

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AUTOL2S: AUTO LONG-SHORT REASONING FOR EFFICIENT LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

The reasoning-capable large language models (LLMs) demonstrate strong performance in complex reasoning tasks but often suffer from *overthinking* issues after distillation, generating unnecessarily long chain-of-thought (CoT) reasoning paths for easy reasoning questions, thereby increasing inference cost and latency. Recent work largely applies reinforcement learning to shorten reasoning paths in models that already possess reasoning capability. However, these approaches generalize poorly to non-reasoning LLMs, as they assume initial reasoning ability and rely on sparse, outcome-based rewards that make optimization unstable and limit effective learning. In this paper, we propose Auto Long-Short Reasoning (AutoL2S), a dynamic and model-agnostic framework that enables LLMs to adaptively adjust reasoning length according to input complexity, while specifically targeting the stage of transferring non-reasoning LLMs into reasoning-capable but efficient ones via distillation. AutoL2S introduces a learned mechanism in which LLMs are trained on data annotated with long and short CoT paths, together with a special `<EASY>` token that signals when long reasoning can be skipped. During inference, the `<EASY>` token can indicate when the model can skip generating lengthy CoT reasoning. Furthermore, we extend our framework with AutoL2S-Plus, which employs the AutoL2S as a reference model in a length-aware fine-tuning objective to calibrate expected reasoning length, enabling further efficiency gains without loss of accuracy. We theoretically and empirically find that the joint training of long and short CoT paths not only enables dynamic reasoning but also helps the training of shorter CoT generation through knowledge transfer from longer CoT paths. Extensive experiments demonstrate that AutoL2S effectively reduces reasoning length without sacrificing performance, establishing it as an effective framework for scalable and efficient LLM reasoning. The code is available at <https://anonymous.4open.science/r/AutoL2S-A72E>

1 INTRODUCTION

Large Language Models (LLMs) have rapidly emerged as essential components in complex reasoning tasks, demonstrating impressive capabilities across advanced applications (Patil, 2025; Chen et al., 2025). However, their deployment in such settings is hampered by fundamental inefficiencies: complex reasoning often requires long-context decoding and extended output generation, which significantly amplifies the computational cost due to the autoregressive nature of LLMs. Specifically, as the reasoning chain grows longer, the computational costs in both memory and inference latency increase quadratically. These issues, known as overthinking problems (Chen et al., 2024; Sui et al., 2025), are further exacerbated by the fact that reasoning-capable LLMs are typically large in scale (Guo et al., 2025), compounding the cost of inference. As a result, practical deployment becomes increasingly cost-prohibitive. This motivates the need for lightweight alternatives that can preserve strong reasoning capabilities while operating with substantially lower resource demands.

To enable scalable deployment of reasoning-capable LLMs, recent works have explored knowledge distillation techniques (Guo et al., 2025; Labs, 2025; Muennighoff et al., 2025; Ye et al., 2025), where non-reasoning LLMs are trained to mimic the reasoning patterns exhibited by stronger reasoning-capable LLMs. These distilled strategies offer significant reductions in parameter and computational cost during training, but simultaneously increase the generated length of chain-of-thought (CoT) reasoning paths, which causes significant cost for decoding. This is because the distillation of

ten replicates the full long-context reasoning paths from the teacher models (i.e., the LLMs with stronger reasoning capabilities) in order to preserve reasoning performance, resulting in considerable computational overhead during inference. Existing work, such as Qwen3 (Yang et al., 2024a) and Claude (Anthropic, 2023), addresses the overthinking issue by relying on users’ manual selection based on prior knowledge to guide LLMs toward either long-form or short-form reasoning. Moreover, other approaches (Luo et al., 2025; Ma et al., 2025a) have primarily employed reinforcement learning (RL) to shorten reasoning paths on top of reasoning-capable LLMs, where these methods heavily rely on models that already exhibit reasoning ability, as these RL-based methods depend on strong reference policies and sparse, outcome-based rewards. However, they still lack the flexibility to dynamically adjust CoT length to the input context, remain constrained by the model’s inherent reasoning capability, and are difficult to extend to non-reasoning LLMs.

We identify two fundamental challenges in optimizing towards LLM efficient reasoning. First, the key challenge is to determine when a short reasoning path is sufficient and when a longer one is required. The redundancy of CoT reasoning varies with input complexity, where simple questions can often be answered with minimal reasoning, whereas complex ones demand multi-step reasoning. Without a criterion to adaptively choose between short and long reasoning, models either waste computation on easy cases or risk omitting essential steps for difficult ones. Second, the lack of supervision for short CoT reasoning paths makes it difficult for LLMs to determine the minimal amount of reasoning required to solve a task. Existing training data rarely indicate when shorter reasoning is adequate, making it difficult for non-reasoning models to acquire efficient reasoning ability by learning to omit unnecessary steps without degrading accuracy (Ma et al., 2025b). As a result, even well-aligned LLMs may struggle to identify and retain only the essential reasoning steps (Zhang et al., 2025; Liu et al., 2024; Yu et al., 2024). Therefore, effective CoT compression should be input-aware and dynamically estimate the appropriate reasoning length based on input complexity. However, determining the optimal reasoning length per input is inherently ambiguous, making the efficient-oriented training a challenging and non-trivial problem. This raises a natural question: *How can we enable LLMs to automatically and dynamically stop overthinking when long and detailed reasoning is unnecessary?*

To address these challenges, we propose Auto Long-Short Reasoning (AutoL2S), a dynamic and model-agnostic framework that enables LLMs to adaptively control reasoning length. AutoL2S automatically determines when long reasoning is necessary and when concise reasoning suffices, thereby bypassing redundant steps without degrading accuracy. Our approach relies on augmented training data that explicitly annotates instances where short CoT reasoning is adequate. This dataset is constructed by pairing long- and short-form CoT reasoning paths, with <EASY> tokens indicating cases where long reasoning can be skipped. We provide both theoretical and mechanistic analyses showing that training with long-form CoT paths improves the quality of short-form reasoning, ensuring robust performance even when the model selects shorter outputs. Furthermore, we extend AutoL2S with a length-aware fine-tuning objective (AutoL2S-Plus) that leverages a reference model to calibrate expected reasoning length, yielding additional compression of CoT without sacrificing correctness. **We evaluate AutoL2S on two base LLMs across five reasoning benchmarks spanning mathematics and physics questions. Results show that AutoL2S and AutoL2S-Plus reduces reasoning length by up to 70% while preserving task accuracy.** Our contributions are summarized as follows:

- **Auto Long-Short Reasoning.** AutoL2S provides a model-agnostic framework that adaptively selects long or short reasoning paths with <EASY> token based on input complexity.
- **Long2Short Insight.** Theoretical and empirical analyses indicate that long CoT paths benefit the learning of short reasoning, enabling concise outputs without accuracy loss.
- **Extensive AutoL2S-Plus.** We extend AutoL2S as a reference model with a length-aware fine-tuning objective guided to further compress reasoning paths.
- **Reasoning Evaluation.** Across five benchmarks in mathematics and physics, AutoL2S reduces CoT length by up to 70% while preserving performance.

2 PRELIMINARY

In this section, we first formally define the Auto Long-Short reasoning problem. We then illustrate the challenges in distilling reasoning capabilities from large reasoning-capable LLMs.

108
109

2.1 PROBLEM DEFINITION

110 We study the problem of distilling strong but long reasoning traces from a reasoning-capable LLMs
 111 into a smaller, non-reasoning-capable LLMs $f(\cdot | \theta)$ with trainable parameters θ , with the goal of
 112 enabling it to generate shorter reasoning paths while maintaining task performance. Specifically,
 113 let \mathcal{Y}_{long} denote a set of long reasoning responses produced by reasoning-capable LLMs such as
 114 DeepSeek-R1 (Guo et al., 2025) or QwQ-32B-preview (Team), and let \mathcal{Y}_{short} denote a set of short
 115 reasoning responses from models with inherent shorter reasoning path such as Qwen2.5-Math-7B-
 116 Instruct (Yang et al., 2024a). We construct a distillation dataset $\mathcal{D} = \{\mathbf{S}, \mathbf{L}\}$, where $\mathbf{L} \subseteq \mathcal{Y}_{long}$ and
 117 $\mathbf{S} \subseteq \mathcal{Y}_{short}$ are collections of valid long and short CoT paths as defined in Definition 1.
 118

119 The objective is to train $f(\cdot | \theta)$ in \mathcal{D} such that, after training, the distilled model $f(\cdot | \theta_{\mathcal{D}})$ can
 120 automatically adapt its reasoning length to the complexity of the input question, generating a short
 121 path when sufficient and a long path when necessary. We expect the outputs of $f(\cdot | \theta_{\mathcal{D}})$ to be
 122 significantly shorter than those of a model trained only on long-form responses $f(\cdot | \theta_{\mathcal{Y}})$, while
 123 preserving correctness. This reduction in output length translates directly to fewer generated tokens
 124 and thus faster inference. To this end, we propose the *Auto Long-Short Reasoning* framework to
 125 enable efficient LLM reasoning through joint utilization of valid long and short CoT paths.
 126

127 **Definition 1 (Valid Long and Short CoT Reasoning).** *Let X denote the input with ground-truth
 128 answer y^* . Let $S = (s_1, \dots, s_{T_S})$ and $L = (\ell_1, \dots, \ell_{T_L})$ be token sequences in a vocabulary \mathcal{V} ,
 129 with lengths $T_S \ll T_L$. For $t \in [1, T_S]$ and $t \in [1, T_L]$, we define the prefixes $S_{<t} = (s_1, \dots, s_{t-1})$
 130 and $L_{<t} = (\ell_1, \dots, \ell_{t-1})$. We say that S and L are effective short and long CoT paths if every next
 131 token is semantically valid given the input and prefix, and the final sequence yields the correct answer
 132 y^* . Formally, the sets of all such sequences are*

$$133 \mathbf{S} := \left\{ S \in \mathcal{V}^{T_S} \mid (X, S_{<t}) \vdash s_t, \forall t \in [1, T_S], f(X, S) = y^* \right\}, \\ 134 \mathbf{L} := \left\{ L \in \mathcal{V}^{T_L} \mid (X, L_{<t}) \vdash \ell_t, \forall t \in [1, T_L], f(X, L) = y^* \right\}.$$

136
137

2.2 CHALLENGES OF DISTILLED REASONING LLMs

138 To equip a non-reasoning model (Qwen (Yang et al., 2024b), Llama3 (Grattafiori et al., 2024)) with
 139 reasoning capabilities, DeepSeek-R1 proposes to distill such non-reasoning models using supervised
 140 fine-tuning (SFT) with a curated reasoning dataset generated by DeepSeek-R1 (Guo et al., 2025).
 141 Rather than relying on reinforcement learning (RL), SFT provides a simpler and more effective
 142 approach for enhancing reasoning capabilities. However, SFT-trained reasoning models still face
 143 a critical challenge: *they often generate overly lengthy outputs containing redundant or irrelevant
 144 content* (Sui et al., 2025). To mitigate this overthinking problem, a series of works leverage SFT to
 145 achieve efficient reasoning (Ma et al., 2025a; Xia et al., 2025). Specifically, they curate a reasoning
 146 dataset with variable lengths and fine-tune the model on these information-dense samples to develop
 147 concise reasoning capabilities.
 148

149 Striking a balance between brevity and completeness remains non-trivial in removing lengthy outputs.
 150 Compressing the reasoning path too aggressively risks omitting essential logical steps, which may
 151 degrade model performance on complex tasks. Moreover, in the absence of definitive supervision
 152 signals for the minimal sufficient reasoning trace, LLMs may struggle to determine the optimal
 153 stopping point for their reasoning process. To address this, we propose the Auto Long-Short
 154 Reasoning framework, which encourages LLMs themselves to autonomously decide when to generate
 155 shorter or longer reasoning based on the input context.
 156

157
158

3 AUTO LONG-SHORT REASONING

159 We systematically introduce the AutoL2S framework in this section. AutoL2S aims to distill reasoning
 160 capabilities from reasoning-capable LLMs, allowing the model to learn effective reasoning patterns
 161 while reducing the length of reasoning paths required to arrive at correct reasoning answers. In
 162 particular, AutoL2S effectively identifies easy questions and applies short reasoning for efficiency,
 163 while preserving long-form reasoning only for more complex cases, ultimately resulting in a reduced
 164

162 average number of generated reasoning tokens. We further present the proposed training methodology
 163 and efficient inference process of AutoL2S for efficient LLM reasoning.
 164

165 **3.1 TRAINING STAGE OF AUTO LONG-SHORT REASONING**
 166

167 AutoL2S constructs a diverse reasoning dataset by preparing both long and short CoT reasoning
 168 paths, based on the complexity of each question. Specifically, long CoT reasoning paths are provided
 169 for all questions to capture the complete reasoning process. In contrast, short CoT reasoning paths
 170 are more preferable when they can still lead to correct answers, providing more efficient reasoning
 171 representation. Formally, questions that are solvable through a short reasoning path are defined as
 172 EASY questions. AutoL2S aims to train LLMs not only to learn both long and short reasoning
 173 patterns, but also to identify EASY questions, enabling LLMs to perform efficient reasoning when
 174 appropriate. More details are provided in Appendix B.

175 **Constructing Long CoT Reasoning Paths.** We use Bespoke-Stratos-17k (Labs, 2025) as the source
 176 of questions. Then, we employ DeepSeek-R1 (Guo et al., 2025) to generate CoT traces along with
 177 final answers as the basic long CoT reasoning dataset. Specifically, AutoL2S follows the format
 178 in Equation 5 to annotate long CoT reasoning paths and answer for questions in the dataset. The
 179 annotation of the reasoning path aims to distill the decision-making capabilities of DeepSeek-R1 into
 180 the target model.

181 **Constructing Short CoT Reasoning Paths for EASY Questions.** Rather than utilizing entire long
 182 CoT responses for all questions, an effective reasoning dataset for concise reasoning should contain
 183 shorter CoT responses for easy questions. In principle, as long as the answer remains correct, shorter
 184 CoT are preferable as training samples. To curate such concise CoT for easier questions, we apply
 185 Qwen2.5-Math-7B-Instruct (Yang et al., 2024a) to the same Bespoke-Stratos-17k dataset, generating
 186 reasoning traces with shorter CoT trajectories. We employ rejection sampling to filter and retain only
 187 those traces that produce correct answers, replacing the corresponding long CoT responses with these
 188 shorter alternatives. We annotate the corresponding questions using the <EASY> token. In contrast,
 189 questions for which only long CoT responses yield correct answers are without the <EASY> token,
 190 and their original long CoT traces are retained in the training dataset.

191 **AutoL2S Training Strategy.** We distill the reasoning ability from the target model by supervised
 192 fine-tuning on the constructed dataset \mathcal{D} , which contains paired long- and short-form CoT reasoning
 193 paths. Formally, let $f(\cdot|\theta)$ be a targeted non-reasoning base LLM, and $x_i \in \mathcal{D}$ be text data within \mathcal{D} .
 194 The fine-tuned $f^*(\cdot|\theta_D)$ is optimized using the standard perplexity objective as follows.

$$195 \min_{\mathcal{D}} \mathcal{L}_{\text{AutoL2S}} = \min_{\mathcal{D}} \mathbb{E}_{x_i \sim \mathcal{D}} \left[\frac{1}{|\mathcal{D}|} \sum_{i=1}^{|\mathcal{D}|} \log f(x_i | x_1, x_2, \dots, x_{i-1}, \theta) \right].$$

198 **3.2 CONCATENATION ADVANTAGE FOR LONG TO SHORT REASONING TRAINING**
 199

200 In this section, we analyze AutoL2S from both theoretical and empirical perspectives to highlight
 201 the mechanism and advantages behind AutoL2S training. We provide Theorem 1 to formalize that
 202 concatenating long and short CoT paths benefits the training of the short path, with the improvement
 203 quantified by conditional mutual information and mechanism analysis.

204 **Theorem 1 (Concatenation Advantage for Long–Short CoT Training).** Let X denote the input,
 205 $L = (\ell_1, \dots, \ell_{T_L})$ the long-CoT token sequence, and $S = (s_1, \dots, s_{T_S})$ the short-CoT token
 206 sequence, with training order L to S . Then, the conditional entropy $H(\cdot|\cdot)$ of the next short token
 207 satisfies:

$$208 H(S_t | X, L, S_{<t}) \leq H(S_t | X, S_{<t}), \quad \forall t \in [1, T_S]. \quad (1)$$

210 Equivalently, averaging across all positions with the improvement quantified as

$$212 \frac{1}{T_S} \sum_{t=1}^{T_S} \left[H(S_t | X, S_{<t}) - H(S_t | X, L, S_{<t}) \right] = \frac{1}{T_S} \sum_{t=1}^{T_S} I(S_t; L | X, S_{<t}) \geq 0. \quad (2)$$

213 Thus, the long CoT path L provides additional mutual information $I(\cdot|\cdot)$ that strictly increases the
 214 entropy of the short CoT path S whenever L is informative about S .

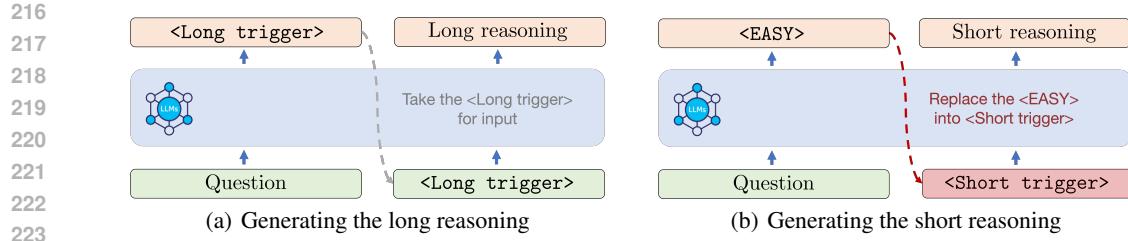


Figure 1: During the inference process, LLMs generate (a) a long reasoning path in the case without `<EASY>` token; and generate (b) a short reasoning path in the case with `<EASY>` token. Note that the generation of either long or short CoT reasoning paths is automatically determined by the model without any human intervention.

Theorem 1 shows that concatenating the long and short CoT paths reduces the conditional entropy of the short CoT path under long CoT path distillation settings, since the long path provides additional information. In the model training case, where the loss is cross-entropy or equivalently perplexity, the same inequality holds under AutoL2S settings. Thus, long CoT concatenation benefits the training of the short CoT path by providing more information during training. In addition, rejection sampling offers a principled mechanism for aligning the training distribution with our theoretical framework. From Theorem 1, long CoT reasoning paths provide auxiliary information that reduces the entropy of short-path learning; while rejection sampling effectively tunes how much positive signal is preserved in training by filtering short CoT reasoning paths to ensure correctness while varying their informational overlap with long paths.

Importantly, we find that long reasoning paths help LLMs better acquire short reasoning paths. As shown empirically in Section 4.4, providing a long CoT paths supplies additional context that enables the model to learn short CoT reasoning with additional information, where the attention maps become noticeably sparser after training. This offers evidence that long CoT acts as a useful guide for short CoT, consistent with the information-theoretic prediction of Theorem 1.

3.3 INFERENCE STAGE OF AUTO LONG-SHORT REASONING

During the inference stage, AutoL2S automatically determines whether to reason with long or short CoT reasoning paths. Specifically, guided by the data formats in Equations (4) and (5), the model begins generation by producing either a `<Long Trigger>` or an `<EASY>` token, corresponding to a regular or EASY question, respectively. In practice, as illustrated in Figure 4, AutoL2S dynamically adapts its reasoning strategy based on the initial token generated after receiving a user prompt. If the model outputs a `<Long Trigger>` token (Figure 4(a)), it indicates that the question requires a long reasoning path; the model then proceeds with standard autoregressive generation to complete the reasoning and produce the final answer. In contrast, if the model generates an `<EASY>` token (Figure 4(b)), this suggests the question is solvable with a short reasoning path.

Here, Theorem 2 formalizes this mechanism by showing that the choice between long and short CoT paths can be cast as a rule as *risk minimization problem*, balanced by distributional divergence and token cost. Each candidate path is associated with a per-instance risk. The optimal adaptation policy is then obtained by minimizing the expected risk between the two options, which moves to either long or short CoT generation.

Theorem 2 (Optimal Adaptation with `<EASY>` Token). Let $p_\theta^L(\cdot | X)$ and $p_\theta^S(\cdot | X)$ denote the predictive distributions when decoding with the long and short CoT paths $L = (\ell_1, \dots, \ell_{T_L})$ and $S = (s_1, \dots, s_{T_S})$, respectively. Given an input X , define the per-instance risks as

$$J_S(X) = \mathbb{E} \left[D(p_\theta^S(\cdot | X) \parallel p_\theta^L(\cdot | X)) \right] + \lambda \mathbb{E}[T_S(X)],$$

$$J_L(X) = \lambda \left(\mathbb{E}[T_L(X)] + c_\pi \right),$$

where $D(\cdot \parallel \cdot)$ is a statistical divergence, $T_S(X)$ and $T_L(X)$ denote the token lengths of the short and long CoT reasoning paths, $\lambda > 0$ is the per-token cost, and $c_\pi \geq 0$ is a fixed overhead for invoking

270 the long path. Then the optimal long-to-short adaptation policy can be:
 271

$$\pi^*(X) = \begin{cases} 0 & \text{if } J_S(X) < J_L(X) \quad (\text{choose short CoT}), \\ 1 & \text{otherwise} \quad (\text{choose long CoT}). \end{cases} \quad (3)$$

275 Theorem 2 establishes that an adapting strategy always exists between the short and long CoT paths,
 276 and is uniquely determined by a trade-off between the divergence of their predictive distributions
 277 and the token cost during inference and after training. Thus, the decision boundary is well-defined
 278 and deterministic almost everywhere in the adaptation policy. Specifically, as shown in Theorem 1,
 279 concatenating long and short CoT paths reduces the distributional divergence term, while the use
 280 of `<EASY>` tokens enables the model to approximate the optimal adaptation policy by balancing
 281 divergence reduction against token cost during inference. In particular, Theorem 2 also establishes
 282 that optimal adaptation depends on balancing the divergence between long and short predictive
 283 distributions with the per-token inference cost.

284 3.4 AUTOLO2S-PLUS FINE-TUNING

286 Leveraging the ability of AutoL2S to dynamically adjust between short and long reasoning, we further
 287 extend to AutoL2S-Plus to enhance efficiency in LLM reasoning. AutoL2S-Plus incorporates a off-
 288 policy length-aware reinforcement learning objective that explicitly encourages shorter reasoning
 289 when appropriate. Motivated by O1-Pruner (Luo et al., 2025), we adopt the Length-Harmonizing
 290 Fine-Tuning objective, but employ different rewarding lengths guided by $f^*(\cdot|\theta_D)$. We formally
 291 define the length-aware loss with the reference model $f^*(\cdot|\theta_D)$ as:

$$L^{\text{Plus}}(\theta; x, y) = -\mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\text{ref}}(y|x)} \left[\min \left(r(\theta) R_{\text{Plus}}(x, y|f^*), \text{clip}(r(\theta), 1-\epsilon, 1+\epsilon) R_{\text{Plus}}(x, y|f^*) \right) \right],$$

294 where $r(\theta)$ denotes the likelihood ratio between the target policy θ and the reference policy π_{ref} ,
 295 $R_{\text{Plus}}(x, y|f^*)$ is the reward to length of reasoning of $f^*(\cdot|\theta_D)$, and $\text{clip}()$ is the clipping function.

297 Using a more accurate reference model to derive the expected reasoning length yields stronger
 298 compression and improves efficiency without degrading accuracy. We leverage the long- and short-
 299 form outputs of the fine-tuned AutoL2S model—used as the reference model—to estimate the
 300 expected average length and accuracy across the mixture of CoT paths. This objective encourages the
 301 model to harmonize long and short reasoning by rewarding generations that match the target length
 302 distribution while preserving correctness.

303 4 EXPERIMENTS

306 In this section, we conduct experiments to evaluate the performance of AutoL2S framework, aiming
 307 to answer the following three research questions: **RQ1**: How does AutoL2S perform on LLM
 308 reasoning tasks in terms of accuracy and efficiency? **RQ2**: Does the proposed long-short reasoning
 309 annotation contribute to effective length compression of the reasoning path during training? **RQ3**:
 310 What mechanisms enable auto long-short reasoning to preserve reasoning performance despite
 311 reduced output length?

312 4.1 DATASETS AND BASELINES

314 **Datasets** We train the AutoL2S framework on the Bespoke-Stratos-17k dataset (Labs, 2025) and
 315 evaluate it on six reasoning benchmarks: Math500 (Hendrycks et al., 2021), GPQA-Diamond
 316 (GPQA) (Rein et al., 2024), GSM8K (Cobbe et al., 2021), OlympiadBench-Math (He et al., 2024),
 317 AIME25. Additional dataset statistics and preprocessing details are provided in Appendix D.

318 **Baseline Methods** We compare AutoL2S framework with the three state-of-the-art baselines to
 319 assess the effectiveness of length reduction and performance preservation. The baselines are listed
 320 as follows: (1) R1-Distilled reasoning LLMs (Bespoke-Stratos-3B/7B) (Yeo et al., 2025): LLMs
 321 fine-tuned in a supervised manner using the Bespoke-Stratos-17k reasoning dataset, which serves
 322 as an oracle for reasoning. (2) O1-pruner (Luo et al., 2025): introduces a Length-Harmonizing
 323 Reward, integrated with a PPO-style loss, to reduce the length of generated CoT reasoning. (3)
 324 CoT-Valve (Ma et al., 2025a): controls the length of reasoning by combining the LoRA weights

324 of distilled long-form reasoning CoT and non-reasoning model. (4) DPO (Rafailov et al., 2023):
 325 finetunes on the same aligned long-short CoT pairs. For each example, the short CoT is preferred if
 326 correct; otherwise, the long one is chosen, ensuring alignment with efficient and accurate reasoning
 327 goals (5) TokenSkip (Xia et al., 2025): trains on compressed CoT paths with mixed compression
 328 ratios. More details on baselines can be found in Appendix E.

330 4.2 EXPERIMENTAL SETTINGS

331 In this section, we present the experimental settings used to train and assess AutoL2S. The following
 332 outlines the evaluation metrics and corresponding implementation details.

333 **Evaluation of Efficient LLM Reasoning.** Following the settings of (Luo et al., 2025; Yeo et al.,
 334 2025), we evaluate the efficiency of the reasoning task from two perspectives: (1) accuracy and
 335 (2) length of generated tokens. The ideal outcome is to maintain reasoning performance while
 336 minimizing the number of output tokens required for reasoning. Given the autoregressive decoding
 337 nature of LLMs, a shorter output CoT reasoning path directly leads to faster inference. Thus, in this
 338 work, we use the length of tokens as a metric to evaluate the efficiency of LLM reasoning.

339 **Implementation Details.** To demonstrate the flexibility of AutoL2S across different LLM backbones,
 340 we train the framework using two non-reasoning base LLMs: Llama3.2-3B-Instruct (Touvron et al.,
 341 2023) and Qwen2.5-7B-Instruct. The short reasoning samples are generated via rejection sampling
 342 with sampling numbers 4 and 8 using the math-capable Qwen2.5-Math-7B-Instruct model, with the
 343 inference temperature fixed at 0.7, following the settings of (Yeo et al., 2025; Yang et al., 2025). We
 344 filter out duplicate question–answer pairs that appear with both `<Easy>` and `<Long Trigger>`
 345 after rejection sampling, retaining only the pairs associated with `<Easy>` in such cases. For AutoL2S-
 346 plus training, we estimate the expected average reasoning length by sampling 16 generations per
 347 input under AutoL2S with a rejection sample size of 8. More details are in Appendix G.

350 4.3 REASONING EFFICIENCY OF AUTO L2S (RQ1)

351 We compare AutoL2S with the baseline methods in reasoning tasks. The results are presented
 352 in Table 1, showing the reasoning accuracy and output length for the models. Additional results
 353 from repetition experiments are provided in Appendix J and C. **The purple cells represent the
 354 best performance, and blue cells refers to the second best among the settings.** We calculate the
 355 improvement percentile relative to the Bespoke-Stratos-3B/7B model, a strong baseline finetuned on
 356 the Bespoke-Stratos-17k dataset. We conclude observations as follows:

- 357 • **Baseline Comparison.** AutoL2S outperforms CoT-Valve (Ma et al., 2025a) with better accuracy
 358 preservation and shorter reasoning path; and achieves shorter reasoning path than O1-pruner (Luo
 359 et al., 2025) with competitive accuracy preservation on average in four reasoning datasets. While
 360 both O1-pruner and the proposed AutoL2S are able to preserve reasoning accuracy, AutoL2S
 361 achieves approximately 4X shorter reasoning paths compared to O1-pruner. Furthermore, AutoL2S
 362 achieves nearly identical average reasoning accuracy compared to the oracle SFT R1-Distilled
 363 reasoning LLMs, while producing significantly shorter reasoning paths. This demonstrates that
 364 AutoL2S attains competitive performance in efficient reasoning tasks.
- 365 • **AutoL2S-Plus Comparison.** We compare AutoL2S-Plus with both the baseline and the base
 366 AutoL2S framework. AutoL2S-Plus achieves up to a 68.9% reduction in reasoning length without
 367 degrading accuracy, demonstrating the effectiveness of length-aware fine-tuning. Relative to
 368 AutoL2S, it further compresses the reasoning path while preserving task performance.
- 369 • **Rejection Sampling.** We find that moderate rejection sampling (e.g., $rj = 4$) achieves nearly 2X
 370 reduction in reasoning length with negligible accuracy loss compared to $rj = 0$. This reveals a
 371 sweet spot where the training distribution is dense enough to capture efficiency benefits without
 372 sacrificing correctness. At higher rj (e.g., 8), reasoning length is further compressed but at the cost
 373 of small accuracy drops. These results indicate that AutoL2S is not merely truncating reasoning
 374 steps; rather, it learns to generalize efficiency from curated supervision, producing compressed
 375 reasoning trajectories that respect correctness guarantees.

378 Table 1: Accuracy (Acc) and Token Length (Len) across five reasoning benchmarks for 7B models.
379 “rj” indicates the rejection-sampling count for long-short annotation. AutoL2S-Plus (rj=0) uses
380 AutoL2S (rj=0) as base model and reference model. Values in parentheses denote the accuracy
381 improvement and token reduction relative to the Bespoke-Stratos-3B/7B model. Purple cells highlight
382 the best value in each metric column, and blue cells highlight the second-best. For ties, ranking is
383 resolved by prioritizing higher accuracy or lower token usage.

	Average		MATH500		GPQA		GSM8K		Olympiad		AIME	
	Acc	Len	Acc	Len	Acc	Len	Acc	Len	Acc	Len	Acc	Len
			Llama-3.2-3B-Instruct									
Llama-3.2-3B-Instruct	0.393	890	0.404	740	0.293	498	0.729	203	0.147	2117	0.000	887
Bespoke-Stratos-3B	0.479	9015	0.574	10148	0.273	8888	0.822	1387	0.246	15635	0.000	22677
CoT-Valve	0.422	10349	0.478	10890	0.283	9634	0.773	2238	0.154	18634	0.000	24736
(-0.057)	(+14.8%)	(-0.096)	(+7.3%)	(+0.010)	(+8.4%)	(-0.049)	(+61.4%)	(-0.092)	(+19.2%)	(+0.000)	(+9.1%)	
O1-pruner	0.481	5043	0.562	5295	0.308	5394	0.816	860	0.236	8622	0.033	14614
(+0.002)	(-44.1%)	(-0.012)	(-47.8%)	(+0.035)	(-39.3%)	(-0.006)	(-38.0%)	(+0.010)	(-44.9%)	(+0.033)	(-35.6%)	
DPO	0.479	5864	0.574	5363	0.283	6740	0.832	911	0.227	10441	0.033	13856
(+0.000)	(-35.0%)	(+0.000)	(-47.2%)	(+0.010)	(-24.2%)	(+0.010)	(-34.3%)	(-0.019)	(-33.2%)	(+0.033)	(-38.9%)	
TokenSkip	0.441	9464	0.512	10327	0.258	9438	0.801	2238	0.191	15853	0.000	21908
(-0.038)	(+5.0%)	(-0.062)	(+1.8%)	(-0.015)	(+6.2%)	(-0.021)	(+61.4%)	(-0.055)	(+1.4%)	(+0.000)	(-3.4%)	
AutoL2S (rj=0)	0.492	6904	0.552	5990	0.389	7520	0.823	1166	0.206	12941	0.000	21248
(+0.014)	(-23.4%)	(-0.022)	(-41.0%)	(+0.116)	(-15.4%)	(+0.001)	(-15.9%)	(-0.040)	(-17.2%)	(+0.000)	(-6.3%)	
AutoL2S-Plus (rj=0)	0.467	3012	0.534	3645	0.273	2920	0.829	650	0.230	4832	0.000	6714
(-0.012)	(-66.6%)	(-0.040)	(-64.1%)	(+0.000)	(-67.1%)	(+0.007)	(-53.1%)	(-0.016)	(-69.1%)	(+0.000)	(-70.4%)	
AutoL2S (rj=4)	0.474	6680	0.574	5666	0.283	7546	0.812	1322	0.226	12185	0.033	18579
(-0.005)	(-25.9%)	(+0.000)	(-44.2%)	(+0.010)	(-15.1%)	(-0.010)	(-4.7%)	(-0.021)	(-22.1%)	(+0.033)	(-18.1%)	
AutoL2S-Plus (rj=4)	0.478	2220	0.560	2090	0.313	2175	0.812	589	0.226	4025	0.033	4990
(-0.001)	(-75.4%)	(-0.014)	(-79.4%)	(+0.040)	(-75.5%)	(-0.010)	(-57.5%)	(-0.020)	(-74.3%)	(+0.033)	(-78.0%)	
AutoL2S (rj=8)	0.483	5518	0.546	4181	0.369	6165	0.800	1021	0.218	10706	0.000	19422
(+0.004)	(-38.8%)	(-0.028)	(-58.8%)	(+0.096)	(-30.6%)	(-0.022)	(-26.4%)	(-0.028)	(-31.5%)	(+0.000)	(-14.4%)	
AutoL2S-Plus (rj=8)	0.467	1830	0.550	1819	0.273	2048	0.810	353	0.233	3099	0.000	5072
(-0.012)	(-79.7%)	(-0.024)	(-82.1%)	(+0.000)	(-77.0%)	(-0.012)	(-74.5%)	(-0.013)	(-80.2%)	(+0.000)	(-77.9%)	
Qwen-2.5-7B-Instruct												
Qwen2.5-7B-Instruct	0.495	728	0.748	556	0.308	27	0.902	260	0.384	896	0.133	1902
Bespoke-Stratos-7B	0.544	8139	0.824	5383	0.359	6049	0.926	1321	0.444	11322	0.167	16619
CoT-Valve	0.495	6306	0.730	4483	0.369	4930	0.898	928	0.378	8647	0.100	12540
(-0.049)	(-22.5%)	(-0.094)	(-16.7%)	(+0.010)	(-18.5%)	(-0.028)	(-29.7%)	(-0.066)	(-23.6%)	(-0.067)	(-24.5%)	
O1-pruner	0.547	7797	0.832	5104	0.399	5312	0.936	1065	0.433	9586	0.133	17920
(+0.003)	(-4.2%)	(+0.008)	(-5.2%)	(+0.040)	(-12.2%)	(+0.010)	(-19.4%)	(-0.011)	(-15.3%)	(-0.034)	(+7.8%)	
DPO	0.556	6060	0.806	3688	0.374	5961	0.920	1576	0.447	7364	0.233	11712
(+0.012)	(-25.5%)	(-0.018)	(-31.5%)	(+0.015)	(-1.5%)	(-0.006)	(+19.3%)	(+0.003)	(-35.0%)	(+0.066)	(-29.5%)	
TokenSkip	0.552	7944	0.826	5335	0.434	5508	0.918	1165	0.447	10947	0.133	16767
(+0.008)	(-2.4%)	(+0.002)	(-0.9%)	(+0.075)	(-9.0%)	(-0.008)	(-11.8%)	(+0.003)	(-3.3%)	(-0.034)	(+0.9%)	
AlphaOne	0.495	4856	0.732	3867	0.313	6278	0.907	1943	0.356	5252	0.167	6940
(-0.049)	(-40.3%)	(-0.092)	(-28.2%)	(-0.046)	(+3.8%)	(-0.019)	(+47.1%)	(-0.088)	(-53.6%)	(+0.000)	(-58.2%)	
AutoL2S (rj=0)	0.561	6886	0.800	3468	0.434	4777	0.934	735	0.470	9068	0.167	16384
(+0.017)	(-15.4%)	(-0.024)	(-35.6%)	(+0.075)	(-21.0%)	(+0.008)	(-44.4%)	(+0.026)	(-19.9%)	(+0.000)	(-1.4%)	
AutoL2S-Plus (rj=0)	0.534	2516	0.782	1762	0.419	2993	0.923	718	0.414	3240	0.133	3865
(-0.010)	(-69.1%)	(-0.042)	(-67.3%)	(+0.060)	(-50.5%)	(-0.003)	(-45.6%)	(-0.030)	(-71.4%)	(-0.034)	(-76.7%)	
AutoL2S (rj=4)	0.550	5872	0.786	2560	0.409	3495	0.917	509	0.438	7991	0.200	14807
(+0.006)	(-27.8%)	(-0.038)	(-52.4%)	(+0.050)	(-42.2%)	(-0.008)	(-61.5%)	(-0.006)	(-29.4%)	(+0.033)	(-10.9%)	
AutoL2S-Plus (rj=4)	0.556	2170	0.798	1627	0.409	2401	0.926	661	0.447	3023	0.200	3137
(+0.012)	(-73.3%)	(-0.026)	(-69.8%)	(+0.050)	(-60.3%)	(+0.000)	(-50.0%)	(+0.003)	(-73.3%)	(+0.033)	(-81.1%)	
AutoL2S (rj=8)	0.538	5141	0.798	2146	0.394	3492	0.929	488	0.436	6459	0.133	12852
(-0.006)	(-36.8%)	(-0.026)	(-55.1%)	(+0.035)	(-42.3%)	(+0.003)	(-63.1%)	(-0.008)	(-43.0%)	(-0.033)	(-22.7%)	
AutoL2S-Plus (rj=8)	0.558	2531	0.820	1719	0.424	3485	0.920	880	0.424	3041	0.200	3528
(+0.014)	(-68.9%)	(-0.004)	(-68.1%)	(+0.065)	(-42.4%)	(-0.006)	(-33.4%)	(-0.020)	(-73.1%)	(+0.033)	(-78.8%)	

4.4 IMPACT ON LONG-SHORT REASONING ANNOTATION (RQ2)

In this section, we analyze the impact of our concatenation strategy to combine long and short CoT reasoning paths in the long-short reasoning adaptation process. We conduct ablation studies on different distillation strategies for long-short CoT reasoning paths, with Qwen2.5-7B-Instruct model serving as the non-reasoning base model. We compare three other different format of annotation to the proposed Long-to-short Reasoning Annotation (i.e., *Long-short Distill*): (1) *Long-only Distill* represents the original distillation from only long reasoning in Bespoke-Stratos-17k reasoning dataset, following the format in Equation 5; (2) *Short-long Distill* switches the position of long and short reasoning path in Equation 4; and (3) *Long-short Separated Distill* constructs the long and short CoT reasoning paths following the format in Equation 5, where short CoT reasoning paths are replaced with long reasoning paths only whenever the corresponding answers are correct. All results are demonstrated in Table 3. Compared with other formats of long-short term annotation, we observe that *Long-Short Distill* achieves the best performance in terms of accuracy preservation and output length.

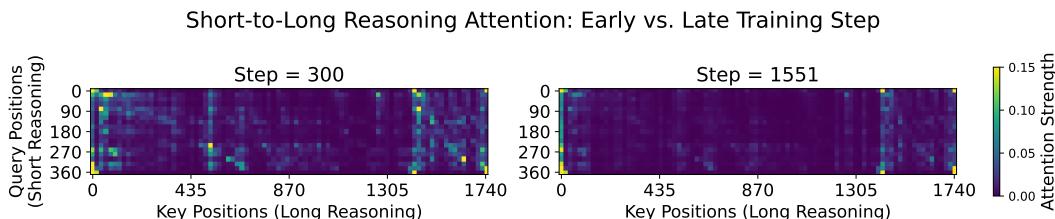


Figure 2: Comparison of attention maps at early and late training steps of AutoL2S. Step 1551 corresponds to the final training step. Given the long sequence lengths, we group every 20 tokens together to calculate attention scores between long and short reasoning paths for better visualization.

4.5 IMPACT OF THE <EASY> TOKEN (RQ2)

In this section, we examine the impact of the <EASY> token on enhancing both the efficiency and efficacy of LLM reasoning tasks. The results are showcased in Table 4. We conduct the ablation studies on three different cases in terms of the long-short triggers and <EASY> tokens that we utilize in the AutoL2S framework. Based on the AutoL2S framework, (1) “w/ Force-Short” refers to the setting where <Short Trigger> is always used to initiate reasoning path generation; (2) “w/ Force-Long” denotes the setting where <Longer Trigger> is consistently used to initiate CoT generation; and (3) “w/o <EASY>” indicates that no explicit trigger is applied and the model generates reasoning paths in formats that follow either Equation 5 or Equation 4. We summarize the findings as follows:

- **AutoL2S vs. “w/o <EASY>”:** AutoL2S outperforms the “w/o <EASY>” variant in both reasoning accuracy and in the length of the generated CoT reasoning paths. This further demonstrates that incorporating the <EASY> token to automatically switch between easy and regular reasoning modes improves efficiency without compromising performance.
- **AutoL2S vs. “Force-Long”:** Compared to the “Force-Long” case, AutoL2S obtains a similar reasoning accuracy on average while generating around 30% shorter of the reasoning length. Furthermore, compared to “Force-Long” with Bespoke-Stratos-7B, trained on the entire long CoT reasoning data, we can observe that “Force-Long” outperforms Bespoke-Stratos-7B in terms of reasoning accuracy while holding similar reasoning path length. These results indicate that the long reasoning paths generated by our method are of higher quality than those produced by Bespoke-Stratos-7B.

4.6 MECHANISM BEHIND THE AUTO LONG-SHORT REASONING (RQ3)

In this section, we discuss the mechanism explanation of AutoL2S training. To assess the mechanism behind, Figure 2 presents the attention map comparisons across different training steps of AutoL2S, highlighting the benefit of the concatenation order used in *Long-Short Distill*. In the early stages of training (i.e., Figure 2 left side: training step 300), we observe that long CoT reasoning paths significantly impact the attention patterns of short CoT reasoning paths, indicating that long-form reasoning benefits the learning of short reasoning generation. As training progresses till the end (i.e., Figure 2 right side: training step 1551), the correlation between long and short CoT reasoning paths significantly diminishes, indicating that they evolve into two distinct components. This separation further explains why Auto Long-Short Reasoning is effective and flexible in switching to easy questions simply using the <Short Trigger> when the <EASY> token is presented during inference. The phenomenon again meets the properties of Theorem 1, where long CoT reasoning paths provide auxiliary information for short-path learning. This also explain the reason why the direct use of <Short Trigger> remains effective, without introducing dummy key-value pairs or modifying positional encodings.

5 CONCLUSION

This paper presents the Auto Long-Short Reasoning (AutoL2S), a dynamic and model-agnostic framework for improving the efficiency of LLM reasoning. By training on proposed annotated data

486 that pairs long and short CoT reasoning paths and incorporating a special <EASY> token, AutoL2S
 487 enables LLMs to decide when extended reasoning is necessary and when a concise path suffices.
 488 This learned adaptive behavior helps avoid overthinking simple questions, reducing unnecessary
 489 computation. Experimental results show that AutoL2S reduces reasoning length by up to 70%
 490 without degrading performance, demonstrating its effectiveness for scalable and cost-efficient LLM
 491 deployment in real-world settings.

493 ETHICS STATEMENT

494
 495 This research does not involve human subjects, personally identifiable data, or sensitive attributes.
 496 All datasets used are publicly available benchmark datasets (e.g., math word problems, programming
 497 tasks) that have been widely adopted in prior work. We are not aware of any potential harms associated
 498 with releasing our methods, as with any AI technology, misuse could occur if applied irresponsibly in
 499 high-stakes settings. We encourage careful consideration of societal impacts and safe deployment
 500 practices.

502 REPRODUCIBILITY STATEMENT

503
 504 We follow ICLR’s reproducibility guidelines. All datasets used in this study are publicly available,
 505 and we provide detailed dataset descriptions. The proposed method is implemented using standard
 506 libraries, and we have provided the codebase, including training scripts, hyperparameter settings, and
 507 evaluation procedures for paper review purposes.

510 REFERENCES

511 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
 512 reinforcement learning. *arXiv preprint arXiv:2503.04697*, 2025.

513
 514 Anthropic. Claude, July 2023. URL <https://www.anthropic.com/index/clause-2>.

515
 516 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
 517 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
 518 thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025.

519
 520 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qizhi Liu,
 521 Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
 522 o1-like llms. *arXiv preprint arXiv:2412.21187*, 2024.

523
 524 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 525 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 526 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
 527 2021.

528
 529 Yingqian Cui, Pengfei He, Jingying Zeng, Hui Liu, Xianfeng Tang, Zhenwei Dai, Yan Han, Chen Luo,
 530 Jing Huang, Zhen Li, et al. Stepwise perplexity-guided refinement for efficient chain-of-thought
 531 reasoning in large language models. *arXiv preprint arXiv:2502.13260*, 2025.

532
 533 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 534 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 535 models. *arXiv preprint arXiv:2407.21783*, 2024.

536
 537 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 538 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 539 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

Tingxu Han, Chunrong Fang, Shiyu Zhao, Shiqing Ma, Zhenyu Chen, and Zhenting Wang. Token-
 budget-aware llm reasoning. *arXiv preprint arXiv:2412.18547*, 2024.

540 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 541 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
 542 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint*
 543 *arXiv:2402.14008*, 2024.

544 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 545 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 546 *preprint arXiv:2103.03874*, 2021.

548 Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
 549 Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *arXiv preprint*
 550 *arXiv:2504.01296*, 2025.

551 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 552 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

554 Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
 555 prompts for accelerated inference of large language models. *arXiv preprint arXiv:2310.05736*,
 556 2023.

557 Bespoke Labs. Bespoke-stratos: The unreasonable effectiveness of
 558 reasoning distillation. [https://www.bespokelabs.ai/blog/
 559 bespoke-stratos-the-unreasonable-effectiveness-of-reasoning-distillation](https://www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-reasoning-distillation), 2025. Accessed: 2025-01-22.

561 Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang.
 562 Can language models learn to skip steps? *arXiv preprint arXiv:2411.01855*, 2024.

564 Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
 565 and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
 566 *arXiv preprint arXiv:2501.12570*, 2025.

568 Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
 569 compressible chain-of-thought tuning. *arXiv preprint arXiv:2502.09601*, 2025a.

570 Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
 571 compressible chain-of-thought tuning, 2025. URL <https://arxiv.org/abs/2502.9601>, 2025b.

573 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 574 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 575 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

576 OpenAI. Learning to reason with llms.
 577 [urlhttps://openai.com/index/learning-to-reason-with-llms/](https://openai.com/index/learning-to-reason-with-llms/).

578 Avinash Patil. Advancing reasoning in large language models: Promising methods and approaches.
 579 *arXiv preprint arXiv:2502.03671*, 2025.

581 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 582 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 583 *in neural information processing systems*, 36:53728–53741, 2023.

585 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 586 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
 587 *First Conference on Language Modeling*, 2024.

588 Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
 589 Wang, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models. *arXiv*
 590 *preprint arXiv:2503.04472*, 2025.

592 Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
 593 Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
 reasoning for large language models. *arXiv preprint arXiv:2503.16419*, 2025.

594 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 595 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 596 llms. *arXiv preprint arXiv:2501.12599*, 2025.

597 Qwen Team. Qwq-32b-preview.
 598 url`https://qwenlm.github.io/blog/qwq-32b-preview/`.

600 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 601 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambrø, Faisal Azhar, et al. Llama: Open and
 602 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

603 Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
 604 chain-of-thought compression in llms. *arXiv preprint arXiv:2502.12067*, 2025.

605 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 606 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 607 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 608 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
 609 Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
 610 Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*,
 611 2024a.

612 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 613 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 614 arXiv:2412.15115*, 2024b.

615 Wang Yang, Hongye Jin, Jingfeng Yang, Vipin Chaudhary, and Xiaotian Han. Thinking preference
 616 optimization. *arXiv preprint arXiv:2502.13173*, 2025.

617 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
 618 reasoning. *arXiv preprint arXiv:2502.03387*, 2025.

619 Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
 620 chain-of-thought reasoning in llms. *arXiv preprint arXiv:2502.03373*, 2025.

621 Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. *arXiv preprint
 622 arXiv:2407.06023*, 2024.

623 Zhaojian Yu, Yinghao Wu, Yilun Zhao, Arman Cohan, and Xiao-Ping Zhang. Z1: Efficient test-time
 624 scaling with code, 2025. URL `https://arxiv.org/abs/2504.00810`.

625 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
 626 Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
 627 reasoning. *arXiv preprint arXiv:2501.07301*, 2025.

628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648

A USE OF LLMs

649
 650 We used a large language model only for spelling and grammar correction of the manuscript text.
 651 The LLM was not involved in research ideation, experimental design, data generation, analysis, or
 652 substantive writing beyond copy-editing. All content and claims were authored and verified by the
 653 authors, who take full responsibility for the paper. The LLM is not an author.
 654

655

B DETAILS OF AUTOL2S ANNOTATION

656
 657 We provide the complete data formats used to annotate both long and short CoT reasoning paths.
 658 These formats serve as templates for generating training samples in AutoL2S.
 659

660 **Short CoT Reasoning Paths for EASY Questions.** EASY questions include both long and short
 661 reasoning paths. The <EASY> token indicates that the question is solvable through a short reasoning
 662 path. <Long Trigger> and <Short Trigger> mark the start of the long and short reasoning,
 663 and <Answer Trigger> marks the start of the answer. The complete data format for the EASY
 664 questions is given as follows:
 665

666 Question <EASY> <Long Trigger> Long reasoning path <Answer> Final answer
 667 <Short Trigger> Short reasoning path <Answer Trigger> Final answer. (4)
 668

669 **Long CoT Reasoning Paths.** Non-EASY questions are annotated only with the long reasoning
 670 path. Similarly, <Long Trigger> marks the beginning of the long reasoning and <Answer
 671 Trigger> marks the start of the answer. The format is:
 672

673 Question <Long Trigger> Long reasoning path <Answer Trigger> Final answer. (5)
 674

675 These annotations provide both complete and concise reasoning trajectories and allow for the distilla-
 676 tion of the decision-making capabilities of DeepSeek-R1 into the target model.
 677

678

C ADDITIONAL RESULTS OF AUTOL2S ON QWEN2.5-3B-INSTRUCT

679 We here provide the additional results of AutoL2S on Qwen2.5-3B-Instruct under five datasets. As
 680 shown in Table 2, AutoL2S obtains 42% shorter reasoning paths without sacrificing performance.
 681

682 Table 2: Accuracy (Acc) and Token Length (Len) across five reasoning benchmarks for models based
 683 on Qwen2.5-3B-Instruct models.
 684

	Average		MATH500		GPQA		GSM8K		Olympiad		AIME	
	Acc	Len	Acc	Len	Acc	Len	Acc	Len	Acc	Len	Acc	Len
<i>Qwen2.5-3B-Instruct</i>												
Qwen2.5-3B-Instruct	0.362	766	0.622	806	0.349	770	0.679	376	0.266	1158	0.100	872
Bespoke-Stratos-3B	0.383	12739	0.636	9246	0.308	10129	0.848	1624	0.272	14724	0.100	20217
CoT-Valve			0.602	4980	0.258	6898	0.805	1660	0.270	10017	0.000	11059
(-22.5%) (-33.2%)			(-5.3%) (-46.1%)	(-16.4%) (-31.9%)	(-5.1%) (+2.2%)	(-0.6%) (-32.0%)	(-100.0%) (-45.3%)					
O1-pruner			0.704	6769	0.283	7348	0.859	1210	0.295	11416	0.100	15022
(+8.5%) (-29.0%)			(+10.7%) (-26.8%)	(-8.1%) (-27.5%)	(+1.2%) (-25.5%)	(+8.8%) (-22.5%)	(0.0%) (-25.7%)					
DPO			0.684	5238	0.323	7533	0.824	1529	0.298	10952	0.067	14005
(-8.7%) (-29.5%)			(+7.5%) (-43.4%)	(+4.8%) (-25.6%)	(-2.9%) (-5.8%)	(+9.8%) (-25.6%)	(-33.0%) (-30.7%)					
TokenSkip			0.526	9100	0.263	16083	0.805	2237	0.178	16881	0.033	26126
(-25.5%) (+15.5%)			(-17.3%) (-1.6%)	(-14.6%) (+58.8%)	(-5.1%) (+37.8%)	(-34.4%) (+14.6%)	(-67.0%) (+29.2%)					
Ours (rj=0)			0.694	5976	0.253	6252	0.839	1346	0.280	13314	0.100	19166
(+0.9%) (-25.3%)			(+9.1%) (-35.4%)	(-18.0%) (-38.3%)	(-1.2%) (-17.1%)	(+3.3%) (-9.6%)	(0.0%) (-5.2%)					
Ours (rj=4)			0.638	4202	0.298	5357	0.840	899	0.270	10410	0.033	18473
(-10.7%) (-38.3%)			(+0.3%) (-54.6%)	(-3.3%) (-47.1%)	(-1.0%) (-44.6%)	(-0.6%) (-29.3%)	(-67.0%) (-8.6%)					
Ours (rj=8)			0.636	3928	0.253	5431	0.826	741	0.273	9460	0.100	17797
(+0.5%) (-42.0%)			(0.0%) (-57.5%)	(-18.0%) (-46.4%)	(-2.7%) (-35.8%)	(+0.6%) (-35.8%)	(0.0%) (-12.0%)					

702 **D DETAILS OF DATASET**
703704 We train the AutoL2S framework under Bespoke-Stratos-17k (Labs, 2025) dataset and assess the
705 framework on long-to-short reasoning task under four different reasoning datasets. The details of the
706 assessment datasets are provided as follows:
707708

- 709 • **Math500** (Hendrycks et al., 2021): A challenging benchmark consisting of 500 high-quality math
710 word problems that require multi-step symbolic reasoning.
- 711 • **GPQA-Diamond (GPQA)** (Rein et al., 2024): The Graduate-Level Physics Question Answering
712 (GPQA) dataset contains 198 multiple-choice questions from graduate-level physics exams.
- 713 • **GSM8K** (Cobbe et al., 2021): A widely-used benchmark comprising 1319 grade school-level math
714 word problems.
- 715 • **Olympiad Bench Math (Olympiad)** (He et al., 2024): A collection of 674 math competition
716 problems inspired by middle and high school mathematics Olympiad competitions.
- 717 • **AIME25**: A benchmark based on problems from the American Invitational Mathematics Examination,
718 comprising 25 challenging questions that require concise yet deep reasoning steps.
- 719 • **LiveCodeBench V2**: A programming-oriented benchmark consisting of live coding tasks that
720 assess reasoning ability in code synthesis, debugging, and execution.

721722 **E DETAILS OF BASELINE IMPLEMENTATION**
723724 E.1 BESPOKE-STRATOS
725726 We implement this baseline by fully fine-tuning language models on the Bespoke-Stratos-17k dataset,
727 which comprises 17,000 examples of questions, long-form reasoning traces, and corresponding
728 answers. The resulting model serves as an oracle reference for reasoning performance.729 Following standard SFT procedures, training is performed by minimizing the standard cross-entropy
730 loss over the input sequence. We employ the AdamW optimizer with a learning rate of $1e-5$ and a
731 batch size of 32. Fine-tuning is conducted for three epochs on two NVIDIA A100 80GB GPUs with
732 mixed-precision training enabled. For the 7B base model, we directly utilize the publicly released
733 checkpoint VanWang/Bespoke-Stratos-7B-repro-SFT.
734735 E.2 O1-PRUNER
736737 O1-pruner introduces a Length-Harmonizing Reward, integrated with a PPO-style loss, to optimize the
738 policy model π_θ and reduce the length of generated chain-of-thought (CoT) reasoning. Considering
739 the effectiveness of off-policy training with pre-collected data, O1-pruner adopts an off-policy training
740 approach by sampling from the reference model π_{ref} rather than from π_θ . Specifically, the training
741 procedure consists of two steps: (1) generating CoT samples using π_{ref} , and (2) fine-tuning the policy
742 model with the proposed PPO-style objective based on the generated samples.
743744 In our implementation, we follow the original experimental setting and reproduce the method based on
745 its official repository.¹ For training, we sample 5,000 problems from the Bespoke-Stratos-17k dataset
746 and generate 16 solutions for each problem. We then perform length-harmonizing fine-tuning for one
747 epoch to jointly optimize both output length and answer correctness. To ensure fair comparison with
748 our method, we use Bespoke-Stratos-3B/7B as the reference model and set the maximum sequence
749 length to 10,240 tokens when training.
750751 E.3 CoT-VALVE
752753 COT-Valve is designed to enable models to generate reasoning chains of varying lengths. It controls
754 the length of reasoning by linearly combining the LoRA weights of distilled long-form reasoning
755 CoT and non-reasoning model. For the specific Long to Short CoT task, it has three stages: (1)
756 finetune the LLM base model on a long-cot dataset using Lora to identify a direction in the parameter
757¹<https://github.com/StarDewXXX/O1-Pruner>

space that control the length of generated CoT(2) merge Lora weights with the base model at varying interpolation ratios generate models and use them construct datasets containing CoT of decreasing lengths (3) finetuning the distilled reasoning model with the generated dataset in a progressive way, where the model is trained with shorter reasoning path samples between epochs. This progressive training strategy enables the model to gradually compress its reasoning while maintaining correctness.

In our implementation, we follow the original configuration in CoT-Valve. The LoRA rank and LoRA alpha are set to 32 and 64, respectively, for both the first and third stages. In the first stage, we finetune the non-reasoning models Qwen2.5-3B-Instruct/Qwen2.5-7B-Instruct on the Bespoke-Stratos-17k dataset for three epochs using Lora. The learning rate is 4e-5 and the batch size is 64. In the second stage, we apply LoRA weight interpolation with coefficients 0.8 and 0.6. Due to resource constraints, we randomly sample 2,000 questions for each interpolated model to generate responses, and retain only those samples with correct answers. In the third stage, the model that we get in the first stage is further fine-tuned for 2 epochs on each type of generated dataset, using the same learning rate of 4e-5 and a batch size of 64.

F PROOF OF THEOREM

In this section, we present and prove Theorem 1 and Theorem 2, with accompanying remarks to provide intuitive explanations.

Theorem 1 (Concatenation Advantage for Long–Short CoT Training). *Let X denote the input, $L = (\ell_1, \dots, \ell_{T_L})$ the long-CoT token sequence, and $S = (s_1, \dots, s_{T_S})$ the short-CoT token sequence, with training order L to S . Then, the conditional entropy $H(\cdot | \cdot)$ of the next short token satisfies:*

$$H(S_t | X, L, S_{<t}) \leq H(S_t | X, S_{<t}), \quad \forall t \in [1, T_S]. \quad (6)$$

Equivalently, averaging across all positions with the improvement quantified as

$$\frac{1}{T_S} \sum_{t=1}^{T_S} [H(S_t | X, S_{<t}) - H(S_t | X, L, S_{<t})] = \frac{1}{T_S} \sum_{t=1}^{T_S} I(S_t; L | X, S_{<t}) \geq 0. \quad (7)$$

Thus, the long CoT path L provides additional mutual information $I(\cdot | \cdot)$ that strictly increases the entropy of the short CoT path S whenever L is informative about S .

Proof. The inequality follows directly from the fact that conditioning reduces entropy: adding L to the conditioning set cannot increase the uncertainty of S_t . Formally, for each $t \in [T_S]$,

$$H(S_t | X, L, S_{<t}) \leq H(S_t | X, S_{<t}).$$

Averaging over t yields the stated inequality.

The gap between the two sides can be expressed as the conditional mutual information:

$$\frac{1}{T_S} \sum_{t=1}^{T_S} [H(S_t | X, S_{<t}) - H(S_t | X, L, S_{<t})] = \frac{1}{T_S} \sum_{t=1}^{T_S} I(S_t; L | X, S_{<t}) \geq 0.$$

In the realizable training case under long CoT path distillation, the model is optimized with the per-token cross-entropy objective

$$\text{CE}(S | \mathcal{C}) = \frac{1}{T_S} \sum_{t=1}^{T_S} \mathbb{E}[-\log p_\theta(s_t | \mathcal{C}, S_{<t})],$$

where the context \mathcal{C} is either (X) or (X, L) . When p_θ matches the true distribution, the cross-entropy coincides with the entropy above. Thus, the same inequality carries over to cross-entropy:

$$\text{CE}(S | X, L) \leq \text{CE}(S | X),$$

with the gap equal to the average conditional mutual information. Finally, since perplexity is defined as $\text{PPL}(S | \mathcal{C}) = \exp(\text{CE}(S | \mathcal{C}))$, the inequality extends directly to perplexity:

$$\text{PPL}(S | X, L) \leq \text{PPL}(S | X).$$

□

810
 811 **Theorem 2 (Optimal Adaptation with `<EASY>` Token).** Let $p_\theta^L(\cdot | x)$ and $p_\theta^S(\cdot | x)$ denote the
 812 predictive distributions when decoding with the long and short CoT paths $L = (\ell_1, \dots, \ell_{T_L})$ and
 813 $S = (s_1, \dots, s_{T_S})$, respectively. Given an input $x \in \mathcal{Y}$, define the per-instance risks as

$$814 \quad J_S(x) = \mathbb{E} \left[D(p_\theta^S(\cdot | x) \parallel p_\theta^L(\cdot | x)) \right] + \lambda \mathbb{E}[T_S(x)], \quad (8)$$

$$815 \quad J_L(x) = \lambda \left(\mathbb{E}[T_L(x)] + c_\pi \right), \quad (9)$$

816 where $D(\cdot \parallel \cdot)$ is a statistical divergence, $T_S(x)$ and $T_L(x)$ denote the token lengths of the short and
 817 long CoT paths, $\lambda > 0$ is the per-token cost, and $c_\pi \geq 0$ is a fixed overhead for invoking the long
 818 path. Then the optimal adaptation policy is

$$819 \quad \pi^*(x) = \begin{cases} 0 & \text{if } J_S(x) < J_L(x) \quad (\text{choose short}), \\ 1 & \text{otherwise} \quad (\text{choose long}). \end{cases} \quad (10)$$

820
 821 *Proof.* We provide the proof within the following six steps.

822 **Assumptions from AutoL2S Design.** Let \mathcal{Y} be the input space with data distribution \mathcal{D} . Assume
 823 $D(\cdot \parallel \cdot) \geq 0$ is a statistical divergence for which $\mathbb{E}[D(p_\theta^S(\cdot | x) \parallel p_\theta^L(\cdot | x))]$ exists, and the token
 824 lengths $T_S(x), T_L(x)$ are nonnegative random variables with finite expectations. Let an adaptation
 825 policy be a measurable mapping $\pi : \mathcal{Y} \rightarrow \{0, 1\}$, where $\pi(x)=0$ chooses short reasoning CoT and
 826 $\pi(x)=1$ chooses long reasoning CoT. For a policy π , define the population risk

$$827 \quad \mathcal{R}(\pi) := \mathbb{E}_{x \sim \mathcal{D}} \left[J_S(x) \mathbf{1}\{\pi(x) = 0\} + J_L(x) \mathbf{1}\{\pi(x) = 1\} \right].$$

828 By the assumptions above, $\mathcal{R}(\pi)$ is well-defined and finite.

829 **Step 1 (Reduction to deterministic policies).** Consider any *randomized* policy that, for a fixed x ,
 830 chooses short with probability $\alpha(x) \in [0, 1]$ and long with probability $1 - \alpha(x)$. Its *conditional* (on
 831 x) contribution to risk equals

$$832 \quad \alpha(x) J_S(x) + (1 - \alpha(x)) J_L(x) = J_L(x) + \alpha(x) \Delta(x), \quad \text{where } \Delta(x) := J_S(x) - J_L(x).$$

833 Since this expression is linear in $\alpha(x)$, its minimum over $\alpha(x) \in [0, 1]$ is always achieved at an
 834 extreme point $\alpha(x) \in \{0, 1\}$:

$$835 \quad \alpha^*(x) = \begin{cases} 1, & \text{if } \Delta(x) < 0, \\ 0, & \text{if } \Delta(x) > 0, \\ \text{any in } [0, 1], & \text{if } \Delta(x) = 0. \end{cases}$$

836 Hence randomization cannot improve over a deterministic rule, and it suffices and prove to optimize
 837 over deterministic policy π .

838 **Step 2 (Pointwise decomposition).** For any deterministic π ,

$$839 \quad \mathcal{R}(\pi) = \mathbb{E}[J_L(x)] + \mathbb{E}[\Delta(x) \mathbf{1}\{\pi(x) = 0\}].$$

840 The first term does not depend on π , so minimizing $\mathcal{R}(\pi)$ reduces to minimizing the second term.
 841 Because the expectation is taken with respect to \mathcal{D} and the integrand depends on π only through the
 842 indicator, this is a pointwise decision:

843 **Step 3 (Pointwise optimal action).** For a fixed x :

$$844 \quad \min_{a \in \{0, 1\}} \{ \Delta(x) \mathbf{1}\{a = 0\} \} = \begin{cases} \Delta(x), & \text{if } a = 0 \text{ and } \Delta(x) < 0, \\ 0, & \text{if } a = 1 \text{ or } \Delta(x) \geq 0, \end{cases}$$

845 which is achieved by choosing $a=0$ (short) when $\Delta(x) < 0$, and $a=1$ (long) otherwise. Thus the
 846 Bayes-optimal policy is

$$847 \quad \pi^*(x) = \begin{cases} 0, & \text{if } \Delta(x) < 0 \quad (\text{i.e., } J_S(x) < J_L(x)), \\ 1, & \text{otherwise.} \end{cases}$$

864 This is exactly the threshold rule stated in the theorem.
 865

866 **Step 4 (Existence and uniqueness).** Existence follows because the pointwise minimum is always
 867 attained by an action in $\{0, 1\}$. Uniqueness holds everywhere except on the *tie set* $\{x : \Delta(x) = 0\}$
 868 where both actions yield the same risk; changing π^* on this set does not alter $\mathcal{R}(\pi^*)$. Hence the
 869 optimal policy is unique almost surely (up to ties).

870

871 **Step 5 (Explicit threshold and interpretation).** Expanding $\Delta(x)$ gives

$$872 \Delta(x) = \mathbb{E} \left[D \left(p_\theta^S(\cdot | x) \parallel p_\theta^L(\cdot | x) \right) \right] + \lambda \left(\mathbb{E}[T_S(x)] - \mathbb{E}[T_L(x)] - c_\pi \right). \\ 873 \quad \underbrace{\qquad\qquad\qquad}_{\text{predictive distribution divergence}} \\ 874$$

875 Thus $\pi^*(x)=0$ (choose short) iff the divergence penalty is outweighed by the token savings:
 876

$$877 \mathbb{E} \left[D \left(p_\theta^S \parallel p_\theta^L \right) \right] < \lambda \left(\mathbb{E}[T_L(x)] + c_\pi - \mathbb{E}[T_S(x)] \right). \\ 878$$

879 Equivalently, *choose short when predicted distributions are sufficiently close and the token savings
 880 are large enough.*

881 **Step 6 (Comparative statics).** The decision boundary moves monotonically: increasing c_π or the
 882 long/short length gap $\mathbb{E}[T_L] - \mathbb{E}[T_S]$ makes short more favorable; increasing the divergence or
 883 decreasing the length gap makes long more favorable. Increasing λ amplifies the weight on token
 884 savings, thus favoring short when $\mathbb{E}[T_L] + c_\pi > \mathbb{E}[T_S]$. \square

885 **Remark 1.** *Theorem 2 establishes that an optimal adaptation strategy between long and short CoT
 886 paths always exists and is essentially unique, reducing to a deterministic threshold rule. The policy
 887 selects the short path whenever the predictive distribution of the short rationale is sufficiently close
 888 to that of the long reasoning while offering enough token savings to offset the overhead of using
 889 the long path. This shows that the <EASY> token is not an ad hoc mechanism, but corresponds
 890 to a Bayes-optimal decision that balances semantic fidelity and inference efficiency. Together with
 891 Theorem 1, this highlights that the long reasoning paths not only improves the learnability of the
 892 short reasoning paths during training, but also guides optimal switching at inference time.*

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 **G DETAILS OF IMPLEMENTATION AND INSTRUCTION PROMPT AND TRIGGERS**
919920 In this section, we introduce the format of instruction prompts and triggers that we utilized in our
921 AutoL2S framework.
922923 **G.1 DETAILS OF IMPLEMENTATION SETTINGS**
924925 All experiments for the 7B base model are conducted using four NVIDIA A100 80G GPUs, while
926 those for the 3B base model utilize two NVIDIA A100 80GB GPUs. We leverage the Transformers
927 library for fine-tuning and vLLM for efficient inference. Fine-tuning is performed using the AdamW
928 optimizer with a learning rate of 1e-5. The temperature is fixed at 0.7 in both AutoL2S and baselines,
929 ensuring that the output reasoning sequences are fully generated without truncation.
930931 **G.2 SYSTEM PROMPT AND INFERENCE PROMPT**
932933 **System Prompt / Inference Prompt**934 Your role as an assistant is to solve problems using one of two ways.
935 First, think step-by-step and give the answer. The solution should be formatted as follows:
936 <|begin_of_solution|>
937 {precise and concise solution}
938 <|end_of_solution|>939 Second, your output thoroughly explores questions through a systematic long thinking
940 process before providing the final precise and accurate solutions. This requires engaging
941 in a comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection,
942 backtracing, and iteration to develop well-considered thinking process.
943944 Please structure your response into two main sections: Thought and Solution.
945946 In the Thought section, detail your reasoning process using the specified format:
947 <|begin_of_thought|> {thought with steps separated with '\n\n'}
948 <|end_of_thought|>949 Each step should include detailed considerations such as analysing questions, summarizing
950 relevant findings, brainstorming new ideas, verifying the accuracy of the current steps, refining
951 any errors, and revisiting previous steps.
952953 In the Solution section, based on various attempts, explorations, and reflections from the
954 Thought section, systematically present the final solution that you deem correct. The solution
955 should remain a logical, accurate, concise expression style and detail necessary steps needed to
956 reach the conclusion, formatted as follows:
957 <|begin_of_solution|>
958 {final formatted, precise, and clear solution}
959 <|end_of_solution|>960 Now, try to solve the following question through the above guidelines:
961963 **G.3 SPECIAL TOKEN AND LONG-SHORT TRIGGER**
964965 **Special Easy Token and Long-short Trigger**966 <Easy> Token: <specialLong>
967968 Short Trigger: This is a trigger to ensure the model's upcoming output <short>.
969970 **Long Trigger:** Let's consider this problem in a <pureLong> way.
971

972 **H TABLE OF RQ2 AND RQ3**
973

974 We showcase the tables of the impact of the <EASY> token and data annotation.
975

976 Table 3: Ablation studies of different annotation strategies on training the AutoL2S framework.
977

978
979

Method	Average		MATH500		GPQA		GSM8K		Olympiad	
	Acc	Len	Acc	Len	Acc	Len	Acc	Len	Acc	Len
Long-only Distill	0.638	6019	0.824	5383	0.359	6049	0.926	1321	0.444	11322
Long-short Separated Distill	0.626	4250	0.798	3123	0.389	5096	0.919	864	0.399	7919
Short-Long Distill	0.610	1798	0.758	3239	0.414	1754	0.883	701	0.384	1499
Long-Short Distill (rj = 0)	0.660	4512	0.800	3468	0.434	4777	0.934	735	0.470	9068
Long-Short Distill (rj = 8)	0.639	3214	0.798	2416	0.394	3492	0.929	488	0.436	6459

983 Table 4: Ablation studies of auto long-short reasoning using <EASY> token.
984

985
986

Method	Average		MATH500		GPQA		GSM8K		Olympiad	
	Acc	Len	Acc	Len	Acc	Len	Acc	Len	Acc	Len
Qwen2.5-Math-7B-Instruct	0.603	1072	0.792	798	0.288	1806	0.943	357	0.389	1328
Bespoke-Stratos-7B	0.638	6019	0.824	5383	0.359	6049	0.926	1321	0.444	11322
AutoL2S w/o <EASY>	0.644	6327	0.792	5999	0.399	6489	0.923	1389	0.463	11432
AutoL2S w/ Force-Short	0.639	1668	0.776	1616	0.409	1943	0.925	343	0.444	2768
AutoL2S w/ Force-Long	0.664	5912	0.844	5437	0.409	5808	0.922	1230	0.481	11173
AutoL2S (rj = 0)	0.660	4512	0.800	3468	0.434	4777	0.934	735	0.470	9068

998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 I RELATED WORK

1028 **Reasoning-capable LLMs.** Recent advancements in LLMs have significantly enhanced their
 1029 reasoning capabilities, exemplified by large reasoning models such as OpenAI o1 (OpenAI) and
 1030 DeepSeek-R1 (Guo et al., 2025), and QwQ-32B (Team). OpenAI o1 (OpenAI) introduces advanced
 1031 reasoning mechanisms designed to tackle complex problems, such as mathematical and programming
 1032 tasks. Similarly, DeepSeek-R1 (Guo et al., 2025) enhances reasoning abilities by employing RL to
 1033 incentivize effective reasoning behaviors. Additionally, DeepSeek-R1 curates specialized reasoning
 1034 datasets, enabling the explicit distillation of reasoning capabilities into smaller models through SFT.
 1035

1036 **Efficient LLM Reasoning.** Thinking steps of LLMs have become longer, leading to the “over-
 1037 thinking problem” (Chen et al., 2024; Sui et al., 2025). To mitigate lengthy responses and reasoning
 1038 processes, several works have been conducted to shorten the thinking steps and produce more concise
 1039 reasoning (Sui et al., 2025). *RL-based methods* aim to encourage full-length reasoning models
 1040 to generate concise thinking steps or train non-reasoning models to learn efficient reasoning by
 1041 incorporating a length-aware reward (Team et al., 2025; Luo et al., 2025; Aggarwal & Welleck,
 1042 2025; Yeo et al., 2025; Shen et al., 2025; Hou et al., 2025). Specifically, they propose designing a
 1043 length-based score to penalize excessively lengthy responses, complementing original rewards (e.g.,
 1044 format reward and accuracy reward). Kimi K1.5 (Team et al., 2025) calculates a length reward based
 1045 on the response length relative to the shortest and longest responses. L1 (Aggarwal & Welleck, 2025)
 1046 modifies the training data with the designated length constraint instruction, and then add the length
 1047 reward. O1-Pruner (Luo et al., 2025) introduces the length-harmonizing reward, which calculates
 1048 the ratio of lengths between the reference model and predicted model along with the accuracy-based
 1049 constraints.

1050 *SFT-based methods* curate variable-length CoT training datasets to fine-tune overthinking reasoning
 1051 models for shorter reasoning paths or to equip non-reasoning models with efficient reasoning
 1052 capabilities (Han et al., 2024; Xia et al., 2025; Ma et al., 2025a; Yu et al., 2025; Cui et al., 2025).
 1053 Specifically, based on long CoT reasoning data, they curate shorter yet accurate CoT reasoning paths
 1054 as training data. Token-skip (Xia et al., 2025) leverages LLMLingua (Jiang et al., 2023) to compress
 1055 lengthy CoT responses into shorter ones based on semantic scores, and then fine-tunes the model
 1056 for efficient reasoning. CoT-Valve (Ma et al., 2025a) controls the magnitude of LoRA (Hu et al.,
 1057 2022) weights to generate variable-length CoT training data, which are then used to fine-tune an
 1058 efficient reasoning model. Token-Budget (Han et al., 2024) assigns specific token budgets to prompts
 1059 in order to generate shorter reasoning steps, and these concise CoT examples are then used for model
 1060 fine-tuning.

1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 J ROBUSTNESS ANALYTICS OF AUTOL2S

1081
 1082 To assess the robustness of our method, we further evaluated AutoL2S on both 3B and 7B models
 1083 under three different runs with different random seeds. The reported values correspond to the mean
 1084 and standard deviation with same settings presented in Section 4. The **bold** numbers represent the
 1085 best performance, and underline refers to the second best among the settings.

1086 Based on the average performance, AutoL2S outperforms CoT-Valve by achieving higher accuracy
 1087 and generating shorter reasoning paths. Compared to O1-pruner, AutoL2S produces shorter reasoning
 1088 paths while maintaining comparable average accuracy across all four reasoning benchmarks. Further-
 1089 more, AutoL2S achieves nearly the same average accuracy as the oracle SFT R1-distilled models
 1090 (i.e., Bespoke-Stratos-3B/7B), while significantly reducing reasoning path length. This presents the
 1091 same observation showcased in Section 4.

1092 Considering standard deviation, AutoL2S continues to outperform both the oracle SFT R1-distilled
 1093 models and other baselines, offering better accuracy and lower average token usage. For example,
 1094 with AutoL2S based on Qwen2.5-7B-Instruct, the performance remains the best among all methods,
 1095 while also achieving the shortest reasoning lengths. These results demonstrate that AutoL2S has both
 1096 competitive and robust performance in efficient reasoning tasks.

1097 Table 5: Evaluation results of AutoL2S based on Qwen2.5-3B-Instruct.(mean \pm std)

	Average		MATH500		GPQA		GSM8K		Olympiad	
	Acc	Len	Acc	Len	Acc	Len	Acc	Len	Acc	Len
Qwen2.5-3B-Instruct	0.479	777	0.622	806	0.349	770	0.679	376	0.266	1158
Bespoke-Stratos	<u>0.516</u>	<u>8931</u>	<u>0.636</u>	<u>9246</u>	0.308	10129	<u>0.848</u>	1624	0.272	14724
CoT-Valve	0.484	5889	0.602	4980	0.258	6898	0.805	1660	0.270	10017
O1-pruner	0.535	6686	0.704	6769	0.283	7348	0.859	1210	0.295	11416
AutoL2S (rj = 0)	0.523	5083	0.656	4287	<u>0.322</u>	4018	0.830	1109	0.284	10919
	± 0.006	± 737	± 0.015	± 605	± 0.003	<u>941</u>	± 0.026	± 224	± 0.023	± 1293
AutoL2S (rj = 4)	<u>0.524</u>	<u>3569</u>	0.646	<u>2713</u>	0.347	4118	0.826	<u>503</u>	0.278	<u>6942</u>
	± 0.009	± 506	± 0.016	± 135	± 0.015	± 514	± 0.003	± 4	± 0.007	± 1915
AutoL2S (rj = 8)	0.523	3255	<u>0.671</u>	2523	0.317	4135	0.825	417	0.280	5947
	± 0.007	± 548	± 0.021	± 200	± 0.008	± 598	± 0.004	± 41	± 0.005	± 1796

1112 Table 6: Evaluation results of AutoL2S based on Qwen2.5-7B-Instruct.(mean \pm std)

	Average		MATH500		GPQA		GSM8K		Olympiad	
	Acc	Len	Acc	Len	Acc	Len	Acc	Len	Acc	Len
Qwen2.5-7B-Instruct	0.586	435	0.748	556	0.308	27	0.902	260	0.384	896
Bespoke-Stratos	0.638	6019	<u>0.824</u>	5383	0.359	6049	<u>0.926</u>	1321	<u>0.444</u>	11322
CoT-Valve	0.594	4747	0.730	4483	0.369	4930	0.898	928	0.378	8647
O1-pruner	<u>0.650</u>	5267	0.832	5104	<u>0.399</u>	5312	0.936	1065	0.433	9586
AutoL2S (rj = 0)	0.652	4348	0.795	3278	0.431	4590	0.923	595	0.460	8932
	± 0.007	± 306	± 0.005	± 240	± 0.006	± 532	± 0.011	± 150	± 0.010	± 335
AutoL2S (rj = 4)	0.630	<u>3233</u>	0.788	<u>2200</u>	0.375	<u>3103</u>	0.915	<u>439</u>	0.442	<u>7190</u>
	± 0.011	± 474	± 0.017	± 354	± 0.033	± 494	± 0.003	± 68	± 0.009	± 994
AutoL2S (rj = 8)	0.626	2746	0.785	2019	0.380	2587	0.915	415	0.422	5964
	± 0.013	± 496	± 0.012	± 368	± 0.019	± 799	± 0.015	± 75	± 0.016	± 921

1134 **K CASE STUDIES OF AUTOL2S**
1135
1136
1137

1138 In this section, we present additional case studies to demonstrate the efficiency of AutoL2S. The
1139 AutoL2S responses shown in this section are generated by a model trained on Qwen2.5-7B-Instruct
1140 with $rj = 8$. The baseline responses in the first two examples are produced by Bespoke-Stratos-
1141 7B (Labs, 2025). We include three types of inference modes: Auto Long Reasoning, Auto Short
1142 Reasoning, and AutoL2S without <EASY>.
1143
1144

1145 **K.1 QUALITATIVE ANALYSIS OF AUTOL2S**
1146
1147

1148 The AutoL2S response shown here is generated by a model trained in Qwen2.5-7B-Instruct with
1149 $rj = 8$, and the baseline response is produced by Bespoke-Stratos-7B. The case studies demonstrate
1150 clear improvements in AutoL2S output after training. Before training, responses were often verbose,
1151 meandering, and filled with self-doubt, with frequent backtracking and confusion in applying domain
1152 knowledge. This will lead to several rounds of redundant thinking and verification steps. We
1153 observe that in some simple questions, complex verification steps can be reduced or even omitted,
1154 where LLMs are strong enough to precede the answers. After training with AutoL2S, the outputs
1155 became more structured and coherent, with reasoning expressed in a logical step-by-step manner
1156 and conclusions stated concisely and decisively. The use of special triggers aligned better with the
1157 intended long–short reasoning split, domain knowledge was applied more accurately, and verbose
1158 exploration was replaced by tighter yet sufficiently detailed explanations. Overall, training enhanced
1159 fluency, confidence, and correctness while reducing redundancy, showing a clear shift from rambling
1160 exploration to disciplined, solution-oriented reasoning.
1161
1162

1163 **K.2 AUTO LONG REASONING FOR REGULAR QUESTIONS**
1164
1165

1166 We showcase an example when encountering a regular question. AutoL2S automatically chooses to
1167 reason longer but eliminates the token usage compared to baseline responses.
1168
1169

1170 **Case Study: The Lollipop Packing Problem**
1171

1172 **User Prompt:** Jean has 30 lollipops. Jean eats 2 of the lollipops. With the remaining lollipops,
1173 Jean wants to package 2 lollipops in one bag. How many bags can Jean fill?
1174

1175 **Baseline Response (445 Tokens):**

1176 <|begin_of_thought|> Okay, let's see. Jean has 30 lollipops. She eats 2 of them. Then
1177 she wants to put the remaining ones into bags, with each bag holding 2 lollipops. The question
1178 is, how many bags can she fill? Hmm, first step, I need to figure out how many lollipops Jean
1179 has left after she eats 2. So originally, she has 30. If she eats 2, that means she subtracts 2 from
1180 30. Let me write that down: 30 minus 2 equals 28. So she has 28 lollipops left. Now, she wants
1181 to put 2 lollipops in each bag. So, to find out how many bags she can fill, I need to divide the
1182 number of remaining lollipops by 2. That would be ...[251 tokens omitted]

1183 **AutoL2S Response (136 Tokens):**

1184 <|begin_of_solution|> **<EASY><Short Trigger>** This is a trigger to ensure the model's
1185 upcoming output <short>. Let's approach this step by step. Jean starts with 30 lollipops.
1186 She eats 2, so we need to subtract those from the total. 30 minus 2 equals 28. So, Jean has 28
1187 lollipops left. Now, Jean wants to put 2 lollipops in each bag. To find out how many bags she can
1188 fill, we divide the number of remaining lollipops by the number of lollipops per bag. 28 divided
1189 by 2 equals 14. Therefore, Jean can fill 14 bags. <|end_of_solution|>

1188
1189**Case Study: Auto Long Reasoning for Regular Questions**1190
1191
1192
1193**User Prompt:** Melissa works as a pet groomer. This week, she has 8 dogs that need to be bathed, 5 cats that need their nails clipped, 3 birds that need their wings trimmed, and 12 horses that need to be brushed. If she splits the grooming jobs evenly over the days, how many animals will she groom each day of the week?

1194

Baseline Response (2207 Tokens):

1195

<|begin_of_thought|>

1196
1197
1198

Okay, let's see. Melissa is a pet groomer, and she has different animals to groom this week. The problem is asking how many animals she'll groom each day if she splits the jobs evenly over the days. Alright, so first, I need to figure out the total number of animals she has to groom. Let me list them out:

1199

- Dogs: 8 that need bathing.
- Cats: 5 that need their nails clipped.
- Birds: 3 that need their wings trimmed.
- Horses: 12 that need brushing.

1200

...[1889 tokens omitted]...

1201

<|end_of_thought|>

1202

<|begin_of_solution|>

1203

Melissa has a total of 8 dogs, 5 cats, 3 birds, and 12 horses to groom. To find the total number of animals:

1204

$$8 \text{ (dogs)} + 5 \text{ (cats)} + 3 \text{ (birds)} + 12 \text{ (horses)} = 28 \text{ (total animals)}$$

1205

The problem asks how many animals she will groom each day if the jobs are split evenly over the days. Assuming she works 7 days a week, the calculation is:

1206

1207

$$\frac{28 \text{ (total animals)}}{7 \text{ (days)}} = 4 \text{ (animals per day)}$$

1208

Thus, the final answer is 4.

1209

<|end_of_solution|>

1210

AutoL2S Response (1351 Tokens):

1211

<|begin_of_thought|>

1212

Let's consider this problem in a <pureLong> way. Okay, let's see. So the problem is about Melissa, who's a pet groomer. She has different animals to groom: 8 dogs, 5 cats, 3 birds, and 12 horses. The question is asking how many animals she will groom each day if she splits the jobs evenly over the days of the week.

1213

First, I need to figure out the total number of grooming jobs she has.

1214

...[1112 tokens omitted]...

1215

<|end_of_thought|>

1216

<|begin_of_solution|>

1217

Melissa has a total of 8 dogs, 5 cats, 3 birds, and 12 horses to groom. Adding these together gives:

1218

$$8 + 5 + 3 + 12 = 28$$

1219

She needs to split these 28 grooming jobs evenly over 7 days of the week. Dividing the total number of jobs by the number of days gives:

1220

$$28 \div 7 = 4$$

1221

Thus, the number of animals she will groom each day is:

1222

1223

4

1224

<|end_of_solution|>

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242 K.3 AUTO SHORT REASONING FOR EASY QUESTIONS
12431244 We showcase the example when AutoL2S encounter a regular question. The results show AutoL2S
1245 can automatically switch to from long reasoning path to short reasoning path without sacrificing the
1246 reasoning performance.
12471248 **Case Study: Auto Short Reasoning for EASY Questions**
12491250 **User Prompt:** Andrew plans a road trip from New Jersey to Rochester. It takes 6 days to travel
1251 by bus and half as many days to travel by car from New Jersey to Rochester. How many days
1252 will he travel if he plans to go to Rochester by bus and return from Rochester by car?
12531254 **Baseline Answer (573 Tokens):**
12551256 <|begin_of_thought|>
1257 Okay, so Andrew is planning a road trip from New Jersey to Rochester. The problem says it
1258 takes 6 days to travel by bus, and half as many days by car. Then he wants to go by bus and
1259 return by car. I need to figure out the total number of days he'll travel.
12601261 First, let me parse the information. The trip from New Jersey to Rochester by bus takes 6 days.
1262 Then, the return trip by car would take half as many days as the bus trip. So, half of 6 days is 3
1263 days. That makes sense because the problem states "half as many days to travel by car," so it's
1264 half the bus time.
12651266 So, going by bus: 6 days. Coming back by car: 3 days. To find the total travel time, I need to
1267 add both legs of the journey. That would be 6 days + 3 days. Let me do the math: 6 + 3 equals 9.
1268 So, the total travel time is 9 days.
12691270 Wait a second, let me make sure I didn't miss anything. The problem says he plans to go to
1271 Rochester by bus and return from Rochester by car. So, it's a round trip. The key here is that the
1272 return trip is from Rochester back to where he started, which is New Jersey. So, the distances are
1273 the same, but the mode of transportation changes.
12741275 The bus trip to Rochester is 6 days, car trip back is half that, so 3 days. Adding them together
1276 gives 9 days total travel time. That seems straightforward. Is there any part of this that could be
1277 interpreted differently?
12781279 For example, maybe the problem is referring to something else, like including time in New Jersey
1280 or Rochester? But the problem specifically mentions the travel time by bus and car for the same
1281 distance. So, it's just the round trip, with each leg's time as given.
12821283 Another check: if the bus takes 6 days, then half of that is indeed 3 days. So, 6 + 3 is 9. Yeah,
1284 that seems right. I don't see any other factors here. The answer should be 9 days.
1285 <|end_of_thought|>

1286 <|begin_of_solution|>

1287 Andrew plans to travel from New Jersey to Rochester by bus, which takes 6 days. The return trip
1288 by car takes half as many days as the bus trip, which is $6 \div 2 = 3$ days. The total travel time is
1289 the sum of both trips:
1290

1291
$$6 \text{ days (bus)} + 3 \text{ days (car)} = 9 \text{ days}$$

1292 The final answer is 9.
1293 <|end_of_solution|>1294 **AutoL2S Answer (200 Tokens):** <|begin_of_solution|>1295 This is a trigger to ensure the model's upcoming output <short>. To determine the total
1296 number of days Andrew will travel, we need to consider both the trip to Rochester and the return
1297 trip from Rochester. Let's break it down step by step.
12981299 1. **Trip to Rochester by bus:** - It takes 6 days to travel by bus from New Jersey to Rochester.
1300 2. **Return trip from Rochester by car:** - The problem states that it takes half as many days to
1301 travel by car as it does by bus. - Since the bus trip takes 6 days, the car trip will take $\frac{6}{2} = 3$ days.
1302 3. **Total travel time:** - Add the time taken for both trips: 6 days (bus) + 3 days (car) = 9 days.
13031304 Therefore, the total number of days Andrew will travel is 9.
1305 <|end_of_solution|>

1296 K.4 AUTOL2S w/o <EASY>
12971298 We showcase an example of not using <EASY> in AutoL2S.
12991300 **Case Study: AutoL2S w/o <EASY>**1301 **User Prompt:** Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and
1302 bakes muffins for her friends every day with four. She sells the remainder at the farmers' market
1303 daily for \$2 per fresh duck egg. How much in dollars does she make every day at the farmers'
1304 market?
1305**AutoL2S w/o <EASY> (986 Tokens):**

<|begin_of_thought|>

<specialLong> We will provide a detailed explanation and solution. Okay, let's see. So Janet's ducks lay 16 eggs every day. That's the starting point. Then she does a couple of things with those eggs. First, she eats three for breakfast every morning, and then she uses four to bake muffins for her friends each day. The rest of the eggs, which are left after she uses them for her own consumption and baking, she sells at the farmers' market for \$2 each. The question is asking how much money she makes from selling those eggs each day.
1312 ...[504 tokens omitted]...
1313 <|end_of_thought|>

<|begin_of_solution|>

Janet starts with 16 eggs each day. She eats 3 eggs for breakfast and uses 4 eggs to bake muffins, totaling $3 + 4 = 7$ eggs used per day. Subtracting this from the daily gives $16 - 7 = 9$ eggs left to sell. Each egg is sold for \$2, so the total money made from selling the eggs is $9 \times 2 = 18$ dollars.

The final answer is 18.<|end_of_solution|><seperate><|begin_of_solution|> This is a trigger to ensure the model's upcoming output <short>. To determine how much Janet makes every day at the farmers' market, we need to follow these steps:

1. **Calculate the total number of eggs laid by the ducks per day:** Janet's ducks lay 16 eggs per day.
2. **Determine the number of eggs Janet eats for breakfast each day:** Janet eats 3 eggs for breakfast every morning.
3. **Determine the number of eggs Janet uses to bake muffins each day:** Janet bakes muffins for her friends every day with 4 eggs.
4. **Calculate the total number of eggs Janet uses each day:**

1327
$$3 \text{ (eggs for breakfast)} + 4 \text{ (eggs for muffins)} = 7 \text{ eggs}$$

1329 5. **Calculate the number of eggs remaining after Janet uses some for breakfast and baking:**

1330
$$16 \text{ (total eggs)} - 7 \text{ (eggs used)} = 9 \text{ eggs}$$

1333 6. **Determine the amount of money Janet makes from selling the remaining eggs:** Janet sells the remaining 9 eggs at the farmers' market for \$2 per egg.

1334
$$9 \text{ eggs} \times 2 \text{ dollars per egg} = 18 \text{ dollars}$$

1336 Therefore, the amount of money Janet makes every day at the farmers' market is 18.
1337 <|end_of_solution|>**AutoL2S w <EASY> (314 Tokens):**

<|begin_of_solution|>

1340 This is a trigger to ensure the model's upcoming output <short>. To determine how much
1341 Janet makes every day at the farmers' market, we need to follow these steps:

1. **Calculate the total number of eggs laid by the ducks per day:** Janet's ducks lay 16 eggs per day. ...[158 tokens omitted]...
4. **Determine how much Janet makes from selling the remaining eggs:** Janet sells the remaining 9 eggs at the farmers' market for \$2 per egg. Therefore, the total amount she makes is:

1346
$$9 \text{ eggs} \times 2 \text{ dollars per egg} = 18 \text{ dollars}$$

1347 Thus, the amount Janet makes every day at the farmers' market is 18 dollars.
1348 <|end_of_solution|>

L VISUALIZATIONS FOR AUTO2S’ OPTIMIZATION TRACE

Figure 3 visualizes the optimization trajectory of AutoL2S and AutoL2S-Plus on Qwen2.5–7B–Instruct model, illustrating how they achieve the trade-off between reasoning length (Avg. # Tokens) and accuracy (Avg. Accuracy). Specifically, AutoL2S employs long-short distillation to move beyond the instruct model toward higher accuracy, achieving better performance and shorter reasoning paths than the long-only distilled model. Building upon this, AutoL2S-Plus further compresses the reasoning length without compromising accuracy by optimizing under the length-aware reinforcement learning objective. These optimization traces demonstrate that, by dynamically balancing long and short reasoning paths, AutoL2S and AutoL2S-Plus achieves efficient reasoning—substantially reducing reasoning length while preserving task accuracy.

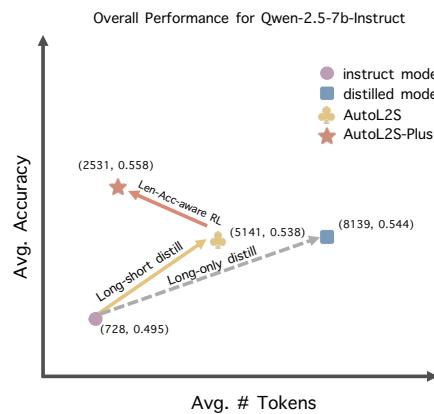


Figure 3: Visualizations for AutoL2S’ optimization trace.

M PARETO FRONT OF REASONING ACCURACY AND EFFICIENCY

In this section, we showcase the Pareto Front of different methods in terms of their wall-clock time and KV cache peak memory. The results are shown in Figure 4. We observe that AutoL2S obtains the best trade-off between accuracy and reasoning efficiency.

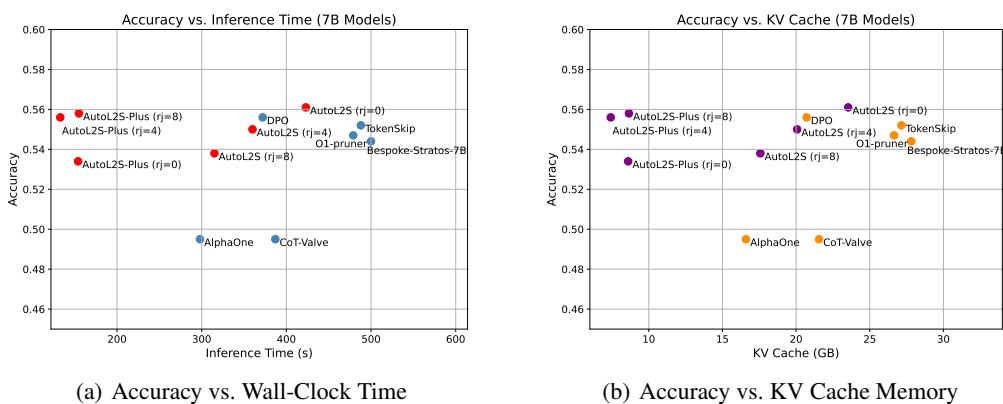


Figure 4: Efficiency–accuracy trade-off of 7 B models. Left: wall-clock inference time; Right: KV-cache memory footprint. AutoL2S variants consistently improve accuracy under substantially lower inference cost.