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ABSTRACT

We propose a federated averaging Langevin algorithm (FA-LD) for uncertainty
quantification and mean predictions with distributed clients. In particular, we
generalize beyond normal posterior distributions and consider a general class of
models. We develop theoretical guarantees for FA-LD for strongly log-concave
distributions with non-i.i.d data and study how the injected noise and the stochastic-
gradient noise, the heterogeneity of data, and the varying learning rates affect the
convergence. Such an analysis sheds light on the optimal choice of local updates
to minimize communication cost. Important to our approach is that the commu-
nication efficiency does not deteriorate with the injected noise in the Langevin
algorithms. In addition, we examine in our FA-LD algorithm both independent
and correlated noise used over different clients. We observe that there is also a
trade-off between federation and communication cost there. As local devices may
become inactive in the federated network, we also show convergence results based
on different averaging schemes where only partial device updates are available.

1 INTRODUCTION

Federated learning (FL) allows multiple parties to jointly train a consensus model without sharing user
data. Compared to the classical centralized learning regime, federated learning keeps training data
on local clients, such as mobile devices or hospitals, where data privacy, security, and access rights
are a matter of vital interest. This aggregation of various data resources heeding privacy concerns
yields promising potential in areas of internet of things Chen et al. (2020), healthcare Li et al. (2020d;
2019b), text data Huang et al. (2020), and fraud detection Zheng et al. (2020).

A standard formulation of federated learning is a distributed optimization framework that tackles
communication costs, client robustness, and data heterogeneity across different clients Li et al.
(2020a). Central to the formulation is the efficiency of the communication, which directly motivates
the communication-efficient federated averaging (FedAvg) McMahan et al. (2017). FedAvg introduces
a global model to synchronously aggregate multi-step local updates on the available clients and yields
distinctive properties in communication. However, FedAvg often stagnates at inferior local modes
empirically due to the data heterogeneity across the different clients Charles & Konečnỳ (2020);
Woodworth et al. (2020). To tackle this issue, Karimireddy et al. (2020); Pathaky & Wainwright
(2020) proposed stateful clients to avoid the unstable convergence, which are, however, not scalable
with respect to the number of clients in applications with mobile devices Al-Shedivat et al. (2021).
In addition, the optimization framework often fails to quantify the uncertainty accurately for the
parameters of interest, which are crucial for building estimators, hypothesis tests, and credible
intervals. Such a problem leads to unreliable statistical inference and casts doubts on the credibility
of the prediction tasks or diagnoses in medical applications.

To unify optimization and uncertainty quantification in federated learning, we resort to a Bayesian
treatment by sampling from a global posterior distribution, where the latter is aggregated by infrequent
communications from local posterior distributions. We adopt a popular approach for inferring
posterior distributions for large datasets, the stochastic gradient Markov chain Monte Carlo (SG-
MCMC) method Welling & Teh (2011); Vollmer et al. (2016); Teh et al. (2016); Chen et al. (2014);
Ma et al. (2015), which enjoys theoretical guarantees beyond convex scenarios Raginsky et al. (2017);
Zhang et al. (2017); Mangoubi & Vishnoi (2018); Ma et al. (2019). In particular, we examine in
the federated learning setting the efficacy of the stochastic gradient Langevin dynamics (SGLD)
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algorithm, which differs from stochastic gradient descent (SGD) in an additionally injected noise for
exploring the posterior. The close resemblance naturally inspires us to adapt the optimization-based
FedAvg to a distributed sampling framework. Similar ideas have been proposed in federated posterior
averaging Al-Shedivat et al. (2021), where empirical study and analyses on Gaussian posteriors have
shown promising potential of this approach. Compared to the appealing theoretical guarantees of
optimization-based algorithms in federated learning Pathaky & Wainwright (2020); Al-Shedivat et al.
(2021), the convergence properties of approximate sampling algorithms in federated learning is far
less understood. To fill this gap, we proceed by asking the following question:

Can we build a unified algorithm with convergence guarantees for sampling in FL?

In this paper, we make a first step in answering this question in the affirmative. We propose
the federated averaging Langevin dynamics (FA-LD) for posterior inference beyond the Gaussian
distribution. We list our contributions as follows:

• We present a novel non-asymptotic convergence analysis for FA-LD from simulating strongly
log-concave distributions on non-i.i.d data when the learning rate is fixed. The frequently
used bounded gradient assumption of `2 norm in FedAvg optimization is not required.

• The convergence analysis indicates that the injected noise, the data heterogeneity, and the
stochastic-gradient noise are all driving factors that affect the convergence. Such an analysis
also provides a concrete guidance on the optimal selection of the number of local updates.

• We present a convergence result for FA-LD with decaying learning rates. This strategy
accelerates the computation by a logarithmic factor to achieve the precision ε.

• The algorithm yields appealing extensions: (1) we can choose to inject either independent
or correlated noise across local clients, yielding a trade-off between accuracy and efficacy
of federation; (2) we can choose whether to activate all the devices to avoid the straggler’s
effect in real-world applications.

Roadmap. In Section 2, we discuss the related work and literature. In Section 3, we present
the preliminary knowledge. In Section 4, we propose the federated averaging Langevin dynamics
algorithm for posterior inference. In Section 5, we lay out the required assumptions, sketch the proof,
and show the theoretical convergence results. In Section 6, we conclude our work.

2 RELATED WORK

Federated Learning Current federated learning follows two paradigms. The first paradigm asks
every client to learn the model using private data and communicate in model parameters. The second
one uses encryption techniques to guarantee secure communication between clients. In this paper, we
focus on the first paradigms Dean et al. (2012); Shokri & Shmatikov (2015); McMahan et al. (2016;
2017); Huang et al. (2021). There is a long list of works showing provable convergence algorithm for
FedAvg types of algorithms in the field of optimization Li et al. (2020c; 2021); Huang et al. (2021);
Khaled et al. (2019); Yu et al. (2019); Wang et al. (2019); Karimireddy et al. (2020). One line of
research Li et al. (2020c); Khaled et al. (2019); Yu et al. (2019); Wang et al. (2019); Karimireddy et al.
(2020) focuses on standard assumptions in optimization (such as, convex, smooth, strongly-convex,
bounded gradient). The other line of work Li et al. (2021); Huang et al. (2021) proves the convergence
in the regime where the model of interest is an over-parameterized neural network (also called NTK
regime Jacot et al. (2018)).

Scalable Monte Carlo methods SGLD Welling & Teh (2011) is the first stochastic gradient Monte
Carlo method that tackles the scalability issue in big data problems. Ever since, variants of stochastic
gradient Monte Carlo methods were proposed to accelerate the simulations by utilizing more general
Markov dynamics Ma et al. (2015; 2018); Chen et al. (2014), Hessian approximation Ahn et al.
(2012), parallel tempering Deng et al. (2020), as well as higher-order numerical schemes Chen et al.
(2015); Li et al. (2019c); Cheng et al. (2018); Ma et al. (2021); Mou et al. (2021); Shen & Lee (2019).

Distributed Monte Carlo methods Sub-posterior aggregation was initially proposed in
Neiswanger et al. (2013); Wang & Dunson; Minsker et al. (2014) to accelerate MCMC methods to
cope with large datasets. Other parallel MCMC algorithms Nishihara et al. (2014); Ahn et al. (2014);
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Chen et al. (2016); Chowdhury & Jermaine (2018); Li et al. (2019a) propose to improve the efficiency
of Monte Carlo computation in distributed or asynchronous systems. Gürbüzbalaban et al. (2021)
proposed stochastic gradient Monte Carlo methods in decentralized systems. Al-Shedivat et al. (2021)
introduced empirical studies of posterior averaging in federated learning.

Notation For any positive integer n, we use [n] to denote the set {1, 2, · · · , n}. Let N denote the
number of clients. For each c ∈ [N ], we use f c and ∇f c as the loss function and gradient of the
function f c in client c. ∇f̃ c(·) is the unbiased stochastic gradient of ∇f c. In addition, we denote pc
as the weight of the c-th client such that pc = nc∑N

i=1 ni
∈ (0, 1), where nc > 0 is the number of data

points in the c-th client. Let Tε denote the number of global steps to achieve the precision ε. Let K
denote the number of local steps and hence Tε/K denotes the number of communications.

3 PRELIMINARIES

3.1 AN OPTIMIZATION PERSPECTIVE ON FEDERATED AVERAGING

Federated averaging (FedAvg) is a standard algorithm in federated learning and is typically formulated
into a distributed optimization framework as follows

min
θ
`(θ) :=

∑N
c=1 `

c(θ)∑N
c=1 nc

, `c(θ) :=

nc∑
i=1

l(θ;xc,i), (1)

where θ ∈ Rd, l(θ;xc,j) is a certain loss function based on θ and the data point xc,j .

One iterate of the FedAvg algorithm requires the following three steps:

• Broadcast: The center server broadcasts the latest model, θk, to all local clients.
• Local updates: For any c ∈ [N ], the c-the client first sets θck = θk and then conducts K ≥ 1

local steps:

βck+1 = θck − η∇˜̀c(θck),

where η is the learning rate and∇˜̀c is the unbiased estimate of the exact gradient∇`c.
• Synchronization: The local models are aggregated into a unique model θk+K :=∑N

c=1 pcβ
c
k+K and sent to the center server.

From the optimization perspective, Li et al. (2020c) proved the convergence of the FedAvg algorithm
on non-i.i.d data such that a larger number of local steps K and a higher order of data heterogeneity
slows down the convergence. Notably, Eq. (1) can be interpreted as maximizing the likelihood
function, which is a special case of maximum a posteriori estimation (MAP) given a uniform prior.

3.2 STOCHASTIC GRADIENT LANGEVIN DYNAMICS

Posterior inference offers the exact uncertainty quantification ability of the predictions. A popular
method for posterior inference with large dataset is the stochastic gradient Langevin dynamics
(SGLD) Welling & Teh (2011), which injects additional noise into the stochastic gradient and adapts
an optimization algorithm to a sampling one

θk+1 = θk − η∇f̃(θk) +
√

2τηξk,

where τ is the temperature and ξk is a standard d-dimensional Gaussian vector. f(θ) :=
∑N
c=1 `

c(θ)

is a energy function. f̃(θ) is a unbiased estimate of f(θ). In the longtime limit, a well known result
is that θk converges weakly to the distribution π(θ) ∝ exp(−f(θ)/τ) Teh et al. (2016) as η → 0.

4 POSTERIOR INFERENCE VIA FEDERATED AVERAGING LANGEVIN DYNAMICS

The increasing concern for uncertainty estimation in federated learning motivates us to consider the
simulation of the distribution π(θ) ∝ exp(−f(θ)/τ) with distributed clients.
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Problem formulation We propose the federated averaging Langevin dynamics (FA-LD) based
on the FedAvg framework in section 3.1. We follow the same broadcast step and synchronization
step but propose to inject random noises for local updates. In particular, we consider the following
scheme: for any c ∈ [N ], the c-the client first sets θck = θk and then conducts K ≥ 1 local steps:

βck+1 = θck − η∇f̃ c(θck) +
√

2ητΞck, (2)

where ∇f c(θ) = 1
pc
∇`c(θ). ∇f̃ c(θ) is the unbiased estimate of ∇f c(θ) and Ξck is an independent

Gaussian vector to be defined later.

Summing Eq. (2) from clients c = 1 to N , we have the aggregated stochastic process as follows

βk+1 = θk − η∇f̃(θk) +
√

2ητξk,

where

βk =

N∑
c=1

pcβ
c
k, θk =

N∑
c=1

pcθ
c
k, ∇f̃(θk) =

N∑
c=1

pc∇f̃ c(θck), ξk =

N∑
c=1

pcΞ
c
k. (3)

By the nature of the synchronization step, we always have βk = θk whether k+ 1 mod K = 0 or not.
In what follows, we can write

θk+1 = θk − η∇f̃(θk) +
√

2ητξk, (4)

which resembles the SGLD algorithm except that the construction of stochastic gradients is dif-
ferent and θk is not accessible when k mod K 6= 0. Since our target is to simulate from
π(θ) ∝ exp(−f(θ)/τ), we expect that ξk is a standard Gaussian vector. By the concentra-
tion property of independent Gaussian variables, it is natural to set Ξck = ξck/

√
pc so that

ξk =
∑N
c=1 pcΞ

c
k =

∑N
c=1

√
pcξ

c
k and ξck is also a standard Gaussian vector. Now we present

it in Algorithm 1.

Algorithm 1 Federated averaging Langevin dynamics algorithm (FA-LD), informal version of
Algorithm 4. ηk is the learning rate at iteration k. τ is the temperature. Denote by θck the model
parameter in the c-th client at the k-th step. Denote the immediate result of one step SGLD update
from θck by βck. ξck is an independent standard d-dimensional Gaussian vector at iteration k for each
client c ∈ [N ]. A global synchronization is conducted every K steps.

1:
βck+1 = θck − ηk∇f̃ c(θck) +

√
2ηkτ/pcξ

c
k, (5)

2:

θck+1 =


βck+1 if k + 1 mod K 6= 0∑N
c=1 pcβ

c
k+1 if k + 1 mod K = 0.

(6)

Algorithm 2 Hybrid federated averaging Langevin dynamics algorithm (hFA-LD), informal version
of Algorithm 5. ξ̇k is a d-dimensional Gaussian vector shared by all the clients; ξck is an independent
standard d-dimensional Gaussian vector at iteration k for each client c ∈ [N ]. ρ denotes the
correlation coefficient.

1:
βck+1 = θck − η∇f̃ c(θck) +

√
2ητρ2ξ̇k +

√
2η(1− ρ2)τ/pcξ

c
k,

2:

θck+1 =


βck+1 if k + 1 mod K 6= 0∑N
c=1 pcβ

c
k+1 if k + 1 mod K = 0.

We observe that the local process in Eq. (5) maintains a temperature τ/pc > τ to converge to the
stationary distribution π. Such a mechanism may limit the disclosure of individual data and shows a
potential to ensure a higher level of privacy.
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5 CONVERGENCE ANALYSIS

In this section, we show that FA-LD converges to the stationary distribution π(θ) in the 2-Wasserstein
(W2) distance at a rate of O(1/

√
Tε) for strongly log-concave and smooth density. The W2 distance

is defined between a pair of Borel probability measures µ and ν on Rd as follows

W2(µ, ν) := inf
γ2∈Couplings(µ,ν)

(∫
‖βµ − βν‖22dγ2(βµ,βν)

) 1
2

,

where ‖ · ‖2 denotes the `2 norm on Rd and the pair of random variables (βµ,βν) ∈ Rd × Rd is
a coupling with the marginals following L(βµ) = µ and L(βν) = ν. Note that L(·) denotes a
distribution of a random variable. Such a distance is more appealing than the total variation or the
Kullback–Leibler divergence in statistical machine learning applications for providing the estimates
of the first and second order moments.

5.1 NOTATION AND ASSUMPTIONS

We make standard assumptions on the smoothness and convexity of the functions f1, f2, · · · , fN ,
which naturally yields appealing tail properties of the stationary measure π. Thus, we no longer
require a restrictive assumption on the bounded gradient in `2 norm as in Koloskova et al. (2019); Yu
et al. (2019); Li et al. (2020c). In addition, to control the distance between ∇f c and ∇f̃ c, we also
assume a bounded variance of the stochastic gradient in assumption 5.3.

Assumption 5.1 (Smoothness). For each c ∈ [N ], we say f c is L-smooth if for some L > 0

f c(y) ≤ f c(x) + 〈∇f c(x), y − x〉+
L

2
‖y − x‖22 ∀x, y ∈ Rd.

Assumption 5.2 (Strongly convex). For each c ∈ [N ], f c is m-strongly convex if for some m > 0

f c(x) ≥ f c(y) + 〈∇f c(y), x− y〉+
m

2
‖y − x‖22 ∀x, y ∈ Rd.

Assumption 5.3 (Bounded variance, informal version of Assumption A.3). For each c ∈ [N ], the
variance of noise in the stochastic gradient∇f̃ c(x) in each client is upper bounded such that

E[‖∇f̃ c(x)−∇f c(x)‖22] ≤ σ2d, ∀x ∈ Rd.

Quality of non-i.i.d data Denote by θ∗ the global minimum of f . Next, we quantify the degree
of the non-i.i.d data by γ := maxc∈[N ] ‖∇f c(θ∗)‖2, which is a non-negative constant and yields a
larger scale if the data is less identically distributed.

5.2 PROOF SKETCH

The proof hinges on showing the one-step result in the W2 distance. To facilitate the analysis, we
first define an auxiliary continuous-time processes (θ̄t)t≥0 without communication concerns

dθ̄t = −∇f(θ̄t)dt+
√

2τdW t, (7)

where θ̄t =
∑N
c=1 pcθ̄

c
t , ∇f(θ̄t) =

∑N
c=1 pc∇f c(θ̄ct ), θ̄ct is the continuous-time variable at client c,

and W is a d-dimensional Brownian motion. The continuous-time algorithm is known to converge to
the stationary distribution π(θ) ∝ e−

f(θ)
τ , where f(θ) =

∑N
c=1 pcf

c(θ). Assume that θ̄0 simulates
from the stationary distribution π, then it follows that θ̄t ∼ π for any t ≥ 0.

5.2.1 DOMINATED CONTRACTION IN FEDERATED LEARNING

The first target is to show a certain contraction property of ‖β − θ − η(∇f(β)−∇f(θ))‖22 based on
distributed clients with infrequent communications. Consider a standard decomposition

‖β − θ − η(∇f(β)−∇f(θ))‖22
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= ‖β − θ‖22 − 2η 〈β − θ,∇f(β)−∇f(θ)〉︸ ︷︷ ︸
I

+η2 ‖∇f(β)−∇f(θ)‖22 .

Using Eq.(3), we decompose I and apply Jensen’s inequality to obtain the lower bound of I . In what
follows, we have the following lemma.
Lemma 5.4 (Dominated contraction property, informal version of Lemma B.1). Assume assumptions
5.1 and 5.2 hold. For any learning rate η ∈ (0, 1

L+m ], any {θc}Nc=1, {βc}Nc=1 ∈ Rd, we have

‖β − θ − η(∇f(β)−∇f(θ))‖22 ≤ (1− ηm) · ‖β − θ‖22 + 4ηL

N∑
c=1

pc · (‖βc − β‖22 + ‖θc − θ‖22)︸ ︷︷ ︸
divergence term

,

where β =
∑N
c=1 pcβ

c, θ =
∑N
c=1 pcθ

c, ∇f(θ) =
∑N
c=1 pc∇f c(θc), and ∇f(β) =∑N

c=1 pc∇f c(βc). It implies that as long as the local parameters θc, βc and global θ, β don’t
differ each other too much, we can guarantee the desired convergence. In a special case when the
communication is conducted at every iteration, the divergence term disappears and recovers the
standard contraction Dalalyan & Karagulyan (2019).

5.2.2 BOUNDING DIVERGENCE

The following result shows that given a finite number of local steps K, the divergence between θc in
local client and θ in the center is bounded in `2 norm. Notably, since the Brownian motion leads to a
lower order term O(η) instead of O(η2), a naïve proof framework such as Li et al. (2020c) may lead
to a crude upper bound for the final convergence.
Lemma 5.5 (Bounded divergence, informal version of Lemma B.3). Assume assumptions 5.1, 5.2,
and 5.3 hold. For any learning rate η ∈ (0, 2/m) and ‖θc0 − θ∗‖

2
2 ≤ dD2 for any c ∈ [N ], we have

the `2 upper bound of the divergence between local clients and the center as follows
N∑
c=1

pcE‖θck − θk‖22 ≤ O(K2η2d) +O(Kηd).

The result also relies on showing a uniform upper bound in `2 norm, which avoids making extra
bounded gradient assumptions.

5.2.3 COUPLING TO THE STATIONARY PROCESS

Note that θ̄t is initialized from the stationary distribution π. The solution to the continuous-time
process Eq.(7) follows:

θ̄t = θ̄0 −
∫ t

0

∇f(θ̄s)ds+
√

2τ ·W t, ∀t ≥ 0. (8)

Set t→ (k+ 1)η and θ̄0 → θ̄kη for Eq.(8) and consider a synchronous coupling such that W(k+1)η−
Wkη :=

√
ηξk is used to cancel the noise terms, we have

θ̄(k+1)η = θ̄kη −
∫ (k+1)η

kη

∇f(θ̄s)ds+
√

2τηξk. (9)

Subtracting Eq.(4) from Eq.(9) and taking square and expectation on both sides yield that

E‖θ̄(k+1)η − θk+1‖22 ≤ (1− ηm/2) · E‖θ̄kη − θk‖22 + divergence term + time error.

Eventually, we arrive at the one-step error bound for establishing the convergence results.
Lemma 5.6 (One step update, informal version of Lemma B.5). Assume assumptions 5.1, 5.2, and
5.3 hold. Consider Algorithm 1 with any learning rate η ∈ (0, 1

2L ) and ‖θc0 − θ∗‖
2
2 ≤ dD2 for any

c ∈ [N ], where θ∗ is the global minimum for the function f . Then

W 2
2 (µk+1, π) ≤ (1− ηm/2) ·W 2

2 (µk, π) +O(η2d(K2 + κ)),

where µk denotes the probability measure of θk and κ = L/m is the condition number.
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5.3 FULL DEVICE PARTICIPATION

5.3.1 CONVERGENCE BASED ON INDEPENDENT NOISE

When the synchronization step is conducted at every iteration k, the FA-LD algorithm is essentially
the standard SGLD algorithm Welling & Teh (2011). Theoretical analysis based on the 2-Wasserstein
distance has been established in Durmus & Moulines (2016); Dalalyan (2017a); Dalalyan & Karag-
ulyan (2019). However, in scenarios of K > 1 with distributed clients, a divergence between the
global variable θk and local variable θck appears and unavoidably affects the performance. The upper
bound on the sampling error is presented as follows.
Theorem 5.7 (Main result, informal version of Theorem B.6). Assume assumptions 5.1, 5.2, and 5.3
hold. Consider Algorithm 1 with a fixed learning rate η ∈ (0, 1

2L ] and ‖θc0 − θ∗‖
2
2 ≤ dD2 for any

c ∈ [N ], we have †

W2(µk, π) ≤ (1− ηm/4)
k ·
(√

2d
(
D +

√
τ/m

))
+ 30κ

√
ηmd ·

√
(K2 + κ)H0.

where µk denotes the probability measure of θk at iteration k, K denotes the number of local updates,
κ := L/m, γ := maxc∈[N ] ‖∇f c(θ∗)‖2, and H0 := D2 + maxc∈[N ]

τ
mpc

+ γ2

m2d + σ2

m2 .

We observe that the initialization, the scale of the injected noise, the heterogeneity of the data, and
the noise in the stochastic gradient all affect the convergence. Similar to the result of Li et al. (2020c),
FA-LD with K-local steps resembles the behaviour of one-step SGLD with a large learning rate.

Optimal choice of K. To ensure the algorithm to achieve the precision ε based on the total number
of steps Tε and the learning rate η, we can set

30κ
√
ηmd ·

√
(K2 + κ)H0 ≤ ε/2, exp

(
− ηm

4
Tε
)
·
√

2d(D +
√
τ/m) ≤ ε/2.

This readily leads to

ηm ≤ O
(

ε2

dκ2(K2 + κ)H0

)
, Tε ≥ Ω

(
log(d/ε)

mη

)
.

Plugging into the upper bound of ηm, it implies that to reach the precision ε, it suffices to set

Tε = Ω(ε−2dκ2(K2 + κ)H0 · log(d/ε)). (10)

It’s obvious that H0 = Ω(D2) = Ω(1), thus we can conclude that the number of communication
rounds is around the order

Tε
K

= Ω

(
K +

κ

K

)
,

where the value of TεK first decreases and then increases with respect to K, indicating that setting K
either too large or too small may lead to high communication costs and hurt the performance. Ideally,
K should be selected in the scale of Ω(

√
κ). Combining the definition of Tε in Eq. (10), this suggests

an interesting result that the optimal K for FA-LD should be in the order of O(
√
Tε). Similar results

have been achieved by Stich (2019); Li et al. (2020c).

5.3.2 CONVERGENCE GUARANTEES VIA VARYING LEARNING RATES

Theorem 5.8 (Informal version of Theorem B.7). Assume assumptions 5.1, 5.2, and 5.3 hold.
Consider Algorithm 1 with an initialization satisfying ‖θc0 − θ∗‖

2
2 ≤ dD2 for any c ∈ [N ] and the

varying learning rate following

ηk =
1

2L+ (1/12)mk
, k = 1, 2, · · · .

Then for any k ≥ 0, we have

W2(µk, π) ≤ 45κ
√

(K2 + κ)H0 ·
(
ηkmd

)1/2
, ∀k ≥ 0.

†For ease of presentation, we report the result based on K2 instead of (K − 1)2. The upper bound based on
(K − 1)2 is detailed in the supplementary file.
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Note that the above result implies that to achieve the precision ε, we require

W2(µk, π) ≤ 45κ
√

(K2 + κ)H0 ·
(

md

2L+ (1/12)mk

)1/2

≤ ε.

We therefore require Ω(ε−2d) iterations to achieve the precision ε, which improves the
Ω(ε−2d log(d/ε)) rate for FA-LD with a fixed learning rate by a O(log(d/ε)) factor.

5.3.3 PRIVACY-ACCURACY TRADE-OFF VIA CORRELATED NOISES

Note that Algorithm 1 requires all the local clients to generate the independent noise ξck. Such a
mechanism enjoys the convenience of the implementation and yields a potential to protect the privacy
of data and alleviates the security issue. However, the large scale noise inevitable slows down the
convergence. To handle this issue, the independent noise can be generalized to correlated noise based
on a correlation coefficient ρ between different clients. Replacing Eq. (5) with

βck+1 = θck − η∇f̃ c(θck) +
√

2ητρ2ξ̇k +
√

2η(1− ρ2)τ/pcξ
c
k, (11)

where ξ̇k is a d-dimensional standard Gaussian vector shared by all the clients at iteration k and ξ̇k is
dependent with ξck for any c ∈ [N ]. Following the synchronization step based on Eq. (6), we have

θk+1 = θk − η∇f̃(θk) +
√

2ητξk, (12)

where ξk = ρξ̇k +
√

1− ρ2
∑N
c=1

√
pcξ

c
k. Since the variance of i.i.d variables is additive, it is clear

that ξk follows the standard d-dimensional Gaussian distribution. The inclusion of the correlated
noise implicitly reduces the temperature for each client and naturally yields a trade-off between
federation and accuracy. We refer to the algorithm with correlated noise as the hybrid federated
averaging Langevin dynamics (hFA-LD) and present it in Algorithm 2.

Since the inclusion of correlated noise doesn’t affect the iterate of Eq. (12), the algorithm property
maintains the same except the scale of the temperature τ and efficacy of federation are changed.
Based on a target correlation coefficient ρ ≥ 0, Eq. (11) is equivalent to applying a temperature
Tc,ρ = τ(ρ2 +(1−ρ2)/pc). In particular, setting ρ = 0 leads to Tc,0 = τ/pc, which exactly recovers
Algorithm 1; however, setting ρ = 1 leads to Tc,1 = τ , where the injected noise in local clients is
reduced by 1/pc times. Now we adjust the analysis as follows
Theorem 5.9 (Informal version of Theorem B.8). Assume assumptions 5.1, 5.2, and 5.3 hold.
Consider Algorithm 2 with a correlation coefficient ρ ∈ [0, 1], η ∈ (0, 1

2L ] and ‖θc0 − θ∗‖
2
2 ≤ dD2

for any c ∈ [N ], we have

W2(µk, π) ≤ (1− ηm/4)k ·
(√

2d
(
D +

√
τ/m

))
+ 30κ

√
ηmd ·

√
(K2 + κ)Hρ,

where µk denotes the probability measure of θk, Hρ := D2 + 1
m maxc∈[N ] Tc,ρ + γ2

m2d + σ2

m2 .

Such a mechanism leads to a trade-off between the efficacy of federation and accuracy and motivates
us to exploit the optimal ρ under the differential-privacy theories Wang et al. (2015).

5.4 PARTIAL DEVICE PARTICIPATION

Full device participation enjoys appealing convergence properties. However, it suffers from the
straggler’s effect in real-world applications, where the communication is limited by the slowest
device. Partial device participation handles this issue by only allowing a small portion of devices in
each communication and greatly increased the communication efficiency in a federated network.

The first device-sampling scheme I Li et al. (2020b) selects a total of S devices, where the c-th device
is selected with a probability pc. The first theoretical justification for convex optimization has been
proposed by Li et al. (2020c).

(Scheme I: with replacement). Assume Sk = {n1, n2, · · · , nS}, where nj ∈ [N ] is a random
number that takes a value of c with a probability pc for any j ∈ {1, 2, · · · , S}. The synchronization
step follows that θk = 1

S

∑
c∈Sk θ

c
k.

Another strategy is to uniformly select S devices without replacement. We follow Li et al. (2020c)
and assume S indices are selected uniformly without replacement. In addition, the convergence also
requires an additional assumption on balanced data Li et al. (2020c).
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(Scheme II: without replacement). Assume Sk = {n1, n2, · · · , nS}, where nj ∈ [N ] is a
random number that takes a value of c with a probability 1

S for any j ∈ {1, 2, · · · , S}. Assume
the data is balanced such that p1 = · · · = pN = 1

N . The synchronization step follows that
θk = N

S

∑
c∈Sk pcθ

c
k = 1

S

∑
c∈Sk θ

c
k.

Algorithm 3 Hybrid federated Averaging Langevin dynamics Algorithm (FA-LD) with partial device
participation, informal version of Algorithm 6. Sk is sampled according to a device-sampling rule
based on scheme I or II.

1:
βck+1 = θck − η∇f̃ c(θck) +

√
2ητρ2ξ̇k +

√
2η(1− ρ2)τ/pcξ

c
k,

2:

θck+1 =


βck+1 if k + 1 mod K 6= 0∑
c∈Sk+1

1
Sβ

c
k+1 if k + 1 mod K = 0.

Theorem 5.10 (Informal version of Theorem C.3). Assume assumptions 5.1, 5.2, and 5.3 hold.
Consider Algorithm 3 with a hyperparameter ρ ∈ [0, 1], a fixed learning rate η ∈ (0, 1

2L ] and
‖θc0 − θ∗‖

2
2 ≤ dD2 for any c ∈ [N ], we have

W2(µk, π) ≤ (1− ηm/4)k ·
(√

2d
(
D +

√
τ/m

))
+ 30κ

√
ηmd ·

√
Hρ(K2 + κ) +O

(√
d

S
(ρ2 +N(1− ρ2))CS

)
,

where CS = 1 for Scheme I and CS = N−S
N−1 for Scheme II.

We observe that partial device participation leads to an extra bias regardless of the scale of η. To
reduce such a bias, we suggest to consider highly correlated injected noise, such as ρ = 1, to reduce
the impact of the injected noise. By setting O(

√
d/S) ≤ ε/3 and following a similar learning rate

as in section 5.3.1, we can achieve the precision ε within Ω(ε−2d log(d/ε)) iterations given a large
number of devices satisfying S = Ω(ε−2d).

The device-sampling scheme I provides a viable solution to handle the straggler’s effect in full device
participation and greatly accelerates the communication efficiency. In addition, scheme I is rather
robust to the data heterogeneity and doesn’t require the data to be balanced. In other words, this
device-sampling scheme is more preferred if a system is free to activate any devices at any time.

In more practical cases where a system can only operate based on the first S messages for the local
updates. The device-sampling scheme II proposes a concrete treatment to tackle this issue. Given
a balanced data across different clients and each device is uniformly sampled, we can achieve a
reasonable approximation. If S = 1, our Scheme II matches the result in the Scheme I. If S = N ,
then our Scheme II recovers the result in the full device setting. If S = N − o(N), then our Scheme
II bound is better than scheme I.

6 CONCLUSION AND FUTURE WORK

We propose a novel convergence analysis for federated averaging Langevin dynamics (FA-LD) with
distributed clients. Our results no longer require the bounded gradient assumption in `2 norm as in
the optimization-driven literature in federated learning. The theoretical guarantees yield a concrete
guidance on the selection of the optimal number of local updates. In addition, the convergence highly
depends on the data heterogeneity and the injected noises, where the latter also inspires us to consider
correlated injected noise to balance between the efficacy of federation and accuracy.

Our work initiated the theoretical study of standard sampling algorithms in federated learning and
paved the way for future works of advanced Monte Carlo methods, such as underdamped Langevin
dynamics Cheng et al. (2018), replica exchange Monte Carlo (also known as parallel tempering)
Deng et al. (2020) in federated learning. It is also interesting to study the optimal number of local
steps under the non-strongly convex Dalalyan (2017b) or non-convex assumptions Raginsky et al.
(2017); Ma et al. (2019).
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Zachary Charles and Jakub Konečnỳ. On the Outsized Importance of Learning Rates in Local Update
Methods. arXiv:2007.00878, 2020.

Changyou Chen, Nan Ding, and Lawrence Carin. On the Convergence of Stochastic Gradient MCMC
Algorithms with High-order Integrators. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 2278–2286, 2015.

Changyou Chen, Nan Ding, Chunyuan Li, Yizhe Zhang, and Lawrence Carin. Stochastic Gradient
MCMC with Stale Gradients. In Advances in Neural Information Processing Systems (NeurIPS),
2016.

Mingzhe Chen, Zhaohui Yang, Walid Saad, Changchuan Yin, H Vincent Poor, and Shuguang Cui. A
Joint Learning and Communications Framework for Federated Learning over Wireless Networks.
IEEE Trans. on Wireless Communications, 2020.

Tianqi Chen, Emily B. Fox, and Carlos Guestrin. Stochastic Gradient Hamiltonian Monte Carlo. In
Proc. of the International Conference on Machine Learning (ICML), 2014.

Xiang Cheng, Niladri S Chatterji, Peter L Bartlett, and Michael I Jordan. Underdamped Langevin
MCMC: A non-asymptotic analysis. In Conference on Learning Theory (COLT), pp. 300–323.
PMLR, 2018.

Arkabandhu Chowdhury and Chris Jermaine. Parallel and Distributed MCMC via Shepherding
Distributions. In AISTAT, 2018.

Arnak S. Dalalyan. Further and Stronger Analogy Between Sampling and Optimization: Langevin
Monte Carlo and Gradient Descent. In Conference on Learning Theory (COLT), June 2017a.

Arnak S Dalalyan. Theoretical Guarantees for Approximate Sampling from Smooth and Log-concave
Densities. Journal of the Royal Statistical Society: Series B, 79(3):651–676, 2017b.

Arnak S Dalalyan and Avetik Karagulyan. User-friendly Guarantees for the Langevin Monte Carlo
with Inaccurate Gradient. Stochastic Processes and their Applications, 129(12):5278–5311, 2019.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large Scale Distributed Deep Networks. In
Advances in neural information processing systems (NeurIPS), pp. 1223–1231, 2012.

Wei Deng, Qi Feng, Liyao Gao, Faming Liang, and Guang Lin. Non-Convex Learning via Replica
Exchange Stochastic Gradient MCMC. In Proc. of the International Conference on Machine
Learning (ICML), 2020.

Alain Durmus and Éric Moulines. Sampling from a Strongly Log-concave Distribution with the
Unadjusted Langevin Algorithm. arXiv:1605.01559, 2016.

Mert Gürbüzbalaban, Xuefeng Gao, Yuanhan Hu, and Lingjiong Zhu. Decentralized Stochastic
Gradient Langevin Dynamics and Hamiltonian Monte Carlo. arXiv:2007.00590v3, 2021.

Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. FL-NTK: A Neural Tangent Kernel-based
Framework for Federated Learning Convergence Analysis. In International Conference on Machine
Learning (ICML), 2021.

10



Under review as a conference paper at ICLR 2022

Yangsibo Huang, Zhao Song, Danqi Chen, Kai Li, and Sanjeev Arora. TextHide: Tackling Data
Privacy in Language Understanding Tasks. In EMNLP, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Convergence and Gener-
alization in Neural Networks. In Advances in neural information processing systems (NeurIPS),
pp. 8571–8580, 2018.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic Controlled Averaging for Federated Learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. First Analysis of Local GD on
Heterogeneous Data. arXiv:1909.04715, 2019.

Anastasia Koloskova, Sebastian U.Stich, and Martin Jaggi. Decentralized Stochastic Optimization
and Gossip Algorithms with Compressed Communication. In Proc. of the International Conference
on Machine Learning (ICML), 2019.

Chunyuan Li, Changyou Chen, Yunchen Pu, Ricardo Henao, and Lawrence Carin. Communication-
Efficient Stochastic Gradient MCMC for Neural Networks. In Proc. of the National Conference on
Artificial Intelligence (AAAI), 2019a.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated Learning: Challenges,
Methods, and Future Directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smithy.
Federated Optimization in Heterogeneous Networks. In Proceedings of the 3rd MLSys Conference,
2020b.

Wenqi Li, Fausto Milletarì, Daguang Xu, Nicola Rieke, Jonny Hancox, Wentao Zhu, Maximilian
Baust, Yan Cheng, Sébastien Ourselin, M Jorge Cardoso, et al. Privacy-preserving Federated Brain
Tumour Segmentation. In International Workshop on Machine Learning in Medical Imaging, pp.
133–141. Springer, 2019b.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the Convergence of
FedAvg on Non-IID Data. In Proc. of the International Conference on Learning Representation
(ICLR), 2020c.

Xiaoxiao Li, Yufeng Gu, Nicha Dvornek, Lawrence Staib, Pamela Ventola, and James S Duncan.
Multi-site fMRI Analysis using Privacy-preserving Federated Learning and Domain Adaptation:
ABIDE Results. Medical Image Analysis, 2020d.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. FedBN: Federated learning on
Non-IID Features via Local Batch Normalization. In International Conference on Learning Repre-
sentations (ICLR), 2021. URL https://openreview.net/forum?id=6YEQUn0QICG.

Xuechen Li, Denny Wu, Lester Mackey, and Murat A. Erdogdu. Stochastic Runge-Kutta Accelerates
Langevin Monte Carlo and Beyond. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 7746–7758, 2019c.

Y.-A Ma, E. B. Fox, T. Chen, and L. Wu. Irreversible samplers from jump and continuous Markov
processes. Stat. Comput., pp. 1–26, 2018.

Y.-A. Ma, N. S. Chatterji, X. Cheng, N. Flammarion, P. L. Bartlett, and M. I. Jordan. Is there an
analog of Nesterov acceleration for MCMC? Bernoulli, 27:1942–1992, 2021.

Yi-An Ma, Tianqi Chen, and Emily B. Fox. A Complete Recipe for Stochastic Gradient MCMC. In
Neural Information Processing Systems (NeurIPS), 2015.

Yi-An Ma, Yuansi Chen, Chi Jin, Nicolas Flammarion, and Michael I. Jordan. Sampling Can Be
Faster Than Optimization. PNAS, 2019.

Oren Mangoubi and Nisheeth K. Vishnoi. Convex Optimization with Unbounded Nonconvex Oracles
using Simulated Annealing. In Proc. of Conference on Learning Theory (COLT), 2018.

11

https://openreview.net/forum?id=6YEQUn0QICG


Under review as a conference paper at ICLR 2022

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

H. McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated Learning of Deep
Networks using Model Averaging. 2016.

S. Minsker, S. Srivastava, L. Lin, and D. B. Dunson. Scalable and Robust Bayesian Inference via the
Median Posterior. In International Conference on Machine Learning (ICML), 2014.

Wenlong Mou, Yi-An Ma, Martin J. Wainwright, Peter L. Bartlett, and Michael I. Jordan. High-Order
Langevin Diffusion Yields an Accelerated MCMC Algorithm. Journal of Machine Learning
Research (JMLR), 22:1–41, 2021.

W. Neiswanger, C. Wang, and E. Xing. Asymptotically Exact, Embarrassingly Parallel MCMC.
arXiv:1311.4780, 2013.

Y. Nesterov. Introductory Lectures on Convex Optimization, in: Applied Optimization. Kluwer
Academic Publishers, Boston, MA, 2004.

R. Nishihara, I. Murray, and R. P. Adams. Parallel MCMC with Generalized Elliptical Slice Sampling.
Journal of Machine Learning Research, 15(1):2087–2112, 2014.

Reese Pathaky and Martin J. Wainwright. Fedsplit: An Algorithmic Framework for Fast Federated
Optimization. arXiv:2005.05238, 2020.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex Learning via Stochastic
Gradient Langevin Dynamics: a Nonasymptotic Analysis. In Conference on Learning Theory,
June 2017.

R. Shen and Y. T. Lee. The randomized midpoint method for log-concave sampling. In Advances in
Neural Information Processing Systems, pp. 2098–2109, 2019.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving Deep Learning. In SIGSAC conference on
computer and communications security (CCS). ACM, 2015.

Sebastian U. Stich. Local SGD Converges Fast and Communicates Little. arXiv:1805.09767v3, 2019.

Yee Whye Teh, Alexandre Thiery, and Sebastian Vollmer. Consistency and Fluctuations for Stochastic
Gradient Langevin Dynamics. Journal of Machine Learning Research, 17:1–33, 2016.

Sebastian J. Vollmer, Konstantinos C. Zygalakis, and Yee Whye Teh. Exploration of the (Non-)
Asymptotic Bias and Variance of Stochastic Gradient Langevin Dynamics. Journal of Machine
Learning Research, 17(159):1–48, 2016.

Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian Makaya, Ting He, and
Kevin Chan. Adaptive Federated Learning in Resource Constrained Edge Computing Systems.
IEEE Journal on Selected Areas in Communications, 37(6):1205–1221, 2019.

Xiangyu Wang and David B. Dunson. Parallelizing MCMC via Weierstrass Sampler.

Yu-Xiang Wang, Stephen Fienberg, and Alex Smola. Privacy for Free: Posterior Sampling and
Stochastic Gradient Monte Carlo. In ICML, pp. 2493–2502, 2015.

Max Welling and Yee Whye Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In
International Conference on Machine Learning, 2011.

Blake Woodworth, Kumar Kshitij Patel, and Nathan Srebro. Minibatch vs Local SGD for Heteroge-
neous Distributed Learning. arXiv:2006.04735, 2020.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel Restarted SGD with Faster Convergence and Less
Communication: Demystifying Why Model Averaging Works for Deep Learning. In In Proc. of
Conference on Artificial Intelligence (AAAI), 2019.

12



Under review as a conference paper at ICLR 2022

Yuchen Zhang, Percy Liang, and Moses Charikar. A Hitting Time Analysis of Stochastic Gradient
Langevin Dynamics. In Proc. of Conference on Learning Theory (COLT), pp. 1980–2022, 2017.

Wenbo Zheng, Lan Yan, Chao Gou, and Fei-Yue Wang. Federated meta-learning for fraudulent credit
card detection. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence (IJCAI), 2020.

13



Under review as a conference paper at ICLR 2022

Roadmap. In Section A, we layout the formulation of the algorithm, basic notations, and definitions.
In Section B, we present the main convergence analysis for full device participation. We discuss
the optimal number of local updates based on a fixed learning rate, the acceleration achieved by
varying learning rates, and the privacy-accuracy trade-off through correlated noises. In Section C,
we analyze the convergence of partial device participation through two device-sampling schemes.
In Section D, we provide lemmas to upper bound the contraction, discretization and divergence for
proving the main convergence results. In Section E, we include supporting lemmas to prove results in
the previous section. In Section F, we establish the initial condition.

A PRELIMINARIES

A.1 BASIC NOTATIONS AND BACKGROUNDS

Let N denote the number of clients. Let Tε denote the number of global steps to achieve the precision
ε. Let K denote the number of local steps. For each c ∈ [N ] := {1, 2, · · · , N}, we use f c and ∇f c
denote the loss function and gradient of the function f c in client c. For the stochastic gradient oracle,
we denote by ∇f̃ c(·) the unbiased estimate of the exact gradient ∇f c of client c. In addition, we
denote pc as the weight of the c-th client such that pc ≥ 0 and

∑N
c=1 pc = 1. ξck is an independent

standard d-dimensional Gaussian vector at iteration k for each client c ∈ [N ] and ξ̇k is a unique
Gaussian vector shared by all the clients.

Algorithm 4 Federated averaging Langevin dynamics algorithm (FA-LD). Denote by θck the model
parameter in the c-th client at the k-th step. Denote the immediate result of one step SGLD update
from θck by βck. ξck is an independent standard d-dimensional Gaussian vector at iteration k for each
client c ∈ [N ]. A global synchronization is conducted every K steps. This is a complete version of
Algorithm 1.

1:
βck+1 = θck − η∇f̃ c(θck) +

√
2ητ/pcξ

c
k, (13)

2:

θck+1 =


βck+1 if k + 1 mod K 6= 0∑N
c=1 pcβ

c
k+1 if k + 1 mod K = 0.

(14)

Inspired by Li et al. (2020c), we define two virtual sequences

βk =

N∑
c=1

pcβ
c
k, θk =

N∑
c=1

pcθ
c
k, (15)

which are both inaccessible when k mod K 6= 0. For the gradients and injected noise, we also define

∇f(θk) =

N∑
c=1

pc∇f c(θck), ∇f̃(θk) =

N∑
c=1

pc∇f̃ c(θck), ξk =

N∑
c=1

√
pcξ

c
k. (16)

In what follows, it is clear that E∇f̃(θ) =
∑N
c=1 pcE∇f̃ c(θc) = ∇f(θ) for any θc ∈ Rd and any

c ∈ [N ]. Summing Eq.(13) from clients c = 1 to N and combining Eq.(15) and Eq.(16), we have

βk+1 = θk − η∇f̃(θk) +
√

2ητξk. (17)

Moreover, we always have βk = θk whether k + 1 mod E = 0 or not by Eq.(14) and Eq.(15). In
what follows, we can write

θk+1 = θk − η∇f̃(θk) +
√

2ητξk, (18)
which resembles the SGLD algorithm Welling & Teh (2011) except that the construction of stochastic
gradients is different and θk is not accessible when k mod K 6= 0. To facilitate the analysis, we also
define an auxiliary continuous-time processes (θ̄t)t≥0

dθ̄t = −∇f(θ̄t) · dt+
√

2τ · dW t, (19)
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where θ̄t =
∑N
c=1 pcθ̄

c
t , ∇f(θ̄t) =

∑N
c=1 pc∇f c(θ̄ct ), θ̄ct is the continuous-time variable at client

c, and W is a d-dimensional Brownian motion. The continuous-time algorithm is referred to as
Federated Averaging Langevin diffusion and is described as

dβ̄ct = −∇f c(θ̄ct ) · dt+
√

2τ/pc · dW
c

t

θ̄ct =

N∑
c=1

pcβ̄
c
t .

Since the synchronization step is conducted at every time step t, the Federated Averaging Langevin
diffusion performs the same as the standard Langevin diffusion with the temperature τ and conver-
gences to the stationary distribution π(θ) ∝ exp(−f(θ)/τ), where f(θ) =

∑N
c=1 pcf

c(θ). Assume
that θ̄0 simulates from the stationary distribution π, then it follows that θ̄t ∼ π for any t ≥ 0.

A.2 ASSUMPTIONS AND DEFINITIONS

Assumption A.1 (Smoothness). For each c ∈ [N ], we say f c is L-smooth if for some L > 0

f c(y) ≤ f c(x) + 〈∇f c(x), y − x〉+
L

2
‖y − x‖22 ∀x, y ∈ Rd.

Note that the above assumption is equivalent to saying that

‖∇f c(y)−∇f c(x)‖2 ≤ L‖y − x‖2, ∀x, y ∈ Rd.

Assumption A.2 (Strong convexity). For each c ∈ [N ], f c is m-strongly convex if for some m > 0

f c(x) ≥ f c(y) + 〈∇f c(y), x− y〉+
m

2
‖y − x‖22 ∀x, y ∈ Rd.

An alternative formulation for strong convexity is that

〈∇f c(x)−∇f c(y), x− y〉 ≥ m ‖x− y‖22 ∀x, y ∈ Rd.

Assumption A.3 (Bounded variance, restatement of Assumption 5.3). For each c ∈ [N ], the variance
of noise in the stochastic gradient∇f̃ c(x) in each client is upper bounded such that

E[‖∇f̃ c(x)−∇f c(x)‖22] ≤ σ2d, ∀x ∈ Rd.

The bounded variance in the stochastic gradient is a rather standard assumption and has been widely
used in Cheng et al. (2018); Dalalyan & Karagulyan (2019); Li et al. (2020c). Extension of bounded
variance to unbounded cases such as E[‖∇f̃ c(x) −∇f c(x)‖22] ≤ δ(L2x2 + B2) for some M and
δ ∈ [0, 1) is quite straightforward and has been adopted in assumption A.4 stated in Raginsky et al.
(2017). The proof framework remains the same.

Quality of non-i.i.d data Denote by θ∗ the global minimum of f . Next, we quantify the degree
of the non-i.i.d data by γ := maxc∈[N ] ‖∇f c(θ∗)‖2, which is a non-negative constant and yields a
smaller scale if the data is more evenly distributed.

Definition A.4. We define parameter Tc,ρ H2
ρ , κ and γ2

Tc,ρ := τ(ρ2 + (1− ρ2)/pc),

Hρ := D2︸︷︷︸
initialization

+
1

m
max
c∈[N ]

Tc,ρ︸ ︷︷ ︸
injected noise

+
γ2

m2d︸ ︷︷ ︸
data heterogeneity

+
σ2

m2︸︷︷︸
stochastic noise

,

κ := L/m,

γ2 := max
c∈[N ]

‖∇f c(θ∗)‖22.
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B FULL DEVICE PARTICIPATION

B.1 ONE-STEP UPDATE

Wasserstein distance We define the 2-Wasserstein distance between a pair of Borel probability
measures µ and ν on Rd as follows

W2(µ, ν) := inf
γ2∈Couplings(µ,ν)

(∫
‖βµ − βν‖22dγ2(βµ,βν)

) 1
2

,

where ‖ · ‖2 denotes the `2 norm on Rd and the pair of random variables (βµ,βν) ∈ Rd × Rd is a
coupling with the marginals following L(βµ) = µ and L(βν) = ν. L(·) denotes a distribution of a
random variable.

The following result provides a crucial contraction property based on distributed clients with infre-
quent synchronizations.
Lemma B.1 (Dominated contraction property, restatement of Lemma 5.4). Assume assumptions A.1
and A.2 hold. For any learning rate η ∈ (0, 1

L+m ], any {θc}Nc=1, {βc}Nc=1 ∈ Rd, we have

‖β − θ − η(∇f(β)−∇f(θ))‖22 ≤ (1− ηm) · ‖β − θ‖22 + 4ηL

N∑
c=1

pc · (‖βc − β‖22 + ‖θc − θ‖22).

where β =
∑N
c=1 pcβ

c, θ =
∑N
c=1 pcθ

c, ∇f(θ) =
∑N
c=1 pc∇f c(θc), and ∇f(β) =∑N

c=1 pc∇f c(βc). We postpone the proof into Section D.1. The above result implies that as
long as the local parameters θc, βc and global θ, β don’t differ each other too much, we can guarantee
the desired convergence.

The following result ensures a bounded gap between θ̄cs and θ̄cηb sη c in `2 norm for any s ≥ 0 and

c ∈ [N ]. We postpone the proof of Lemma B.2 into Section D.2.
Lemma B.2 (Discretization error). Assume assumptions A.1, A.2, and A.3 hold. For any s ≥ 0, any
learning rate η ∈ (0, 2/m) and ‖θc0 − θ∗‖

2
2 ≤ dD2 for any c ∈ [N ], the iterates of (θ̄s) based on the

continuous dynamics of Eq.(19) satisfy the following estimate

E
∥∥θ̄cs − θ̄cηb sη c∥∥22 ≤ 8η2dκ

(
κγ2

d
+ Lτ

)
+ 16ηdτ.

The following result shows that given a finite number of local steps K, the divergence between θc in
local client and θ in the center is bounded in `2 norm. Notably, since the non-differentiable Brownian
motion leads to a lower order term O(η) instead of O(η2) in `2 norm, a naïve proof may lead to a
crude upper bound. We delay the proof of Lemma B.3 into Section D.3.
Lemma B.3 (Bounded divergence, restatement of Lemma 5.5). Assume assumptions A.1, A.2, and
A.3 hold. For any learning rate η ∈ (0, 2/m) and ‖θc0 − θ∗‖

2
2 ≤ dD2 for any c ∈ [N ], we have the

`2 upper bound of the divergence between local clients and the center as follows

N∑
c=1

pcE‖θck − θk‖22 ≤ 112(K − 1)2η2dL2Hρ + 8(K − 1)ηdτ(ρ2 +N(1− ρ2)),

where Hρ, κ and γ2 are defined as Definition A.4.

The following presents a standard result for bounding the gap between∇f(θ) and∇f̃(θ). We delay
the proof of Lemma B.4 into Setion D.
Lemma B.4 (Bounded variance). Given assumption A.3, we have

E‖∇f(θ)−∇f̃(θ)‖22 ≤ d · σ2, ∀ θ ∈ Rd.

Having all the preliminary results ready, now we present a crucial lemma for proving the convergence
of all the algorithms.
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Lemma B.5 (One step update, restatement of Lemma 5.6). Assume assumptions A.1, A.2, and A.3
hold. Consider Algorithm 4 with independently injected noise ρ = 0, any learning rate η ∈ (0, 1

2L )

and ‖θc0 − θ∗‖
2
2 ≤ dD2 for any c ∈ [N ], where θ∗ is the global minimum for the function f . Then

W 2
2 (µk+1, π) ≤

(
1− ηm

2

)
·W 2

2 (µk, π) + 400η2dL2H0((K − 1)2 + κ),

where µk denotes the probability measure of θk, H0, κ and γ2 are defined as Definition A.4.

Proof. The solution of the continuous-time process Eq.(19) follows that

θ̄t = θ̄0 −
∫ t

0

∇f(θ̄s)ds+
√

2τ ·W t, ∀t ≥ 0. (20)

Set t → (k + 1)η and θ̄0 → θ̄kη for Eq.(20) and consider a synchronous coupling such that
W(k+1)η −Wkη :=

√
ηξk

θ̄(k+1)η = θ̄kη −
∫ (k+1)η

kη

∇f(θ̄s)ds+
√

2τ(W(k+1)η −Wkη)

= θ̄kη −
∫ (k+1)η

kη

∇f(θ̄s)ds+
√

2τηξk. (21)

We first denote ζk := ∇f̃(θk)−∇f(θk). Subtracting Eq.(18) from Eq.(21) yields that

θ̄(k+1)η − θk+1

= θ̄kη − θk + η∇f̃(θk)−
∫ (k+1)η

kη

∇f(θ̄s)ds

= θ̄kη − θk − η
(
∇f(θk + θ̄kη − θk)−∇f̃(θk)

)
−
∫ (k+1)η

kη

(
∇f(θ̄s)−∇f(θ̄kη)

)
ds (22)

= θ̄kη − θk − η
(
∇f(θk + θ̄kη − θk)−∇f(θk)︸ ︷︷ ︸

:=Xk

)
−
∫ (k+1)η

kη

(
∇f(θ̄s)−∇f(θ̄kη)

)
ds︸ ︷︷ ︸

:=Yk

+ηζk.

Taking square and expectation on both sides, we have

E‖θ̄(k+1)η − θk+1‖22
= E‖θ̄kη − θk − ηXk − Yk‖22 + E‖ηζk‖22 + 2η E〈θ̄kη − θk − ηXk − Yk, ζk〉︸ ︷︷ ︸

Eζk=0 and mutual independence

≤ (1 + q) · E‖θ̄kη − θk − ηXk‖22 + (1 + 1/q) · E‖Yk‖22 + E‖ηζk‖22

≤ (1 + q) ·
(
(1− ηm) · E‖θ̄kη − θk‖22 + 4ηL

N∑
c=1

pc ·
(
E‖θ̄ckη − θ̄kη‖22 + E‖θck − θk‖22

) )
+ (1 + 1/q) · E‖Yk‖22 + η2σ2d

≤ (1 + q) ·
(

(1− ηm)︸ ︷︷ ︸
φ

E‖θ̄kη − θk‖22 + 448η3d(K − 1)2L3H0 + 32(K − 1)η2dLτN

)
+ (1 + 1/q) · E‖Yk‖22 + η2σ2d, (23)

where the first inequality follows by the AM-GM inequality for any q > 0, the second inequality
follows by Lemma B.1 and Assumption A.3. The third inequality follows by Lemma B.3 with ρ = 0;
moreover, the continuous-time process conducts synchronization at any time step, hence θ̄ckη = θ̄kη .
Since the learning rate follows 1

2L ≤
1

m+L ≤
2
m , the requirement of the learning rate for Lemma B.1

and Lemma B.3 is clearly satisfied.
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Recall that φ = 1− ηm, we get 1+φ
2 = 1− 1

2ηm. Choose q = 1+φ
2φ − 1 so that (1 + q)φ = (1+φ)

2 =

1− 1
2ηm. In addition, we have 1 + 1

q = 1+q
q = 1+φ

1−φ ≤
2
ηm . It follows that

(1 + q) · (1− ηm) ≤ 1− 1

2
ηm, 1 + q ≤

1− 1
2ηm

1− ηm
≤ 1.5, (1 + 1/q) ≤ 2

mη
, (24)

where the second inequality holds because η ∈ (0, 1
2L ] ≤ 1

2m .

For the term E‖Yk‖22 in Eq.(23), we have the following estimate

E‖Yk‖22 = E

∥∥∥∥∥
∫ (k+1)η

kη

(
∇f(θ̄s)−∇f(θ̄kη)

)
ds

∥∥∥∥∥
2

2

≤ η
∫ (k+1)η

kη

E
∥∥∇f(θ̄s)−∇f(θ̄kη)

∥∥2
2
ds

= η

∫ (k+1)η

kη

E

∥∥∥∥∥
N∑
c=1

pc

(
∇f c(θ̄cs)−∇f c(θ̄ckη)

)∥∥∥∥∥
2

2

ds

≤ η
∫ (k+1)η

kη

N∑
c=1

pc · E
∥∥∇f c(θ̄cs)−∇f c(θ̄ckη)

∥∥2
2
ds

≤ ηL2

∫ (k+1)η

kη

N∑
c=1

pc · E
∥∥θ̄cs − θ̄ckη∥∥22ds

≤ ηL2

∫ (k+1)η

kη

(
8η2dκ

(
κγ2

d
+ Lτ

)
+ 16ηdτ

)
ds

= 8η4dL4H0 + 16η3L2dτ, (25)

where the first inequality follows by Hölder’s inequality, the second inequality follows by Jensen’s
inequality, the third inequality follows by Assumption A.1, and the last inequality follows by Lemma
B.2. The last equality holds since κ

dγ
2 + Lτ ≤ LmH0 and κ = L/m.

Plugging Eq.(24) and Eq.(25) into Eq.(23), we have

E‖θ̄(k+1)η − θk+1‖22 ≤ (1− ηm

2
) · E‖θ̄kη − θk‖22

+ 672η3d(K − 1)2L3H0 + 48η2d(K − 1)LτN

+ 16η3dL3κH0 + 32η2d
L2

m
τ + η2σ2d.

Choose the specific Langevin diffusion θ̄ in stationary regime, we have W 2
2 (µk, π) = E‖θ̄kη − θk‖22

and W 2
2 (µk+1, π) ≤ E‖θ̄(k+1)η − θk+1‖22. Arranging the terms, we have

W 2
2 (µk+1, π) ≤ (1− ηm

2
) ·W 2

2 (µk, π) + 400η2dL2H0((K − 1)2 + κ),

where η ≤ 1
2L , κ ≥ 1, mτ ≤ Lτ ≤ LτN ≤ Lmaxc∈[N ] Tc,0 ≤ LmH0, and σ2 ≤ L2H0 are

applied to the result.

B.2 CONVERGENCE VIA INDEPENDENT NOISES

Theorem B.6 (Restatement of Theorem 5.7). Assume assumptions A.1, A.2, and A.3 hold. Consider
Algorithm 4 with a fixed learning rate η ∈ (0, 1

2L ] and ‖θc0 − θ∗‖
2
2 ≤ dD2 for any c ∈ [N ], we have

W2(µk, π) ≤
(

1− ηm

4

)k
·
(√

2d
(
D +

√
τ/m

))
+ 30κ

√
ηmd ·

√
((K − 1)2 + κ)H0.

where µk denotes the probability measure of θk, H0, κ and γ2 are defined as Definition A.4.
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Proof. Iteratively applying Theorem B.5 and arranging terms, we have that

W 2
2 (µk, π) ≤

(
1− ηm

2

)k
W 2

2 (µ0, π) +
1− (1− ηm

2 )k

1− (1− ηm
2 )

(
400η2dL2H0((K − 1)2 + κ)

)
≤
(

1− ηm

2

)k
W 2

2 (µ0, π) +
2

ηm

(
400η2dL2H0((K − 1)2 + κ)

)
≤
(

1− ηm

2

)k
W 2

2 (µ0, π) + 800κ2ηmd((K − 1)2 + κ)H0, (26)

where κ = L
m . By Lemma F.1 and the initialization condition ‖θc0 − θ∗‖

2
2 ≤ dD2 for any c ∈ [N ],

we have that

W2(µ0, π) ≤
√

2d(D +
√
τ/m).

Applying the inequality (1− ηm
2 ) ≤ (1− ηm

4 )2 completes the proof.

Discussions

Optimal choice of K. To ensure the algorithm to achieve the ε precision based on the total number
of steps Tε and the learning rate η, we can set

30κ
√
ηmd ·

(√
((K − 1)2 + κ)H0

)
≤ ε

2

e−
ηm
4 Tε ·

(√
2d
(
D +

√
τ/m

))
≤ ε

2
.

This directly leads to

ηm ≤ min

{
m

2L
,O

(
ε2

dκ2((K − 1)2 + κ)H0

)}
, Tε ≥ Ω

(
log
(
d
ε

)
mη

)
.

Plugging into the upper bound of η, it implies that to reach the precision level ε, it suffices to set

Tε = Ω

(
dκ2((K − 1)2 + κ)H0

ε2
· log

(
d

ε

))
. (27)

Since H0 = Ω(D2 + τ
m ), we observe that the number of communication rounds is around the order

Tε
K

= Ω

(
K +

κ

K

)
,

where the value of TεK first decreases and then increases with respect to K, indicating that setting K
either too large or too small may lead to high communication costs and hurt the performance. Ideally,
K should be selected in the scale of Ω(

√
κ). Combining the definition of Tε in Eq.(27), this suggests

an interesting result that the optimal K should be in the order of O(
√
Tε). Similar results have been

achieved by Stich (2019); Li et al. (2020c).

B.3 CONVERGENCE VIA VARYING LEARNING RATES

Theorem B.7 (Restatement of Theorem 5.8). Assume assumptions A.1, A.2, and A.3 hold. Consider
Algorithm 4 with an initialization satisfying ‖θc0 − θ∗‖

2
2 ≤ dD2 for any c ∈ [N ] and varying learning

rate following

ηk =
1

2L+ (1/12)mk
, k = 1, 2, · · · .

Then for any k ≥ 0, we have

W2(µk, π) ≤ 45κ
√

((K − 1)2 + κ)H0 ·
(
ηkmd

)1/2
, ∀k ≥ 0,
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Proof. We first denote

Cκ = 30κ
√

((K − 1)2 + κ)H0.

Next, we proceed to show the following inequality by the induction method

W2(µk, π) ≤ 1.5Cκ

(
d

2L+ (1/12)mk

)1/2

= 1.5Cκ
(
ηkmd

)1/2
, ∀k ≥ 0, (28)

where the decreasing learning rate follows that

ηk =
1

2L+ (1/12)mk
.

(i) For the case of k = 0, since

Cκ ≥ 4
√
κ
√
H0 ≥ 4

√
κ

√
D2 +

1

m
max
c∈[N ]

Tc,0 ≥ 4
√
κ/d

(√
dD2 +

√
d

m
max
c∈[N ]

Tc,0

)
≥ 4
√
κ/dW2(µ0, π), (29)

where the last inequality follows by Lemma F.1 and ‖θc0 − θ∗‖
2
2 ≤ dD2 for any c ∈ [N ].

It is clear that W2(µ0, π) ≤ 1
4Cκ

√
md
L ≤ 1.5Cκ

√
η0md by Eq.(29).

(ii) If now that Eq.(28) holds for some k ≥ 0, it follows by Lemma B.5 that

W 2
2 (µk+1, π) ≤

(
1− ηkm

2

)
·W 2

2 (µk, π) + 400η2kdL
2H0((K − 1)2 + κ)

≤
(
1− ηkm

2

)
·W 2

2 (µk, π) +
η2km

2

2
C2
κd

≤
(
1− ηkm

2

)
· 2.25C2

κηkmd+
ηkm

3
2.25C2

κηkmd

≤
(
1− ηkm

6

)
· 2.25C2

κηkmd.

Since
(
1− ηkm

6

)
≤
(
1− ηkm

12

)2
, we have

W2(µk+1, π) ≤
(
1− ηkm

12

)
· 1.5Cκ

(
ηkmd

)1/2
.

To prove W2(µk+1, π) ≤ 1.5Cκ
(
ηk+1md

)1/2
, it suffices to show

(
1− ηkm

12

)
η
1/2
k ≤ ηk+1, which is

detailed as follows (
1− ηkm

12

)
η
1/2
k =

√
12(24L+mk −m)

(24L+mk)3/2

≤
√

12(24L+mk −m)1/2

24L+mk

≤
√

12

(24L+m(k + 1))1/2
:= ηk+1,

where the last inequality follows since
(24L+mk −m)(24L+mk +m)) ≤ (24L+mk)2.

The above result implies that to achieve the precision ε, we require

W2(µk, π) ≤ 1.5Cκ

(
md

2L+ (1/12)mk

)1/2

≤ ε.

The means that we only require k = Ω( dε2 ) to achieve the precision ε. By contrast, the fixed learning

rate requires Tε = Ω

(
d
ε2 · log

(
d/ε
))

, which is much slower than the algorithm with varying learning

rate by O
(

log
(
d/ε
))

times.
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B.4 PRIVACY-ACCURACY TRADE-OFF VIA CORRELATED NOISES

Note that Algorithm 4 requires all the local clients to generate the independent noise ξck. Such a
mechanism enjoys the convenience of the implementation and yields a potential to protect the privacy
of data and alleviates the security issue. However, the scale of noises is maximized and inevitable
slows down the convergence. For extensions, it can be naturally generalized to correlated noise
based on a hyperparameter, namely the correlation coefficient ρ between different clients. Replacing
Eq.(13) with

βck+1 = θck − η∇f̃ c(θck) +
√

2ητρ2ξ̇k +
√

2η(1− ρ2)τ/pcξ
c
k, (30)

where ξ̇k is a d-dimensional standard Gaussian vector shared by all the clients at iteration k, ξck is a
unique d-dimensional Gaussian vector generated by client c ∈ [N ] only. Moreover, ξ̇k is dependent
with ξck for any c ∈ [N ]. Following the same synchronization step based Eq.(14), we have

θk+1 = θk − η∇f̃(θk) +
√

2ητξk, (31)

where ξk = ρξk +
√

1− ρ2
∑N
c=1

√
pcξ

c
k. Since the variance of i.i.d variables is additive, it is clear

that ξk follows the standard d-dimensional Gaussian distribution. The inclusion of the correlated
noise implicitly reduces the temperature and naturally yields a trade-off between federation and
accuracy. We refer to the algorithm with correlated noise as the generalized Federated Averaging
Langevin dynamics (gFA-LD) and present it in Algorithm 5.

Since the inclusion of correlated noise doesn’t affect the formulation of Eq.(31), the algorithm
property maintains the same except the scale of the temperature τ and federation are changed.
Based on a target correlation coefficient ρ ≥ 0, Eq.(30) is equivalent to applying a temperature
Tc,ρ = τ(ρ2 + (1− ρ2)/pc). In particular, setting ρ = 0 leads to Tc,0 = (1− ρ2)/pc, which exactly
recovers Algorithm 4; however, setting ρ = 1 leads to Tc,1 = τ , where the injected noise in local
clients is reduced by 1/pc times. Now we adjust the analysis as follows

Theorem B.8 (Restatement of Theorem 5.9). Assume assumptions A.1, A.2, and A.3 hold. Con-
sider Algorithm 5 with a correlation coefficient ρ ∈ [0, 1], a fixed learning rate η ∈ (0, 1

2L ] and
‖θc0 − θ∗‖

2
2 ≤ dD2 for any c ∈ [N ], we have

W2(µk, π) ≤
(

1− ηm

4

)k
·
(√

2d
(
D +

√
τ/m

))
+ 30κ

√
ηmd ·

√
((K − 1)2 + κ)Hρ,

where µk denotes the probability measure of θk, Hρ, κ and γ2 are defined as Definition A.4.

Algorithm 5 Hybrid federated averaging Langevin dynamics algorithm (hFA-LD). Denote by θck the
model parameter in the c-th client at the k-th step. Denote the immediate result of one step SGLD
update from θck by βck. ξck is an independent standard d-dimensional Gaussian vector at iteration k for
each client c ∈ [N ] and ξ̇k is a d-dimensional standard Gaussian vector shared by all the clients. ρ
denotes the correlation coefficient of the injected noises. A global synchronization is conducted every
K steps. This is a complete version of Algorithm 2.

1:
βck+1 = θck − η∇f̃ c(θck) +

√
2ητρ2ξ̇k +

√
2η(1− ρ2)τ/pcξ

c
k,

2:

θck+1 =


βck+1 if k + 1 mod K 6= 0∑N
c=1 pcβ

c
k+1 if k + 1 mod K = 0.

C PARTIAL DEVICE PARTICIPATION

Full device participation enjoys appealing convergence properties. However, it suffers from the
straggler’s effect in real-world applications, where the communication is limited by the slowest
device. Partial device participation handles this issue by only allowing a small portion of devices in
each communication and greatly increased the communication efficiency in a federated network.
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C.1 UNBIASED SAMPLING SCHEMES

The first device-sampling scheme I Li et al. (2020b) selects a total of S devices, where the c-th device
is selected with a probability pc. The first theoretical justification for convex optimization has been
proposed by Li et al. (2020c).

(Scheme I: with replacement). Assume Sk = {n1, n2, · · · , nS}, where nj ∈ [N ] is a random
number that takes a value of c with a probability pc for any j ∈ {1, 2, · · · , S}. The synchronization
step follows that θk = 1

S

∑
c∈Sk θ

c
k.

Another strategy is to uniformly select S devices without replacement. We follow Li et al. (2020c)
and assume S indices are selected uniformly without replacement and the synchronization step is the
same as before. In addition, the convergence also requires an additional assumption on balanced data
Li et al. (2020c).

(Scheme II: without replacement). Assume Sk = {n1, n2, · · · , nS}, where nj ∈ [N ] is a
random number that takes a value of c with a probability 1

S for any j ∈ {1, 2, · · · , S}. Assume
the data is balanced such that p1 = · · · = pN = 1

N . The synchronization step follows that
θk = N

S

∑
c∈Sk pcθ

c
k = 1

S

∑
c∈Sk θ

c
k.

Algorithm 6 Hybrid federated averaging Langevin dynamics algorithm (hFA-LD) with partial device
participation. ξck is the independent Gaussian vector proposed by each client c ∈ [N ] and ξ̇k is a
unique Gaussian vector shared by all the clients. ρ denotes the correlation coefficient. A global
synchronization is conducted every K steps. Sk is a subset that contains S indices according to a
device-sampling rule based on scheme I or II. This is a complete version of Algorithm 3.

1:
βck+1 = θck − η∇f̃ c(θck) +

√
2ητρ2ξ̇k +

√
2η(1− ρ2)τ/pcξ

c
k,

2:

θck+1 =


βck+1 if k + 1 mod K 6= 0∑
c∈Sk+1

1
Sβ

c
k+1 if k + 1 mod K = 0.

Lemma C.1 (Unbiased sampling scheme). For any k mod K = 0 based on scheme I or II, we have

Eθk = E
∑
c∈Sk

θck = βk :=

N∑
c=1

pcβ
c
k.

Proof. According to the definition of scheme I or II, we have θk = 1
S

∑
c∈Sk θ

c
k. In what follows,

Eθk = 1
SE
∑
c∈Sk θ

c
k = 1

S

∑
c0∈Sk

∑N
c=1 pcβ

c
k =

∑N
c=1 pcβ

c
k, where p1 = p2 = · · · = pN for

scheme II in particular.

C.2 BOUNDED DIVERGENCE BASED ON PARTIAL DEVICE

Lemma C.2 (Bounded divergence based on partial device). Assume assumptions A.1, A.2, and A.3
hold. Consider Algorithm 6 with a correlation coefficient ρ ∈ [0, 1], any learning rate η ∈ (0, 2/m)

and ‖θc0 − θ∗‖
2
2 ≤ dD2 for any c ∈ [N ], we have the following results

For Scheme I, the divergence between θk and βk is upper bounded by

E‖βk − θk‖22 ≤
112

S
K2η2dL2Hρ +

8

S
Kηdτ(ρ2 +N(1− ρ2)).

For Scheme II, assuming the data is balanced such that p1 = · · · = pN = 1
N , the divergence between

θk and βk is upper bounded by

E‖βk − θk‖22 ≤
N − S
S(N − 1)

(
112K2η2dL2Hρ + 8Kηdτ(ρ2 +N(1− ρ2))

)
.

where Hρ, κ and γ2 are defined as Definition A.4.
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Proof. We prove the bounded divergence for the two schemes, respectively.

For scheme I with replacement, θ̄k =
∑
c∈Sk

1
Sβ

c
k for a subset of indices Sk. Taking expectation

with respect to Sk, we have

E‖θk − βk‖22 =
1

S2

S∑
i=1

E‖βnik − βk‖
2
2

=
1

S

N∑
c=1

pc ‖βck − βk‖
2
2 , (32)

where the first equality follows by the independence and unbiasedness of θnik for any i ∈ [S].

To further upper bound Eq.(32), we follow the same technique as in Lemma B.3. Since k mod K = 0,
k0 = k −K is also the communication time, which yields the same θck0 for any c ∈ [N ]. in what
follows,

N∑
c=1

pc ‖βck − βk‖
2
2 =

N∑
c=1

pc ‖βck − θk0 − (βk − θk0)‖22

≤
N∑
c=1

pc ‖βck − θk0‖
2
2 , (33)

where the last inequality follows by βk =
∑N
c=1 pcβ

c
k and E‖x− Ex‖22 ≤ E‖x‖22. Combining

Eq.(32) and Eq.(33), we have

E‖θk − βk‖22 ≤
1

S

N∑
c=1

pc ‖βck − θk0‖
2
2

≤ 1

S

N∑
c=1

pc
∥∥βck − θck0∥∥22

≤ 1

S

N∑
c=1

pcE
k−1∑
k=k0

2Kη2
∥∥∥∇f̃ c(θck)

∥∥∥2
2

+ 4Kηdτ
(
ρ2 + (1− ρ2)/pc

)
≤ 1

S

N∑
c=1

pc

(
k−1∑
k=k0

2Kη2E
∥∥∥∇f̃ c(θck)

∥∥∥2
2

+ 4Kηdτ
(
ρ2 + (1− ρ2)/pc

))

≤ 28

S
K2η2dL2Hρ +

4

S
Kηdτ(ρ2 +N(1− ρ2))

where the last inequality follows a similar argument as in Lemma B.3.

For scheme II, given p1 = p2 = · · · = pN = 1
N , we have θk = 1

S

∑
c∈Sk β

c
k, which leads to

E‖θk − βk‖22 = E

∥∥∥∥∥ 1

S

∑
c∈Sk

βck − βk

∥∥∥∥∥
2

2

=
1

S2
E

∥∥∥∥∥
N∑
c=1

Ic∈Sk(βck − βk)

∥∥∥∥∥
2

2

,

where IA is an indicator function that equals to 1 if the event A happens.

Plugging the facts that P(c ∈ Sk) = S
N and P(c1, c2 ∈ Sk) = S(S−1)

N(N−1) for any c1 6= c2 ∈ [N ] into
the above equation, we have

E‖θk − βk‖22

=
1

S2

[ ∑
c∈[N ]

P(c ∈ Sk) ‖βck − βk‖
2
2 +

∑
c1 6=c2

P(c1, c2 ∈ Sk)〈βc1k − βk, β
c2
k − βk〉

]

=
1

SN

N∑
c=1

‖βck − βk‖
2
2 +

∑
c1 6=c2

S − 1

SN(N − 1)
〈βc1k − βk, β

c2
k − βk〉

=
1− S

N

S(N − 1)

N∑
c=1

‖βck − βk‖
2
2 ,
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where the last equality holds since
∑
c∈[N ] ‖βck − βk‖

2
2 +

∑
c1 6=c2〈β

c1
k − βk, β

c2
k − βk〉 =

‖βk − βk‖22 = 0.

Eventually, we have

E‖θk − βk‖22 =
N − S
S(N − 1)

E
1

N

N∑
c=1

‖βck − βk‖
2
2

≤ N − S
S(N − 1)

E
1

N

N∑
c=1

‖βck − θk0‖
2
2

≤ N − S
S(N − 1)

(
28K2η2dL2Hρ + 4Kηdτ

(
ρ2 +N(1− ρ2)

))
,

where the first inequality follows a similar argument as in Eq.(33) and the last inequality follows by
Lemma B.3.

C.3 CONVERGENCE VIA PARTIAL DEVICE PARTICIPATION

Theorem C.3 (Restatement of Theorem 5.10). Assume assumptions A.1, A.2, and A.3 hold. Con-
sider Algorithm 6 with a correlation coefficient ρ ∈ [0, 1], a fixed learning rate η ∈ (0, 1

2L ] and
‖θc0 − θ∗‖

2
2 ≤ dD2 for any c ∈ [N ], we have

W2(µk, π) ≤
(

1− ηm

4

)k
·
(√

2d
(
D +

√
τ/m

))
+ 30κ

√
ηmd ·

√
Hρ((K − 1)2 + κ) + 2

√
CKdτ

Sm
(ρ2 +N(1− ρ2))CS ,

where CK = ηmK

1−e−
ηmK

2

, CS = 1 for Scheme I and CS = N−S
N−1 for Scheme II.

Proof. Note that

E
∥∥θ̄(k+1)η − θk+1

∥∥2
2

= E
∥∥θ̄(k+1)η − βk+1 + βk+1 − θk+1

∥∥2
2

= E
∥∥θ̄(k+1)η − βk+1

∥∥2
2

+ E‖βk+1 − θk+1‖22 + E2〈θ̄(k+1)η − βk+1, βk+1 − θk+1〉

= E
∥∥θ̄(k+1)η − βk+1

∥∥2
2

+ E‖βk+1 − θk+1‖22,

where the last equality follows by the unbiasedness of the device-sampling scheme in Lemma C.1.

If k+ 1 mod K 6= 0, we always have βk+1 = θk+1 and E‖βk+1 − θk+1‖22 = 0. Following the same
argument as in Lemma B.5, both schemes lead to the one-step iterate as follows

W 2
2 (µk+1, π) ≤ (1− ηm

2
) ·W 2

2 (µk, π) + 400η2dL2Hρ((K − 1)2 + κ). (34)

If k + 1 mod K = 0, combining Lemma C.2 and Lemma B.5, we have

W 2
2 (µk+1, π) ≤ (1− ηm

2
) ·W 2

2 (µk, π) + 450η2dL2Hρ(K
2 + κ) +

4Kdητ

S
(ρ2 +N(1− ρ2))CS ,

(35)

where CS = 1 for Scheme I and CS = N−S
N−1 for Scheme II.

Repeatedly applying Eq.(34) and Eq.(35) and arranging terms, we have that

W 2
2 (µk, π) ≤

(
1− ηm

2

)k
W 2

2 (µ0, π) +
2

ηm

(
450η2dL2Hρ(K

2 + κ)

)
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+
(1− (1− ηm

2 )K)bk/Kc

1− (1− ηm
2 )K

(
4Kdητ

S
(ρ2 +N(1− ρ2))CS

)
≤
(

1− ηm

2

)k
W 2

2 (µ0, π) + 900ηmdκ2H0((K − 1)2 + κ)

+
ηmK

1− e− ηmK2︸ ︷︷ ︸
CK

4Kdητ

ηmKS
(ρ2 +N(1− ρ2))CS ,

=
(

1− ηm

2

)k
W 2

2 (µ0, π) + 900ηmdκ2H0((K − 1)2 + κ)

+
4CKdτ

Sm
(ρ2 +N(1− ρ2))CS ,

where the second inequality follows by (1− r)K ≤ e−rK for any r ≥ 0.

D BOUNDING CONTRACTION, DISCRETIZATION, AND DIVERGENCE

D.1 DOMINATED CONTRACTION PROPERTY

Proof of Lemma B.1 . Given a client index c ∈ [N ], applying Theorem 2.1.12 Nesterov (2004) leads
to

〈y − x,∇f c(y)−∇f c(x)〉 ≥ mL

L+m
‖y − x‖22 +

1

L+m
‖∇f c(y)−∇f c(x)‖22 , ∀x, y ∈ Rd.

(36)

In what follows, we have

‖β − θ − η(∇f(β)−∇f(θ))‖22
= ‖β − θ‖22 − 2η 〈β − θ,∇f(β)−∇f(θ)〉︸ ︷︷ ︸

I

+η2 ‖∇f(β)−∇f(θ)‖22 . (37)

For the second item I in the right hand side, we have

I =

N∑
c=1

pc
〈
β − θ,∇f c(βc)−∇f c(θc)

〉
=

N∑
c=1

pc
〈
β − βc + βc − θc + θc − θ,∇f c(βc)−∇f c(θc)

〉
= −

N∑
c=1

pc
(〈
βc − β,∇f c(βc)−∇f c(θc)

〉
+
〈
θ − θc,∇f c(βc)−∇f c(θc)

〉)
+

N∑
c=1

pc
〈
βc − θc,∇f c(βc)−∇f c(θc)

〉
≥ −

N∑
c=1

pc ·
(
(m+ L) ‖βc − β‖22 + (m+ L) ‖θc − θ‖22 +

1

2(m+ L)
‖∇f c(βc)−∇f c(θc)‖22

)
+

N∑
c=1

pc ·
( mL

L+m
‖βc − θc‖22 +

1

L+m
‖∇f c(βc)−∇f c(θc)‖22

)
≥ −(m+ L)

N∑
c=1

pc

(
‖βc − β‖22 + ‖θc − θ‖22

)
+

mL

L+m
‖β − θ‖22

+
1

2(L+m)
‖∇f(β)−∇f(θ)‖22 , (38)

25



Under review as a conference paper at ICLR 2022

where the first inequality follows by the AM-GM inequality and Eq.(36), respectively; the last
inequality follows by Jensen’s inequality such that

N∑
c=1

pc‖βc − θc‖22 ≥

∥∥∥∥∥
N∑
c=1

pc(β
c − θc)

∥∥∥∥∥
2

2

= ‖β − θ‖22

N∑
c=1

pc ‖∇f c(βc)−∇f c(θc)‖22 ≥

∥∥∥∥∥
N∑
c=1

pc

(
∇f c(βc)−∇f c(θc)

)∥∥∥∥∥
2

2

= ‖∇f(β)−∇f(θ)‖22 .

Plugging Eq.(38) into Eq.(37), we have

‖β − θ − η · (∇f(β)−∇f(θ))‖22

≤
(
1− 2ηmL

m+ L

)
· ‖β − θ‖22 + η

(
η − 1

m+ L︸ ︷︷ ︸
≤0 if η≤ 1

m+L

)
· ‖∇f(β)−∇f(θ)‖22

+ 2η(m+ L)

N∑
c=1

pc · (‖βc − β‖22 + ‖θc − θ‖22)

≤ (1− ηm) ‖β − θ‖22 + 4ηL

N∑
c=1

pc ·
(
‖βc − β‖22 + ‖θc − θ‖22

)
,

where the last inequality follows by 2L
m+L ≥ 1, m ≤ L, 1 − 2a ≤ (1 − a)2 for any a, and

η ∈ (0, 1
m+L ].

D.2 DISCRETIZATION ERROR

Proof of Lemma B.2. For any s ∈ [0,∞), there exists a certain k ∈ N+ such that s ∈ [kη, (k+ 1)η).
By the continuous dynamics of Eq. (19), we have

θ̄cs = θ̄cηb sη c
+ (s− kη)∇f c(θ̄cηb sη c) +

√
2τ

∫ s

kη

dW t,

which suggests that

sup
s∈[kη,(k+1)η)

∥∥θ̄cs − θ̄cηb sη c∥∥2 ≤ (s− kη)
∥∥∇f c(θ̄cηb sη c)∥∥2 + sup

s∈[kη,(k+1)η)

∥∥∥∥∫ s

kη

√
2τdW t

∥∥∥∥
2

.

We first square the terms on both sides and take Young’s inequality and expectation

E sup
s∈[kη,(k+1)η)

∥∥θ̄cs − θ̄cηb sη c∥∥22 ≤ 2E
∥∥(s− kη)∇f c(θ̄cηb sη c)

∥∥2
2

+ 2E sup
s∈[kη,(k+1)η)

∥∥∥∥∫ s

kη

√
2τdW t

∥∥∥∥2
2

.

Then, by Burkholder-Davis-Gundy inequality (50) and Itô isometry, we have

E sup
s∈[kη,(k+1)η)

∥∥θ̄cs − θ̄cηb sη c∥∥22 ≤ 2E
∥∥(s− kη)∇f c(θ̄cηb sη c)

∥∥2
2

+ 8

d∑
i=1

E
∫ s

kη

2τdt

≤ 2η2E
∥∥∇f c(θ̄cηb sη c)∥∥22 + 16ηdτ. (39)

By Young’s inequality and the smoothness assumption A.1, we have

E‖∇f c(θ̄ηb sη c)‖
2
2 = E‖∇f c(θ̄cηb sη c)−∇f

c(θ∗) +∇f c(θ∗)‖22
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≤ 2E‖∇f c(θ̄cηb sη c)−∇f
c(θ∗)‖22 + 2‖∇f c(θ∗)‖22

≤ 2L2E‖θ̄cηb sη c − θ∗‖
2
2 + 2γ2

≤ 2L2

(
1

m

(
γ2

m
+ 2dτ

))
+ 2γ2

≤ 4dκ

(
κγ2

d
+ 4Lτ

)
, (40)

where the third inequality follows by Lemma E.2, the fourth step holds since κ ≥ 1. Combining
Eq. (39) and Eq. (40), we have

E sup
s∈[kη,(k+1)η)

∥∥θ̄cs − θ̄cηb sη c∥∥22 ≤ 8η2dκ

(
κγ2

d
+ Lτ

)
+ 16ηdτ.

D.3 BOUNDED DIVERGENCE

Proof of Lemma B.3. For any k ≥ 0, consider k0 = Kb kK c such that k ≤ k0 and θck0 = θk0 for any
k ≥ 0. It is clear that k − k0 ≤ K − 1 for all k ≥ 0. Consider the non-increasing learning rate such
that ηk0 ≤ 2ηk for all k − k0 ≤ K − 1.

By the iterate Eq.(18), we have

N∑
c=1

pcE‖θck − θk‖
2
2

=

N∑
c=1

pcE‖θck − θk0 − (θk − θk0)‖22

≤
N∑
c=1

pcE‖θck − θk0‖
2
2

≤
N∑
c=1

pcE
k−1∑
k=k0

2(K − 1)η2k

∥∥∥∇f̃ c(θck)
∥∥∥2
2

+ 4(K − 1)ηkdτ(ρ2 + (1− ρ2)/pc)

≤
N∑
c=1

pc

( k−1∑
k=k0

2(K − 1)η2k0E
∥∥∥∇f̃ c(θck)

∥∥∥2
2

+ 4(K − 1)ηk0dτ(ρ2 + (1− ρ2)/pc)

)
≤ 112(K − 1)2η2kdL

2Hρ + 8(K − 1)ηkdτ(ρ2 +N(1− ρ2)),

where the first inequality holds by E‖θ − Eθ‖22 ≤ E‖θ‖22 for a stochastic variable θ; the second
inequality follows by (

∑K−1
i=1 ai)

2 ≤ (K − 1)
∑K−1
i=1 a2i ; the last inequality follows by Lemma E.3

and η2k0 ≤ 4η2k. Hρ is defined in Definition A.4.

D.4 BOUNDED VARIANCE

Proof of Lemma B.4. By assumption A.3, we have

E
∥∥∥∇f(θ)−∇f̃(θ)

∥∥∥2
2

= E

∥∥∥∥∥
N∑
c=1

pc

(
∇f c(θc)−∇f̃ c(θc)

)∥∥∥∥∥
2

2

=

N∑
c=1

p2cE
∥∥∥∇f c(θc)−∇f̃ c(θc)∥∥∥2

2
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≤ dσ2
N∑
c=1

p2c ≤ dσ2

(
N∑
c=1

pc

)2

:= dσ2.

E UNIFORM UPPER BOUND

E.1 DISCRETE DYNAMICS

Lemma E.1 (Discrete dynamics). Assume assumptions A.1, A.2, and A.3 hold. We consider the
generalized formulation in Algorithm 5 with the temperature

Tc,ρ = τ(ρ2 + (1− ρ2)/pc)

given a correlation coefficient ρ. For any learning rate η ∈ (0, 2/m) and ‖θc0 − θ∗‖
2
2 ≤ dD2 for any

c ∈ [N ], we have the `2 norm upper bound as follows

sup
k

E‖θck − θ∗‖
2
2 ≤ dD

2 +
6d

m

(
max
c∈[N ]

Tc,ρ +
σ2

m
+

γ2

md

)
,

where γ := maxc∈[N ] ‖∇f c(θ∗)‖2 and θ∗ denotes the global minimum for the function f .

Proof. First, we consider the k-th iteration, where k ∈ {1, 2, · · · ,K − 2, (K − 1)−} and (K − 1)−
denotes the (K − 1)-step before synchronization. Following the iterate of Eq.(13) in a local client of
c ∈ [N ], we have

E
∥∥θck+1 − θ∗

∥∥2
2

= E‖θck − θ∗ − η∇f̃ c(θck)‖22 +
√

8ηTc,ρE〈θck − θ∗ − η∇f̃ c(θck), ξk〉+ 2ηTc,ρE‖ξk‖22
= E‖θck − θ∗ − η∇f̃ c(θck)‖22 + 2ηdTc,ρ, (41)

where the last equality follows from Eξk = 0 and the conditional independence of θck − θ∗ − f̃ c(θck)
and ξk. Note that

E‖θck − θ∗ − ηf̃ c(θck)‖22
= E‖θck − θ∗ − η∇f c(θck)‖22 + η2E‖∇f c(θck)−∇f̃ c(θck)‖22

+ 2ηE〈θck − θ∗ − η∇f c(θck),∇f c(θck)−∇f̃ c(θck)〉

= E‖θck − θ∗ − η∇f c(θck)‖22 + η2E‖∇f c(θck)−∇f̃ c(θck)‖22
≤ E‖θck − θ∗ − η∇f c(θck)‖22 + η2dσ2, (42)

where the first step follows from simple algebra, the second step follows from the unbiasedness of
the stochastic gradient, and the last step follows from Assumption A.3. For any q > 0, we can upper
bound the first term of Eq.(42) as follows

E‖θck − θ∗ − η∇f c(θck)‖22
= E‖θck − θ∗ − η(∇f c(θck)−∇f c(θ∗))− η∇f c(θ∗)‖22

≤ (1 + q)E‖θck − θ∗ − η(∇f c(θck)−∇f c(θ∗))‖22 + η2
(

1 +
1

q

)
‖∇f c(θ∗)‖22

≤ (1 + q)
(

1− ηm

2

)2
︸ ︷︷ ︸

ψ2

E‖θck − θ∗‖
2
2 + η2

(
1 +

1

q

)
γ2, (43)

where the first inequality follows by the AM-GM inequality; the second inequality is a special
case of Lemma B.1 based on Assumption A.2, where no local steps is involved before the syn-
chronization step. Similar results have been achieved in Theorem 3 Dalalyan (2017a). In addition,
γ := maxc∈[N ] ‖∇f c(θ∗)‖2.
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Choose q = ( 1+ψ
2ψ )2 − 1 so that (1 + q)ψ2 = (1+ψ)2

4 . Moreover, since ψ = 1 − ηm
2 , we get

1+ψ
2 = 1− 1

4ηm. In addition, we have 1 + 1
q = 1+q

q = (1+ψ)2

(1−ψ)(1+3ψ) ≤
2
ηm . It follows that

η2
(

1 +
1

q

)
≤ 2η

m
. (44)

Combining Eq. (41), Eq. (42), Eq. (43), and Eq. (44), we have the following iterate

E‖θck+1 − θ∗‖22 ≤
(

1− ηm

4

)2
︸ ︷︷ ︸

:=g(η)

E‖θck − θ∗‖22 + 2ηdTc,ρ + η2dσ2 +
2ηγ2

m
.

Note that 1
1−g(η) = 1

ηm
2 (1− ηm8 ) ≤

3
ηm given η ∈ (0, 2

m ). Recursively applying the above equation k
times, where k ∈ {1, 2, · · · ,K − 1,K−} and K− denotes the K-step without synchronization, it
follows that

E‖θck − θ∗‖22 ≤ g(η)k‖θc0 − θ∗‖22 +
1− g(η)k

1− g(η)
·
(

2ηdTc,ρ + η2dσ2 +
2ηγ2

m

)
(45)

≤ ‖θc0 − θ∗‖22 +
3

ηm
·
(

2ηdTc,ρ + η2dσ2 +
2ηγ2

m

)
≤ dD2 +

6d

m

(
max
c∈[N ]

Tc,ρ +
σ2

m
+

γ2

md

)
︸ ︷︷ ︸

:=U

,

where the second inequality holds by g(η) ≤ 1, the third inequality holds because ‖θc0 − θ∗‖
2
2 ≤ dD2

for any c ∈ [N ] and η < 2
m . In particular, the K-th step before synchronization yields that

E‖θcK−
− θ∗‖22 ≤ dD2 + U. (46)

Having all the results ready, for the K-local step after synchronization, applying Jensen’s inequality

E‖θcK − θ∗‖22 = E
∥∥∥∥ N∑
c=1

pcθ
c
K− − θ∗

∥∥∥∥2
2

≤
N∑
c=1

pcE
∥∥θcK− − θ∗∥∥22

≤ dD2 + U, (47)
Now starting from iteration K, we adapt the recursion of Eq.(45) for the k-th step, where k ∈
{K + 1, · · · , 2K − 1, (2K)−} and (2K)− denotes the 2K-step without synchronization, we have

E‖θck − θ∗‖22

≤ g(η)k−K · E‖θcK − θ∗‖22 +
1− g(η)k−K

1− g(η)
·
(

2ηd max
c∈[N ]

Tc,ρ + η2dσ2 +
2ηγ2

m

)
≤g(η)k−K(dD2 + U) +

1− g(η)k−K

mη/3

mη

3
U

≤dD2 + g(η)k−KU + (1− g(η)k−K)U

≤dD2 + U, (48)

where the second inequality follows by Eq.(47), the fact that 1− g(η) ≥ ηm/3 and η ≤ 2
m , and the

definition of U . The third one holds since g(η) ≤ 1.

By repeating Eq.(47) and (48), we have that for all k ≥ 0, we can obtain the desired uniform upper
bound.

Discussions: Since the above result is independent of the learning rate η, it can be naturally applied
to the setting with decreasing learning rates. The details are omitted.
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E.2 CONTINUOUS DIFFUSION

Lemma E.2 (Continuous time). Assume assumption A.2 holds. We have the `2 norm upper bound as
follows

sup
t

E
∥∥θ̄ct − θ∗∥∥22 ≤ 1

m

(
γ2

m
+ 2dτ

)
,

where γ := maxc∈[N ] ‖∇f c(θ∗)‖2 and θ∗ denotes the global minimum for the function f .

Proof. Since the synchronization is conducted at every time t, the essential temperature applied to
each client is τ . Let q(θ̄ct ) =

∥∥θ̄ct − θ∗∥∥22. For any time t ≥ 0, applying Itô’s lemma leads to

dq(θ̄ct ) = −2〈θ̄ct − θ∗,∇f c(θ̄ct )〉dt+ 2dτdt+
√

8τ〈θ̄ct − θ∗,dW t〉
= −2〈θ̄ct − θ∗,∇f c(θ̄ct )−∇f c(θ∗) +∇f c(θ∗)〉dt+ 2dτdt+

√
8τ〈θ̄ct − θ∗,dW t〉

≤ −2m
∥∥θ̄ct − θ∗∥∥22 dt− 2〈θ̄ct − θ∗,∇f c(θ∗)〉dt+ 2dτdt+

√
8τ〈θ̄ct − θ∗,dW t〉

≤ −2m
∥∥θ̄ct − θ∗∥∥22 dt+m

∥∥θ̄ct − θ∗∥∥22 dt+
‖∇f c(θ∗)‖22

m
dt+ 2dτdt+

√
8τ〈θ̄ct − θ∗,dW t〉

≤ −mq(θ̄ct )dt+

(
γ2

m
+ 2dτ

)
dt+

√
8τ〈θ̄ct − θ∗,dW t〉,

where the first inequality follows by Assumption A.2; the second inequality follows by the AM-GM
inequality; the third inequality follows by the definition that γ2 = maxc∈[N ] ‖∇f c(θ∗)‖

2
2.

In other words, we have

d(emtq(θ̄ct )) = memtq(θ̄ct )dt+ emtdq(θ̄ct )

≤ memtq(θ̄ct )dt+ emt
(
−mq(θ̄ct )dt+

(
γ2

m
+ 2dτ

)
dt+

√
8τ〈θ̄ct − θ∗,dW t〉

)
≤ emt

(
γ2

m
+ 2dτ

)
dt+

√
8τemt〈θ̄ct − θ∗,dW t〉.

The solution is upper bounded by

emtq(θ̄ct ) ≤ em·0q(θ̄c0) +

∫ t

0

(
ems

(
γ2

m
+ 2dτ

)
ds+

√
8τems〈θ̄cs − θ∗,dW s〉

)
.

By the martingale property of Itô integral, taking expectations yields

Eq(θ̄ct ) ≤ e−mtEq(θ̄c0) + e−mt
(
γ2

m
+ 2dτ

)∫ t

0

emsds

= e−mtEq(θ̄c0) +
1− e−mt

m

(γ2
m

+ 2dτ
)

≤ e−mtEq(θ̄c0) +
1− e−mt

m

( γ2
m

+ 2dτ︸ ︷︷ ︸
:=V

)
, (49)

where the last inequality follows since the synchronization is conducted at any time step t. Since θ̄c0 is
simulated from the stationary distribution π, by Lemma 12 Durmus & Moulines (2016) or Theorem
17 Cheng et al. (2018), we have

Eq(θ̄c0) = E‖θ̄c0 − θ∗‖22 ≤
dτ

m
≤ 1

m
(
γ2

m
+ 2dτ) =

V

m
,

which completes the proof.
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E.3 BOUNDED GRADIENT

Lemma E.3 (Bounded gradient in `2 norm). Given assumptions A.1, A.2, and A.3 hold, for any
client c and any learning rate η ∈ (0, 2/m) and ‖θc0 − θ∗‖

2
2 ≤ dD2 for any c ∈ [N ], we have the `2

norm upper bound as follows

E‖∇f̃ c(θck)‖22 ≤ 14dL2Hρ,

where Hρ = D2 + 1
m maxc∈[N ] Tc,ρ + γ2

m2d + σ2

m2 .

Proof. Decompose the `2 of the gradient as follows

E
∥∥∥∇f̃ c(θck)

∥∥∥2
2

= E
∥∥∥∇f̃ c(θck)−∇f c(θck) +∇f c(θck)

∥∥∥2
2

= E‖∇f c(θck)‖22 + E
∥∥∥∇f̃ c(θck)−∇f c(θck)

∥∥∥2
2

+ 2E
〈
∇f̃ c(θck)−∇f c(θck),∇f c(θck)

〉
≤ E‖∇f c(θck)‖22 + σ2d

= E‖∇f c(θck)−∇f c(θ∗) +∇f c(θ∗)‖22 + σ2d

≤ 2E‖∇f c(θck)−∇f c(θ∗)‖22 + 2E
∥∥∇f c(θ∗)∥∥22 + σ2d

≤ 2L2E‖θck − θ∗‖
2
2 + 2γ2 + σ2d

≤ 2dL2D2 +
12dL2

m
·
(

max
c∈[N ]

Tc,ρ +
σ2

m
+

γ2

md

)
+ 2γ2 + σ2d

≤ 14dL2 ·
(
D2 +

1

m
max
c∈[N ]

Tc,ρ +
γ2

m2d
+
σ2

m2

)
:= 14dL2Hρ,

where the first inequality follows by Assumption A.3; the second inequality follows by Young’s
inequality; the third inequality follows by Assumption A.1 and the definition that γ :=
maxc∈[N ] ‖∇f c(θ∗)‖2; the fourth inequality follows by Lemma E.1; the last inequality follows
by κ := L

m ≥ 1.

F INITIAL CONDITION

Lemma F.1 (Initial condition). Let µ0 denote the Dirac delta distribution at θ0. Then, we have

W2(µ0, π) ≤
√

2(‖θ0 − θ∗‖2 +
√
dτ/m).

Proof. By Cheng et al. (2018), there exists an optimal coupling between µ0 and π such that

W 2
2 (µ0, π) ≤ Eθ∼π[‖θ0 − θ‖22]

≤ 2Eθ∼π[‖θ0 − θ∗‖22] + 2Eθ∼π[‖θ − θ∗‖22]

= 2‖θ0 − θ∗‖22 + 2Eθ∼π[‖θ − θ∗‖22]

≤ 2‖θ0 − θ∗‖22 + 2dτ/m,

where the second step follows from triangle inequality, the last step follows from Lemma 12 Durmus
& Moulines (2016) and the temperature τ is included to adapt to the time scaling.

Burkholder-Davis-Gundy inequality Let φ : [0,∞) → Rr×d for some positive integers r and
d. In addition, we assume E

∫∞
0
|ψ(s)|2ds < ∞ and let Z(t) =

∫ t
0
ψ(s)dWs, where Ws is a

d-dimensional Brownian motion. Then for all t ≥ 0, we have

E sup
0≤s≤t

|Z(s)|2 ≤ 4E
∫ t

0

|φ(s)|2ds. (50)
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