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Abstract

It would be advantageous if we could interpret
the predictions of LMs in fact-intensive situa-
tions. Recent work has proposed several such
interpretability approaches, but all are limited
to idealized test situations that do not align with
model behaviour in practice. We show that we
can extend an interpretability method to non-
ideal situations and apply it to study factual
consistency. We find that consistent predictions
generally correspond to the same underlying
fact recall processes and identify a limitation of
interpretability methods with respect to applied
scenarios. Current methods cannot interpret
cases for which a LM abstains from perform-
ing fact recall, something we find to usually be
the case for inconsistent predictions.

1 Introduction

LMs that are to be used in fact-intensive situations
need to be robust and reliable. This requires in-
sights on model behavior. To gain generalizable in-
sights, it has proven necessary to go beyond behav-
ioral evaluations and instead turn to interpretative
approaches (Geiger et al., 2021). A large amount
of interpretative work focusing on fact-intensive
settings has recently shed some light on the recall
process of factual associations in auto-regressive
LMs (Meng et al., 2022; Geva et al., 2023; Haviv
et al., 2023). However, this research has only exam-
ined cases for which the LM is accurate. Current
interpretability results are therefore limited to ide-
alized situations that do not represent the typical
fact-intensive situation.

In this work we further expand on how inter-
pretability methods can be understood and used.
We identify the situations in which the methods
can be applied and show that these are not limited
to idealized situations. Additionally, we show that
the fact recall process of models can be interpreted
also when the model is incorrect or for tokens that
are not the top prediction. We focus on the interpre-
tative approach of causal tracing (CT) to identify

important model representations for factual asso-
ciations (Meng et al., 2022), while many of our
insights can be generalized to other interpretability
methods for fact-intensive settings.

Furthermore, we illustrate the validity and utility
of our expanded interpretability approach by using
it to better understand factual consistency (Elazar
et al., 2021). Factual consistency measures the ro-
bustness of LMs to syntactic variations in factual
queries and is a crucial property of reliable LMs in
fact-intensive situations. Therefore, it serves as a
suitable first test case. Our results yield additional
insights into factual consistency and the fact recall
process of LMs, while we also show that the ap-
proach of causal tracing has limitations when it
comes to interpreting inconsistency in particular. !

2 Interpreting the fact recall process

Similarly to previous work by Meng et al. (2022);
Geva et al. (2023), we limit our investigations to
simple fact queries that ask for the missing object
O corresponding to incomplete fact tuples (subject,
relation), denoted (S, R).

We use the causal tracing (CT) method (Meng
et al., 2022) to interpret the fact recall process for
a certain output token probability, P(O). This
method occludes the subject by perturbing its em-
beddings to obtain corrupted values for model
states. By restoring corrupted states at certain
token-layer positions it is then possible to infer
what parts of the network are important for assign-
ing a high probability to the output token O with re-
spect to the subject. Using this method, Meng et al.
(2022) found that middle-layer MLP sublayers are
important for factual predictions, also confirmed
by Haviv et al. (2023); Geva et al. (2021). The
provisional hypothesis proposed by these works is
that midlayer MLP modules act as an association
memory, where the subject is associated with dif-
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ferent memorized attributes. The exact association
used for the prediction is then partially determined
by the expressed relation.

Since only the subject is perturbed and inter-
preted for any traced output token O, the MLP CT
results indicate which layers were important for
accessing factual subject associations relevant to O.
It can be assumed that several factual associations
make up the internal subject representation of the
LM, but that only some of these are used later in
the network when combined with the relation rep-
resentation (Geva et al., 2023). For example, Alan
Turing could be associated with {computer, math-
ematics, England, 1912, cryptography} in MLP
layers and a later expression of the relation field-of-
work might access mathematics or cryptography.
The MLP CT results thus reveal the location of ex-
tracted factual subject associations important for
predicting the traced object O. Our work mainly
focuses on MLP CT results and we will henceforth
refer to these as simply CT results.

3 Extensions to the interpretability
framework

As mentioned previously, Meng et al. (2022) only
examine factual associations in idealized situations
for which the LM makes the correct prediction. As-
sociations are then only traced for top predictions.
However, LMs are not guaranteed to assign the
highest probability to the correct answer, and to-
kens of interest are not always ranked highest. To
study these situations, we need to extend the CT
framework. We do this by proposing an alternative
approach for identifying when a fact recall takes
place in a LM (Section 3.2).

Furthermore, previous interpretability methods
have only focused on singleton scenarios or aver-
aged model behaviors across fact queries (Meng
et al., 2022; Geva et al., 2023; Dai et al., 2022).
We expand on the utility of the CT framework by
showing that CT results also can be compared be-
tween pairs of queries to identify whether similar
fact associations are used (Section 3.3).

We demonstrate our extensions on a subset of
the ParaRel dataset (Section 3.1).

3.1 Dataset

We use a subset of the ParaRel (Elazar et al., 2021)
dataset. This builds on the earlier LAMA dataset
(Petroni et al., 2019), which provides simple fact
tuples (S, R, O) extracted from Wikidata and a

template that can be used to construct queries from
S and O for any of the relations. In addition to
the LAMA benchmark, ParaRel provides several
paraphrased templates. The ParaRel subset used
for our analysis includes 7 relations and is selected
based on multiple criteria described in Appendix A,
additional statistics can be found in Appendix B.
For the model predictions, we make a distinction
between freely generated tokens and “candidate”
tokens. As defined in the original work, a token
is considered a candidate if it is a possible answer
alternative in ParaRel. We can thereby identify the
highest ranked candidate even if it did not receive
the highest output probability. For each query we
perform CT for each of these two types of tokens
— top prediction and top candidate prediction. The
latter is only included if it is among the top 10
model predictions. The two token types are identi-
fied for the original LAMA prompts and reused for
the corresponding paraphrased ParaRel prompts, to
ensure that we have CT results for the same objects.

3.2 Identifying a fact recall process

The first step in our analysis is to define situations
for which CT is applicable. Current interpretabil-
ity methods have only been tested on samples for
which a fact recall process is sure to take place,
as it makes little sense to apply them for e.g. non-
memorized predictions (Geva et al., 2023; Meng
et al., 2022; Haviv et al., 2023). We design a
method for separating these cases, without incur-
ring restrictions to idealized scenarios.

Since the facts in our setting consist of three ele-
ments — subject, relation and object, it is reasonable
to assume that the subject should play a significant
role in the prediction process if the prediction is
based on the fact. That is, the total effect (TE)
of occluding the subject should be high for a fact
recall process. Following Meng et al. (2022), we
define TE = P(O) — P.(O), where P,(O) is the
probability of emitting O under a corrupted subject
representation. By filtering out samples with a TE
below a certain threshold, we can ensure that any
CT results measured for the remaining samples are
sufficiently based on the ability of the subject to
induce the respective object prediction.

We set the TE threshold to 0.1 based on total
effects observed by Meng et al. (2022), see Ap-
pendix C for a more detailed analysis. As a conse-
quence of this filtering, we find that we can apply
CT to a broader set of cases than before. We show



in Appendix C that sufficient TE values can be mea-
sured also for incorrect and non-top predictions.
This proves that our method is not only restricted
to idealized situations.

Despite the TE thresholding, we may still ob-
serve predicted objects that cannot be considered
factual, such as “the” or “a”. We exclude all such
samples (Appendix E). Taken together, our method
should successfully identify fact recall processes,
while we cannot guarantee that some corner cases
will not slip through. At worst, our method should
have a precision that matches methods based on
restrictions to idealized scenarios.

3.3 Pairwise comparisons

As described in Section 2, CT results indicate the
locations of accessed subject associations impor-
tant for predicting a traced object. We should there-
fore be able to compare CT results between pairs
of queries to determine whether similar fact asso-
ciations are used. For the analysis of the pairwise
comparisons, we use the ParaRel data that has been
processed as described in Section 3.2, amounting
to a total of 4323 samples for different subjects,
relations, templates and objects. We investigate CT
results for GPT-2 XL (Radford et al., 2019).

To measure similarity between two CT results
corresponding to two paraphrases, we only con-
sider extractions made for the subject tokens. Pre-
vious work has shown that results for these tokens
are more significant for interpreting the recall of
factual associations (Meng et al., 2022). Some
work has only considered the last subject token,
while we find that layers across all subject tokens
may be important (Appendix G).

To compare CT results, we first need to iden-
tify a suitable automated similarity metric. We
investigate six different approaches for this, de-
scribed in Appendix D. To evaluate the different
approaches we manually annotated binary similar-
ity scores by visual inspection for 100 randomly
sampled pairs of CT results for the relation P19
born-in and compared our scores to those of the
automatic metrics. More information on this can
be found in Appendix F. We find that a similarity
metric based on the cosine similarity agrees best
with our annotations and use this for all subsequent
CT similarity investigations.

The results in Figure 1 confirm our hypothesis
that CT results indicate what fact associations are
used. Queries for different facts correspond to dis-
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Figure 1: The cosine similarity scores for 800 pairwise
comparisons of CT results, randomly sampled across
queries asking for different facts or the same fact, re-
spectively.

similar CT results, with similarity scores that in-
crease slightly with the number of subject tokens,
but never exceed an average of 0.90. Queries sam-
pled for the same fact (for semantically invariant
paraphrases) correspond to similar CT results with
similarity scores around 0.99.

4 Interpreting LMs from the perspective
of factual consistency

One crucial property of reliable LMs in fact-
intensive situations is consistency, i.e. robustness
to rephrasings. We illustrate the validity and utility
of our expanded interpretability method by using it
to better understand model consistency.

4.1 Factual consistency

Thanks to the expressive power of language, there
exist many different queries that can be derived
from the same (S, R) (Elazar et al., 2021). For
example, Alan Turing and field-of-work can be ex-
pressed as “Alan Turing specializes in” or “Alan
Turing’s expertise is”. Using these, we can inves-
tigate how the model generalizes in the face of
lexical variation with the underlying fact fixed, i.e.
from a perspective of factual consistency. We say
that a LM is factually consistent for a pair of fact
queries if it makes the same prediction for these.

4.2 Experiment

We follow the method by Meng et al. (2022) to
extract CT results from GPT-2 XL (Radford et al.,
2019) for the prompts in our studied ParaRel subset
(Section 3.1). To ensure that we are studying fact
recall processes, we process the subset as described
in Section 3.2. We then measure the similarity be-
tween CT results for pairs of paraphrases, of which
one is given by the LAMA template. We analyze a
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Figure 2: Total effects for the paraphrased prompts, strat-
ified by consistency for each corresponding (LAMA,
paraphrased) prompt pair. Measured for top predictions.

total of 2,544 pairs of CT results for the top predic-
tion and 3,004 pairs for the top candidate. Statistics
for the analyzed data are shown in Appendix B.

4.3 Results

We structure the presentation of our results around
a set of findings, as presented below.

There is a correspondence between total effect
and consistency Figure 2 shows consistent and
inconsistent numbers of samples as a function of
TE. These results are reported for samples for
which non-factual objects have been removed but
before capping TE at 0.1. We can observe that the
number of inconsistent pairs sharply drops with in-
creased TE, whereas the number of consistent pairs
follows a more uniform distribution. Results for
the top candidate predictions agree with this trend
and can be found in Appendix H.

Similar fact recall processes correspond to con-
sistent predictions After filtering our results for
sufficient total effects and excluding non-factual
predictions, we observe from Figure 3 that the re-
sulting paraphrase pairs correspond to similar CT
results. As a comparison, we have seen that CT
results for a pair of different facts correspond to an
average cosine similarity of 0.90, which is signifi-
cantly below what we observe in Figure 3. Addi-
tionally, only few of the remaining pairs correspond
to inconsistent predictions.

Several factual associations can co-exist in a LM
For the (LAMA, paraphrased) prompt pairs inves-
tigated we find a total of 33 samples for which
two different objects (one top prediction and the
other a top candidate prediction) have been traced
for. For many of these samples, the CT results
are similar, like for “Jerzy Fickowski is originally
from [Poland, Warsaw]” with a similarity score of
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Figure 3: Similarity values after removing non-factual

predictions and thresholding TEs.
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0.99. For other samples, the CT results are dissimi-
lar, like for “Chanel, founded in [18, Paris]” with
a similarity score of 0.75. This example shows
that several fact associations can co-exist, while we
leave it for future work to establish the extent and
consequences of this.

Causal tracing has limitations Our behavioral
results agree with the CT results in several as-
pects. However, CT has limitations on the kind
of questions related to consistency it can help an-
swer. Most importantly, CT and other interpretabil-
ity methods generally cannot be used when the
model is inconsistent, since this implies low TE
and a lack of fact recall. Further extensions to our
interpretability methods are required before we can
study these error cases and are left for future work.

5 Related work

Dai et al. (2022) also investigate the recall of fac-
tual associations for ParaRel paraphrases. However,
in their setting the paraphrases are used to identify
“knowledge neurons” important for making the cor-
rect prediction. Thus, their work is on some level
fundamentally different from ours, as they rely on
consistency for the design of an interpretative ap-
proach while we use an interpretative approach to
explain consistency as measured by ParaRel.

6 Conclusion

In this work we investigate the utility of CT for
studying factual associations in language models
and its applicability in the context of consistency.
We propose several extensions to current inter-
pretability methods. We show that causal tracing
can be used not only in idealized cases. We find
that for consistent model behavior, we can also
identify consistent fact recall processes. Lastly, we
identify a limitation of this method in that it cannot
be used to study factual inconsistency.



Limitations

Our analysis is limited to the GPT-2 XL. model.
Therefore, we cannot show whether our results
generalize to other LMs. However, previous work
indicates that they are likely to generalize, as was
the case for e.g. Meng et al. (2022).

Ethics Statement

Interpretability methods for fact-intensive situa-
tions are not directly associated with any ethical
complications. Neither is the ParaRel dataset used
in this work.
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A Selecting our ParaRel subset

We analyze a subset of ParaRel that has been se-
lected based on the following criteria:

1. We only include relations that have multiple
templates for which 1) the object comes last
in order to fit the autoregressive setting and
2) the subject comes first to ensure a match in
the location of important states is also a match
in the extracted association.

2. Finally, we exclude relations with a lot of over-
lap between the subject and object for which
we suspect the models are guided by heuristics
rather than factual association and relations
for which the answers are highly imbalanced
toward only a few alternatives.

Statistics for this dataset can be found in Table 1.

B Data statistics

Table 1 shows the statistics for the data that was
included in our analysis, before performing the
processing as described in Section 3.2.

Table 2 shows the statistics for the data analyzed
in the consistency investigations in Section 4, after
filtering by TE threshold and object. Table 3 lists
some examples of pairs included in this analysis
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Relation #templates #subjects #top pairs #top candidate pairs
P19 7 779 4674 4638

P20 8 817 5719 1575

P27 7 958 5748 5664

P101 7 519 3114 1404

P495 17 903 14448 2096

P740 14 843 10959 1326

P1376 6 171 855 840

Table 1: The ParaRel data analyzed. The number of templates includes the LAMA template.
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Figure 4: The CT results for a (LAMA, paraphrased) prompt pair included in our consistency study. The cosine

similarity between these results is 0.997.

Relation Top  Top candidate

P19 75 47
P20 42 4
P27 1300 2135
P101 50 29
P495 75 56
P740 389 25
PI1376 613 708
Total 2544 3004

Table 2: The number of (LAMA query, paraphrased
query) data pairs included in our analysis stratified by
relation.

and Figure 4 displays the CT results for one of
these examples.

Table 4 contains examples of samples investi-
gated for the pairwise comparisons in Section 3.3,
for which we sampled across the same fact, and
different facts.

C Sufficient total effects
C.1 Setting the TE threshold

In the causal tracing analysis performed by Meng
et al. (2022) only correct predictions were analyzed,

this to make sure that the total effects were high
enough for an analysis of intermediate total effects.
Based on these samples, the authors located fac-
tual associations in GPT. We investigate the total
effects for these 1209 known samples (Figure 5).
We find that they correspond to an average total
effect of 0.23, with a maximum value of 0.99 and a
minimum of -0.17. Samples with negative TEs are
e.g. “Ugba ibn Nafi is affiliated with the religion
of [Islam]” or “In Indiana, the language spoken is
a mixture of [English]...”.

It makes little sense to set a TE threshold that
matches the minimum TE observed, since that
would be negative. Instead, we focus on Figure 5
which indicates that the majority of the samples
studied correspond to a TE of around 0.1. By using
this value as a threshold, we should like Meng et al.
(2022) obtain trustworthy results.

C.2 Sufficient TE can be measured for
incorrect and non-top predictions

Figure 6 shows that sufficient total effects can be
measured for both incorrect and non-top predic-
tions. While the total effects generally are greater
for the correct predictions, we do also measure
effects above 0.1 for incorrect and non-top predic-



Relation  Subject LAMA template Paraphrased template Object  Similarity Cand.
P101 Charles Darwin {} works in the field of  {} works in the area of natural  0.997 No
P101 Edward Gibbon {} works in the field of  {} specializes in history  0.947 No
P101 Edward Gibbon {} works in the field of  {} specializes in history  0.947 Yes
P740 The Coca-Cola company  {} was founded in {}, that was started in 1886 0.989 No
P740 The Coca-Cola company  {} was founded in {}, that was started in Atlanta  0.987 Yes

Table 3: Examples of the pairs included in our consistency study described in Section 4. Cand. indicates whether
the object traced for was a top candidate. Similarity indicates the cosine similarity between the CT results for the

two templates.

Relation  Subject Template Object TE

P101 Charles Darwin  {} works in the area of natural 0.11
P101 Charles Darwin  {} works in the field of natural 0.26
P740 Chanel {} was created in 18 0.13
P740 Chanel {} was founded in 18 0.13
P740 Chanel {} was founded in Paris 0.17
P1376 Honolulu {} is the capital of Hawaii  0.52

Table 4: Examples of the 4323 samples analyzed in Section 3.3 with corresponding TE values. For this analysis we
made no distinction between top predictions and top candidate predictions. All (subject, relation, object) relations

with CT results were included and de-duplicated.
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Figure 5: The total effects measured for GPT-2 XL for
the samples studied by Meng et al. (2022).
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tions.

D Similarity metrics

The similarity metrics investigated are cosine simi-
larity, Wasserstein distance, KL divergence, struc-
tural similarity (SSIM) index, normalized root
mean-squared error (NRMSE) and normalized mu-
tual information (NMI) (Bonneel et al., 2015; Wang
et al., 2004; Studholme et al., 1999). The three
latter metrics are image similarity metrics and im-
plemented in scikit—-image. The Wasserstein
distance metric is implemented in POT: Python
Optimal Transport.
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(b) Top candidate prediction that is not top prediction.

Figure 6: Total effects when using the LAMA prompts
stratified by accuracy. The accuracy is measured for
both the top predictions and the top candidate predic-
tions that are not also the top prediction.



E Objects corresponding to a fact recall
process

Certain object predictions may yield large total ef-
fects even when they cannot be considered as the
result of a fact recall process. The prediction ‘“his”
for “Allan Peiper died in [his]” is for example sen-
sitive to subject corruptions, as these may occlude
that the subject refers to a male person and yields
large TE because of this. To ensure that we only
consider fact recall processes, we manually exam-
ine the predicted objects and filter out the values as
indicated in Table 5.

Filtered object

a
the
collaboration
response
public
order
partnership
honor

AD

open

H

age
creating
disgrace
her

his

in

left

not
providing
tradgedy
which
whom

Table 5: Predictions we filter out.

F Method for finding a similarity metric

As previously mentioned, we manually annotated
similarity scores for 100 randomly sampled pairs
of CT results to help us evaluate different similarity
metrics. This was done by comparing two pairs
of CT results for the LAMA template and another
randomly sampled template respectively. We an-
notated what pair was more similar to each other
or, if this could not be determined, we annotated

whether both pairs were equally very dissimilar
alternatively equally similar. Figure 7 depicts our
annotation framework.

G Intermediate total effects across
subject tokens

We find that layers across all subject tokens, and
not only the last subject token, may display large in-
termediate total effect. We calculate the cumulative
intermediate total effects across LM layers for each
subject token in a query and store the subject index
that maximizes the cumulative intermediate total ef-
fect. Figure 8 shows the counts of the maximizing
indices stratified across number of subject tokens.
It is clear that the last subject index does not always
yield the largest intermediate total effects.

H Total effects and consistency for top
candidate predictions

Figure 9 shows consistent and inconsistent num-
bers of samples as a function of TE for the top
candidate predictions. This corresponds to the plot
in Figure 2.
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Example 1 (top any token) 'William Carlos Williams origin ates from'
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Example 2 (top any token) 'William Carlos Williams originated from'
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Williams* 0'03\.~9||||ams' 0,006
— —_— 0.025 '

0 5 10 15 20 25 30 35 4 p(New) 0 5 10 15 20 25 30 35 40  P(New)

Which pair of patterns is mest similar? Example 1 or 27
If both are equally simlar, write '3'. If none are remotely similar, write '@'.

Figure 7: An example of how the similarity between the LAMA result and a randomly sampled result (“Y originates
from X” and “Y originated from X”) is annotated for subject William Carlos Williams, traced object New and
relation born-in.
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Figure 8: The distribution of maximizing subject indices
stratified over the number of subject tokens.
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Figure 9: Total effects when using paraphrases of
the LAMA prompts stratified by consistency for each
(LAMA prompt, paraphrased prompt) pair. The consis-
tency is measured for the top candidate predictions.



