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Abstract
It would be advantageous if we could interpret001
the predictions of LMs in fact-intensive situa-002
tions. Recent work has proposed several such003
interpretability approaches, but all are limited004
to idealized test situations that do not align with005
model behaviour in practice. We show that we006
can extend an interpretability method to non-007
ideal situations and apply it to study factual008
consistency. We find that consistent predictions009
generally correspond to the same underlying010
fact recall processes and identify a limitation of011
interpretability methods with respect to applied012
scenarios. Current methods cannot interpret013
cases for which a LM abstains from perform-014
ing fact recall, something we find to usually be015
the case for inconsistent predictions.016

1 Introduction017

LMs that are to be used in fact-intensive situations018

need to be robust and reliable. This requires in-019

sights on model behavior. To gain generalizable in-020

sights, it has proven necessary to go beyond behav-021

ioral evaluations and instead turn to interpretative022

approaches (Geiger et al., 2021). A large amount023

of interpretative work focusing on fact-intensive024

settings has recently shed some light on the recall025

process of factual associations in auto-regressive026

LMs (Meng et al., 2022; Geva et al., 2023; Haviv027

et al., 2023). However, this research has only exam-028

ined cases for which the LM is accurate. Current029

interpretability results are therefore limited to ide-030

alized situations that do not represent the typical031

fact-intensive situation.032

In this work we further expand on how inter-033

pretability methods can be understood and used.034

We identify the situations in which the methods035

can be applied and show that these are not limited036

to idealized situations. Additionally, we show that037

the fact recall process of models can be interpreted038

also when the model is incorrect or for tokens that039

are not the top prediction. We focus on the interpre-040

tative approach of causal tracing (CT) to identify041

important model representations for factual asso- 042

ciations (Meng et al., 2022), while many of our 043

insights can be generalized to other interpretability 044

methods for fact-intensive settings. 045

Furthermore, we illustrate the validity and utility 046

of our expanded interpretability approach by using 047

it to better understand factual consistency (Elazar 048

et al., 2021). Factual consistency measures the ro- 049

bustness of LMs to syntactic variations in factual 050

queries and is a crucial property of reliable LMs in 051

fact-intensive situations. Therefore, it serves as a 052

suitable first test case. Our results yield additional 053

insights into factual consistency and the fact recall 054

process of LMs, while we also show that the ap- 055

proach of causal tracing has limitations when it 056

comes to interpreting inconsistency in particular. 1 057

2 Interpreting the fact recall process 058

Similarly to previous work by Meng et al. (2022); 059

Geva et al. (2023), we limit our investigations to 060

simple fact queries that ask for the missing object 061

O corresponding to incomplete fact tuples (subject, 062

relation), denoted (S, R). 063

We use the causal tracing (CT) method (Meng 064

et al., 2022) to interpret the fact recall process for 065

a certain output token probability, P (O). This 066

method occludes the subject by perturbing its em- 067

beddings to obtain corrupted values for model 068

states. By restoring corrupted states at certain 069

token-layer positions it is then possible to infer 070

what parts of the network are important for assign- 071

ing a high probability to the output token O with re- 072

spect to the subject. Using this method, Meng et al. 073

(2022) found that middle-layer MLP sublayers are 074

important for factual predictions, also confirmed 075

by Haviv et al. (2023); Geva et al. (2021). The 076

provisional hypothesis proposed by these works is 077

that midlayer MLP modules act as an association 078

memory, where the subject is associated with dif- 079

1Our code and data will be open-sourced once the
anonymity period is over.

1



ferent memorized attributes. The exact association080

used for the prediction is then partially determined081

by the expressed relation.082

Since only the subject is perturbed and inter-083

preted for any traced output token O, the MLP CT084

results indicate which layers were important for085

accessing factual subject associations relevant to O.086

It can be assumed that several factual associations087

make up the internal subject representation of the088

LM, but that only some of these are used later in089

the network when combined with the relation rep-090

resentation (Geva et al., 2023). For example, Alan091

Turing could be associated with {computer, math-092

ematics, England, 1912, cryptography} in MLP093

layers and a later expression of the relation field-of-094

work might access mathematics or cryptography.095

The MLP CT results thus reveal the location of ex-096

tracted factual subject associations important for097

predicting the traced object O. Our work mainly098

focuses on MLP CT results and we will henceforth099

refer to these as simply CT results.100

3 Extensions to the interpretability101

framework102

As mentioned previously, Meng et al. (2022) only103

examine factual associations in idealized situations104

for which the LM makes the correct prediction. As-105

sociations are then only traced for top predictions.106

However, LMs are not guaranteed to assign the107

highest probability to the correct answer, and to-108

kens of interest are not always ranked highest. To109

study these situations, we need to extend the CT110

framework. We do this by proposing an alternative111

approach for identifying when a fact recall takes112

place in a LM (Section 3.2).113

Furthermore, previous interpretability methods114

have only focused on singleton scenarios or aver-115

aged model behaviors across fact queries (Meng116

et al., 2022; Geva et al., 2023; Dai et al., 2022).117

We expand on the utility of the CT framework by118

showing that CT results also can be compared be-119

tween pairs of queries to identify whether similar120

fact associations are used (Section 3.3).121

We demonstrate our extensions on a subset of122

the ParaRel dataset (Section 3.1).123

3.1 Dataset124

We use a subset of the ParaRel (Elazar et al., 2021)125

dataset. This builds on the earlier LAMA dataset126

(Petroni et al., 2019), which provides simple fact127

tuples (S, R, O) extracted from Wikidata and a128

template that can be used to construct queries from 129

S and O for any of the relations. In addition to 130

the LAMA benchmark, ParaRel provides several 131

paraphrased templates. The ParaRel subset used 132

for our analysis includes 7 relations and is selected 133

based on multiple criteria described in Appendix A, 134

additional statistics can be found in Appendix B. 135

For the model predictions, we make a distinction 136

between freely generated tokens and “candidate” 137

tokens. As defined in the original work, a token 138

is considered a candidate if it is a possible answer 139

alternative in ParaRel. We can thereby identify the 140

highest ranked candidate even if it did not receive 141

the highest output probability. For each query we 142

perform CT for each of these two types of tokens 143

– top prediction and top candidate prediction. The 144

latter is only included if it is among the top 10 145

model predictions. The two token types are identi- 146

fied for the original LAMA prompts and reused for 147

the corresponding paraphrased ParaRel prompts, to 148

ensure that we have CT results for the same objects. 149

3.2 Identifying a fact recall process 150

The first step in our analysis is to define situations 151

for which CT is applicable. Current interpretabil- 152

ity methods have only been tested on samples for 153

which a fact recall process is sure to take place, 154

as it makes little sense to apply them for e.g. non- 155

memorized predictions (Geva et al., 2023; Meng 156

et al., 2022; Haviv et al., 2023). We design a 157

method for separating these cases, without incur- 158

ring restrictions to idealized scenarios. 159

Since the facts in our setting consist of three ele- 160

ments – subject, relation and object, it is reasonable 161

to assume that the subject should play a significant 162

role in the prediction process if the prediction is 163

based on the fact. That is, the total effect (TE) 164

of occluding the subject should be high for a fact 165

recall process. Following Meng et al. (2022), we 166

define TE = P (O) − P∗(O), where P∗(O) is the 167

probability of emitting O under a corrupted subject 168

representation. By filtering out samples with a TE 169

below a certain threshold, we can ensure that any 170

CT results measured for the remaining samples are 171

sufficiently based on the ability of the subject to 172

induce the respective object prediction. 173

We set the TE threshold to 0.1 based on total 174

effects observed by Meng et al. (2022), see Ap- 175

pendix C for a more detailed analysis. As a conse- 176

quence of this filtering, we find that we can apply 177

CT to a broader set of cases than before. We show 178
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in Appendix C that sufficient TE values can be mea-179

sured also for incorrect and non-top predictions.180

This proves that our method is not only restricted181

to idealized situations.182

Despite the TE thresholding, we may still ob-183

serve predicted objects that cannot be considered184

factual, such as “the” or “a”. We exclude all such185

samples (Appendix E). Taken together, our method186

should successfully identify fact recall processes,187

while we cannot guarantee that some corner cases188

will not slip through. At worst, our method should189

have a precision that matches methods based on190

restrictions to idealized scenarios.191

3.3 Pairwise comparisons192

As described in Section 2, CT results indicate the193

locations of accessed subject associations impor-194

tant for predicting a traced object. We should there-195

fore be able to compare CT results between pairs196

of queries to determine whether similar fact asso-197

ciations are used. For the analysis of the pairwise198

comparisons, we use the ParaRel data that has been199

processed as described in Section 3.2, amounting200

to a total of 4323 samples for different subjects,201

relations, templates and objects. We investigate CT202

results for GPT-2 XL (Radford et al., 2019).203

To measure similarity between two CT results204

corresponding to two paraphrases, we only con-205

sider extractions made for the subject tokens. Pre-206

vious work has shown that results for these tokens207

are more significant for interpreting the recall of208

factual associations (Meng et al., 2022). Some209

work has only considered the last subject token,210

while we find that layers across all subject tokens211

may be important (Appendix G).212

To compare CT results, we first need to iden-213

tify a suitable automated similarity metric. We214

investigate six different approaches for this, de-215

scribed in Appendix D. To evaluate the different216

approaches we manually annotated binary similar-217

ity scores by visual inspection for 100 randomly218

sampled pairs of CT results for the relation P19219

born-in and compared our scores to those of the220

automatic metrics. More information on this can221

be found in Appendix F. We find that a similarity222

metric based on the cosine similarity agrees best223

with our annotations and use this for all subsequent224

CT similarity investigations.225

The results in Figure 1 confirm our hypothesis226

that CT results indicate what fact associations are227

used. Queries for different facts correspond to dis-228

Figure 1: The cosine similarity scores for 800 pairwise
comparisons of CT results, randomly sampled across
queries asking for different facts or the same fact, re-
spectively.

similar CT results, with similarity scores that in- 229

crease slightly with the number of subject tokens, 230

but never exceed an average of 0.90. Queries sam- 231

pled for the same fact (for semantically invariant 232

paraphrases) correspond to similar CT results with 233

similarity scores around 0.99. 234

4 Interpreting LMs from the perspective 235

of factual consistency 236

One crucial property of reliable LMs in fact- 237

intensive situations is consistency, i.e. robustness 238

to rephrasings. We illustrate the validity and utility 239

of our expanded interpretability method by using it 240

to better understand model consistency. 241

4.1 Factual consistency 242

Thanks to the expressive power of language, there 243

exist many different queries that can be derived 244

from the same (S, R) (Elazar et al., 2021). For 245

example, Alan Turing and field-of-work can be ex- 246

pressed as “Alan Turing specializes in” or “Alan 247

Turing’s expertise is”. Using these, we can inves- 248

tigate how the model generalizes in the face of 249

lexical variation with the underlying fact fixed, i.e. 250

from a perspective of factual consistency. We say 251

that a LM is factually consistent for a pair of fact 252

queries if it makes the same prediction for these. 253

4.2 Experiment 254

We follow the method by Meng et al. (2022) to 255

extract CT results from GPT-2 XL (Radford et al., 256

2019) for the prompts in our studied ParaRel subset 257

(Section 3.1). To ensure that we are studying fact 258

recall processes, we process the subset as described 259

in Section 3.2. We then measure the similarity be- 260

tween CT results for pairs of paraphrases, of which 261

one is given by the LAMA template. We analyze a 262
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Figure 2: Total effects for the paraphrased prompts, strat-
ified by consistency for each corresponding (LAMA,
paraphrased) prompt pair. Measured for top predictions.

total of 2,544 pairs of CT results for the top predic-263

tion and 3,004 pairs for the top candidate. Statistics264

for the analyzed data are shown in Appendix B.265

4.3 Results266

We structure the presentation of our results around267

a set of findings, as presented below.268

There is a correspondence between total effect269

and consistency Figure 2 shows consistent and270

inconsistent numbers of samples as a function of271

TE. These results are reported for samples for272

which non-factual objects have been removed but273

before capping TE at 0.1. We can observe that the274

number of inconsistent pairs sharply drops with in-275

creased TE, whereas the number of consistent pairs276

follows a more uniform distribution. Results for277

the top candidate predictions agree with this trend278

and can be found in Appendix H.279

Similar fact recall processes correspond to con-280

sistent predictions After filtering our results for281

sufficient total effects and excluding non-factual282

predictions, we observe from Figure 3 that the re-283

sulting paraphrase pairs correspond to similar CT284

results. As a comparison, we have seen that CT285

results for a pair of different facts correspond to an286

average cosine similarity of 0.90, which is signifi-287

cantly below what we observe in Figure 3. Addi-288

tionally, only few of the remaining pairs correspond289

to inconsistent predictions.290

Several factual associations can co-exist in a LM291

For the (LAMA, paraphrased) prompt pairs inves-292

tigated we find a total of 33 samples for which293

two different objects (one top prediction and the294

other a top candidate prediction) have been traced295

for. For many of these samples, the CT results296

are similar, like for “Jerzy Fickowski is originally297

from [Poland, Warsaw]” with a similarity score of298

Figure 3: Similarity values after removing non-factual
predictions and thresholding TEs.

0.99. For other samples, the CT results are dissimi- 299

lar, like for “Chanel, founded in [18, Paris]” with 300

a similarity score of 0.75. This example shows 301

that several fact associations can co-exist, while we 302

leave it for future work to establish the extent and 303

consequences of this. 304

Causal tracing has limitations Our behavioral 305

results agree with the CT results in several as- 306

pects. However, CT has limitations on the kind 307

of questions related to consistency it can help an- 308

swer. Most importantly, CT and other interpretabil- 309

ity methods generally cannot be used when the 310

model is inconsistent, since this implies low TE 311

and a lack of fact recall. Further extensions to our 312

interpretability methods are required before we can 313

study these error cases and are left for future work. 314

5 Related work 315

Dai et al. (2022) also investigate the recall of fac- 316

tual associations for ParaRel paraphrases. However, 317

in their setting the paraphrases are used to identify 318

“knowledge neurons” important for making the cor- 319

rect prediction. Thus, their work is on some level 320

fundamentally different from ours, as they rely on 321

consistency for the design of an interpretative ap- 322

proach while we use an interpretative approach to 323

explain consistency as measured by ParaRel. 324

6 Conclusion 325

In this work we investigate the utility of CT for 326

studying factual associations in language models 327

and its applicability in the context of consistency. 328

We propose several extensions to current inter- 329

pretability methods. We show that causal tracing 330

can be used not only in idealized cases. We find 331

that for consistent model behavior, we can also 332

identify consistent fact recall processes. Lastly, we 333

identify a limitation of this method in that it cannot 334

be used to study factual inconsistency. 335
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Limitations336

Our analysis is limited to the GPT-2 XL model.337

Therefore, we cannot show whether our results338

generalize to other LMs. However, previous work339

indicates that they are likely to generalize, as was340

the case for e.g. Meng et al. (2022).341

Ethics Statement342

Interpretability methods for fact-intensive situa-343

tions are not directly associated with any ethical344

complications. Neither is the ParaRel dataset used345

in this work.346
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in order to fit the autoregressive setting and 416
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we suspect the models are guided by heuristics 422

rather than factual association and relations 423
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toward only a few alternatives. 425

Statistics for this dataset can be found in Table 1. 426
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Relation #templates #subjects #top pairs #top candidate pairs

P19 7 779 4674 4638
P20 8 817 5719 1575
P27 7 958 5748 5664
P101 7 519 3114 1404
P495 17 903 14448 2096
P740 14 843 10959 1326
P1376 6 171 855 840

Table 1: The ParaRel data analyzed. The number of templates includes the LAMA template.

Figure 4: The CT results for a (LAMA, paraphrased) prompt pair included in our consistency study. The cosine
similarity between these results is 0.997.

Relation Top Top candidate

P19 75 47
P20 42 4
P27 1300 2135
P101 50 29
P495 75 56
P740 389 25
P1376 613 708
Total 2544 3004

Table 2: The number of (LAMA query, paraphrased
query) data pairs included in our analysis stratified by
relation.

and Figure 4 displays the CT results for one of435

these examples.436

Table 4 contains examples of samples investi-437

gated for the pairwise comparisons in Section 3.3,438

for which we sampled across the same fact, and439

different facts.440

C Sufficient total effects441

C.1 Setting the TE threshold442

In the causal tracing analysis performed by Meng443

et al. (2022) only correct predictions were analyzed,444

this to make sure that the total effects were high 445

enough for an analysis of intermediate total effects. 446

Based on these samples, the authors located fac- 447

tual associations in GPT. We investigate the total 448

effects for these 1209 known samples (Figure 5). 449

We find that they correspond to an average total 450

effect of 0.23, with a maximum value of 0.99 and a 451

minimum of -0.17. Samples with negative TEs are 452

e.g. “Uqba ibn Nafi is affiliated with the religion 453

of [Islam]” or “In Indiana, the language spoken is 454

a mixture of [English]...”. 455

It makes little sense to set a TE threshold that 456

matches the minimum TE observed, since that 457

would be negative. Instead, we focus on Figure 5 458

which indicates that the majority of the samples 459

studied correspond to a TE of around 0.1. By using 460

this value as a threshold, we should like Meng et al. 461

(2022) obtain trustworthy results. 462

C.2 Sufficient TE can be measured for 463

incorrect and non-top predictions 464

Figure 6 shows that sufficient total effects can be 465

measured for both incorrect and non-top predic- 466

tions. While the total effects generally are greater 467

for the correct predictions, we do also measure 468

effects above 0.1 for incorrect and non-top predic- 469
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Relation Subject LAMA template Paraphrased template Object Similarity Cand.

P101 Charles Darwin {} works in the field of {} works in the area of natural 0.997 No
P101 Edward Gibbon {} works in the field of {} specializes in history 0.947 No
P101 Edward Gibbon {} works in the field of {} specializes in history 0.947 Yes
P740 The Coca-Cola company {} was founded in {}, that was started in 1886 0.989 No
P740 The Coca-Cola company {} was founded in {}, that was started in Atlanta 0.987 Yes

Table 3: Examples of the pairs included in our consistency study described in Section 4. Cand. indicates whether
the object traced for was a top candidate. Similarity indicates the cosine similarity between the CT results for the
two templates.

Relation Subject Template Object TE

P101 Charles Darwin {} works in the area of natural 0.11
P101 Charles Darwin {} works in the field of natural 0.26
P740 Chanel {} was created in 18 0.13
P740 Chanel {} was founded in 18 0.13
P740 Chanel {} was founded in Paris 0.17
P1376 Honolulu {} is the capital of Hawaii 0.52

Table 4: Examples of the 4323 samples analyzed in Section 3.3 with corresponding TE values. For this analysis we
made no distinction between top predictions and top candidate predictions. All (subject, relation, object) relations
with CT results were included and de-duplicated.

Figure 5: The total effects measured for GPT-2 XL for
the samples studied by Meng et al. (2022).

tions.470

D Similarity metrics471

The similarity metrics investigated are cosine simi-472

larity, Wasserstein distance, KL divergence, struc-473

tural similarity (SSIM) index, normalized root474

mean-squared error (NRMSE) and normalized mu-475

tual information (NMI) (Bonneel et al., 2015; Wang476

et al., 2004; Studholme et al., 1999). The three477

latter metrics are image similarity metrics and im-478

plemented in scikit-image. The Wasserstein479

distance metric is implemented in POT: Python480

Optimal Transport.481

(a) Top prediction.

(b) Top candidate prediction that is not top prediction.

Figure 6: Total effects when using the LAMA prompts
stratified by accuracy. The accuracy is measured for
both the top predictions and the top candidate predic-
tions that are not also the top prediction.
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E Objects corresponding to a fact recall482

process483

Certain object predictions may yield large total ef-484

fects even when they cannot be considered as the485

result of a fact recall process. The prediction “his”486

for “Allan Peiper died in [his]” is for example sen-487

sitive to subject corruptions, as these may occlude488

that the subject refers to a male person and yields489

large TE because of this. To ensure that we only490

consider fact recall processes, we manually exam-491

ine the predicted objects and filter out the values as492

indicated in Table 5.493

Filtered object

a
the
collaboration
response
public
"
order
partnership
honor
AD
open
H
age
creating
disgrace
her
his
in
left
not
providing
tradgedy
which
whom

Table 5: Predictions we filter out.

F Method for finding a similarity metric494

As previously mentioned, we manually annotated495

similarity scores for 100 randomly sampled pairs496

of CT results to help us evaluate different similarity497

metrics. This was done by comparing two pairs498

of CT results for the LAMA template and another499

randomly sampled template respectively. We an-500

notated what pair was more similar to each other501

or, if this could not be determined, we annotated502

whether both pairs were equally very dissimilar 503

alternatively equally similar. Figure 7 depicts our 504

annotation framework. 505

G Intermediate total effects across 506

subject tokens 507

We find that layers across all subject tokens, and 508

not only the last subject token, may display large in- 509

termediate total effect. We calculate the cumulative 510

intermediate total effects across LM layers for each 511

subject token in a query and store the subject index 512

that maximizes the cumulative intermediate total ef- 513

fect. Figure 8 shows the counts of the maximizing 514

indices stratified across number of subject tokens. 515

It is clear that the last subject index does not always 516

yield the largest intermediate total effects. 517

H Total effects and consistency for top 518

candidate predictions 519

Figure 9 shows consistent and inconsistent num- 520

bers of samples as a function of TE for the top 521

candidate predictions. This corresponds to the plot 522

in Figure 2. 523
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Figure 7: An example of how the similarity between the LAMA result and a randomly sampled result (“Y originates
from X” and “Y originated from X”) is annotated for subject William Carlos Williams, traced object New and
relation born-in.

Figure 8: The distribution of maximizing subject indices
stratified over the number of subject tokens.

Figure 9: Total effects when using paraphrases of
the LAMA prompts stratified by consistency for each
(LAMA prompt, paraphrased prompt) pair. The consis-
tency is measured for the top candidate predictions.
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