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ABSTRACT

Segmentation foundation models (SFMs) like SEEM and SAM have demonstrated
great potential in learning to segment anything. The core design of SFMs lies
with “Promptable Segmentation”, which takes a handcrafted prompt as input and
returns the expected segmentation mask. SFMs work with two types of prompts
including spatial prompts (e.g., points) and semantic prompts (e.g., texts), which
work together to prompt SFMs to segment anything on downstream datasets.
Despite the important role of prompts, how to acquire suitable prompts for SFMs
is largely under-explored. In this work, we examine the architecture of SFMs and
identify two challenges for learning effective prompts for SFMs. To this end, we
propose spatial-semantic prompt learning (SSPrompt) that learns effective semantic
and spatial prompts for better SFMs. Specifically, SSPrompt introduces spatial
prompt learning and semantic prompt learning, which optimize spatial prompts and
semantic prompts directly over the embedding space and selectively leverage the
knowledge encoded in pre-trained prompt encoders. Extensive experiments show
that SSPrompt achieves superior image segmentation performance consistently
across multiple widely adopted datasets.

1 INTRODUCTION

Recently, Segmentation Foundation Models (SFMs), such as Segment Everything Everywhere Model
(SEEM) (Zou et al., 2023) and Segment Anything Model (SAM) (Kirillov et al., 2023), have achieved
striking image segmentation performance over various downstream datasets (Cordts et al., 2016;
Zhou et al., 2017), demonstrating their great potential in learning to segment anything. The core
design lies with “Promptable Segmentation”, i.e., SFMs take handcrafted prompts as inputs and
return expected segmentation masks. Generally, SFMs work with two types of prompts including
spatial prompts (e.g., points or bounding boxes represented by 2D coordinates) and semantic prompts
(e.g., free-form texts represented by word tokens), which work together to prompt SFMs to identify
and segment anything in images. However, directly using default prompts (i.e., raw class names as
the semantic prompts and a grid of points as the spatial prompts) for every downstream dataset is
usually sup-optimal, and how to acquire suitable prompts for SFMs is a non-trivial task as a slight
modification of prompts could lead to very different segmentation outcome.

By examining the architecture of SFMs in Figure 1, we identify two challenges of learning effective
prompts for SFMs: (1) Limited Search Space in Spatial Prompt Learning. SFMs take XY coordinates
in images as spatial prompts, but optimizing such spatial prompts in low-dimensional space (i.e.,
two dimensions in XY coordinate system) suffers from the limited search space (Köppen, 2000;
Zimek et al., 2012) which could lead to sub-optimal spatial prompts. (2) Side Effects from Text
Prompt Encoder. Text prompt encoders in SFMs (e.g., CLIP in SAM and UniCL/Florence in SEEM)
are largely pre-trained with object-centric image-text data, where the text data is dominated by the
description of foreground objects, leading to well-learnt foreground text knowledge but relatively
poorly-learnt background text knowledge. Consequently, learning semantic prompts with such text
prompt encoders can benefit from the well-learnt text knowledge, but may also suffer from the side
effects from the poorly-learnt text knowledge.

In this work, we strive for an effective prompt learning technique for SFMs by addressing the above
two issues, aiming to acquire optimal spatial and semantic prompts for downstream segmentation
datasets with few-shot data. Considering the architecture of SFMs shown in Figure 1, we argue that
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Figure 1: The architecture of segmentation foundation models (SFMs). SFMs (Kirillov et al., 2023;
Zou et al., 2023) consist of three core parts: (1) a large Image Encoder that encodes input images
into image embeddings; (2) prompt encoders including a large Text Prompt Encoder that encodes
text tokens into text prompt embeddings and a lightweight Spatial Prompt Encoder that encodes 2D
spatial coordinates into spatial prompt embeddings; and (3) a lightweight Spatial Prompt Encoder
that predicts the expected segmentation masks based on the image and prompt embeddings.

one effective manner to learn prompts for SFMs is by optimizing prompts directly on the embedding
space1. Intuitively, optimizing spatial prompts directly on the embedding space could relax limited
search space, because embedding space is high-dimensional (e.g., 512D) and has much larger search
space as compared with 2-dimensional XY coordinate space. Regarding the Side Effects from Text
Prompt Encoder, we argue that the knowledge in text encoder should be utilized selectively so as to
benefit from its well-learnt knowledge and concurrently mitigate potential negative effects from its
poorly-learnt knowledge.

To this end, we design spatial-semantic prompt learning (SSPrompt) that introduces spatial prompt
learning (SpaPrompt) and semantic prompt learning (SemPrompt) for learning effective prompts
for SFMs, as illustrated in Figure 2. For semantic prompt learning, SemPrompt employs learnable
weights to weight the default semantic prompt embeddings (encoded by fixed Text Prompt Encoder)
and then fuses the weighted embeddings with a set of Learnable Semantic Prompt Embeddings
to acquire new semantic prompts. Intuitively, SemPrompt 1) is efficient as its optimization only
involves the embeddings encoded by the large text prompt encoder instead of the text prompt
encoder itself, and 2) can mitigate potential side effects from the text prompt encoder by introducing
learnable weights to selectively leverage the knowledge encoded in the encoder (i.e., the default
semantic prompt embeddings encoded by the encoder). For spatial prompt learning, SpaPrompt
employs learnable weights to weight the default spatial prompt embeddings (encoded by the fixed
spatial prompt encoder) and fuses the weighted embeddings with a set of learnable spatial prompt
embeddings to acquire new spatial prompts. In this way, SpaPrompt relaxes the limited search
space by optimizing spatial prompts on high-dimensional embedding space. Similar to SemPrompt,
SpaPrompt can selectively utilize the knowledge encoded in spatial prompt encoder.

The contributions of this work can be summarized in three major aspects. First, we identify two
challenges in prompt learning in SFMs and investigate how to tackle them for the first time to
the best of our knowledge. Second, we design spatial-semantic prompt learning which directly
optimizes spatial and semantic prompts in the embedding space and selectively exploit the knowledge
encoded in prompt encoders, ultimately learning effective prompts for SFM using few-shot data only.
Third, extensive experiments show that the proposed method achieves state-of-the-art performances
consistently over multiple widely adopted segmentation datasets.

2 RELATED WORK

Segmentation Foundation Models (SFMs) have recently demonstrated great potential in learning to
segment anything (Kirillov et al., 2023; Zou et al., 2023), which achieve striking image segmentation
performance over various downstream datasets. To our knowledge, the recent breakthroughs of

1Following SAM (Kirillov et al., 2023) and SEEM (Zou et al., 2023), in this paper, “embedding” refers to
the representation after the encoder. And “text tokens” refer to the text representation before the text encoder.
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Figure 2: The framework of semantic-spatial prompt learning (SSPrompt). SSPrompt optimizes
spatial and semantic prompts directly on the embedding space and selectively leverages the knowledge
encoded in prompt encoders: it employs learnable weights to weight the default prompt embeddings
({zSn}Nn=1 and {zTc }Cc=1) and fuses the weighted embeddings with the learnable prompt embeddings
(i.e., {ẑSn}Nn=1 and {ẑTc }Cc=1) to acquire new prompts. During training, only the Learnable Prompt
Embeddings and the Learnable Prompt Embeddings are updated (marked by Flame), while all rest
are frozen (marked by Snowflake).

SFMs, particularly SAM (Kirillov et al., 2023) and SEEM (Zou et al., 2023), are largely driven by the
advanced design called “Promptable Segmentation”, i.e., SFMs take a handcrafted prompt as input
and return the expected segmentation mask. Generally, SFMs involve two types of prompts including
semantic prompts (e.g., free-form texts) and spatial prompts (e.g., points or bounding boxes), which
provide semantic and spatial information respectively and together prompt segmentation models to
identify and segment anything in images (Kirillov et al., 2023; Zou et al., 2023). On the other hand,
how to acquire suitable prompts for SFMs is a non-trivial task but largely under-explored. In this
work, we focus on investigating how to learn effective prompts for SFMs using few-shot data, aiming
to facilitate the deployment of SFMs for task-specific or domain-specific downstream datasets.

Prompt Learning aims to adapt foundation models towards downstream tasks by optimizing prompts
using few-shot data. In recent years, prompt learning has been extensively studied for NLP foundation
models and image classification foundation models (CFMs). Specifically, for NLP foundation models
that generally work in a question answering manner, various prompt learning methods have been
introduced to learn effective context text tokens to append and improve the raw questions, such as
text mining/paraphrasing (Jiang et al., 2020), gradient-based searching (Shin et al., 2020), continuous
text token optimization (Zhong et al., 2021; Li & Liang, 2021; Lester et al., 2021; Liu et al., 2023a).
On the other hand, for CFMs that classify images based on class names, a variety of prompt learning
methods (Zhou et al., 2022b;a; Parisot et al., 2023) have been proposed to learn effective context text
tokens to append and improve the raw class names, such as continuous text token optimization (Zhou
et al., 2022b), conditional text token optimization (Parisot et al., 2023), etc. Different from previous
works that focus on image classification foundation models and optimize text tokens to prompt text
encoder, we examine the architecture of segmentation foundation models (SFMs) and propose a more
efficient and effective prompt learning method for SFMs. The method directly optimizes spatial and
semantic prompts in the embedding space and selectively exploits the knowledge encoded in prompt
encoder 2, ultimately learning effective prompt embeddings to prompt the mask decoder.

3 METHOD

In this section, we first introduce the background of segmentation foundation models (Section 3.1) and
revisit the prompt learning methods of image classification foundation models (Section 3.2). Then,
we elaborate our proposed prompt learning method for segmentation foundation models (Section 3.3).

2Following SAM (Kirillov et al., 2023) and SEEM (Zou et al., 2023), in this paper, “embedding” refers to
the representation after the encoder. And “text tokens” refer to the text representation before the text encoder.
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3.1 PRELIMINARIES OF SEGMENTATION FOUNDATION MODELS

Segmentation Foundation Models (SFMs) (Zou et al., 2023; Kirillov et al., 2023) learn to segment
anything by introducing a new “Promptable Segmentation” scheme, where the segmentation model
predicts the expected segmentation mask for a given prompt. In this way, SFMs could segment
anything (e.g., any objects and background stuff) given proper prompts. Besides, SFMs enable
“interactive segmentation” that helps scale up the segmentation training data by using a data engine
with model-in-the-loop annotating, which in turn facilitates training more powerful SFMs for better
“interactive segmentation”.

Specifically, SFMs (Zou et al., 2023; Kirillov et al., 2023) consist of three core parts: (1) an image
encoder that encodes images into image embeddings; (2) a text prompt encoder and a spatial prompt
encoder, which respectively encode text prompts and spatial prompts into prompt embeddings;
(3) a mask decoder that returns the expected segmentation mask based on the image and prompt
embeddings.

Given an input image xI ∈ RH×W×3 and a set of prompts (e.g., a spatial prompt xS and a text
prompt xT ), SFMs first employ the image encoder EncoderI , the spatial prompt encoder EncoderS

and the text prompt encoder EncoderT to encode them into D-dimensional embeddings: zI =
EncoderI(xI), zS = EncoderS(xS) and zT = EncoderT (xT ), respectively. Then, given the
encoded image and prompts, the mask decoder of SFMs predicts the expected segmentation mask:

(m, c) = Decoder(zI |zS , zT ), (1)
where m stands for a predicted binary segmentation mask and c denotes the predicted confidence
score of m. In SEEM (Zou et al., 2023), c stands for the probability of mask m belonging to the
category denoted by text xT . In SAM (Kirillov et al., 2023), when prompted by text prompts, c can
also denote the probability of mask m belonging to the category denoted by text xT . When prompted
by spatial prompts, c in SAM is class-agnostic and only denotes the quality of predicted mask m.

Note, for spatial prompt xS , we mainly consider the format of point, i.e., xS = (h,w) (h ∈ (0, H)
and w ∈ (0,W ) where H and W denote image height and image width respectively), because all
other formats of spatial prompts can be represented in terms of points, e.g., the bounding box can be
denoted by two corner points and the coarse mask can be denoted by a set of points.

Zero-shot Cross-Dataset Inference. Given an image xI and a set of default prompts (i.e., raw class
names XT

default = {xT
c }Cc=1 as the semantic prompts and a grid of points XS

default = {xS
n}Nn=1 as the

spatial prompts), SFMs (Zou et al., 2023) can predict a set of segmentation masks for xI :

(M,C) = Decoder(zI |ZS
default, Z

T
default), (2)

where ZS
default = EncoderS(XS

default) and ZT
default = EncoderT (XT

default).

On the other hand, directly using default prompts for every downstream dataset is usually sup-optimal,
and how to acquire suitable prompts for SFMs is a non-trivial task but largely under-explored. In this
work, we focus on investigating how to learn effective prompts for SFMs using few-shot data.

3.2 A REVISIT OF PROMPT LEARNING

Prompt Learning aims to adapt a foundation model towards downstream tasks by optimizing the
prompts using few-shot data. In recent years, various prompt learning methods have been proposed
for image classification foundation models (CFMs) (Radford et al., 2021; Parisot et al., 2023). The
core idea of CFM prompt leaning methods is to learn effective context text tokens to append and
improve the raw class names, for better prompting the text encoder. Specifically, CFM prompt leaning
methods, such as CoOp, introduce M learnable context text tokens, i.e., xT

context = {xT
1 , x

T
2 , ..., x

T
M},

to model the context of each raw class name xT ∈ XT
default, such that the text prompts become

XT
CoOp = {XT

default, X
T
context}. Given an image xI , the text prompt XT

CoOp and a CFM consisting of
an image encoder EncoderI and a text encoder EncoderT , the image classification prediction can
be formulated by:

c = EncoderI(xI) · EncoderT ({XT
default, X

T
context}), (3)

where ‘·’ denotes the inner (dot) product that measures the similarity between the image embedding
and text embeddings. XT

default and XT
context are concatenated categorically before being fed into the

text encoder.
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To adapt CFMs to a downstream dataset, an image classification loss can be employed as the learning
objective to optimize XT

context over few-shot data while keeping all other modules unchanged.

Different from previous works that focus on image classification foundation models and optimize
text tokens to prompt text encoder, we examine the architecture of segmentation foundation models
(SFMs) and propose a more efficient and effective prompt learning method for SFMs. Specifically, we
optimize spatial and semantic prompts in the embedding space and selectively exploit the knowledge
encoded in prompt encoder, ultimately learning effective prompt embeddings to prompt the mask
decoder.

3.3 SPATIAL-SEMANTIC PROMPT LEARNING

We focus on prompt learning for SFMs using few-shot data. By examining the architecture of SFMs,
we identify two challenges of learning effective prompts for SFMs: (1) Limited Search Space in
Spatial Prompt Learning. (2) Side Effects from Text Prompt Encoder. We propose to tackle the two
challenges by 1) directly optimizing prompts on the embedding space and 2) selectively leveraging the
knowledge encoded in the pretrained prompt encoder. To this end, we design spatial-semantic prompt
learning (SSPrompt) that introduces spatial prompt learning (SpaPrompt) and semantic prompt
learning (SemPrompt), as illustrated in Figure 2. The two prompt learning methods complement
each other by capturing spatial and semantic information respectively, which together learn effective
spatial and semantic prompts for SFMs.

Spatial prompt learning (SpaPrompt) optimizes spatial prompts directly on the embedding space
and selectively leverages the knowledge encoded in the pretrained spatial prompt encoder: it employs
learnable weights to weight the default spatial prompt embeddings (encoded by the fixed spatial
prompt encoder) and fuses the weighted embeddings with a set of learnable spatial prompt embeddings
to acquire new spatial prompts. In this way, SpaPrompt learns effective spatial prompts for SFMs with
two desirable features: 1) It relaxes the limited search space by optimizing spatial prompts directly
on high-dimensional embedding space that has larger search space (e.g., 512 dimensions) than 2D
coordinate space (i.e., 2 dimensions); 2) Similar to SemPrompt (mentioned in latter paragraphs),
SpaPrompt can selectively utilize the knowledge encoded in the pretrained spatial prompt encoder.

Let ẐS = {ẑSn}Nn=1 denote N learnable spatial embeddings, where ẑSn ∈ RD and D denotes the
demension of embedding, and ŴS = {ŵS

n}Nn=1 denote N learnable weights, where ŵS
n ∈ [0, 1]. The

new spatial prompt ZS
SpaPrompt can be obtained by applying ŴS to weight the default spatial prompt

embeddings ZS
default and fusing the weighted embeddings with ẐS :

ZS
SpaPrompt = {ŵS

n ẑ
S
n + (1− ŵS

n)z
S
n}Nn=1, ẑ

S
n ∈ ẐS , zSn ∈ ZS

default and ŵS
n ∈ ŴS . (4)

Given an image xI and the new spatial prompt ZS
SpaPrompt, SFMs predict a set of segmentation masks:

(M,C) = Decoder(zI |ZS
SpaPrompt, Z

T
default), (5)

where we can employ a segmentation loss to optimize ZS
SpaPrompt to find the best spatial prompts for

SFMs with respect to each downstream dataset. Note, during training, we only update the learnable
embeddings ẐS and the learnable weights ŴS to optimize ZS

SpaPrompt, while all other modules have
been frozen as illustrated in Figure 2.

Semantic prompt learning (SemPrompt) optimizes semantic prompts directly on the embedding
space and selectively leverages the knowledge encoded in the pretrained text prompt encoder: it
employs learnable weights to weight the default semantic prompt embeddings (encoded by the fixed
text prompt encoder) and fuses the weighted embeddings with a set of learnable semantic prompt
embeddings to acquire new semantic prompts. SemPrompt learns semantic prompts for SFMs with
two desirable features: 1) It is efficient as its optimization only involves the embeddings encoded
by the large text prompt encoder instead of the text prompt encoder itself; 2) Its design of learnable
weights allows to selectively leverage the semantic knowledge in the default semantic prompt
embeddings and the learnable semantic prompt embeddings, which helps capture complementary
knowledge, i.e., the former is encoded by the fixed text prompt encoder (pre-trained on large-scale
data) and captures general semantic knowledge, while the latter is optimized and learnt from the
downstream data and largely captures task-specific and domain-specific semantic knowledge.
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Let ẐT = {ẑTc }Cc=1 denote C learnable semantic embeddings, where ẑTc ∈ RD and D denotes the
dimension of embedding, and ŴT = {ŵT

c }Cc=1 denote C learnable weights, where ŵT
c ∈ [0, 1]. The

new semantic prompt ZT
SemPrompt can be obtained by applying ŴT to weight the default semantic

prompt embeddings ZT
default and fusing the weighted embeddings with ẐT :

ZT
SemPrompt = {ŵT

c ẑ
T
c + (1− ŵT

c )z
T
c }Cc=1, ẑ

T
c ∈ ẐT , zTc ∈ ZT

default and ŵT
c ∈ ŴT . (6)

Given an image xI and new semantic prompt ZT
SemPrompt, SFMs predict a set of segmentation masks:

(M,C) = Decoder(zI |ZS
default, Z

T
SemPrompt), (7)

where we can employ a segmentation loss to optimize ZT
SemPrompt to find the best semantic prompts for

SFMs with respect to each downstream dataset. Note, during training, we only update the learnable
embeddings ẐT and the learnable weights ŴT to optimize ZT

SemPrompt, while all other modules have
been frozen as illustrated in Figure 2.

Spatial-semantic prompt learning (SSPrompt) combines spatial prompt learning and semantic
prompt learning, aiming for leveraging the synergy of spatial and semantic information to better
prompt segmentation foundation models. Given an image xI ∈ XI and its segmentation annotation
yI ∈ Y I , the new spatial prompt ZS

SpaPrompt from Eq. 4 and the new semantic prompt ZT
SemPrompt from

Eq. 6, SSPrompt can be formulated as:

{M,C} = Decoder(zI |ZS
SpaPrompt, Z

T
SemPrompt), (8)

argmin
{ẐS ,ŴS ,ẐT ,ŴT }

1

|XI |
∑

xI∈XI

Lseg({M,C}, yI), (9)

where Lseg denotes a standard segmentation loss function and zI = EncoderI(xI). Note we
initialize ZS

default and ZT
default as in Eq. 2 before training such that the training process of SSPrompt

will not involve the spatial prompt encoder and the large text prompt encoder.

4 EXPERIMENTS

Table 1: Datasets used to benchmark prompt learning for segment foundation models.

Dataset Classes Images Description

Cityscapes (Cordts et al., 2016) 19 5,000 Street scene images (∼1080p) from European cities under good weather conditions.
BDD100K (Yu et al., 2020) 19 10,000 Street scene images (∼720p) from American cities under various weather conditions.
Mapillary (Neuhold et al., 2017) 19 25,000 Street scene images from all over the world with high resolutions, e.g., 4000× 5000
ADE20K (Zhou et al., 2017) 150 27,574 A large-scale dataset with 20K+ scene-centric images and 150 semantic categories.
Pascal Context (Mottaghi et al., 2014) 59 10,103 An extension of the PASCAL VOC 2010 detection challenge with pixel-wise labels.
ACDC (Sakaridis et al., 2021) 19 4,006 An adverse conditions dataset with fog, nighttime, rain, and snow conditions.

4.1 DATASETS

We benchmark our SSPrompt extensively over 6 widely used image segmentation datasets with
pixel-wise annotations. As Table 1 shows, the 6 datasets have rich diversity, spanning from street
scene data that include high-resolution images captured in different cities and under various daytimes,
weathers and seasons, to category-rich data that cover 59 and 150 semantic categories. We did not
include COCO dataset in experiments as it has been used in SFMs pre-training Zou et al. (2023).

4.2 IMPLEMENTATION DETAILS

We conduct experiments with two vision backbones including Focal-Tiny (Yang et al., 2022) and
Davit-Large (Ding et al., 2022). In training, we employ SGD optimizer Loshchilov & Hutter (2017)
with a weight decay of 1e − 4, and set the base learning rate as 1e − 3 which is adjusted with a
polynomial learning rate schedule with a power of 0.9. We use 1 GPU with batch size 2 for Cityscapes,
BBD and ACDC, and 4 GPUs with batch size 8 for large datasets Mapillary, ADC20K and PASCAL
Context. Our prompt learning method introduces very limited computation overhead, as illustrated
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in Table 7 and appendix. We set the shorter side of input images at 512 and employ random flip as
data augmentation. The number of semantic prompts C is set as the number of categories of each
downstream dataset. Following Zou et al. (2023), we set the number of spatial prompts N as 100
and the dimension of embedding D as 512. Following Chen et al. (2017), we employ cross-entropy
loss as semantic segmentation loss. For instance segmentation and panoptic segmentation, we use
multi-category cross-entropy loss for class prediction training and binary cross-entropy loss for mask
prediction training.

Table 2: Prompt learning of segmentation foundation models on common datasets. The experiments
are conducted on semantic segmentation (in mIoU), where 16-shot data are used (i.e., 16 labelled
images for each class) for each dataset.

Experiments with Tiny Vision Backbone
Method Cityscapes BDD100K Mapillary ADE20K PASCAL Context

SEEM-T (Zou et al., 2023) 39.2 37.4 42.1 14.6 45.1
CoOp (Zhou et al., 2022b) 50.1 41.6 43.3 17.6 45.9
LOCN (Parisot et al., 2023) 51.5 42.6 44.2 19.3 46.6
SSPrompt (Ours) 55.2 47.1 49.5 23.2 51.2

Experiments with Large Vision Backbone
Method Cityscapes BDD100K Mapillary ADE20K PASCAL Context

SEEM-L (Zou et al., 2023) 49.3 44.6 47.9 15.2 37.1
CoOp (Zhou et al., 2022b) 51.2 45.2 52.0 18.1 47.4
LOCN (Parisot et al., 2023) 52.7 45.7 53.2 19.7 48.9
SSPrompt (Ours) 57.1 49.5 56.2 25.6 55.3

4.3 PROMPT LEARNING FOR SFMS ON COMMON DATASETS

Table 2 reports the image segmentation results on 5 widely-used common datasets. It can be seen that
our SSPrompt achieves superior prompt learning performance consistently over various segmentation
datasets. The superior performance is largely attributed to our two prompt learning designs that
effectively address the two identified challenges in prompt learning for SFMs. Besides, it is expected
that the large model SEEM-L should outperform the small model SEEM-T while SEEM-L performs
unexpectedly not well on PASCAL Context dataset, where all prompt learning methods improve
the performance while our SSPrompt brings the most substantial performance gain, showing that
SSPrompt can well handle the occasional failures of SFMs.

Table 3: Prompt learning of segmentation foundation models on adverse-condition dataset, i.e.,
ACDC (Sakaridis et al., 2021). The experiments are conducted on semantic segmentation (in mIoU),
where 16-shot data are used (i.e., 16 labelled images for each class) for each condition.

Experiments with Tiny Vision Backbone
Method Foggy Condition Night Condition Rain Condition Snow Condition Mean

SEEM-T (Zou et al., 2023) 34.6 26.2 33.1 35.8 32.4
CoOp (Zhou et al., 2022b) 36.7 28.6 33.5 36.4 33.8
LOCN (Parisot et al., 2023) 40.1 29.1 34.1 36.6 35.0
SSPrompt (Ours) 47.5 32.1 39.9 43.1 40.6

Experiments with Large Vision Backbone
Method Foggy Condition Night Condition Rain Condition Snow Condition Mean

SEEM-L (Zou et al., 2023) 48.1 32.0 47.4 45.0 43.1
CoOp (Zhou et al., 2022b) 52.2 33.5 48.2 45.6 44.9
LOCN (Parisot et al., 2023) 53.7 33.8 49.5 45.9 45.7
SSPrompt (Ours) 57.7 37.8 54.5 49.5 49.9
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4.4 PROMPT LEARNING FOR SFMS ON ADVERSE-CONDITION DATASET

Table 3 reports the image segmentation results over the adverse-condition dataset, i.e.,
ACDC (Sakaridis et al., 2021). We can observe that SSPrompt outperforms the state-of-the-art
by large margins consistently over different adverse conditions, demonstrating its great potential for
more robust SFMs by learning effective domain-specific prompts.

4.5 DISCUSSION

Generalization across different datasets. We examine the generalization of SSPrompt with respect
to image segmentation datasets. Specifically, we perform extensive evaluations over 6 widely studied
common and adverse-condition datasets as described in Table 1. Experimental results in Tables 2- 3
show that SSPrompt achieves superior performance consistently across different types of image data.

Generalization across different vision backbones. We study the generalization of SSPrompt
by evaluating it with two vision backbones, including Focal-Tiny (Yang et al., 2022) and Davit-
Large (Ding et al., 2022). Results in Tables 2- 3 show that SSPrompt works effectively and consistently
over both small and large vision backbones. Note we did not conduct experiments using SAM (Kirillov
et al., 2023) as its version with text prompt encoder is not open-sourced and the released SAM version
can only support class-agnostic segmentation.

Table 4: Results on semantic (mIoU), instance
(AP50) and panoptic segmentation (PQ).

Cityscapes Sem. Seg Ins. Seg Pan. Seg

SEEM-T 39.2 32.7 32.4
SSPrompt 55.2 37.7 38.0

Generalization across different tasks. We also examine
the generalization of SSPrompt over different segmen-
tation tasks including semantic segmentation, instance
segmentation and panoptic segmentation. As Table 4
shows, SSPrompt improves the performance across all
three segmentation tasks consistently. All experiments
are conducted under the same setup with 16-shot data.

Table 5: Ablation studies of SSPrompt on Cityscapes dataset using 16-shot data.

Method Spatial Prompt Learning Semantic Prompt Learning mIoU
Learnable Prompt Embedding Learnable Prompt Weight Learnable Prompt Embedding Learnable Prompt Weight

SEEM-T 39.2

✓ 46.2
✓ ✓ 49.3

✓ 51.5
✓ ✓ 53.1

SSPrompt ✓ ✓ ✓ ✓ 55.2

Ablation study. We conduct ablation studies with Focal-Tiny on Cityscapes as shown in Table 5. We
examine how SSPrompt’s two core designs, i.e., 1) directly optimizing prompts on embedding space
and 2) selectively leveraging the knowledge in prompt encoders, contribute to the overall performance.
As Table 5 show, directly optimizing prompts on embedding space (i.e., optimizing learnable prompt
embedding and average it with the default prompt embedding) improves the performance clearly,
demonstrating its effectiveness on both spatial prompt learning and semantic prompt learning for
better image segmentation with SMFs. In addition, instead of simply averaging, introducing learnable
weights to selectively weight and fuse the default prompt embedding and the learnable prompt
embedding brings further performance improvements, indicating that the learnable weights enable
more effective usage of prompt encoders’ knowledge and help learn better prompts. Moreover,
combining spatial and semantic prompt learning performs the best clearly, demonstrating that the
two types of prompt learning methods complement each other by providing orthogonal spatial and
semantic information.

Table 6: Performance (in mIoU) versus num-
ber of data. The default is marked in gray .

SEEM-T SSPrompt
16-shot 12-shot 8-shot 4-shot

39.2 55.2 52.6 50.6 50.1

Performance versus the number of training data. We
investigate how the amount of training data affects the
performance by reducing it from 16-shot to 4-shot pro-
gressively. As shown in Table 6, SSPrompt still brings
clear performance improvements against the baseline
SEEM-T with less training data, showing the effective-
ness of SSPrompt on different amounts of training data.
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Figure 3: (a) Text data statistics (used for text prompt encoder pre-training in SFMs (Zou et al., 2023;
Kirillov et al., 2023)). (b) Learnt weights in semantic prompt learning.

Table 7: Training efficiency comparison in
time (ms per image) and memory (GB).

SEEM-T CoOp LOCN SSPrompt

Training Time 87.5 89.5 56.0 (-36.0%)
Training Memory 8.22 8.22 3.82 (-53.5%)

Training efficiency comparison. We analyze training ef-
ficiency by comparing prompt learning methods in train-
ing time (millisecond per image) and training memory
(GB). Table 7 shows the results on ADE20K, indicating
that SSPrompt is more efficient in training time and train-
ing memory. The superior efficiency is largely because
SSPrompt circumvents the large text prompt encoder and
requires less computation and memory. More results on other datasets are provided in the appendix.

Side Effects from Text Prompt Encoder. We investigate the bias of Text Prompt Encoder and
its side effects by comparing the text data statistics used to pre-train it, i.e., the occurrence of each
class names in widely-used image-text dataset, LAION (Schuhmann et al., 2021). As shown in
Figure 3 (a), the foreground class names generally occur much more frequently than background class
names, which indicates that the text knowledge learnt from these data (i.e., the knowledge encoded in
text prompt encoder) would bias toward foreground objects, leading to well-learnt foreground text
knowledge but relatively poorly-learnt background text knowledge. Consequently, learning semantic
prompts with such text prompt encoders can benefit from the well-learnt text knowledge, but may also
suffer from the side effects from the poorly-learnt text knowledge. This is aligned with the ablation
studies in Table 5, where introducing learnable weights to selectively exploit prompt encoder’s
knowledge improves the segmentation performance clearly. In addition, Figure 3 (b) visualizes the
learnt weights in semantic prompt learning, where background classes are generally assigned with
lower weights while foreground classes are often assigned with higher weights, showing that the
foreground knowledge in text prompt encoder is more helpful in semantic prompt learning while
background knowledge is less helpful.

Table 8: Comparison with Vanilla Spatial
Prompt Learning (VSPL) on 16-shot data in
mIoU.

Method SEEM-T VSPL SpaPrompt SSPrompt

Cityscapes 39.2 41.0 49.3 55.2

Limited Search Space. We investigate how much
the Limited Search Space issue affects learning spa-
tial prompts by implementing Vanilla Spatial Prompt
Learning (VSPL) that optimizes spatial prompts in 2D
coordinate system. Results in Table 8 show that VSPL
does not help much, largely due to the limited search
space in VSPL. On the other hand, our SpaPrompt (and
SSPrompt) optimizes prompts directly on high-dimensional embedding space, leading to larger search
space and clearly improved performance.

Due to the space limit, we provide more dataset details, experiments and discussions in the appendix.

5 CONCLUSION

In this work, we identify two challenges of learning effective prompts for SFMs by examining the
architecture of SFMs, and propose SSPrompt that tackles the identified challenges to learn effective
semantic and spatial prompts for SFMs. Specifically, SSPrompt introduces spatial prompt learning
and semantic prompt learning, which optimize spatial prompts and semantic prompts directly over the
embedding space and selectively leverage the knowledge encoded in pre-trained prompt encoders. The
two prompt learning methods complement each other by capturing spatial and semantic information
respectively, which together learn effective spatial and semantic prompts for SFMs. Extensive
experiments show that SSPrompt achieves superb image segmentation performance consistently
across multiple widely adopted datasets. Moving forward, we will further explore prompt learning
for better prompting SFMs.
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A APPENDIX

A.1 DATASET DETAILS

We benchmark our SSPrompt extensively over 6 widely used image segmentation datasets with pixel-
wise annotations. As Table 1 shows, the 6 datasets have rich diversity, spanning from street scene
data that include high-resolution images captured over different cities and under various daytimes,
weathers and seasons, to category-rich data that cover 59 and 150 semantic categories.

Cityscapes (Cordts et al., 2016) is a dataset designed for visual recognition tasks focused on urban
street scenes. This dataset includes a training subset with 2,975 samples and a evaluation subset with
500 samples. Each image in both subsets is annotated at the pixel level, with labels assigned to 19
categories.

BDD100K (Yu et al., 2020) is a comprehensive dataset tailored for autonomous driving and urban
scene analysis. This dataset consists of 7,000 training images and 1,000 validation images collected
from various weather conditions, times of day, and urban landscapes, all of which are with pixel-wise
annotations of 19 categories.

Mapillary (Neuhold et al., 2017) is a dataset primarily designed for urban scene understanding. This
dataset contains 25,000 high-resolution images (e.g., 4000 x 5000) collected from all over the world
with pixel-wise annotations. Following prior transfer learning work (Huang et al., 2021), we report
results over 19 categories shared with Cityscapes.

ADE20K (Zhou et al., 2017) is a large-scale dataset with 27,574 scene-centric images which consists
of 150 categories. This dataset consists of 25,574 training images and 2,000 validation images with
pixel-wise annotations.

Pascal Context (Mottaghi et al., 2014) is an extension of PASCAL VOC 2010 detection dataset Ever-
ingham et al. (2010), which contains 59 categories with pixel-wise annotations. It has 4,998 training
images and 1,449 validation images.

ACDC (Sakaridis et al., 2021) is a dataset designed for robust visual perception. ACDC consists of a
large set of 4006 images collected from four common adverse conditions, i.e., fog, nighttime, rain,
and snow. For each adverse condition, images are provided with high-quality pixel-level annotation
of 19 categories.

A.2 MORE DISCUSSION

Table 9: Training efficiency comparison in time (millisecond per image) and memory (GB).

Dataset Metric CoOp LOCN SSPrompt

Mapillary (Cityscape, BDD100K, ACDC) Training Time (ms/img) 155.0 158.0 122.4 (-21.0%)
Training Memory (GB) 4.52 4.52 3.22 (-28.7%)

PASCAL Context Training Time (ms/img) 122.1 122.4 83.4 (-31.6%)
Training Memory (GB) 4.30 4.30 2.49 (-42.0%)

ADE20K Training Time (ms/img) 87.5 89.5 56.0 (-36.0%)
Training Memory (GB) 8.22 8.22 3.82 (-53.5%)

Full results of training efficiency comparison. We analyze training efficiency by comparing prompt
learning methods in training time (millisecond per image) and training memory (GB). Results in
Table 9 (over SEEM-T model) show that our SSPrompt is more efficient in training time and training
memory, largely because the optimization of SSPrompt circumvents the large text prompt encoder
and requires less computation and memory, i.e., it only involves the embeddings encoded by the large
text prompt encoder instead of the text prompt encoder itself. All results are measured under the
same setup and device. The training time and training memory over various datasets are different as
they include different numbers of categories and different image resolutions. Cityscapes, BDD100K,
ACDC and Mapillary datasets have the same number of categories and their images will be resized
into the same image resolution during training. Therefore, they share similar training time and
memory, and we only report the ones for Mapillary for simplicity.

12



Under review as a conference paper at ICLR 2024

Table 10: Comparison with baseline SEEM-
T with and without prompt engineering on
Cityscapes under 16-shot data setup.

Method 5-task Mean

SEEM-T w/o Prompt Engineering 37.7
SEEM-T w/ Prompt Engineering 39.2
CoOp 50.1
LOCN 51.5
SSPrompt 55.2

Comparison with prompt engineering. One common
traditional method to tailor prompts for downstream
datasets is by prompt engineering (Radford et al., 2021).
We investigate how much prompt engineering affects the
segmentation performance by comparing prompt learn-
ing methods with the baseline SEEM-T with and without
prompt engineering. Note, in this paper, all the results
of SEEM-T (and SEEM-L) are already with prompt en-
gineering (i.e., averaging of 80 hand-crafted prompt tem-
plates (Zou et al., 2023)) unless specifically mentioned
otherwise. Here, we remove such prompt engineering
for comparison and analysis. As Table 10 shows, prompt learning methods, e.g., CoOp (Zhou et al.,
2022b), LOCN (Parisot et al., 2023) and our SSPrompt, performs much better than hand-crafted
prompt engineering. Besides, our SSPrompt performs the best clearly, showing that SSPrompt learns
more effective prompts for segmentation foundation models as compared with either previous prompt
learning methods or prompt-engineering.

SEEM-T CoOp LOCN SSPrompt (Ours) Ground Truth

Figure 4: Qualitative illustration and comparison over prompt learning for segmentation foundation
model (SFM). The experiments are conducted on semantic segmentation, where 16-shot data are
used (i.e., 16 labelled images for each class) for each dataset. Our proposed spatial-semantic prompt
learning (SSPrompt) tackles the identified two challenges by 1) directly optimizing prompts on the
embedding space and 2) selectively leveraging the knowledge encoded in the pretrained prompt
encoder, which learns effective semantic and spatial prompts that prompt SFMs to generate more
accurate segmentation results. It can be observed that SSPrompt produces better segmentation results,
for example, the sidewalk predictions from SSPrompt are less noisy and have better outlines.

Qualitative results. We provide qualitative results in Figure 4. Our proposed spatial-semantic prompt
learning (SSPrompt) tackles the identified two challenges by 1) directly optimizing prompts on the
embedding space and 2) selectively leveraging the knowledge encoded in the pretrained prompt
encoder, which learns effective semantic and spatial prompts that prompt SFMs to generate more
accurate segmentation results. It can be observed that SSPrompt produces better segmentation results,
for example, the sidewalk predictions from SSPrompt are less noisy and have better outlines.

A.3 RELATIONS TO VISUAL PROMPT LEARNING

In this work, we focus on learning effective prompts for segmentation foundation models (SFMs)
using few-shot data, aiming to facilitate the deployment of SFMs for task-specific or domain-specific
downstream datasets. As there is little previous work in this field, we compare our proposed SSPrompt
with text prompt learning methods of classification foundation model (Zhou et al., 2022b; Parisot
et al., 2023) for benchmarks.

We note that visual prompt tuning (Jia et al., 2022; Zang et al., 2022) also focuses on improving
classification foundation models (CFMs) using few-shot data, which learns additional image pix-
els/patches to append and modify the raw images (Jia et al., 2022; Zang et al., 2022), such that it
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can mitigates the domain gaps in image distributions between CFM pre-training data and the target
dataset.

Like text prompt learning methods (Zhou et al., 2022b; Parisot et al., 2023), our SSPrompt is
orthogonal to visual prompt tuning methods (Jia et al., 2022; Zang et al., 2022), because SSPrompt
and text prompt learning methods learn to modify prompts only (i.e., semantic prompts or spatial
prompts) and do not modify any image content. On the contrary, visual prompt tuning methods focus
on modifying image content properly to improve the model performance. Thus, we did not compare
our SSPrompt with visual prompt tuning methods becuase these two types of methods work very
differently and complement each other (Zang et al., 2022).

Note the spatial prompt learning in SSPrompt is quite different to visual prompt tuning: the former
learns to provide effective location information to prompt SFMs for better performance, while the
later learns to modify image content properly to improve the model performance.

A.4 OTHER FINE-TUNING METHODS OF SFMS

In this work, we focus on learning effective prompts for segmentation foundation models (SFMs)
using few-shot data, aiming to facilitate the deployment of SFMs for task-specific or domain-specific
downstream datasets. This learning paradigm has several desirable features: 1). It is data efficient as
it needs only few-shot data, e.g., 16-shot, 8-shot or 4-shot data. 2) It is computation efficient as it
only learns to modify the prompts instead of the whole model. 3) It is generalizable due its simplicity,
e.g., it works well on various segmentation tasks like semantic segmentation, instance segmentation
and panoptic segmentation.

We note that there are several concurrent works that also focus on fine-tuning SFMs (Zhang et al.,
2023; Liu et al., 2023b). In this section, we briefly introduce their fine-tuning setups and methods
and clarify the difference between them and the studied setup.

For example, (Zhang et al., 2023) proposes to personalize SFM to automatically segment unique
visual concepts. Specifically, (Zhang et al., 2023) design PerSAM, which takes an object image and
its segmentation mask as the reference to customize SFM to segment this unique object in other
images. Differently, we focus on general-purpose segmentation tasks like semantic segmentation,
instance segmentation and panoptic segmentation, instead of the customized segmentation in (Zhang
et al., 2023) which aims to segment the object with unique identity (i.e., the pet dog of a certain user).

Besides, (Liu et al., 2023b) proposes to improve SFM by combining it with an all-purpose feature
extraction model (Oquab et al., 2023). Specifically, given a reference image with pixel-level anno-
tations, the all-purpose feature extraction model (Oquab et al., 2023) could provide effective dense
correspondences between the labelled reference image and a given test image, which are utilized
by (Liu et al., 2023b) as the prompt to prompt SFM. Differently, our work directly optimizes the
prompts with few-shot data and does not introduce any other large models, which is much more
computation efficient as compared with (Liu et al., 2023b) that introduces an additional large model
for better segmentation performance.
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