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Abstract

Although it is known that transformer language models (LMs) pass features from
early layers to later layers, it is not well understood how this information is
represented and routed by the model. We analyze a mechanism used in two LMs
to selectively inhibit items in a context in one task, and find that it underlies a
commonly used abstraction across many context-retrieval behaviors. Specifically,
we find that models write into low-rank subspaces of the residual stream to represent
features which are then read out by later layers, forming low-rank communication
channels [Elhage et al., 2021] between layers. A particular 3D subspace in model
activations in GPT-2 can be traversed to positionally index items in lists, and we
show that this mechanism can explain an otherwise arbitrary-seeming sensitivity of
the model to the order of items in the prompt. That is, the model has trouble copying
the correct information from context when many items “crowd" this limited space.
By decomposing attention heads with the Singular Value Decomposition (SVD), we
find that previously described interactions between heads separated by one or more
layers can be predicted via analysis of their weight matrices alone. We show that it
is possible to manipulate the internal model representations as well as edit model
weights based on the mechanism we discover in order to significantly improve
performance on our synthetic Laundry List task, which requires recall from a list,
often improving task accuracy by over 20%. Our analysis reveals a surprisingly
intricate interpretable structure learned from language model pretraining, and helps
us understand why sophisticated LMs sometimes fail in simple domains, facilitating
future analysis of more complex behaviors

1 Introduction

Despite the impressive capabilities of LMs, they often suffer from seemingly arbitrary sensitivities
to prompts. These failure cases are particularly troubling because they are not systematic; it is
very difficult to predict when, for example, the order of information seemingly randomly causes a
model to fail [Pezeshkpour and Hruschka), 2023} |Liu et al.| 2024} [Li and Gaol 2024} |[Zheng et al.,
2024, |Zhou et al., 2023]], or the format of a prompt hurts performance [Liu et al.|[2023| |Sclar et al.|
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2023|,[Zhao et al.| [2021] |Lu et al.| 2022} [Webson and Pavlick, [2022]. As LLMs become increasingly
ubiquitous, we will require more principled ways of anticipating and remedying unstable or unwanted
behaviors [Yu et al.| 2024} [Yong et al., 2023]]. Understanding the mechanisms in play within LLMs,
and connecting those mechanisms to behavior, could enable such principled approaches.

One aim of interpretability research is to explain model behaviors, so is it possible to explain why
some particular failure exists? In this paper, we consider a simple laundry list task that exhibits
one such undesirable instability. Specifically: Transformer language models (LMs) struggle to
reliably recall items from a list as the length of the list increases, and performance can vary wildly
depending on the position of the item in the list that is being recalled (Figure[T)). This instability is not
obvious from the model architecture itself—i.e., unlike their predecessors [Elman|[1991]], Transformers
[Vaswani et al.,|2017]] can use attention to recall freely from anywhere in context. Thus, we use this
task as a case study in order to connect the low-level emergent mechanisms which are encoded during
LM pretraining to observable behavior, and illustrate as a proof of concept that a precise mechanistic
understanding of LMs can be used to explicate and, perhaps, remedy model performance in practice.

Specifically, by building on recent work in circuit analysis [Elhage et al.| 2021, [Wang et al.| 2022,
Goldowsky-Dill et al., 2023} |Quirke and Barez, |2024, [Merullo et al.| {2024, |Hanna et al., [2023]], we
demonstrate how a Transformer LM (GPT?2 small, Pythia 160m) passes information from early layers
to later ones using low-rank subspaces. These communication channels are proposed in |[Elhage et al.
[2021]], but understanding their implementation in weights is an open challenge [Makelov et al.,
2024]). This conflicts with circuit analysis, which supports the interpretation of specialization and
communication between specific transformer components. |[Elhage et al.| [2021]] introduce a score for
measuring how much weight matrices in a transformer communicate, but outside of toy models, it
has been difficult to interpret the results [[Singh et al.l 2024]. We build on this work by proposing a
method using the Singular Value Decomposition to find these channels by decomposing one matrix
into all of its component signals, and find it is much more interpretable than the non-decomposed
variant. We focus on two examples of such channels (inhibition and duplicate detection, §[Z]), and find
that they are are very low-rank (1 or 2 dimensions), easily interpretable, and causally important for
specific model behaviors. We also show this method can be used to perform model editing at training
time (Appendix [H.2), and provide some encouraging early evidence we can perform circuit discovery
without running models (Appendix [I). Specifically, our contributions are as follows:

* We explore a fundamental question in interpretability on how information passed from layer
to layer in an LM is represented internally. We find “communication channels" [Elhage
et al.| [2021] encoded in the weights that connect attention heads separated by several layers.

* We propose a simple extension to previous weight-based methods that more effectively
isolates low-rank signals passed through such channels.

* We show that low-rank communication mechanism plays a role in prompt sensitivity on an
item recall task that otherwise seems idiosyncratic, and that intervention in the mechanism
can be used to affect downstream behavior to improve performance.

Our findings indicate more broadly that LMs are capable of learning intricately structured representa-
tions from self-supervised pretraining without inductive biases. This may have important implications
for the emergence of abstract and content-independent operations, and for developing methods for
steering and understanding these models (see Discussion, §7).

2 Background

Throughout our work, we consider decoder-only transformer language models and primarily use
GPT2-Small. The modern attention mechanism used by these models [Vaswani et al.|[2017]] uses
multiheaded attention, where Query and Keys control which tokens from earlier in context are attended
to and Value and Output matrices control what information is moved from these tokens. An important
abstraction we use in our work relies on rewriting these matrices as the products QK (Query*Key)
and OV (Output*Valueﬂ For an individual head, these matrices are themselves low-rank compared
to the embedding dimension of the network (due to down-projecting the input e.g., they have size

2Following convention, we refer to this matrix as OV, but the Transformer Lens library implements right-hand
matrix multiplication so we actually use VO. This does not effect our results
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Figure 1: Language models are often sensitive to arbitrary changes in a prompt, for example the order
in which objects are listed (right). This problem is more pronounced as the number of objects increases
(left) even though it is not obvious where the issue stems from in the model. We broadly explore how
information is routed through a model and focus on a mechanism that is in part responsible for this
(in)ability.

768x64 dimensions in GPT-2). This is a useful property as we are motivated by looking for subspaces
that are written into/read from by these matrices and this reduces the search space.

In order to ground our findings about inter-layer communication to real model behaviors, we focus
on attention head interactions which we already understand and work backwards to determine how
they communicate. Recent works in circuit analysis provide detailed explanations of how different
model components interact on controlled datasets. In particular, we make use of the Indirect Object
Identification (IO]) circuit discovered in Wang et al.| [2022]. We use GPT2-Small, to study three
specific types of interactions between heads: cases where heads write information that is used by the
keys, queries, or values of later heads.

When we refer to an attention head as 3.0 or 7.9, this means layer 3, head O or layer 7 head 9.

Three Types of Composition In attention heads, there are three ways that earlier heads can
contribute to the processing done downstream. In all cases, information is written into the residual
stream by the OV matrix of an earlier head, and read back out by either the Query, Key, or Value
matrices of a later head. These concepts are introduced in q [2021]]. We also provide an
example of each composition type that we examine further in Section (3] We look for communication
channels in one of each type of composition. These are previous token to induction head composition
(key) [Olsson et al., 2022, [Singh et al.| 2024 [Reddyl, [2023]], duplicate token to inhibition head
composition (value), and inhibition to mover head composition (query) [Wang et al,[2022]. The
variation in the way these heads communicate only changes how we calculate the composition score
[Elhage et al.|[2021]] and individual implementation of the communication, but we do not make claims
about how these types of composition differ from each other in more meaningful ways.

The Inhibition-Mover Subcircuit We build on work from I0I which documents
a circuit that appears in multiple tasks [Merullo et al.,[2024]]. This circuit includes mover heads, which
copy tokens from context to the output, and inhibition heads which (optionally) block the mover
heads’ attention to certain tokens and thus prevent certain tokens from being copied. Inhibition heads
are known to receive signals from duplicate token head value vectors which help inform which tokens
to inhibit. In GPT2-Small, the known inhibition heads are 7.3, 7.9, 8,6, and 8.10 and we consider
their communication to the mover head 9.qﬂ This is the example we use for query composition
experiments. In Section [5] we explore this circuit’s role in problems of prompt sensitivity and a
learned structure to control the indexing of tokens in the context window.

3for simplicity we only consider this mover head, but we do not find the choice matters much.
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Figure 2: Showing the relationship between the composition score (weight-based, bottom) and
inhibition score (data-based, top) between various inhibition head components and mover head 9.9
for the 10l task. The inhibition of each inhibition head is generally highly concentrated in one or
two components of the matrix, removing it causes a large drop in the later mover head’s ability to
downweight one of the names. We therefore show that we can use the composition score when
considering decomposed matrices.

3 Identifying Communication Channels in Low-Rank Subspaces

In this section, we test the hypothesis that model components like attention heads communicate
through signals in low-rank subspaces of the residual stream and that we can find these signals in the
weights themselves. We investigate one case of each type of composition outlined in Section [2]and
find positive evidence for this hypothesis with query and value composition in 1 and 2 dimensional
subspaces, but not key composition (see Appendix [C). Because we are able to localize the query and
value signals to such small representation spaces, we find that we are able to interpret and control
these features with intervention experiments in Section 4]

3.1 Composition Score

The Composition Score (CS) introduced in [Elhage et al[[2021] is a weight based metric of how much
two weight matrices ‘talk’ to each other when they are separated by layers. That is, W1 might write
information into a subspace in the residual stream that is read out by Wy. In Query composition for
example, W7 is the OV matrix of some head, and Wy is the QK matrix.

[[W1Wa2|[F

CS(W1,Wy) = 1
(W W) = (58111 = [Wallr >

We take advantage of the fact that circuit analysis in works like [Wang et al.| [2022] tells us that,
for example, head 3.0 (duplicate head) interacts with head 7.9 (inhibition head) through value
composition and 7.9 with 9.9 (mover head) in query composition.

3.2 Composition with Decomposed Component Matrices

We initially use the composition score in Equation [T]to try predict these interactions in the weights,
but find these results are largely noisy and uninterpretable. This is briefly demonstrated in Appendix
[l We find that despite empirically knowing interactions exist between heads, we do not find they
reliably have higher composition scores than any random head. Although the composition score has
been shown to be useful on small toy models [[Elhage et al.,[2021]], previous work has also shown
that on larger models, the signal the composition score conveys is extremely noisy [Singh et al.|
2024). Therefore, we turn to the Singular Value Decomposition (SVD), defined as W = USV 1,
on the QK and OV matrices to decompose the attention heads into orthogonal components which
determine the input and output spaces of the matrix. This allows us to individually view subspaces



read from/written into ordered by the amount of variance of the transformation of the matrix they
account for. This helps us answer our original hypothesis that model components communicate across
layers in low-rank subspaces of the residual stream.

If d is the dimension of the residual stream (768d in GPT2) and h is the dimension of an attention
head (64d in GPT2), OV, QK € IR% and are both rank-h. This is because attention heads project
down from the residual stream to h (e.g., the job of the V matrix) and then back up to d (e.g., the job
of the O matrix). Therefore, there are only h non-zero singular values for each matrix.

Equation 2] shows a useful identity of the SVD: we can rewrite some weight matrix W’ as the sum of
the outer products of the left and right singular vectors, scaled by the corresponding singular value.

h
W=> 5+UieV; )
i=0

Rewriting the original matrix in this way is useful because we can now use the sum of any subset of
component matrices in the composition score (Equation|[I)). Let the zero-th component of head 3.0
be written as 3.0.0. We can write the composition score between the 3.0.0 OV matrix and the 7.9
OV matrix as CS(OV3%% OV™?). Since each component matrix is an outer product of two vectors,
each matrix has rank-1. This gives us a way to disentangle the full signal of a head into the sum of its
component rank-1 matrices, or the subspaces that the head is able to read from/write to.

We find that decomposing weight matrices this way is very effective at cleaning up the composition
score signal. We find attention heads that have very high relative composition scores with one
component matrix of another head. For example, the second component of head 8.6 (referred to as
8.6.2) composes far more with mover head 9.9 than any of the other 63 components in 8.6 (5 standard
deviations higher than the average) or when considering the full matrix as in C'S (OV8'6, QK9'9).
The bottom graphs in Figure 2] show these results for the inhibition heads. All of the inhibition head
exhibit a similar phenomenon of single component dominance. The duplicate token head 3.0 also
value-composes with inhibition heads in a similar way, using two components (3.0.1 and 3.0.2) far
more than any other. Results are shown in Appendix [D}

We can also use this decomposition to find specific pairs of heads that talk more than others. With the
knowledge that two heads talk through a specific component of one head, we can find the other heads
that communicate through this pathway. Doing so lets us find the signal encoding almost the full IOI
circuit in GPT2-Small directly from the weights, without running the model. We outline these results
in Appendix I}

We interpret these as communication channels between heads, but we would still like to establish
these channels as directly affecting downstream component’s behavior. We verify this is the case
through a weight editing in Section [3.3]and through activation interventions in Section ]

3.3 Model Editing

In the previous section, we found that within a given head, individual component matrices encode a
much stronger composition signal than that encoded by the global matrix. This makes the composition
score a much more useful tool than when only considering full-rank matrices. In this section, we verify
that these identified components are indeed communication channels that carry causally important
signals for model behaviors. We first look at the inhibition head channels.

3.3.1 The IOI Dataset and Inhibition Score

Because the behavior of the inhibition heads was initially described on the Indirect Object Identifica-
tion (IOI) dataset in|Wang et al.| [2022], we explore the inhibition communication channels on that
domain first. An example of the dataset is as follows: “Then, John[S1] and Mary[IO] went to the
store. John[S2] gave a drink to". Here, the two name options are possible, but generating “John"
does not make sense. The role of the inhibition heads are to tell the mover head (9.9) to attend less to
the first John token (and as a result copy the remaining Mary token). We thus define the Inhibition
Score as the degree to which the mover head prefers attending to the IO token (Mary) over the S1
token (the first John). This is simply the attention score to the IO minus the attention score to the S1.
Intuitively, full attention to the IO token would give a score of 1.0, -1.0 would be full attention to S1
(inverse inhibition), and 0.0 would be equal attention to both (no inhibition).
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Figure 3: Because component matrices are rank-1, their output spaces are 1D and interpreting them
becomes easier. On the left, inhibition component activations go to either side of the origin , and
selectively inhiibt the name in either position one or position two in the IOI task. We can scale a
vector lying on this line by some scalar alpha and observe how this changes behavior when we add it
to the residual stream, or replace the output of an attention head with it (right), which we show in

Figure [d]

3.3.2 Results

Our editing technique is simply to zero out one component at a time test how this affects copying
behavior across a dataset of I0I examples. One way to think about this is zeroing out one singular
value of e.g., the OV or matrix, or subtracting one of the component matrices from the sum in
Equation 2] We must make the edit to the decomposition and then split the matrices back out so that
we can run the model. Given OV = USV7 |, after zeroing out some singular value in S (forming S’)
we can set the Output and Value matrices to be Uv/S’ and v/S’V7, respectively. In the top graphs of
Figure 2] we show that removing the speculated communication channel from the inhibition heads
almost always results in a significant decrease in the model’s ability to pass the inhibition signal, with
the exception that changing 7.3 does not have a strong effect on its own. In general removing the
single component with the highest composition score reduces the Inhibition score by 7-14%, and it is
important to consider that this is only when changing a single component in one head at a time. We
perform additional experiments with removing/modifying multiple of these components in Section
M and Appendix [E] Thus, we have both behavioral and weight based evidence converging on the
interpretation of these subspaces as meaningful communication channels.

4 Communication Channels Carry Interpretable Content-Independent
Signals

We present further evidence that the communication channels we identify in the model weights carry
causally important signals for affecting model behaviors, but also that they carry content-independent
signals which are easily controllable and interpretable.

Because the component matrices are rank-1 (Equation [2), their outputs lie entirely on 1D subspaces.
This subspace (in our implementation) is the right singular vector corresponding to the index of
the component matrix multiplied by some scalar. Since we have shown that these communication
channels have a significant impact on downstream performance, a natural question is how information
(such as inhibition) is represented along such a simple feature.

4.1 Interventions on Communication Channels

In order to better understand the representations passed through communication channels, we design
interventions that add to or replace information from certain heads with vectors that lie on the output
space of communication channels. Figure 3] provides an outline of the approach. Since a single
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Figure 4: We find that the 1D inhibition components and 2D duplicate token components finely
control which name is avoided by the mover head. On the top, we can selectively inhibit either the
first or second name depending on how we scale a vector lying on the 8.10.1 output space. This is
strictly controlling relative position. On the bottom, we find that adding or removing duplicate token
information from the duplicate channel at the 10 or S1 tokens also effectively modulates which name
is inhibited. Neither random heads, nor non-communication channel components exhibit these same
effects (right). See Appendix [E]for results on other heads.

component is rank-1, we can set the output of some head to be a point on the output space line and
see how information changes along it.

Our dataset contains 200 examples from the IOI task. We have 100 examples where the IO token
is the first name (“Mary and John...John gave a drink to") and 100 where the S1 token comes first
(“John and Mary... John gave drink to").

On inhibition heads, we find that scaling a single component at a time is enough to switch the attention
of the mover head to the other name. The inhibition score is highest when the S1 token is inhibited,
but as Figure @] shows, downscaling 8.10.1 only increases inhibition when S1 is first, and decreases it
when IO is first. The opposite is true for upscaling the component. This tells us that the component is
passing a positional signal: either inhibit name one or name two. This is consistent with whatWang
et al.| [2022] found, but our intervention shows that we can completely divorce the context from this
ability. Since we are setting the head output to a scaled singular vector from the weights, we are
bypassing the attention mechanism entirely, so non of the information on what to inhibit is coming
from the value vectors of the IO or S tokens. This tells us that the model is capable of representing
pointers, or storing bindings in the keys of earlier tokens that represent indexed lists, similar to the
finding in [Feng and Steinhardf [2023]]. We explore this further in Section[5} The bottom of Figure [
shows that scaling diagonally in a 2D subspace of the duplicate token head and adding the resulting
vector to the residual stream of the IO or S1 token right before the inhibition heads also allows for
modulating the selected name.

Although we get fine control over the attention of the mover head, we have not answered whether this
has a real effect on the output behavior. Additionally, Makelov et al.[[2024] argue that interventions
on subspaces, such as the case here, are prone to a subspace illusion in which the effect is not
what it seems. To address this, we measure the Fractional Logit Difference Decrease (FLDD) and
Interchange Accuracy of patching the subspaces in the inhibition channel between minimally different
IOI examples. GPT2-Small achieves an FLDD of 97.5% and and interchange accuracy of 35%.



Makelov et al.|[2024]] report a baseline that achieves -8% FLDD and 0.0% Interchange. By taking
the gradient to directly optimize a single vector for this task they achieve 111.5% FLDD and 45.1%
Interchange. Our results in comparison, support the view that these 1D subspaces are a primary
mechanism controlling name selection. In Appendix [G] we also find that these inhibition signals are
active broadly during next work prediction. On OpenWebText [Gokaslan and Cohen} 2019], we find
that the inhibition heads are primarily active in lists and settings where repetitions should be avoided;
for example, in comma separated lists (attending from commas to previously seen items). A natural
followup given the IOI results and these observations is to explore their role as an indexing function,
which we perform with the Laundry List task.

5 The Inhibition Channel is Crucial in Context Retrieval Tasks

Now that we have established the existence of communication channels and their causal role in
model behavior, we can revisit our motivating example on prompt sensitivity in the Laundry List
task. Figure[I|shows an example of the task and an example of an arbitrary seeming failure to minor
variation in the order of presented items. In this section, we explore the hypothesis that the inhibition
communication channel presented so far plays a critical role in how the model selects the right context
token to generate next, and reveals a capacity limit that causes the model to fail as the number of
objects increases.

5.1 Laundry List Task

We propose a synthetic task that is designed to activate the inhibition heads, but allows us to test their
effect on an arbitrary number of candidate tokens. An example is given in Figure[l|and more details
on how we generated the data are in Appendix [F] Each example first mentions N objects, then N-1,
and the model must predict the missing item. We create a dataset of 250 prompts for each value of N
from 3 to 20.

To complete this prompt, the model needs to recognize the item missing from the second list and
retrieve it from the first list. By shuffling the second list and using a different sentence format, simple
mechanisms (like pattern matching with induction heads) can not be relied on solely to solve the task.
With this setup, we can very naturally increase the number of objects being considered. This lets us
test not only if the inhibition heads are used for indexing candidates, but whether this mechanism’s
behavior changes as it is strained by the number of comparisons that need to be made. The model
has a strong bias to predict the last item, regardless of whether it is correct or not, which causes
performance to drop, so we are also curious if the mechanism connects to that as well.

We find that the inhibition heads are highly active (large attention on non EOS tokens) on this task
when predicting the last object, like the analysis in Section [ would predict. The heads attend to and
inhibit the occurrences of all of the repeated object tokens.

5.2 Intervention Experiments

We repeat the inhibition component intervention from Section ] where we scale the components in
the inhibition channel. In the multi-object (>2) case, we find that scaling only one component at a
time does not give enough expressive power to change the mover head’s attention to reach all of the
objects (Figure 3] left). Instead it prefers to attend to either the first or last object, seeming to chunk
the remaining objects together as a single point along the line. The bias to ignore information in the
middle has also been observed by [Liu et al.|[2024]].

We traverse the 3D space spanned by the top three inhibition head components (7.9.6, 8.6.2, and
8.6.10) and measure how this changes where the mover head attends, and what the model’s final
prediction isﬂ We leave out 7.3 because we found that it changes inhibition performance the least
(Figure[2), and visualizing with only 3 dimensions is much simpler. In Figure[5](middle), we visualize
this traversal with one dot representing a point in the space that we query. We run the entire dataset
with the inhibition components set at this point, and the color represents the index of the object that
the mover head attends most to. We find that structure emerges as we add items, where areas of this

*We test in increments of 10 from [-100, 100] along each axis, including every combination. it’s possible this
is not the optimal range



5 Objects 6 Objects

Effect of Singular Vector 8.10.1
Scale on Mover Head 9.9 Attention

Accuracy on Laundry List Data
per # of Objects

B Nolntervention
sampling from Inhibition Space

Object 1

.
*  Object2
Object 3
Object 4
Object 5 I l
Object 6 )
30bjs 40bjs SObjs 6Objs 7Objs 8Objs 9Objs 100bjs 200

Object 7

Object 8 Number of Objects
©  Object9

Object 10

Accuracy

Figure 5: Scaling the inhibition component for a single head (here 8.10, left) is not expressive
enough to get the mover head to index between the various objects. Scaling the top three inhibition
components (middle) gives us enough expressive power to selectively attend to one of the objects.
Here, one dot represents a run on the corresponding dataset and the color represents the index of
the object the mover head pays the most attention to on average. A surprising structure emerges
that partitions the space according to the index of the objects. However, the neat structure begins
to break down as the number of objects grows around 10 or higher, and affects the mover head’s
ability to attend to the right object, which impacts accuracy. Right: Accuracy improvements as a
result of sampling from inhibition space. The model becomes much more capable of handling a
bigger number of objects in that the accuracy for N objects after the intervention is about as high as
the unaltered model when it sees N/2 objects. However, the representational power of the inhibition
channel reaches capacity as the number of objects increases, and performance can not improve as
much.

space represent the first and last object, and wedges fill in the space for each item that gets added.
Eventually (around 9 or 10 items) these wedges get small and start to fracture (Figure [5] middle
bottom). We connect these two phenomena to the performance of the model: the bias to predict later
objects, and the inability to handle longer lists. We believe the model is not capable of traversing this
space well enough on its own, even though it learned to represent it, and longer lists cause worse
performance because the space gets fragmented into smaller and smaller areas that repersent each
item.

We design an intervention where we set the model components in a certain area of the 3D space,
depending on the index of the correct answer and test how much this improves performance. In
Figure ] (right), we show this causes a sharp increase in the accuracy of the model: 3 object accuracy
goes up from 64% to 86%, and 8 objects goes up to about 51%, about the level of 4 objects in the
unmodified case. Therefore the inhibition channel we identified seems to form part of a more generic,
content-independent subcircuit for indexing items in the previous context.

6 Related Work

There has been significant focus on disentangling features from the representations of language
models and vision models [Olah et al., [2020]. Features have been analyzed at the neuron level
[Gurnee et al., 2023 Mu and Andreas, 2020, Dai et al.| Tang et al.l 2024] Sparse Autoencoders
and Dictionary Learning [Bricken et al.,[2023| Mallat and Zhang, |1993},|Cunningham et al., 2023
attempt to deconstruct activations into more primitive features [Rajamanoharan et al.}[2024]], which is
similar in spirit to our decomposition. propose a unification of several perspectives
on the linearity of featuers. The Superposition Hypothesis [Elhage et al) [2022] posits that linear
features are encoded in interfering ways. Our method is similar in flavor of disentangling tangled
features to make them easier to read off of the weights.

The SVD has been used for interpretability and weight based analysis in the past
[Praggastis et all, 2022} |beren and Blackl [2022]. Martin et al|[2021]], for example, use the SVD on
weight matrices to measure weiht quality to predict generalization performance and whether or not a
model is well-trained. The SVD has been used in the training of LoORA modules 2022],




as well as in other finetuning methods [Batazy et al., 2024, Feng et al., 2024, Wang et al., 2024,
Sun et al., 2024, |Guo et al., Karimi Mahabadi et al.|2021]]. Our work analyzes model properties
that may facilitate these methods to work. ? is perhaps the first to report that pretrained models
have a very low intrinsic dimensionality, which helps explain and support our claim that we see
so many low rank communication channels in large models. We are therefore excited about the
connections between this line of work and work on the linear representations in language models
[Elhage et al., 2022} [Park et al.]], which argues that features in LMs are represented as directions in
space. There has been recent work in studying interactions between components in finer-grained
feature spaces in the past [Kim et al., 2018} Marks et al., 2024} |Geiger et al., 2023| |Lepori et al., 2023]
Zhang et al., 2024, whereas our approach begins by first analyzing the weights to find substantial
connections in subspaces without requiring any data. Future work could connect these two, to find
circuits, subnetworks, and/or directions in space for certain behaviors informed by connections in the
weights, which alleviates the concern of finding these things from scratch. We outline preliminary
results for such an approach for novel circuit discovery in Appendix [I}

7 Discussion & Conclusion

Due to the recent and rapid success of language models, there is growing interest in understanding
how they are able to use language so flexibly and solve difficult tasks. Our results contribute
positive evidence that intricate content-independent structure emerges as a result of self-supervised
pretraining. Although similar types of structure were previously thought to be impossible or unlikely
to emerge in LMs [Lake et al., 2017]], there is emerging evidence that LM pretraining encourages
models to organize mechanisms into neat subprocesses [Feng and Steinhardt, 2023]]. We use weight
decomposition to uncover such structure and contribute to a fundamental understanding on how
models route information between layers, a core part of understanding feature representation in
models. We also show that low-level mechanisms such as those studied here can make real predictions
about prompt sensitivity, a problem that has long plagued the robustness of LMs. The method we
employ for weight analysis also holds promise for inference time steering, model editing, and
automatic circuit discovery. We hope our work promotes future research on the interpretability of
neural networks as well as their responsible deployment, and practical capabilities.
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A Limitations

A limitation of our approach is that we are relying heavily on previous knowledge of the language
model that we are using (GPT2-Small), which has been extensively studied. However, the insights
that we are able to glean by building on this foundation of knowledge we view as more reason to
approach interpretability work as building directly on model-specific knowledge. Additionally, our
findings may be able to feed back into automating interpretability of new models. Another limitation
of our approach is the inability to calculate query and key composition scores with models that
implement relative positional embeddings like RoPE [Su et al., [2023]] because of the non-linearities
between the Query and Key products preventing QK to be calculated cleanly. It may be possible to
simply take the composition between the Q and K matrices individually, but we do not experiment
with that extension here.

B Larger Models’ Performance When Increasing the # of Objects in the
Laundry List Task

In the main text, we consider models that are quite small by today’s standards, and it is reasonable
to wonder whether the inability to handle more objects in context goes away with model scale. In
Figure [6] we show that even up to 6.9B parameters, OPT [Zhang et al.| 2022] and Pythia models
also struggle with increasingly many objects, although degrade more slowly with scale. Regardless,
we are not claiming that we have identified a problem that can not be solved through scaling, nor is
that of particular interest in this work. Increased capacity is likely to yield mechanisms with higher
capacity to handle more objects. What is of greater interest for future work would be to identify
whether larger models use fundamentally different mechanisms than the one we identified here to
solve the task.

C The Composition Score with and without Weight Decomposition

We include some examples showing outlier components in value and query composition but not with
induction head key composition in Figure[7]

D Duplicate Token Heads

We focus on the inhibition communication channel in the main paper and do not show the where the
duplicate token channel comes from. In Figure[8] we show that two component matrices in duplicate
token head 3.0 (3.0.1 and 3.0.2) compose strongly with inhibition heads (7.9.6 shown here). On long
sequences of random tokens, we show that these direction encode whether or not a token has been
duplicated.

E More I10I Interventions

Additional interventions testing the efficacy of inhibition heads to change behavior of a downstream
mover head are provided in Figures 9] and [I0] We include the remaining inhibition heads and
additional control heads for the component scaling experiment from Section ] in Figure[TT]
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Figure 6: Larger models also degrade performance rapidly as we increase the number of objects
in the Laundry List task, although more slowly than smaller models. Pythia 6.9B retains strong
performance up to around 10 objects.

Composition Scores for 4.11 Components to 5.5 Keys Composition Scores for 3.0 to Components of 8.10 Values Composition Scores for 8.10 Components to 9.9 Queries

Component Component Component

Figure 7: Examples of composition scores of individual components with other heads. 4.11 is a
previous token head, 5.5 is an induction head, 3.0 is a duplicate token head, 8.10 is an inhibition
head, and 9.9 is a mover head. We find that there are large outlier components in value and query
composition, but not in the induction head, thus motivating our focus on those heads in the main text.

Projection of Duplicate and Non-Duplicate Tokens along
3.0.1 and 3.0.2 directions
2 « Duplicate
* Non-Duplicate

Composition Scores for 3.0 Components to 7.9.6 Values

0.25 -

Composition Score

Component

Figure 8: Left: Composition scores between each component of duplicate token head 3.0 and
inhibition component 7.9.6. Components 1 and 2 are clearly outliers. Right: on long contexts
of random tokens with inserted duplicates, we find that these directions separate duplicates from
non-duplicates quite well. This leads us to believe that these two components form a duplicate
communication channel. Our results in Section ] support this interpretation.

15



Effect on Inhibition Score when Forcing
Inhibition on Certain Tokens
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Figure 9: Effect of applying the top component interventions at the same time to some token. We can
control the inhibition by selecting which token these components attend to. Higher score means more
inhibition on S2, and lower score means more inhibition on IO.

F Laundry List Data Generation

The Laundry List task is a leave-one-out task where the model must identify the object that was
not mentioned. Each input is two sentences (see Figure[I|for an example). The first sentence lists
objects that need to be purchased and the second describes the order that they are to be bought in,
with the next token prediction being the item from the first list that is to be bought last. This setup
allows us to freely shuffle the order of the information provided to the model as well as vary the
number of objects presented in each example. There are 22 objects that can be sampled, given
below: ‘‘pencil", ‘‘notebook", ‘‘pen", ‘‘cup", ‘‘plate", ‘“‘jug", ‘“‘mug", ‘‘puzzle",
‘“textbook", ‘‘leash", ‘‘necklace", ‘‘bracelet", ‘‘bottle", ‘‘ball", ‘‘envelope",
‘““lighter", ‘“‘bowl", ‘‘apple", ‘‘pear", ‘‘banana", ‘‘orange", ‘‘steak" .

cc

The first sentence can start a few ways, chosen randomly: ¢ Today,’, ¢ Tonight,’, ¢
Tomorrow,’, ¢’. And the second sentence start can be chosen randomly: ¢ First,’, ¢’, ¢
When I go,’, ¢ I think’

G Inhibition Heads Behavior on Open-domain Text

We find that inhibition heads are consistently active on tokens about to predict the continuation of a
sequence (‘“‘serotonin, dopamine, and...") and attend to previous items in that sequence, consistent with
their role in IOI and Laundry List. We therefore argue that the role the inhibition mechanism plays in
both IOI and the Laundry List task performs this same operation in generic language modeling

H Inhibition Mechanism in Pythia and Training Progression of Inhibition

We verify both that communication channels appear in other models, and that inhibition is a more
general mechanism that that just appearing in GPT2. To show this we analyze Pythia-160m [Biderman
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Effect on Inhibition Score when Keeping
Only One Component per Inhibition Head
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Figure 10: Effect on the inhibition score when removing components from the inhibition heads. If
we only take the top-1 composing heads that affect the inhibition score (circled in Figure[2) we retain
close to have of the average inhibition score (0.7 to 0.3). If we only use the component matrices
that correspond to the Oth singular value of the inhibition heads, which represents the subspace most
strongly written to by the head, the average inhibition score is only 0.04. Recall that a negative
inhibition score means placing more attention on the subject rather than IO token.

Effect of Overwriting Attention Head Output as Scaled Component Vector (V) on the Inhibition Score
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Figure 11: We intervene on the forward pass of the model by replacing the output of some attention
head as the vector obtained by scaling a component vector by some scalar cv. By doing so, the
actual attention head pattern has no effect on the downstream performance. We show the inhibition
component vectors have the unique effect of controlling the position of the name being attended to by
the downstream mover head (9.9). Random control and head components with other functions (like
8.3.0) do not have this effect.
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Figure 12: Examples of high attention in examples in OpenWebText-10K for head 8.6 in GPT-2

[2023]]. Because Pythia provides training checkpoints, we are also able to analyze the formation
of the inhibition component we find to some extent.

H.1 Path Patching on 101

We perform path patching [Wang et al., 2022} |Goldowsky-Dill et al.}, 2023]] on Pythia-160m on the
IOI task to see if the model also implements mover and inhibition heads. We find evidence for one
inhibition head (6.6) in the model talking to a mover head (9.5). We find that like GPT2, the inhibition
head communicates primarily through a single component, as is shown in Figure [I6]

Additionally, an induction head (4.11) strongly value composes with the inhibition component 6.6.2
as shown in Figure[[7]

H.2 Training Progression of Inhibition Components

Because Pythia releases 144 intermediate checkpoints (per 1000 steps), we can track the emergence
of the inhibition head during training. We saw that the inhibition component vector clusters Namel
on one side and Name?2 on the other side, representing which name is being inhibited. Everything else
ends up around the origin. Since we have minimal pairs of examples that differ only in the position
of the name that should be inhibited, we can measure the Separability of the inhibition component
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Figure 13: Examples of high attention in examples in OpenWebText-10K for head 8.10 in GPT-2

vector by making sure that if one name is in one cluster, the minimal pair example is in the other
cluster. This is a measure of how well the inhibition head is structuring according to this idealized
separation of the two names.

The component that we use is the 6.6.2 matrix from the fully trained inhibition head. We test parity
by projecting the model’s activations onto this matrix.

In addition we can measure how well the fully trained component matrix activates (or removes) the
inhibition signal by adding or subtracting it from earlier checkpoints. These results are in

I Circuit Discovery with Static Weight Analysis

One of the core claims of this work is that we can find meaningful connections between attention
heads by reading them off of the weights. In this section we extend this idea beyond the IOI circuit
and use our method to show that we can find novel meaningful connections without running the
model. First, we show that we can rediscover the 10l circuit directly from the weights using the
decomposed composition score (without knowing anything about its function). Then, we show that
we can identify new connections to the 9.9 mover head that is part of a different circuit. We finally run
the model on open-domain data and perform causal experiments to begin to identify the functionality
of this new circuit, which we implicate in retrieving relevant information from context. While the
experiments we perform to identify functionality are not a replacement for a full circuit analysis,
we at least show how our method can be used to pinpoint circuits in a network for further analysis.
Future work can extend the analysis of the context-retrieval circuit we find here.
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Figure 14: Examples of high attention in examples in OpenWebText-10K for head 7.9 in GPT-2

I.1 Finding the IOI Circuit in GPT-2 Weights

To show the effectiveness of the decomposition at finding heads that communicate to a significant
degree, we use the composition score only to find a large chunk of the IOI circuit from [Wang et al.
[2022] encoded directly in the weights. Figure [I9shows these results. The composition score after
decomposing the inhibition head 7.9 more clearly reveals the communication between the in-circuit
heads (circled in red) than if the composition score is used without decomposition. It is possible this
approach can be built upon to find circuits in models without requiring the model to be run. We leave
this for future work.

L2 Discovering New Connections

We now take this further to show that we can use the composition score to facilitate the discovery
of new circuits directly from the weights. Although we can not yet identify function directly from
the weights, we can identify components that communicate strongly (indicated by their composition
scores) to know where to look for circuits that may explain other behaviors in the model.

We focus on one specific extension to the inhibition-mover subcircuit by looking for new connections
into the 9.9 mover head QK circuit. We search for connections into this head because it seems likely
that other heads besides inhibition heads control what the mover head attends to, but it has not been
investigated in prior work. We look for component matrices that have a high composition score with
the 9.9 QK matrix, and plot a heatmap of the highest composing component matrix per head in Figure
[23] We find that there are several heads that have components that highly compose with 9.9 that
have not been previously identified as affecting copying behavior. These are heads 6.1.1, 6.2.5, 6.7.3,
and 8.3.0. We show the per component composition scores for these heads in Figure 24| and find
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Figure 15: Examples of high attention in examples in OpenWebText-10K for head 7.3 in GPT-2

that they also contain individual components with very high relative composition compared to other
components (with 6.2 components being distributed slightly more smoothly than the others).

I[.2.1 Attention Pattern Analysis of 6.1, 6.2, 6.7, and 8.3

We perform a similar attention pattern analysis as shown in Section[G|on these heads. We run the
model on documents from OpenWebText-10K and look at contexts in which these heads attend
strongly (> .5 of probability mass) to some token. We find that 6.2 is not interpretable in this way, as
its attention patterns are more diffuse, but examples for the other heads are shown in Figures 21] 22}
and [20] We find qualitatively similar patterns in these heads to inhibition heads, though with less
selection for attending to previous items in lists. Head 8.3 is of particular interest because it has the
strongest composition with 9.9, and we will focus on it for the remainder of this section. This head
also has some particularly salient motifs in its attention patterns: much of the time it appears to attend
to a token (or the last token in a multitoken phrase) in context that could be a plausible continuation
of the current text. In the following section we explore what the possible function of this head is, and
its connection to the 9.9 mover head.

1.2.2 Attention Head 8.3 as a Relevant Context Head

The attention patterns in Figure [20] suggest this head plays some role in attending to relevant
continuations of the current context. The strong composition to the 9.9 mover head QK circuit (Figure
[23) also suggests it is modulating what the copying head attends to. But what is the actual function of
this head? First, we establish that this head is not a mover or inhibition head, then provide evidence
that it is a head involved in signaling relevant context that can be copied to the next token by the
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Figure 16: Pythia-160m also has a single component (6.6.2) in an inhibition head that dominates the
inhibition signal.

mover head (9.9). We begin to outline how exactly the 8.3.0 component matrix interacts with the
attention pattern of 9.9 with some success, but can not make strong conclusions because we can not
control for every variable in the data we have available. We hope this work encourages future study
on this head’s interactions with mover heads as well as future work in static weight analysis more
generally.

8.3 is not a mover head It’s possible that 8.3 acts like a mover head, copying the tokens it attends
to into the residual stream, which incidentally causes 9.9 to do the same. We perform the 101 copying
head test from Wang et al.|[2022] and find that this is likely not the case. In this test, the output of an
attention head is decoded into the vocab space. If the top token from this decoding is the same as the
token it attends to, then it is “copying" that token. We find that 8.3 gets 0% on this test, while 9.9 gets
100%. Other inhibition heads also get 0%, so next we explore whether 8.3 could be interpreted as a
type of inhibition head.

8.3 is not an inhibition head We include 8.3.0 (the zeroth component in 8.3, which strongly
composes with 9.9) in our analysis in Figure[IT] and find it does not act like an inhibition head on the
IOI task (although, as we could expect from the composition score, it does modulate the inhibition
scores). Additionally, removing the zeroth component reduces the inhibition score on IOI by less than
.01 (same experiment as performed in Figure[Z). From these experiments, we can not rule out that 8.3
never acts like an inhibition, i.e., it could do so on a distribution of text we do not test, but evidence
seems to point against this. Regardless, we can provide evidence for this head being involved with
identifying relevant continuations (rather than preventing repetitions) in the next sections

8.3 attends to relevant continuations of the current context Based on the observational evidence
from the attention patterns on excerpts from OpenWebText-10K, we hypothesize that 8.3 will
selectively attend to tokens that are logical continuations of the current text. To test this, we create a
small synthetic counterfactual dataset of verbs and nouns to test 8.3’s attentional preferences. Our
intuition is that: given some mention of a noun n in context (“pork"), and a verb v later in context
(“eat"), 8.3 will only attend to n if it is an appropriate direct object of v. Therefore, in the contexts “I
see the pork. I am eating" and “...I am drinking", 8.3 will attend from eating to “pork" strongly, but
not from “drinking" to “pork", since this is not a typical object of the verb “drink". We generate 84
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Figure 17: An example of an induction head (4.11) value composing strongly with the single inhibition
component 6.6.2 in Pythia-160m, suggesting a circuit for controlling attention through mover head
9.5. We leave analysis of this for future work.

Verbs

Likely Objects

cook
eat
drink
read
watch
open
write
play
paint

[carrot, cabbage, steak, pork, chicken]
[carrot, cabbage, steak, pork, chicken]
[water, juice, milk, soda, coffee]

[book, newspaper, magazine, comic, blog]
[movie, TV, video, show, cartoon]

[door, window, box, jar, can]

[letter, note, script, report]

[game, piano, guitar, violin, drum, song]
[wall, fence, door, floor, ceiling]

Table 1: Verbs and appropriate objects used to test 8.3’s attention patterns to relevant objects

counterfactual pairs of a verb and a likely/unlikely object using the verbs and nouns in Table[T} An
unlikely object is any noun that does not appear in the verb’s list of likely objects. We find that 8.3
attends much more strongly to nouns that are likely to follow the given verb. Results are shown in

Figure 23]

Causal Interventions on 8.3.0 Next, we use the output space of the 8.3.0 component as a steering
vector (since it outputs onto a line) to change the attention of 9.9, as predicted by the composition
score to0 9.9’s QK circuit. We use excerpts from documents in OpenWebText-10K that highly activate
8.3 (Figure 20). We hypothesize that 8.3 plays some role in telling 9.9 to attend and copy to relevant
context through its zeroth component matrix. Specifically, we test whether adding some constant
times the 8.3.0 output vector to the residual stream will cause 9.9 to attend more or less to the token
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Figure 18: Pythia training progression of inhibition component (6.6.2) and effect of model editing.
Adding the component matrix to the inhbition head strengthens the inhibition channel and improves
the ability to use inhibition in earlier checkpoints, subtracting it makes inhibition weaker. Separability
is simply the extent to which activations for IOI minimal pairs are split into clusters based on the
order of names (IO, S1 or S1, 10).

8.3 attends to (following a similar methodology as in Figure ). For instance, given the input “would
be better to negotiate with David, to give [him] some money and to [allow]", 8.3 attends from “allow"
to “him". We find that this does tend to be the case, although it is difficult to quantitatively measure.
Our results in Figure 26| show per-example attention scores after adding 8.3.0 multiplied by -1000
to the residual stream. We see a slight increase on average, but the results are inconsistent across
examples. One reason is because of multitoken phrases; e.g., for phrases like “the corridor", 8.3 will
attend consistently to the last token in the phrase, here “corridor". But if 9.9 is to copy this phrase, it
should attend to “the", not corridor. Our test does not cover this, and it isn’t clear how to fairly handle
each edge case. We suggest that some interaction like the one we’ve described here is taking place,
but leave more rigorous analysis on the exact interactions between 8.3 and 9.9 for further study.

J More Information on Composition

J.1 Value Composition: Duplicate Token Heads

Value composition dictates that the value vectors of an earlier head write information that affect
the values of later heads. Duplicate token heads are a well established type of attention head that
specialize in attending to duplicates in the previously seen context. That is, given the text “A B A",
the duplicate token head will attend from the second “A" token to the first. The IOI circuit finds value
composition between heads 3.0, a duplicate token head, and 7.9, an inhibition head.

J.2 Query Composition: Inhibition Heads

Value vectors of earlier heads affect the query vectors of later heads, thus changing what they attend
to. A canonical example originating in the IOl paper is with inhibition heads. These are a key part in
a token copying circuit in which the value vectors of such heads prevent later query vectors from
attending to the duplicated name in the IOI task. Mover heads (such as 9.9) We study these heads
in greater detail in Section[5] Whatever a mover head attends to will be promoted as the next token
prediction. An inhibition head tells a mover head to avoid attending to certain tokens, which is helpful
when there are multiple options to generate.
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Figure 19: Decomposing weight matrices cleans up the composition score enough that we can start
to read off components that belong to the IOI circuit without running the model. By starting with a
known inhibition head component (7.9.6) we can find the heads that compose into that component
and the heads for which the inhibition component composes into that belong to the IOI circuit from
Wang et al.|[2022]. Left graphs show the composition score without any decomposition, which is
noisy. On the right, we find in-circuit heads (circled) qualitatively to stand out more. See Wang et al.|
[2022] for more details.

J.3 Key Composition: Induction Heads

An induction head is a pattern completing attention head. For example, seeing the pattern “A B A B
A" will cause the model to attend from the last A to the last B, since a pattern is present where B
must follow A. The mechanism that typically implements induction heads requires a previous token
head (which will always attend from the current token to the one right before it) to affect the key of a
later induction head. At a later timestep the query of the induction head will notice the signal left in
the earlier key, and choose to attend to it. We consider the key composition between the previous
token head 4.11 to induction head 5.5 from the IOI circuit.

K Extra Laundry List Interventions

The results for scaling individual components across Laundry List datasets (varying number of
objects) are in Figures [28] [29] [30} BT} 32] 33| 34] 35 and[36]

We also include results from traversing the 3D inhibition subspace used in Figure [5 for a greater
range of settings for the number of objects in Laundry List dataset examples. We test datasets set to
have 3-10 objects and one dataset set to have 20 objects. The results are shown in Figure [27]
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Figure 20: Examples of high attention in examples in OpenWebText-10K for head 8.3 in GPT-2
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Figure 21: Examples of high attention in examples in OpenWebText-10K for head 6.1 in GPT-2
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Figure 23: We look at the top scoring component matrices in every head before layer 9 to attention
head 9.9. We find several heads not previously identified in circuit analysis that have strong com-
munication to it. These are attention heads 6.1.1, 6.2.5, 6.7.3, and 8.3.0. 8.3.0 in particular, has the
strongest composition with 9.9 out of any head.
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Figure 25: When predicting the continuation of sentences like ‘I saw the book. I am reading the’,
head 8.3 is attends much more strongly to the given noun (book) when the verb is appropriate vs.
inappropriate (e.g., eating). The average attention score is around 35% for likely nouns and around
5% for unlikely nouns.

Attention Scores for 9.9 with and without Steering 8.3.0

W Original
B Scaled 8.3.0
0.8
@
[}
= 0.6
o
'
o
T 04
<
) ‘ ‘ ‘ ‘ ‘
ollnlal II __-II|II|..--|_| . -_I__ ,-I- .
0 10 20 30

Example
Figure 26: Interventions on 8.3.0 cause an increase in the attention of 9.9 onto the token 8.3 attends,

although inconsistently. The x-axis shows results for individual examples. This is an average increase
from 9% to 12%.
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Figure 27: How the 3D inhibition subspace responds to a different number of objects in laundry list
prompts. As we add objects, a new ‘slice’ of the space is allocated (not always visible) for attention
to that object until the middle set of objects is squeezed into a small neighborhood of the space. The
space is very well structured, except for two cases where artifacts form in the 8 and 10 object settings.
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L. Compute

The models we use in this paper are small, in the range of 100M parameter tranfsormer models. The
compute required to reproduce the results is therefore relatively small, but does require access to
modern GPUs. We primarily used Nvidia 3090 GPUs for this work. Running the linear combinations

of inhibition components in Section [5| was the most expensive experiment. Each dataset took about
12 hours on either a RTX 3090 or Quadro RTX gpu.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS paper checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide evidence for our papers abstract and intro claims in Sections
and[5] Additional supplemental experiments are in the appendix

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

41



Justification: We have a limitations section in Section [Al
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: Not applicable
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Besides the main paper details, we have additional details on replicating
experiments, like how to generate the laundry list task in Section [F}

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release the scripts to generate the data and reproduce the experiments in
the main paper.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All hyperparameters are included in text or in the figures where applicable.
For example, the values we scale singular vectors by are included in figures like Figure [
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error bars in out inhibition score measurements and include controls
for experiments on specific heads by including random heads (§4).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We answer these questions to the best of our abilities in Appendix

Guidelines:
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9.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have reviewed the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: Our work does not have an immediate application but we do discuss the
downstream impact of our work on safety and controllability of LMs throughout the paper.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: No such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Previous work is cited properly.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The Laundry List task is very simple and documented in Section[Fand code to
generate it is provided.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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15.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdworkerss
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No IRB required.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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