FINE-TUNING LAYER SELECTION.

We propose a lightweight variant ZeroQAT that fine-tunes only the query (Q) and value (V) matrices
in the attention layers, while freezing and quantizing the remaining parts of the model to reduce
memory overhead. To evaluate the effectiveness of this strategy, we compare it with different layer
selection strategy, and the results are reported in Table D.4. The results show that this selective
fine-tuning approach achieves a favorable trade-off between performance and memory efficiency:
it maintains accuracy comparable to full-parameter fine-tuning, while reducing memory usage to
27%-38% of the full-parameter baseline, depending on the model size. This demonstrates that
restricting updates to Q and V matrices provides substantial efficiency gains without significant
loss of performance.

D.5 EFFECT OF TRAINING SAMPLE SIZE

Conventional first-order QAT methods are generally data-inefficient, as they rely on large training
datasets to provide stable and accurate gradients. To examine whether ZeroQAT exhibits similar
behavior, we vary the number of training samples and report the results in Table D.6. Compared to
the default setting of 128 samples, changing the sample size has only a minor effect on performance,
with most perplexity variations remaining within 0.5. This indicates that, unlike conventional meth-
ods, ZeroQAT does not heavily rely on large-scale data for convergence. Instead, since its gradients
are estimated through noisy zeroth-order approximations, ZeroQAT benefits more from additional
optimization iterations rather than larger datasets.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table D.4: Ablation study for selecting which layers to maintain full-precision and update in Quan-
tized Fine-tuning. The highlighted line with a blue rectangle is the setting used in ZeroQAT. Attn Q:
attention Query layer; Attn V: attention Value layer; Attn K: attention Key layer; Attn O: attention
output projection; Dense: dense fully connected layer.

Attn Q Attn V Attn K Attn O Dense W2A16g128 W4A4
Acc. Memory Acc. Memory

✓ ✓ ✓ ✓ ✓ 55.0 100% 56.8 91.7
✓ ✓ ✓ ✓ ✗ 54.1 42% 54.5 50%
✓ ✓ ✓ ✗ ✗ 54.3 34% 55.4 44%
✓ ✓ ✗ ✗ ✗ 54.5 27% 55.6 38%
✓ ✗ ✗ ✗ ✗ 44.3 20% 46.9 32%

Table D.5: Effect of the number of epochs to initialize the
smoothing parameter using reconstruction loss. Perplexity
on WikiText2 is reported. ∗ indicates default setting.

Epochs LLama1-7B LLama2-7B OPT-6.7B

0 14.33 15.67 15.49
1 11.68 13.87 12.53
2∗ 11.10 12.95 11.48

10 10.86 12.38 11.12
20 10.20 12.08 10.95

Table D.6: Effect of using different
number of training samples (token
segments) for training.

Samples W2A16 W4A4

32 30.18 13.32
64 29.87 13.05
128∗ 29.61 12.95
256 29.65 12.81
512 29.34 13.06

E MORE QUANTIZED PRE-TRAINING RESULTS

To illustrate the generalizability of our method, we conduct quantized pre-training on OPT family
models, and the results are shown in Table E.1. For W6A6 quantization, similar to other baselines,
ZeroQAT also achieves almost loss-less results on three datasets. For more challenge W4A4 setting,
ZeroQAT consistently outperforms other baselines for better adaptation.

We conduct experiment on LLama with 13B parameters, results on 5 zero-shot datasets is show in
Table E.2.

Table E.1: Weight-activation quantization results of OPT models on three datasets: WikiText2
(WIKI), Penn Treebank (PT), and C4. RPTQ* represents a variant that quantizes all activations
except the softmax output.

OPT / PPL ↓ OPT-2.7B OPT-6.7B OPT-13B
Task WIKI PT C4 WIKI PT C4 WIKI PT C4

FP16 - 12.47 15.13 13.16 10.86 13.09 11.74 10.13 12.34 11.20

W6A6

SmoothQuant 12.64 15.91 13.34 11.34 13.82 12.14 10.56 12.76 11.40
RPTQ 13.19 16.37 14.04 11.19 13.98 12.08 11.19 13.98 12.08
RPTQ* 12.71 15.53 13.33 10.96 13.24 11.86 10.96 13.24 11.86
OmniQuant 12.62 15.32 13.29 10.96 13.20 11.81 10.21 12.47 11.17
ZeroQAT 12.62 15.37 13.77 10.14 13.41 11.44 9.60 12.59 11.47

W4A4

SmoothQuant 131.47 107.10 120.57 1.8e4 1.4e4 1.5e4 7.4e3 6.5e3 5.6e3
RPTQ 11.45 14.71 13.12 12.00 15.17 12.85 12.74 15.76 14.71
RPTQ* 11.45 14.71 13.12 17.83 25.10 19.91 16.45 23.01 16.80
OmniQuant 15.65 23.69 16.51 12.24 15.54 13.56 11.65 15.89 13.46
ZeroQAT 14.42 21.71 15.14 11.48 14.84 13.10 10.65 15.04 12.62
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Table E.2: Weight-only and weight-activation quantization results of LLama models. This table
reports the accuracy of 5 zero-shot tasks.

LLama / Acc ↑ #Bits Method PIQA ARC-e ARC-c HellaSwag Winogrande Avg.

LLama-1-7B

FP16 - 77.47 72.38 41.46 73.00 67.07 65.26
W2A16 RTN 47.33 28.17 25.17 25.10 47.50 34.67
W2A16 GPTQ 57.38 36.62 25.00 42.50 49.38 40.35
W2A16 EfficientQAT 62.25 48.12 27.75 47.50 53.37 47.65
W2A16 ZeroQAT 68.25 53.87 27.62 51.62 57.38 51.75
W4A4 SmoothQuant 49.80 30.40 25.80 27.40 48.00 38.41
W4A4 LLM-QAT 51.50 32.57 28.63 31.10 51.90 41.39
W4A4 LLM-QAT+SQ 55.93 35.90 30.60 44.80 50.60 46.72
W4A4 OS+ 62.70 39.20 32.64 47.89 52.96 49.60
W4A4 OmniQuant 67.38 53.87 30.63 53.12 55.25 52.15
W4A4 ZeroQAT 66.98 54.12 32.19 57.85 54.37 53.11

LLama-1-13B

FP16 - 79.10 74.83 42.04 75.62 70.31 66.33
W2A16 RTN 54.75 26.25 27.50 29.75 47.00 37.05
W2A16 GPTQ 59.25 33.00 25.17 44.25 53.25 42.98
W2A16 EfficientQAT 68.15 53.08 29.51 49.26 54.35 50.87
W2A16 ZeroQAT 72.41 57.24 32.12 53.70 57.54 54.60
W4A4 SmoothQuant 61.04 38.00 26.27 41.20 50.64 43.43
W4A4 OS+ 66.73 41.43 29.33 48.67 52.80 47.79
W4A4 OmniQuant 69.69 56.22 33.10 58.96 55.80 54.75
W4A4 ZeroQAT 71.86 58.27 32.68 57.16 56.35 55.26

Table F.1: Results of fine-tuning Llama1-7B on challenging MMLU benchmarks. 5-shot results are
reported.

Llama-7B (FP: 38.41%) GPTQ EfficientQAT SmoothQuant OmniQuant ZeroQAT

W2A16 23.71% 24.74% - 25.65% 26.57%
W4A4 - - 24.55% 26.93% 27.61%

F EVALUATION ON MMLU

To demonstrate the generalizability of ZeroQAT in more realistic and challenging scenarios, we
evaluate our method on MMLU, fine-tuning on the Alpaca dataset (Taori et al., 2023) and then
evaluate. We conduct experiments based on Llama1-7B, the results are shown in Table F.1.
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G THEORETICAL ANALYSIS

Proposition 1 (Unbiasedness and explicit second-moment bound for the two-point ZO estimator).
Let Q : Rd → Zd be the per-coordinate uniform quantizer of step size ∆ > 0 (rounding with
optional clipping/zero-point), and let L(·;B) be G-Lipschitz in its argument with respect to ℓ2:
|L(z;B) − L(z′;B)| ≤ G∥z − z′∥2 for all z, z′ and all mini-batches B. For ε > 0 define the
Gaussian-smoothed (forward-only) objective

fε(W ) = Eu∼N (0,Id) EB L
(
Q(W + εu);B

)
,

and the two-point ZO estimator with q i.i.d. directions ui ∼ N (0, Id):

gb(W ;B) =
1

q

q∑
i=1

L
(
Q(W + εui);B

)
− L

(
Q(W − εui);B

)
2ε

ui .

Assume EB [ |L(Q(W + εu);B)| ] < ∞ for all W and ε > 0. Then:

(i) Unbiasedness. The estimator targets the gradient of the smoothed objective:

Eu,B

[
gb(W ;B)

]
= ∇fε(W ) .

(ii) Mean-squared error bound. Writing the expectation over all randomness (u,B),

E
∥∥ gb(W ;B)−∇fε(W )

∥∥2
2

≤ 1

q

[
2G2 d(d+2) +

G2 ∆2 d2

2 ε2

]
.

In particular, ignoring the quantizer offset term (formally ∆=0), the estimator’s MSE
scales as O

(
G2d2/q

)
under standard Gaussian directions.

Proof. (i) Unbiasedness. Let U ∼ N (0, Id) and write Z = W + εU . Then fε(W ) =
EZ,B L(Q(Z);B) with Z ∼ N (W, ε2Id). Differentiating under the integral with respect to the
mean of the Gaussian and using ∇W log pW,ε(Z) = (Z −W )/ε2,

∇fε(W ) = EZ,B

[
Z −W

ε2
L(Q(Z);B)

]
=

1

ε
EU,B

[
U L

(
Q(W + εU);B

)]
.

By antithetic symmetry of U ,

EU,B

[
L(Q(W + εU);B)− L(Q(W − εU);B)

2ε
U

]
=

1

ε
EU,B

[
U L

(
Q(W + εU);B

)]
,

hence Eu,B [gb(W ;B)] = ∇fε(W ).

(ii) Second-moment/MSE bound. Let

g(W ;B,U) :=
L(Q(W + εU);B)− L(Q(W − εU);B)

2ε
U .

Using independence of the q i.i.d. samples, E ∥gb − ∇fε∥22 ≤ 1
q E ∥g − Eg∥22 ≤ 1

q E ∥g∥22. By
G-Lipschitzness of L(·;B) and triangle inequality for Q,

∥g∥2 ≤ G

2ε

∥∥Q(W + εU)−Q(W − εU)
∥∥
2
∥U∥2 ≤ G∥U∥22 +

G∆
√
d

2ε
∥U∥2,

where we used the standard quantization geometry ∥Q(x)−Q(y)∥2 ≤ ∥x− y∥2 + ∥Q(x)− x∥2 +
∥Q(y) − y∥2 ≤ ∥x − y∥2 +∆

√
d and ∥Q(z) − z∥2 ≤ (∆/2)

√
d. Applying (a+b)2 ≤ 2a2 + 2b2

and Gaussian moment identities E∥U∥22 = d, E∥U∥42 = d2 + 2d yields

E ∥g∥22 ≤ 2G2 E∥U∥42 +
G2 ∆2d

2ε2
E∥U∥22 = 2G2

(
d2 + 2d

)
+

G2 ∆2 d2

2 ε2
.

Dividing by q completes the proof.
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What STE assumes and why it is biased. The straight-through estimator (STE) replaces the ill-
defined Jacobian JQ(W ) of the piecewise-constant quantizer Q by a hand-crafted surrogate S(W )
(e.g., S(W ) = I or a clipped indicator). The chain rule then yields the surrogate update

gSTE(W ;B) = S(W )⊤ ∇QL
(
Q(W );B

)
.

Because Q is flat almost everywhere, the true chain rule gives JQ(W ) = 0 a.e., so assert-
ing JQ(W ) ≈ S(W ) implicitly enforces gradient invariance to the discrete parameterization:
∇WL(Q(W );B) ≈ ∇QL(Q(W );B) regardless of whether small perturbations of W actually
change Q(W ). This mismatch makes gSTE a biased estimator of any well-defined target (e.g.,
∇fε(W ) from Gaussian smoothing, or Clarke’s generalized gradient of f ), and the bias can remain
large away from quantization thresholds where the true smoothed gradient vanishes in magnitude.

Proposition 2 (Worst-case STE bias in expectation, 1-D). Assume d = 1 and a uniform b-bit quan-
tizer of step ∆ > 0. Let L(z;B) = Gz be a G-Lipschitz linear loss in its (quantized) argument.
For W ∈ R, let r(W ) be the distance to the nearest quantization threshold and set t := r(W )/ε.
Consider the common STE choice S(W ) ≡ 1. Then, for every W and ε > 0,∥∥∥EB

[
gSTE(W ;B)

]
− ∇fε(W )

∥∥∥ ≥ G − G√
2π

(
∆
ε + 2t+ 2

t

)
e−t2/2.

In particular, for any δ ∈ (0, 1), if

t ≥

√
2 log

(
1√
2π δ

(
∆
ε + 2t+ 2

t

))
,

then
∥∥EB [gSTE]−∇fε(W )

∥∥ ≥ (1− δ)G; i.e., the STE exhibits an Ω(G) bias in expectation away
from thresholds.

Proof via two lemmas. We first record two standard ingredients.

Lemma 1 (1-D Gaussian tail identities). If U ∼ N (0, 1) and t ≥ 0, then

E
[
|U |1{|U | ≥ t}

]
= 2ϕ(t),E

[
U21{|U | ≥ t}

]
= 2

(
tϕ(t) + 1− Φ(t)

)
,P(|U | ≥ t) = 2(1− Φ(t)),

(6)

and Mills’ bound 1−Φ(t) ≤ ϕ(t)/t holds for t > 0, where ϕ(t) = 1√
2π

e−t2/2 and Φ is the standard
normal cdf.

Lemma 2. Let d = 1 and t = r(W )/ε. If L(·;B) is G-Lipschitz in its argument, then∥∥∇fε(W )
∥∥ ≤ G√

2π

(
∆
ε + 2t+ 2

t

)
e−t2/2.

Proof. From the Gaussian-smoothing representation (two-point form),

∇fε(W ) = Eu,B

[
L(Q(W + εu);B)− L(Q(W − εu);B)

2ε
u

]
.

By G-Lipschitzness and symmetry,

∥∇fε(W )∥ ≤ G

2ε
Eu

[
|u|

∣∣Q(W + εu)−Q(W − εu)
∣∣ ] .

If |u| < t, both perturbations stay in the same quantization cell and the difference vanishes; oth-
erwise, the quantization geometry yields

∣∣Q(W + εu) − Q(W − εu)
∣∣ ≤ (2ε|u| + ∆)1{|u| ≥ t}.

Hence

∥∇fε(W )∥ ≤ G

2ε
E[(2ε|u|+∆)|u|1{|u| ≥ t}] .

Expanding and applying Lemma 1 (with Mills’ bound) gives the claim.
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We now prove the proposition. For the stated STE with S(W ) ≡ 1 and the linear loss L(z;B) = Gz,
one has ∇QL(Q(W );B) ≡ G, hence

EB

[
gSTE(W ;B)

]
= G.

Therefore,∥∥∥EB [gSTE]−∇fε(W )
∥∥∥ ≥ G−

∥∥∇fε(W )
∥∥ (Lemma 2)

≥ G− G√
2π

(
∆
ε + 2t+ 2

t

)
e−t2/2.

Rearranging yields the thresholded (1− δ)G lower bound.

Remark 1. This formalizes the violation of gradient invariance and explains the Ω(G) expected bias
away from thresholds. Multidimensional extensions follow by coordinate-wise threshold distances
and union/tail bounds.
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