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ABSTRACT

Companies have faced increasing pressure in recent years to anonymize user col-
lected data when sharing internally or to third parties. Text data in particular
contains copious amounts of personally identifiable information that has proven
to be difficult to de-identify while remain useful for the party of interest. Previous
works have suggested that synthetic text generation could provide a promising av-
enue to curate high performant and private datasets. In this paper, we introduce an
approach to synthesize high utility text classification datasets by performing con-
ditional generation through a large language model, distilGPT2, while providing
measurable guarantees via differential privacy. We show that naive approaches
suffer heavily from utility loss by entangling task-relevant factors in the trans-
former embedding space, making controlled generation more difficult. We analyze
how incorporating a secondary learning objective can improve the performance of
the generative model, improving utility of the generated data.

1 INTRODUCTION

In recent years, language models have seen dramatic improvements in performance over NLP tasks.
In large part, this has been due to the rapid accumulation of user generated text on the internet.
Companies have been able to aggregate millions of documents available online as well as their user
data to train these large language models. However, lawmakers and their constituents have grown
wary of data collection and usage practices, urging more stringent regulations.

In 2018, the EU set the General Data Protection Regulation (GDPR) into motion, with the goal to
increase transparency about collected information and give users more control over how their data is
handled. (Voigt & Bussche, 2017). Consequently, companies are now searching for ways to utilize
user data without exploiting user privacy. The GDPR begins with the statement: “The protection of
natural persons in relation to the processing of personal data is a fundamental right”; it is imperative
that we innovate on methods to use data effectively without risking user privacy.

In this paper, we study privatization of unstructured text data. Even with safety measures in mind,
there has been massive exploitation of user text data. For example, in 2006, as part of their algo-
rithm contest, Netflix released a de-identified dataset of user generated movie reviews. Researchers
discovered that surprisingly little information was required to reconstruct the identities of users that
contributed to the reviews (Narayanan & Shmatikov, 2006). Further studies have shown how other
methods, such as authorship and membership inference attacks (Carlini et al., 2020), can be utilized
to reconstruct user identities. All this to say, without proper privacy guarantees and careful data
analysis, companies risk user data to exploitation.

Dwork (2006) and Abadi et al. (2016) proposed differential privacy (DP) and DP-SGD/DP-Adam,
respectively, as methods to provide provable and quantifiable guarantees about privacy. Generally,
we say that a randomized algorithm satisfies DP if the output distribution is indistinguisable when
run on neighboring datasets. However, current trade-offs between privacy and utility, particularly
in synthetic text generation, makes it impractical for companies to create useful data with strong
privacy guarantees.

A common approach for anonymization is to de-identify (redact) personally identifiable tokens in
text, such as names and addresses. While this may seem like a reasonable approach on paper with
SOTA models reporting accuracies of nearly than 97%, the 3% of tokens that are misidentified could
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be used by an adversary to re-identify users. Consequently, this approach isn’t a strong enough
guarantee of privacy. A permissible error from such a model should be lower than 1% (Yogarajan
et al., 2020; Al Aziz et al., 2021), something that has not been achieved today for abitrary datasets.
Synthetic data is promising because it avoids the problem of anonymizing an individual’s data by
instead producing information about non-existent persons.

Other approaches to anonymize unstructured text data have focused on word or sentence level per-
turbations in order to reduce vulnerability to membership inference and authorship attacks. These
approaches often heavily degrade semantic quality of the text and may struggle to provide overall
privacy guarantees in the context of language peculiarities, such as with the leakage of PII. Other
approaches seek to generate data synthetically, such as Libbi et al. (2021) and Al Aziz et al. (2021).
However, such studies often show a large tradeoff between privacy and utility or make differentially
private guarantees with a potentially unreasonable epsilon parameter (e.g. ϵ > 10).

In this paper, we present an approach of generating synthetic text data by performing controllable
generation through a large language model. We show it is possible to synthesize text classification
datasets with rigorous privacy guarantees. We hope this method will enable companies to share
data and train high utility models without putting their users’ data at risk. Our contributions are as
follows:

1. We present findings on problems that arise when performing conditional finetuning of large
language models with DP-Adam. Particulary, we find that it becomes difficult to condi-
tionally prompt the model towards a desired class and generate synthetic data that mimics
desired attributes of the original. We propose using a task-relevant loss via a secondary
learning objective to solve this issue.

2. We generate synthetic versions of the SST-2 and AG News datasets by performing condi-
tional text generation over a langauge model. We incorporate a combination of generation
techniques: attribute conditioning and a gradient based approach (Dathathri et al., 2019) to
further steer generation. We show minimal loss in utility of our synthetic datasets (6.3%)
with strong privacy guarantees (ϵ = 3).

Code to recreate our results are available here: (redacted for review)

2 BACKGROUND

2.1 LANGUAGE MODELING

Given a sequence of tokens X = x0, ... , xn , language models (LMs) are trained to compute the
unconditional probability of the sequence p(X). This probability can be rewritten in terms of product
of conditional probabilities by recursively applying the chain-rule (Bengio et al., 2003) as:

p(X) =

N∏
i=1

p(xi|x0, ..., xi−1) (1)

This allows modeling the language via next-word prediction. We use the transformer architecture
(Vaswani et al., 2017) to model the distribution of natural language. Generation of a new sequence
y can be created by sequentially sampling its constituents: pθ(y0), pθ(y1|y0), ..., pθ(ym|y<m).

2.2 CONDITIONAL TEXT GENERATION

Conditional generation of text attempts to steer the output of a LM given a desired condition or
control variable. Keskar et al. (2019) introduced a method to accomplish this goal by performing
training a LM over a dataset, such that the desired condition is prepended to the text body: “BOS
[condition] SEP text” (BOS and SEP are special tokens to indiciate the beginning of the sentence
and to separate label from the text body, respectively).

On the other hand, plug and play controllable language generation (PPLM) (Dathathri et al., 2019)
combines an attribute model (such as a discriminator) with a LM to manipulate its output and per-
form controllable text generation. Given an attribute a and generated text x, let the output of the
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discriminator model represent p(a|x). In order to control generation, we shift the latent hidden state
of the language model at step i, hi by ∆hi in the direction of the sum of two gradients: (1) towards
a smaller cross entropy loss in the attribute model p(a|x) for the desired attribute a and (2) toward
higher log likelihood of the language modeling head p(x) to preserve the generation quality and
fluency.

In this paper, we use a combination of the two approaches in order to generate high-quality data. We
first fine-tune a large language model over the desired dataset with conditional prompting similar
to Keskar et al. (2019) and then use the gradient-based approach as described by Dathathri et al.
(2019) to steer generation with high likelihood towards the desired attribute. With this process, we
can generate labeled data for our synthetic dataset.

2.3 DIFFERENTIAL PRIVACY

Differential Privacy (DP) is a formal definition of privacy which offers strong assurances against
various re-identification and re-construction attacks (Dwork, 2006; Dwork & Roth, 2013). In recent
years, DP has attracted significant attention due to its mathematically sound and provable privacy
guarantees. Moreover, it has unique properties such as robustness to auxillary information and post-
processing, composability to enable modular design, and group privacy. (Dwork & Roth, 2013;
Abadi et al., 2016).
Definition 1. (Differential Privacy (Dwork, 2006)) A randomized function M provides (ϵ, δ)-
differential privacy if for all adjacent datasets X,X ′ ∈ X and all Y ⊂ Y,

P r[M(X) ∈ Y ] ≤ exp (ϵ) · Pr[M(X ′) ∈ Y ] + δ (2)

This is a standard definition of DP, which implies that the outputs of a DP model/algorithm for
neighboring datasets are indistinguishable, bounded by the privacy parameter ϵ. ϵ is a non-negative
number which represents the privacy budget. Smaller ϵ values more rigorously enforce privacy, but
may have the effect of decreasing data utility. DP also allows for tracking privacy loss throughout the
execution of a program by computing its leakage parameters. In this paper, we use Renyi Differential
Privacy for accounting privacy budget (Mironov, 2017).

Composability and robustness to post-processing are important properties of DP that are necessary
for the guarantees in our paper. Composability allows for reasoning about overall privacy loss from
the composition of multiple DP algorithms releasing multiple statistics about a particular dataset.
Robustness to post-processing implies that if some mechanism M satisfies ϵ-differential privacy,
then for any deterministic or randomized function F , so does F(M). This allows us to make ϵ-DP
guarantees about the generated text from our ϵ-DP trained language model.
Definition 2. Differentially Private Stochastic Gradient Descent (DP-SGD) modifies the update
step during backpropagation by (1) clipping the gradient for each example in the mini-batch to a
maximal norm C and (2) adding Gaussian noise with standard deviation proportional to C to the
mean of the clipped gradients.

w(t+1) = w(t) − ηt ·
1

B
{
∑
i∈Bt

clipC(∇Li(wt)) +N(0, σ2C2I)} (3)

Where clipC = v · min(1, C
||v||2 ). Intuitively, the DP-SGD mechanism preserves privacy by miti-

gating the impact of out-of-distribution samples on the model, and is used during fine-tuning of our
language models. DP-Adam is the differentially private version of the Adam optimizer (Kingma &
Ba, 2014), using the same gradient privitization as outlined in DP-SGD.

3 RELATED WORKS

Current methods on text privitization fall into three general categories: word/sentence level pertur-
bations, private text embeddings, and synthetically generated text. Here, we discuss each method.

Word/Sentence Level Perturbations: Many works have discussed anonymizing text by perturbing
word or sentence level embeddings to satisfy ϵ-differential privacy. This set of approaches change
individual words in a document, often following a variant of metric based DP (Alvim et al., 2018)
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which has shown to be a more utilitarian perspective of privacy in the context of NLP. However, as
discussed by Mattern et al. (2022), these perturbations struggle to provide overall privacy guarantees
in the context of language peculiarities and leakage of other personally identifiable information
(PII) that allow for re-identification. They also suffer from utility losses since grammatical and
syntactic structure are degraded. Other methods suggested by Weggenmann & Kerschbaum (2018)
and Bo et al. (2019) investigate differentially private mechanisms via latent space perturbations and
adversarial training, respectively, to reduce the impact of authorship inference attacks. However,
these methods, again, do not address the issue of PII leakage and suffer from significant uility losses.

Private Text Embeddings: Other methods have investigated releasing private text embeddings
instead of the original text content. Recent work such as Lyu et al. (2020) and Xu et al. (2021)
propose randomization mechanisms that can transform text embedding vectors into one that satisfies
metric space differential privacy guarantees. This method has shown promise in providing formal
guarantees while also retaining high utility. However, this process does not leave human readable
text, which is a desired property for companies performing internal data sharing; thus, we examine
our approach independent of this body of work.

Synthetic Text: Other methods, particularly in the medical domain, have attempted to address
the issue of privacy via synthetic text generation. Synthetic data addresses the problems of de-
identification by simply not describing real people, and thus retaining plausible deniability over the
data produced. Recent methods like Libbi et al. (2021) and Al Aziz et al. (2021) have proposed
text generation approaches; This paper goes further, investigating the impact of a large range of
parameter selection in conditional text generation and most importantly, demonstrating high utility
even with strong privacy parameters (e.g. ϵ = 3), something previous works have not done.

4 DATASETS AND PREPROCESSING

In this paper, we generate artificial datasets for text classification. We choose this task because it
allows us to best compare utility and privacy in one dataset. We experiment over two datasets. Each
dataset is split 80:20 for train and test. We represent datasets as D = {(xi, yi)}ni=1

4.1 SST-2

The SST-2 corpus consists of 11,855 movie review samples, each labeled with positive orn egative
sentiment by human annotators. This dataset was perfectly balanced with each class having equal
representation (Socher et al., 2013).

4.2 AG NEWS

The AG News corpus is a topic classification task. This dataset consists of over 120,000 samples,
each labeled under a topic from: Sports, World, Business, Sci/Tech. This dataset was perfectly
balanced with each topic having equal representation (Zhang et al., 2015).

5 EXPERIMENTS

This paper improves on existing methods for generating high-utility synthetic text data with differ-
ential privacy guarantees. Bommasani et al. (2019) argued that for successful private synthetic text
data, we must have formal guarnatees of privacy and have distributional similarity to the original
dataset. We achieve this by conditionally finetuning a LM (distilGPT2) over the original text data,
the intuition being that we can reconstruct a similar distribution via generation. Since the model is
learned privately, the post-processing theorem (Dwork, 2006) allows us to make the same ϵ guaran-
tees about the generated samples. We show that with this approach, we are able to construct private,
synthetic data that retains high utility. We hope that this will enable companies to utilize synthetic
data, reducing reliance on private user information.

All our experiments were run on one NVIDIA V100 GPU instance.
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5.1 FINE-TUNING

The baseline language model that we use for training is a pretrained distilgpt2 from HuggingFace
Sanh et al. (2019). We use this model over the larger versions to provide faster iteration of training
under different configurations.

We fine-tune the language model G to the task of synthesizing labeled sentences to obtain the fine-
tuned language model Gtuned. Here, G is specifically fine-tuned to the linguistic domain of Dtrain

(that is, the sentences, vocabulary, style, etc.), as well as the particular classes in Dtrain. The
language modeling head, a feed forward network attached to the transformer architecture, is used to
model the distribution of the next-word from an input sequence. During generation, we sample from
this head. Generally speaking, we would like to use Gtuned to generate a sentence set of any length
with conditioned attribute a being the class label.

We fine-tune G by training it over the data from Dtrain = {(xi, yi)}ni=1. We generate training
samples for conditional finetuning by prepending the label with the text body so that we end up
with: U = BOS yi SEP xi. We fine-tune this model under different privacy settings, specified by
the epsilon parameter. When training with DP, the Adam optimizer is substituted with the DP-Adam
optimizer implemented from the private-transformers library 1, provided by Li et al. (2021). We also
use the ghost-clipping mechanism outlined by Li et al. (2021) which introduces a memory efficient
method to perform per-example gradient clipping. Renyi differential privacy (Mironov, 2017) was
used to account privacy budget during training.

5.1.1 BASELINE METHOD 1: CONDITIONAL FINE-TUNING WITH FILTER

In our first approach, we (1) perform full fine-tuning of G with the training procedure described
above to produce Gtuned. (2) We independently train a discriminator to model p(a|x), the probability
of generated sample, x, to belong to the class a. In our work, we model the discriminator by
fine-tuning a language model for classification over the dataset. (3) We conditionally generate na

samples for each class a from G and filter out any samples that do not meet a desired threshold score
from the discriminator (e.g. only include the sample if p(a|x) > 0.5). Specifically, generation was
done by performing nucleus sampling (Holtzman et al., 2019) over the output distribution of Gtuned.
The described approach is similar to several methods used in data augmentation (Anaby-Tavor et al.,
2019; Bayer et al., 2022; Queiroz Abonizio & Barbon Junior, 2020).

This approach worked well for generating artificial datasets for SST-2 and AG News in the non-
private setting. We synthesized datasets for each by generating the same number of samples for
each class as the original. Generation was done by simply prompting the model with “BOS class
SEP”. In the private setting, we replaced the Adam optimizer with DP-Adam and tracked the total
privacy budget with the RDP accountant. As we improved the privacy guarantee with smaller epsilon
parameters (e.g. ϵ = 8), the quality of conditional generation quickly degraded. While the private
LM generated text that appropriately mimicked the linguistic domain of the training data, condi-
tional prompting did not produce consistent results; prompting the model with attribute a would
infrequently meet the threshold requirement from p(a|x).
We also analyzed samples qualitatively and found the same results. For example, the non-private
Gtuned generally produced samples that fit the class it was prompted: (e.g. “BOS positive SEP”
might yield “a sensitive and heartwarming story of an aging man...”). However, the same approach
with the private Gtuned produced samples that very inconsistently fit the prompted attribute (e.g.
“BOS positive SEP” might yield “an emotional slap in the face, and...”). See Appendix B for more
examples. Without having high confidence in our model being able to generate text conditionally
for a desired class, the labels in the synthesized dataset may be meaningless. This would severely
degrade the utility of the artificial data. This result suggests that a stronger mechanism than just
prompting is required to steer the model towards high-quality class conditional samples.

5.1.2 BASELINE METHOD 2: CONDITIONAL FINE-TUNING WITH PPLM GENERATION

Iterating from Baseline 1, we attempted to use a similar approach as PPLM (Dathathri et al., 2019),
a gradient based steering mechanism, to guide the private Gtuned models towards more high qual-

1https://github.com/lxuechen/private-transformers
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ity generation. Similar to Baseline 1, we (1) train Gtuned, then (2) train a discriminator to estimate
the attribute model p(a|x) by training a discriminator head over the frozen Gtuned model. The dis-
criminator head is a simple MLP with non-linear activations. Lastly, (3) we perform PPLM-based
conditional generation (See Section 5.2) to generate the synthetic labeled text classification dataset.

The intuition for this approach is that the gradient based generation mechanism will guide Gtuned
into generating samples that align strongly with the desired label. In order to effectively use the
discriminator to perform gradient updates on the hidden states of Gtuned, we trained the discriminator
over the fine-tuned LM’s frozen embeddings. Again, while this approach worked well in the non-
private setting, it became infeasible to train the discriminator at strong epsilon settings. At ϵ = 3, 8
the discriminator was not strong enough to properly contribute to generation. We hypothesized that
this issue was indicative that Gtuned was not preserving information about the attribute labels during
private fine-tuning, making it difficult for the discriminator to learn separation, and simulatenously
making it more difficult for the LM to generate label aligned samples as observed in the previous
section. We investigated this hypothesis by visualizing the embedding space of Gtuned at different
epsilon settings and estimating the mutual information between the transformer embedding space
and class labels by training a Random Forest classifier (See Figure 1). We hypothesize that in
order to strongly reconstruct distributional properties from the original dataset, the generative model
should produce embeddings that are separable with respect to those task-relevant factors.

5.1.3 OUR METHOD: MULTITASK CONDITIONAL FINE-TUNING WITH PPLM GENERATION

In order to address this issue we introduce a secondary learning objective and perform multitask
learning during fine-tuning. In Baselines 1 and 2, the transformer is only attached to a linear lan-
guage modeling head that models the probability distribution of the next word. In our approach, we
simultaneously train a discriminator head, as shown in the diagram above. The discriminator head
is, like Baseline 2, a simple MLP head. We now perform two gradient updates at every step – one
to update the language modeling head and the other to update the discriminator head. We add the
appropriate amount of noise to the gradients to maintain ϵ-DP guarantees and track privacy budget
throughout training with RDP (Mironov, 2017).

Since we still want to retain conditional prompting for the model, we want the language model to
be able to see the conditional prompt, i.e. “BOS positive SEP text”, which includes the prepended
label so that the model is able to understand prompting. Meanwhile, the discriminator head should
be able to learn to model p(a|x) for a label, a, and generated sample x without seeing the label in
the input. So, for the language head, we feed the label prompted text data and perform a gradient
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Figure 1: UMAP Projection of SST2 Embeddings
from Gtunedwith ϵ = 3. Baseline 2 (top). Ours
(bottom).

DP Guarantee Baseline 2 Ours

ϵ = inf 0.803 0.883
ϵ = 256 0.792 0.873
ϵ = 16 0.773 0.869
ϵ = 8 0.739 0.865
ϵ = 3 0.693 0.866

Figure 2: Random Forest Classifier Test Accura-
cies over SST2 Embeddings from Gtuned. The mul-
titask approach (ours) shows marginal loss in per-
formance at high privacy settings.

update. Then, for the discriminator head, we replace the label in the input with a random token, the
intuition being that the discriminator head will pay less attention to the embeddings at that location,
and be a more informative guide during generation.

We also train this discriminator head to classify text at different prefix lengths. For example, if the
prefix step was specified to be 2, we would compute the loss given the transformer output for the
second token, fourth token, sixth token, and so on. The loss is linearly weighted such that the first
prefix is weighted the least and the last prefix is weighted the most. Lastly, this loss is averaged,
and then the gradient update is computed. This loss procedure is to ensure the discriminator head is
robust enough to provide meaningful classifications at different lengths of a sequence to improve its
contribution during gradient based generation.

Algorithm 1 DP Multitask Conditional Training
Data: Gpretrained, Dtrain = {(xi, yi)}Ni=1, number of iterations T, learning rates ηlm, ηdiscrim, noise

multiplier σ, clipping bound C, initial parameter vectors θ
(0)
transf, θ

(0)
lm , θ(0)discrim, batch size B,

initial moment estimates m0, v0 ∈ Rp, exponential decay rates β1, β2 ∈ R and constant γ
for t ∈ [E ·N/B] do

Draw batch bt from D with sampling probability q.
for (xi, yi) ∈ bt do

rand← random token from vocabulary
slm ← “BOS yi SEP xi”, sdiscrim ← “BOS rand SEP xi”

g
(t)
lm ← ∇L(Gθ

(t)
transf, lm

(slm), slm), g
(t)
discrim ← ∇L(Gθ

(t)
transf, discrim

(sdiscrim), yi)

g
(t)
lm ← g

(t)
lm ·min(1, C/||g(t)lm ||2), g

(t)
discrim ← g

(t)
discrim ·min(1, C/||g(t)discrim||2)

end
g
(t)
lm ←

1
B (

∑
i∈bt

g
(t)
lm +N(0, σ2C2I))

g
(t)
discrim ←

1
B (

∑
i∈bt

g
(t)
discrim +N(0, σ2C2I))

θ
(t+1)
transf, lm ← AdamUpdate(θ(t)transf, lm,mt, vt, g

(t)
lm , β1, β2, γ)

θ
(t+1)
transf, discrim ← AdamUpdate(θ(t)transf, discrim,mt, vt, g

(t)
discrim, β1, β2, γ)

end
Output: Trained Model θ(T )

transf, θ
(T )
lm , θ

(T )
discrim
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Ultimately, we find that by training both the discriminator and language modeling head simulta-
neously, Gtuned is able to conditionally generate even when trained with strong privacy guarantees.
In Figure 1, we show how this approach impacts the embedding space of models trained at rigor-
ous privacy constraints compared to the naive approach via a UMAP projection. We find that the
noise injected via differential privacy doesn’t prioritize the model to implicitly learn particular dis-
tributional factors about the original dataset such as separation of class labels, and an explicit loss
mechanism can recover this and improve quality of generation.

5.2 GENERATION

Next, we describe in detail the conditional generation procedure to synthesize a private version of the
dataset. We aim to generate labeled samples of text that reconstruct similar distributional properties
as the original. In order to guide generation towards a particular class, we apply a PPLM (Dathathri
et al., 2019) based gradient approach. We utilize the discriminator trained in the previous step to
perform gradient updates over the hidden states of the model to steer the generation towards the
desired class. The steps for generation of a single sample are as follows:

1. Prompt the model with BOS class SEP and generate the distribution of the next word via
the language modeling head.

2. Compute hidden embedding states of the generated text. Pass this embedding through the
discriminator, which models p(a|x).

3. We now shift the hidden state, hi by summing two gradients: (1) gradient of the cross
entropy loss between the discriminator output and desired class vector. (2) gradient towards
the higher log likelihood of the language modeling head which models p(x). This is done
by minimizing the KL divergence between the modified and unmodified language mdoeling
head distribution.

4. Compute the new LM head distribution from the updated latent space.
5. Sample from the new language modeling head distribution for the next word by performing

nucleus sampling (Holtzman et al., 2019).
6. Repeat steps 1-3 until the termination token or the specified maximum length is reached.

We discuss further implications and limitations of this approach in Section 7.

6 EVALUATION

With the described approach, we generate synthetic versions of the SST-2 and AG news dataset. 5
variations are generated with different differential privacy settings: ϵ ∈ {256, 16, 8, 3} and a non-
private version. The only change between the non-private and private versions are replacing the
optimizer from Adam to DP-Adam provided by the private-transformers library (Li et al., 2021).
The gradients in the non-private version are still clipped to the maximum gradient norm parameter,
C.

6.1 PRIVACY

Differentially private training provides formal guarantees about the generated text as a consequence
of the post-processing theorem. However, recent works have shown that the impact of epsilon DP on
large language model training is still unclear, and we could observe empirical privacy-preservation
even at high epsilon levels. To test this, we test the artificial dataset for memorization by comparing
the proportion of n-grams (for n ∈ [3...7]) in the synthesized data to those present in the original
dataset. Our findings are consistent with previous studies with language modeling. Empirically, we
see even large epsilon settings dramatically decrease memorization in the synthesized data (Pono-
mareva et al., 2022).

6.2 UTILITY

We measure the utility of the synthetic dataset by training a classifier over the synthesized data and
evaluate the performance on the held-out test dataset. We don’t experiment with different classi-
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Figure 3: N-gram ratios of the different syn-
thetic datasets trained on SST-2

Figure 4: N-gram ratios of the different syn-
thetic datasets trained on AG News.

fication models since our goal is to strictly evaluate the performance of the synthesized dataset.
So, we choose to use a state of the art classifier, DistilBERTForSequenceClassification, from the
HuggingFace transformers library.

We first train a classifier over the original dataset to produce baseline accuracies to compare the
utility of the synthetic data to. Next, for each dataset variant, ϵ ∈ {inf, 256, 16, 8, 3}, we train a
classifier. To measure the performance of the model, we compute the accuracy of the model over
the held out test set. These results are shown in Table 1. We do not modify any hyperparameters of
the classifier for each dataset. The selected parameters can be seen in Appendix A.

Table 1: Classification Accuracies of Our Method (Multitask Model)

Dataset Variant SST-2 AG News

Original (baseline) 0.941 0.938
Synthetic Non-Private 0.892 0.913
Synthetic ϵ = 256 0.883 0.883
Synthetic ϵ = 16 0.864 0.874
Synthetic ϵ = 8 0.829 0.871
Synthetic ϵ = 3 0.803 0.867

7 DISCUSSION

In this paper, we propose a method for generating synthetic text classification datasets with differ-
ential privacy guarantees by performing conditional text generation via large language models. We
show the difficulties in doing this naively, particularly exploring how strong settings of privacy im-
pact the conditional prompting scheme which has performed well in non-DP settings. By utilizing a
task-relevant second learning objective and gradient based steering of generation towards a desired
class, we show conditional generation is possible even at strong privacy settings. We believe this
method has potential for creating synthetic datasets that will enable companies to share and train on
information without putting users’ personal information at risk.

However, we want to point out some limitations and future directions for this line of work. Firstly,
previous studies have shown that training neural network models with DP-SGD can result in in-
creased bias Bagdasaryan et al. (2019). In our work, we chose to use perfectly balanced datasets in
order to mitigate the problems of unequal representation of classes. This could potentially lead to
fairness issues when generating synthetic data, and biases from the original data may be amplified
in the new dataset (Kuppam et al., 2019; Zhu et al., 2020). Future work may investigate how using
this method affects fairness among groups represented in a dataset.
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A HYPERPARAMETERS AND TRAINING RESULTS

Table 2: Hyperparameters for Training LM used for results in Section 7

Method Value

Clipping Norm C 0.1
Batch Size B 128
Learning rate η 5e-4
Learning rate decay yes
Epochs E 4
Last N Frozen Transformer Layers 6
DP Guarantee (ϵ, 1

|Dtrain| )

Table 3: Hyperparameter search range for experiments

Hyperparameter Value

Clipping Norm C {0.1, 0.25, 0.5}
Batch Size B {16, 32, 64, 128}
Learning rate η {200, 100, 50, 10, 3} · 1e− 5
Learning rate decay yes, no
Epochs E {3, 4, 5, 6, 7, 8}
Last N Frozen Transformer Layers {2, 3, 4, 5, 6}
DP Guarantee (ϵ, 1

|Dtrain| )

Table 4: Test loss for SST-2 LM results in Section 7

DP Guarantee Loss (Naive) Loss (Multitask)

ϵ = inf 3.823 3.936
ϵ = 256 3.807 3.729
ϵ = 16 4.033 3.812
ϵ = 8 4.102 3.883
ϵ = 3 4.183 3.907

Overall, we found that the only hyperparameters that had significant impact on the performance of
the language model was learning rate and batch size, consistent with other works.
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Table 5: Hyperparameters for classifier used for results in Section 7

Hyperparameter Value

Batch Size B 32
Epochs E 5
Learning rate η 1e− 4
Last N Frozen Transformer Layers 6
Learning rate decay yes

Table 6: Text Samples From SST2 Naive Model (ϵ = inf)

Prompt Text

BOS positive SEP • a tour de force showcase that combines deep emotional connection
with everyday events

• a sensitive and heartwarming story of an aging man who switches
bodies to new places and lives to embrace his environment.

• cinematic poetry and soulful poetry combine together in stunning,
horrifying and moving images and emotions of childhood.

BOS negative SEP • frida lacks an emotional center and a strong emotional center.
• has a grisly undercurrent of a film – no humor, no suspense, no

intrigue, no suspense, no suspense.
• predictably soulless and hokey, and not really funny.

B TEXT GENERATION EXAMPLES

When performing generation thorugh the naive model with DP guarantees, we noticed that it was
often unpredictable if the model would output text according to its conditional prompting. This is
undesirable when generating text for a synthetic dataset, where the samples need to be generated for
a particular class. We see that the output is much more consistent in our approach with the multitask
model. This is evidence that separating transformer embeddings with respect to task-relevant factors
enables more consistent text generation towards a desired class.
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Table 7: Text Samples From SST2 Models (ϵ = 3)

Prompt Naive Model Text (ϵ = 3) Multitask Model Text (ϵ = 3)

BOS positive
SEP

• there is something genuinely in-
teresting about this movie – this
is what it does – but if you are
holding a more recent movie up.

• not as great as you could have
hoped for but rather, but it leaves
the essence of my greatest hour.

• i think this is one of the most
gripping films of all time and
makes me the most disappointed
guy you have ever seen.

• the latter gives a shining, serenely
sunny but pleasantly funny story
with a deep sense of humor.

• an act of creative genius that
builds both a wide-angle of film
and a deft blend of comedy.

• it is a gripping action thriller
which is a solid work of humour
that hits great length and is worth
checking out.

BOS negative
SEP

• this is the most brilliant film ever,
probably because it is sopositive,
an absurd mix of funny tales from
a writer

• the end of the film draws the line
between how flawed and depress-
ing it is.

• it is impossible not to giggle at
the idea that an audience just
liked the film.

• the show’s biggest failure is its
own unproduced,’s failure to get
its audience impression, as well
as his incompetence.

• the characters are often por-
trayed as the protagonists’ par-
ents who are misunderstandingly
disappointed by the lazy and lazy
characters.

• the ending has nothing to do with
the world of history.
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