Differentiable Architecture Search: a One-Shot Method?

Jovita Lukasik*! Jonas Geiping*? Michael Moeller’! Margret Keuper' !

'University of Siegen
2University of Maryland
3Max Planck Institute for Informatics, Saarland Informatics Campus

Abstract Differentiable architecture search (DAS) is a widely researched tool for the design of novel
architectures. The main benefit of DAS is the effectiveness achieved through the weight-
sharing one-shot paradigm, which allows efficient architecture search. In this work, we
investigate DAS in a systematic case study of inverse problems, which allows us to analyze
these potential benefits in a controlled manner. We demonstrate that the success of DAS
can be extended from image classification to signal reconstruction, in principle. However,
our experiments also expose three fundamental difficulties in the evaluation of DAS-based
methods in inverse problems: First, the results show a large variance in all test cases. Second,
the final performance is strongly dependent on the hyperparameters of the optimizer. And
third, the performance of the weight-sharing architecture used during training does not
reflect the final performance of the found architecture well. While the results on image
reconstruction confirm the potential of the DAS paradigm, they challenge the common
understanding of DAS as a one-shot method.

1 Introduction

Recent progress in computer vision and related fields has illustrated the importance of suitable neural
architecture designs and training schemes (He et al., 2016). Ever deeper and more complex networks
show promise, and manual network design is less and less able to explore the desired search spaces.
Neural architecture search (NAS) (Elsken et al., 2019; White et al., 2023) is the task of optimizing
the architecture of a neural network automatically without resorting to human selection, scaling to
larger search spaces and proposing novel well-performing architectures. NAS has been successfully
addressed using black-box optimization approaches such as reinforcement learning (Zoph and Le,
2017; Zoph et al., 2018) or Bayesian optimization (Kandasamy et al., 2018; White et al., 2021; Ru
et al., 2021; Lukasik et al., 2021). However, these approaches are computationally expensive as they
require the training of many candidate networks to cover the search space. In contrast, differentiable
architecture search (Liu et al., 2019) proposes a continuous relaxation of the search problem, i.e., all
candidate architectures within a given search space of operations and their connectivity are jointly
optimized using shared network parameters while the network also learns to weigh these operations.
The final architecture can then simply be determined by selecting the highest weighted operations.
This is appealing as practically good architectures are proposed within a single optimization run.
However, previous works such as Zela et al. (2020) also indicate that the proposed results are often
sub-optimal, especially when the search space is not well chosen. We make a clear distinction here
between DARTS (Liu et al., 2019), which includes the proposed search space for image classification
models and the differentiable architecture search, DAS, itself.

In this paper, we apply DAS to inverse problems with the main focus on the analysis of DAS
w.r.t. the impact of domain shifts, training hyperparameter choice and network initialization.

* Equal contribution.
T Equal contribution.
JL, MM and MK acknowledge support by the DFG research unit 5336 - Learning to Sense.

AutoML 2023 Workshop Track © 2023 the authors, released under CC BY 4.0

mailto:jovita.lukasik@@uni-siegen.de
mailto:jgeiping@umd.edu
mailto:michael.moeller@uni-siegen.de
mailto:margret.keuper@uni-siegen.de
https://creativecommons.org/licenses/by/4.0/

Since signal recovery has not received nearly as much attention in the NAS literature as image
classification, it allows to study a naive choice of parameters and settings without bias to known
results and best practices. In the signal recovery setting, sequential architectures (Zhang et al., 2017)
yield competitive results when learning to solve inverse problems, such that we can analyze the
impact of the complexity of the search space more easily. Specifically, we compare the stability and
sensitivity to hyperparameters of DAS-like architecture optimization in a simple, sequential search
space as well as in a non-sequential search space, which we both propose, where the latter is inspired
by the search space proposed in Liu et al. (2019). We investigate two types of one-dimensional
inverse problems which allow for extensive experiments for each setting in order to analyze the
robustness of DAS.

We show that DAS can automatically find well performing architectures, if the search space is
well preconditioned. Yet, our study also shows that the performance of DAS heavily depends on
hyperparameter choices. Moreover, DAS shows a large variance for any set of hyperparameters,
such that the suitability of parameters as well as the overall performance can only be judged when
considering a large number of runs. This finding challenges the understanding of DAS as a one-shot
method for NAS. Equally concerningly, we find that the estimated network performance using
jointly optimized, shared weights is often not well correlated with the reconstruction ability of the
final model after operation selection and re-training, i.e., the continuous relaxation in DAS seems
to be quite loose. In particular, this makes the search for good hyperparameters by optimizing
for the DAS training objective near-impossible. Hyperparameter optimization w.r.t. the final
architecture performance is even more expensive and seems to increase the variance in the results
even further. Yet, overall, our study also shows that DAS can successfully be applied to inverse
problems. Specifically, it improves over competitive random search baselines by a significant
margin, when the search space contains a variety of harmful and beneficial operations. This
finding is crucial, since well preconditioned search spaces can be non-trivial to determine in novel
applications.

Related Work

The introduction of DAS (Liu et al., 2019) proposed a novel paradigm in NAS area, in contrast
to previously predominant black-box optimization methods. By relaxing the discrete operation
choices in a network and thus allowing for gradient-based optimization, DAS has proven to be
beneficial in the search of good neural architectures with limited search budget. Building on this
pioneering work, NAS research has gained significant momentum for further improvements over
the original DAS approach (Pham et al., 2018; Liu et al.,, 2018; Dong and Yang, 2019; Cai et al., 2019;
Xie et al., 2019; Chen et al., 2019; Akimoto et al., 2019; Xu et al., 2020; He et al., 2020; Chen and
Hsieh, 2020; Wu et al., 2021; Zhang et al., 2021). To narrow down the vast amount of literature, we
focus here only on weight-sharing literature that is in line with our case study.

Stability of DAS. There are only few works investigating the stability of DAS w.r.t the so-called
rank disorder (White et al., 2023) (the low correlation between the estimated performance of the
one-shot model and the performance after retraining) and a poor test generalization of the found
architecture (Zela et al., 2020; Xu et al., 2020; Chu et al., 2020; Chen and Hsieh, 2020; Li et al., 2020,
2021). RobustDARTS (Zela et al., 2020) tracks the dominant eigenvalue Af,, of the Hessian during
the architecture search and implements a regularization and early stopping criterion based on this
quantity for a more robust DAS search. Chen and Hsieh (2020) pick up the relationship between the
Hessian during the architecture search and the performance gap during search and evaluation time.
They propose a perturbation-based regularization to smooth the validation loss landscape. Xu et al.
(2020) find that only connecting partial channels into the operation selection leads to a regularized
search to improve the stability. Chu et al. (2020) use a sigmoid activation for the architecture weights
instead of softmax to eliminate unfair optimization regarding the skip-connection operation. Yang
et al. (2020) analyze the contribution of each component in a NAS approach within the search

itecture
//\ ’
—> learable grad

S0 - TR) | I e

roll

—

architecture noise
t (o)— GO—» ,
—>

projection layer
residual connection

Figure 1: Investigated sequential meta-architecture. This setup is simple, yet it is able to represent
DnCNN (Zhang et al., 2017)-like architectures.

space from Liu et al. (2019). They highlight that a performance-boosting training pipeline, often a
result of expert knowledge, is more important for the evaluation of architectures than the search
itself. Li et al. (2021) uses a single-level optimization to improve the poor test generalization. These
findings motivate our analysis of the potential benefits of DAS in a setting different from image
classification.

Reconstruction. Previous work on reconstruction of inverse problems via learned approaches has
often focused on unrolled optimization schemes, such as unrolled PDHG in Riegler et al. (2016) and
Adler and Oktem (2018). These architectures, also referred to as variational networks (Klatzer et al.,
2016; Hammernik et al., 2017), are constructed by unrolling existing optimization routines that solve
inverse problems and adding learning components in blocks which are either recurrent, as e.g. in
Aggarwal et al. (2019) or fully independent as in Hammernik et al. (2018). In this investigation we
will focus on parameterized gradient descent layers which can be seen as the most fundamental
building block of these optimization routines.

Differentiable Architecture Search

We summarize DAS (Liu et al,, 2019) in the following. To determine which operation o/)
is most suitable to be applied to the feature x(), one defines a set of candidate operations
o, € O,t € {1,...,] O |= T} where the NAS optimization problem follows the objective
to select the optimal (discrete) arrangement of these operations in a neural architecture. DAS
searches over the continuous relaxation of this discrete problem, with

G _ N a0) exp(ay))
0= Zﬁm 0t or T T 0y (1)
t=1 t'=1 exp(%t,)

where o = (aé{)) are architecture parameters that determine the selection of exactly one candidate
operation in the limit of S becoming binary. Instead of looking for binary parameters directly, the
optimization is relaxed to the soft-max of continuous parameters «.

DAS formulates this search as a bi-level optimization problem in which both, the network
parameters 6 = {§)) }ﬁ.\i , and the architecture parameters a, are jointly optimized on the training

and validation set, respectively, via

min L, (0(a), a) s.t. 0(a) € argming Lyygin(0, @), (2)

where L, and L4, denote suitable loss functions for the validation and training data. The
optimization is done by approximating Eq. 2 (right) by one (or zero) iterations of gradient descent,
and depends on several hyperparameters such as initial learning rates, learning rate schedules
and weight decays for both architecture and model parameters. The final, discrete architecture is
obtained by choosing the most likely operation 6/ = argmaxotaéf) for each node. Subsequently,
this final network is retrained from scratch. Thus, the fundamental assumption that justifies the

idea of DAS is that the performance reached by the final network architecture on the validation

3.1

311

3.1.2

Figure 2: Investigated meta-architecture in the non-sequential search space.

set (the architecture validation) is highly correlated with the performance of the relaxed DAS
approach obtained in Eq. 2 (the one-shot validation). Only then, the architecture found during DAS
optimization can also be expected to perform well after retraining.

While the originally proposed method optimizes so-called cells, which are stacked in order
to define the overall neural network architecture, and defines each cell in the form of a directed
acyclic graph (DAG), we conduct most parts of our DAS study on a sequential, easy-to-interpret,
meta-architecture to be described below (Fig. 1). To exclude that our findings are merely due to
this special search space, we also consider experiments resembling the original setup in Liu et al.
(2019). Our sequential architecture consists of N nodes x(?, where x(? represents the input data
and the result xU* of any layer is computed by applying some operation 0"/) to the predecessor
node x, i.e., xUtD) = o) (x(j), 9(j)), where 00 are the (learnable) parameters of operation o),

Proposed Search Spaces

Our following analysis of DAS for inverse problems will deliberately not be targeting settings that
yield good results by design. In contrast, we propose two search spaces with different complexities
that allow to analyze the stability and generalization performance of DAS under varying degrees
of difficulty, in ascending order: (i) finding a good (linear) sequence of operations from meaningful
choices of operations, (ii) finding a good (linear) sequence of operations where the set of operations
to choose from contains good operations as well as harmful operations (the model needs to learn
to avoid these), (iii) finding a good non-linear, acyclic computational graph of operations from
meaningful choices of operations (this is the conventional DARTS setting), (iv) finding a good
non-linear, acyclic computational graph of operations, where the set of operations to choose from
contains good operations as well as harmful operations (the model needs to learn to avoid these).

Such search spaces allow to investigate the properties of DAS methods under various and
realistic conditions. Specifically, not for all tasks, we can assume that the set of well-performing,
beneficial operations is given or even complete. Therefore, it is desirable that methods perform
reliable even if poor operation choices are available.

Sequential Search Space. For the simpler, sequential search space, we propose the meta-architecture
shown in Fig. 1, which should be specifically well-suited for examples of signal recovery from known
data formation processes such as blurring and subsampling with noise. From a pre-defined set of
operations, we choose operations sequentially before adding the output to a residual branch. Image
recovery networks such as DnCNN (Zhang et al., 2017) are contained in this meta-architecture.
In practice, we search for 10 successive layers. As discussed above, the search space deliberately
contains benign as well as harmful operations (see Sec. 3.1.3). This allows the evaluation of the
effectiveness of DAS in any setting via the distinction of two cases: Training on all operations
versus training only on beneficial operations. A good architecture search algorithm should reliably
find the optimal operations, even when presented with sub-optimal choices.

Non-Sequential Search Space. For the non-sequential search space, we construct a cell structure
with 5 states, and allow for arbitrary forward connections among the same set of operations as in

3.1.3

4.1

the sequential setting, but also for a {zero} operation, resulting in up to 15 operational connections.
The outputs of the last two states are concatenated and flattened via a 1D convolution. We utilize
two of these cells in succession, so that the depth of this search space with in total 10 nodes is
comparable to our sequential search space. Fig. 2 visualizes an exemplary cell meta architecture
during architecture search and the found cell architecture, which is then retrained. We choose in
each cell one operation out of several as a connection between each node in the cell. This setting is
more directly comparable to the original DARTS formulation (Liu et al., 2019), which contains a
cell structure with multiple possible connections between sequential states.

Network Operations for Inverse Problems. In both the sequential and non-sequential setting, we
search for the optimal architecture that can be defined using operations selected from a defined
set O;. Specifically, we propose to use four operations, two of which are benign and potentially
beneficial by design.

The first benign operation is motivated from rolled-out-architectures (see e.g. Gregor and LeCun
(2010); Schmidt and Roth (2014); Kobler et al. (2017)) and tries to embed model-based knowledge
about the recovery problems into the networks architecture. In this paper we consider problems
which can be phrased as linear inverse problem, in which the quantity x ought to be recovered from
data y = Ax + noise for a linear operator A. While the precise type of algorithm is typically dictated
by (smoothness) properties of the regularization, a partially parameterized network-based approach
has a lot of freedom to choose from template layers based on the inverse problem y = Ax + noise,
i.e, arg min, D(Ax,y), where D is a data formation term arising from the distribution of noise

present, ie., D(Ax,y) = % ||Ax —y||? for Gaussian noise. This optimization objective yields templates

such as a gradient descent layer: x**! = x¥ — 1ATV_D(Ax¥, y), for input x* and output x**! of a

new layer. The gradient layer can be turned into a learnable operation by introducing a learnable
mapping F(x,) after the gradient step, x**' = x¥ — ATV, D(Ax*, y) — ©F(x*, §) as a learnable
gradient descent layer in our operation set ;.

The second benign layer is a fully-learned neural network layer in our operation set Oy, that
learns an appropriate mapping F (u, §) without knowledge of the operator A: x**! = F (x*,0) .
For both layers, the learnable mapping F(x, 6) is parametrized by a small convolutional network,
consisting of a convolution layer, followed by batch normalization, ReLU and a second convolution
layer.

These two layers, learnable gradient descent layer and neural network layer, are by de-
sign beneficial operations. To complement these beneficial layers we also include two poten-
tially harmful operations to each operation set; a gradient layer with white Gaussian noise,
noise layer, and a roll layer, which rolls the inputs in all dimensions. In total, we set O; =
{learnable gradient descent, 2-layer-CNN, roll, noise}.

Evaluating DAS for Inverse Problems

In the following, we describe the experimental setting in which we evaluate DAS for inverse
problems. Thereby, we focus on small problem instances to be able to evaluate the framework not
once but in several runs such as to evaluate the statistics of the results. This setup also allows to
gain insights on the dependence of DAS’ performance on the chosen hyperparameters.

Experimental Setup

Data Generation. For a fast synthetic test we generate one-dimensional data sampling cosine
waves of varying magnitude, amplitude and offset, and search for models to recover these samples
from distorted measurements. We consider two distortion processes with varying difficulty: First,
Gaussian noise and blurring and second, in addition to these, a subsampling by a factor of 4.
We generate these synthetic one-dimensional cosine data from N = 50 equally spaced points
T T

w; on the interval [-7, 7] with the model x; = cos(fw; + Ox) + Oy for a random frequency f

4.2

drawn uniformly from the interval [0, 27r] and offsets O, and O, drawn from a normal Gaussian
distribution. Such random drawn waves comprise our ground truth training data. We then generate
measured data via the linear operation A and addition of noise, i.e., y = Ax + n with n € N/ (0, o).
These pairs (y, x) represent our training data. We sample new examples on-the-fly during both
training and validation, so that no confounding effects of dataset size exist. All validation and
training loss evaluations are each based on 2432 randomly drawn samples. The performance of
all models is evaluated in terms of their average peak signal to noise ratio (PSNR) on validation
data. For all experiments we chose o, = 0.01. For the blur experiments, the linear operator A is a
Gaussian blur with kernel size 7 and o5 = 0.2. For the downsampling experiments, this Gaussian
blur is followed by a subsampling by a factor 4.

Hyperparameter Optimization. Our one-dimensional case study allows us to optimize DAS train-
ing hyperparameters with more granularity than it would be possible for image classification tasks.
While we run our first experiments using manually tuned hyperparameters (see Appendix for
details), we also consider the behavior and stability of DAS under optimized hyperparameters.
We stress that we consider this mainly as an analysis tool - given that NAS itself is a hyperpa-
rameter optimization on which we stack another, and acknowledging that this optimization is
practically intractable when larger problems are considered. To improve hyperparameters, we apply
BOHB (Falkner et al., 2018), a Bayesian optimization method with hyperband (Li et al., 2018) and
run BOHB for 128 hyperband iterations, which is an affordable budget in this one-dimensional data
setting. Please note that BOHB is not an exhaustive search. Thus there are no guarantees for any
optimality criteria on the found hyperparameters within a certain budget. Practically, we optimize
the hyperparameters w.r.t. the one-shot validation performance, “BOHB-one-shot”, and w.r.t. the
final architecture performance, “BOHB”. Note here that hyperparameter search that maximizes the
final architecture performance instead of the one-shot validation performance is twice as expensive
(on top of the already expensive hyperparameter search), due to the need for retraining.

Experimental Analysis

We first investigate the performance of DAS on the sequential search space. For our analysis
of DAS as a one-shot method, we evaluate the statistics of the search over 75 trials of DAS as
well as several baselines such as (i) setting all operations to Learnable Grad. or Net (i.e., learnable
gradient descent or 2-layer CNN), (ii) picking a random architecture (random sampling), and (iii)
performing a random search within an equal time budget as required by one DAS run. For the
analysis, we distinguish between two different operation sets: only good operations (good ops.)
and the complete operation set O; (all ops.).

The results in Tab. 1 indicate that DAS works well for inverse problems. It proposes good
architectures given the complete operation set for both considered data formation methods, blur
and downsampling, resulting in architectures with a median PSNR of 18.57 and 16.12. Thereby, DAS
also outperforms architectures consisting of only one good operation in both operations set cases,
especially when considering the best found architecture using DAS. Practically, these experiments
thus lead to a first interesting result for applied inverse problems: The best found architecture is a
hybrid version that mixes both beneficial operations, possibly suggesting that the best way to approach
inverse problems are neither plain (convolutional) networks nor pure unrolling schemes.

Next, we compare DAS to random sampling (random selection of the operation at each layer)
and random search approaches. To allow for comparison at an equal time budget for the latter
(random search in Tab. 1), we evaluate 5 randomly sampled architectures and report the best for
each trial. One random evaluation using only good operations, i.e., the training of one random
architecture, takes on average 57 sec. versus 2min. 39 sec. for one DAS run. For the sequential
search space that purely consists of benign operations, random search outperforms DAS with a
median PSNR of 22.75 versus 21.6 on blur and 17.56 versus 16.66 on downsampling. Thus in this
scenario, random search outperforms DAS when used as a one-shot model. In addition, the simple

4.3

Table 1: Architecture validation PSNR values for 1D inverse problems. Shown is the maximal, mean,
median, minimal and standard deviation of PSNR over 75 trials.

‘ Method ‘ Blur ‘ Downsampling ‘
Architecture Val. (PSNR) Architecture Val. (PSNR) Runtime
Max. Mean Med. Min. Std. Max. Mean Med. Min. Std. min:sec
. | Learnable Grad. only 17.45 16.36 16.49 8.80 0.99 14.35 13.24 13.55 7.95 1.22 0:57
§ Nets only 21.63 19.45 20.71 8.07 2.98 16.92 13.13 14.05 1.08 3.46 0:57
32 DAS 23.46 21.56 21.60 17.60 1.03 18.03 16.36 16.66 1148 1.18 2:39
5 Random Sampling 24.04 22.05 22.17 19.43 0.77 18.10 16.73 16.84 14.51 0.79 0:57
Random Search 24.04 22,60 2263 2129 048 18.10 1740 17.49 16.26 045 2:55
DAS 22.86 15.64 18.57 7.95 6.09 18.01 15.39 16.12 1.04 3.13 2:53
= | Random Sampling 20.86 9.45 8.10 7.88 2.85 13.78 5.08 4.31 1.11 2.95 0:35
Random Search 20.86 12.12 12.24 8.09 4.11 13.78 9.61 9.77 6.22 2.12 2:55

Table 2: Architecture validation PSNR values for 1D inverse problems for the non-sequential search
space. Shown is the maximal, mean, median, minimal and standard deviation of PSNR over

100 trials.
Method ‘ Blur ‘ Downsampling ‘
Architecture Val. (PSNR) Architecture Val. (PSNR) Runtime
Max. Mean Med. Min. Std. Max. Mean Med. Min. Std. min:sec.
g Learnable Grad. only 13.19 1241 1238 11.81 0.23 11.30 8.89 9.59 113 2.60 7:33
_g Nets only 16.35 14.83 15.82 8.01 2.65 13.63 13.07 13.06 12,53 0.18 6:35
8 DAS 15.34 13.08 12.51 12.02 1.06 13.22 10.22 10.43 1.06 1.82 11:16
8| Random Sampling 16.20 11.32 11.95 7.88 3.08 13.15 6.26 5.72 1.01 5.05 0:39
= DAS 16.15 13,56 13.73 8.02 2.23 13.31 9.47 8.61 7.93 1.66 12:27
®| Random Sampling 16.05 9.56 8.17 7.92 2.51 13.39 4.37 3.21 1.06 3.70 0:36

random sampling approach also outperforms DAS. This is different when harmful operations
are added. However, for a search on the full operations set), DAS outperforms both simple
random baselines. In addition, we can see, that the random search approach is able to find the best
architecture in terms of minimal value, resulting here in stability against worst-case scenarios.

Since the original DAS formulation in Liu et al. (2019) contains a cell structure with multiple
possible connections between sequential states, allowing for a larger degree of freedom in combining
computational results, it is a-priori conceivable that some of the stability of DAS could be conferred
through this structure. Therefore, we now analyze the DAS performance on the non-sequential
DAS like search space exemplified in Fig. 2. Table 2 however shows that this wider search space
does not improve the overall performance. Indeed the non-sequential search space hampers not
only the DAS search significantly but also all other approaches, resulting in lower architecture
performances for both data formations. In this setup, the Nets only baseline, that uses the 2-layer
CNN for all operations, performs best. As above, we observe a significant drop in the performance
of DAS when harmful operations are included in this non-sequential search space. In this case,
as before, DAS can significantly outperform the random baseline but not reliably determine the
obviously best operation. In contrast to the previous sequential search space, in which the random
baseline (random search and sampling) shows stable behavior against worst-case scenarios, this
does not hold in this non-sequential search space. Here, DAS shows a better stability, with less
standard deviation. As the performance in this non-sequential search space is lower than in the
sequential search space, we consider only the latter one in the following.

Correlation between Architecture and DAS Performance

Figure 3 plots the trials considered in Tab. 1, scattering the values of all trials separately with
architecture performance (y-axis), which is computed after retraining the final architecture versus

N
b

— —~ 18
> > ° o
g2 ooy 5 16 e ¥
°
3 20 ° ‘)r T4 e 2 o8 R N
L8 o & . < 12 ¢ . %o
9 16 o ° Q10 e o
s . 5 .
B 12 - g °
ke Operations T 4 Operations
s 10 © Good Operations, ¢=0.02 © P @ Good Operations, ¢=0.24
> g @ ° Ll © All Operations, c=0.27 = ol ® ° ° © All Operations, c=0.34
8 10 12 14 16 18 20 22 9 10 11 12 13 14 15 16 17 18
Validation PSNR (search) Validation PSNR (search)

Figure 3: Top: Scatter plot corresponding to Tab. 1 showing architecture PSNR (y-axis) plotted against
1-shot validation PSNR (i.e., the validation performance on the DAS objective). Left: Blur.
Right: Downsampling.

learn. learn. et learn. net net net
net o net o net o net net ° net
DRI -) -5 {(om)

lean. . .

learn. lear net lean. learn. learn. learn. lean.
d et - rad d d grad rad

e Kl e BN S B e K e e 0 e W e K s K e 60
net net fearn net ’;f;; net net net net net

v J—o . (<) (o] (e J—{ (]

" fearn. e net ne e net nel nel
B e Ly e e e S) N e L e K e) S TN

Figure 4: Found architectures using Random Sampling and DAS from Tab. 1. Top: Best found archi-
tecture using Random Sampling. Middle (first): Worst found architecture using Random
Sampling. Middle (second): Best found architecture using DAS. Bottom: Worst found archi-
tecture using DAS.

the direct validation performance of the one-shot architecture (x-axis). We also plot a regression
line over all trials and report the correlation of all trials in the legend, showing the linear fit has
limited expressiveness. As discussed above, the correlation of these quantities is a fundamental
assumption of DAS. However, this first experiment indicates a correlation problem: The assumption
that a better one-shot validation implies a better architecture validation does not always hold.

These plots also show that DAS’ behavior is highly problem-dependent: The downsampling
dataset (right) shows that, although the mean value of DAS can be non-optimal, search performance
and architecture performance are weakly correlated, even if the best architecture only has average
search performance. The closely related blur dataset (left) shows an entirely different behavior
with different “failure” cases, from which we can observe with the given hyperparameters that 1)
either DAS proposes architectures with low (one-shot) search validation PSNR (i.e., it fails), or that
2) DAS works but does not predict a useful architecture (low architecture validation PSNR), or that
3) DAS does predict a useful architecture, but is unrelated to its search performance. Only the best
proposed architectures perform well in both. To further analyze the correlation, we investigate
DAS behavior under optimized training hyperparameters.

We visualize the best and worst found architecture in the sequential search space setting
with only beneficial operations on blur in Fig 4. As we can see, random sampling’s found best
architecture iterates in the first 6 operations between Net and Learn. Grad, followed by only Net,
while the best found architecture using DAS has less Learn. Grad operations but also stacks the Net
operation at the last layers.

We evaluate DAS using 5 different training hyperparameter sets; two are chosen manually, H1
and H2 (H1 are the hyperparameters used in Sec. 4.2), whereas the other three are tuned using
BOHB, as descibed in Sec. 4.1. In Tab. 3, we use BOHB to tune hyperparameters for the one-shot
validation performance for both blur (BOHB-one-shot-Blur) and downsampling (BOHB-one-shot-
DS), individually, and also to target the final validation performance for blur (BOHB-Blur). We

Table 3: Architecture validation PSNR values for 1D inverse problems with different hyperparameter
sets. Shown is the maximal, mean, median, minimal and standard deviation of PSNR over 75

trials.
‘ Hyperparameters ‘ Blur ‘ Downsampling
Architecture Val. (PSNR) Architecture Val. (PSNR)
Max. Mean Med. Min. Std. | Max. Mean Med. Min. Std.
X Hi1 23.46 21.56 21.60 17.60 1.03 18.03 16.36 16.66 11.48 1.18
é: H2 23.46 21.43 21.63 13.23 1.53 18.20 16.57 16.78 13.96 0.92
2 BOHB-one-shot-Blur 22.83 20.86 20.75 18.49 1.08 | 18.42 16.83 16.95 15.21 0.71
&% BOHB-one-shot-DS 22.33 20.65 20.96 8.58 1.79 17.51 15.33 15.84 1.17 2.73
BOHB-Blur 23.57 22.05 22.38 8.04 1.87 18.26 14.63 15.93 1.11 4.47
Hi1 22.86 15.64 18.57 7.95 6.09 18.01 15.39 16.12 1.04 3.13
H2 23.10 16.77 19.88 7.86 5.69 17.82 15.93 16.21 7.27 1.66

all

BOHB-one-shot-Blur | 22.47 15.57 18.04 7.90 559 | 17.73 14.36 14.57 6.06 1.73
BOHB-one-shot-DS 22.41 14.43 14.41 4.36 5.88 | 18.12 12.36 13.65 1.09 3.73
BOHB-Blur 22.94 12.76 8.21 7.91 6.17 | 1791 15.04 15.44 1.09 2.63

22
20

Validation PSNR (arch.)
>
Validation PSNR (arch.)
S

14 e ® o
12 L 10 . :
Operations 8 Operations
10 ® Good Operations, ¢=0.55 ® Good Operations, c=0.38
8 . @ 9@ | o All Operations, c=0.48 6 ° © All Operations, c=0.42
8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18
Validation PSNR (search) Validation PSNR (search)

24

- —~ 18

£ » S 16

= ° L4 =

&o200 o o S 14

R Z 12

816 910 o

S 14 c 8

2]2 P g6

g Operations E 4 ° Operations

o 10 < ® Good Operations, c=-0.14 © 2 ® Good Operations, ¢=-0.05

> 8 oo o w8 @0 | o Al Operations, c=0.43 > o ° ° © All Operations, ¢=0.32
8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18

Validation PSNR (search) Validation PSNR (search)

Figure 5: Scatter plot corresponding to Tab. 3 with BOHB-optimized hyperparameters, showing
architecture PSNR (y-axis) plotted against one-shot validation PSNR (x-axis). Left: Blur with
hyperparameters (top) BOHB-one-shot-Blur and (bottom) BOHB-Blur. Right: Downsampling
with (top) BOHB-one-shot-DS and (bottom) hyperparameters BOHB-Blur.

also plot the results for all BOHB found hyperparameter trials in Fig. 5. The plot shows that the
correlation for both data formation methods increases with the corresponding BOHB-one-shot
tuned hyperparameters, with also a higher range of the search validation PSNR, as expected. This
experiment also shows a rather surprising outcome: In the case of blur, the average performance
is on par with the manually chosen hyperparameters H1 and H2, whereas the performance for
downsampling decreases, especially when all operations are considered. In addition, the best
architecture PSNR over 75 trials decreases in both cases using the dataset specific hyperparameters.
Overall, the apparent stabilization via optimization of the search loss removes not only negative,
but also positive outliers. Furthermore, hyperparameters optimized for one dataset do not transfer
well to the other. Using BOHB to target the final validation performance for blur (BOHB-Blur)
instead of the one-shot validation performance has also a positive impact on the one-shot validation
and architecture validation correlation, compared to the manually chosen hyperparameters H1 and
H2 in Fig. 3.

44

Table 4: Architecture validation PSNR values for BSDS Blur reconstruction for the sequential search
space. The maximal, mean, median, minimal, and standard deviation of PSNR over 3 trials for
only good operations are shown.

Method Validation PSNR (eval) Runtime
Max. Mean Median Min. Std. | h:min:sec
DnCNN (Nets only) | 25.96 25.94 25.93 25.92 0.02 30:41
DAS 25.95 2591 25.93 25.85 0.05 1:50:02
Random Sampling 26.09 26.02 26.04 25.93 0.08 20:03

In conclusion, we find two schools of thought when evaluating the performance of DAS.
For maximal performance, we should not understand DAS as a one-shot search approach, but as
a component in a larger search that proposes trial architectures. For average performance, and
immediate performance with a single DAS run, we should be optimizing the search performance
and maximize its correlation with architecture performance - although as our experiments show,
this is non-trivial even when searching for these hyperparameters in an automated fashion. We
stress that the two directions are not at odds with each other, yet problems can arise in the literature
when comparing proposed improvements of DAS across both. Some algorithmic improvements of
DAS are more likely to improve best-case performance, whereas others are more likely to impact
single trial stability, and both can not be directly compared.

Image Reconstruction Experiments

In this section, we evaluate DAS on the Berkeley Segmentation Dataset and Benchmark (BSDS300)
(Martin et al., 2001) for image denoising in the sequential search space using the good operation
set. We compare DAS to the random sampling baseline as in the previous 1D experiments and to
the DnCNN (Zhang et al., 2017) baseline. The latter architecture only contains the operation Net.
Tab. 4 shows the results for three runs. The random sampling baseline improves over DAS and the
DnCNN baseline. DAS found in 2 our of 3 runs an architecture containing only Learnable Grad.
We also see that a hybrid version that mixes both beneficial operations improves over both plain
networks. As it is apparent from the compute times in Tab. 4, this setting can not be the basis of an
exhaustive study as we provide it in the 1D case. Yet it confirms the trends that we observe therein.

Conclusions

In this paper we analyzed DAS on one-dimensional inverse reconstruction problems. We show that
DAS improves over a random search baseline by a significant margin, especially if the available
set of beneficial operation is not determined in advance. Further, we make the following findings:
While it is possible to find well-performing architectures using DAS, multiple runs of the same
setting yield a high variance, challenging the common understanding of DAS as a one-shot method.
Moreover, the ability to find well-performing architectures is highly dependent on the specific
choice of hyperparameters. Therefore, we emphasize for the future the necessity to (1) look at a
full statistical evaluation of DAS performances over multiple trials, (where-ever affordable), and (2)
show a correlation between the search and final architecture performances for any method that
reports improved results based on a more faithful minimization of the one-shot DAS objective.
Limitations In this study we evaluated the commonly used DAS approach on inverse problems w.r.t
hyperparameter sensitivity. This study is limited to 1D data, which however makes the analysis
and especially the hyperparameter optimization affordable. The next step would be to analyze this
effect in larger computer vision settings, in particular investigating the influence of the proposed
search space on the test generalization using bi-level optimization, without the need to change it to
single-level approaches.

10

Broader Impact: After careful reflection, the authors have determined that this work presents no
notable negative impacts to society or the environment. It rather aims to contribute to sustainable
progress in NAS.

References

Adler, J. and Oktem, O. (2018). Learned Primal-Dual Reconstruction. IEEE Transactions on Medical
Imaging, 37(6):1322-1332.

Aggarwal, H. K., Mani, M. P, and Jacob, M. (2019). MoDL: Model-Based Deep Learning Architecture
for Inverse Problems. IEEE Transactions on Medical Imaging, 38(2):394-405.

Akimoto, Y., Shirakawa, S., Yoshinari, N., Uchida, K., Saito, S., and Nishida, K. (2019). Adaptive
stochastic natural gradient method for one-shot neural architecture search. In Proceedings of the
International Conference on Machine Learning, ICML, Proceedings of Machine Learning Research.

Cai, H.,, Zhu, L., and Han, S. (2019). Proxylessnas: Direct neural architecture search on target task
and hardware. In International Conference on Learning Representations, ICLR.

Chen, X. and Hsieh, C. (2020). Stabilizing differentiable architecture search via perturbation-
based regularization. In Proceedings of the International Conference on Machine Learning, ICML,
Proceedings of Machine Learning Research.

Chen, X., Xie, L., Wu, J., and Tian, Q. (2019). Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In 2019 IEEE/CVF International Conference on
Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 1294-1303.
IEEE.

Chu, X., Zhou, T., Zhang, B., and Li, J. (2020). Fair DARTS: eliminating unfair advantages in
differentiable architecture search. In Vedaldi, A., Bischof, H., Brox, T., and Frahm, J., editors,
European Conference on Computer Vision,ECCV.

Dong, X. and Yang, Y. (2019). Searching for a robust neural architecture in four GPU hours. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A survey. Journal of
Machine Learning Research, 20:55:1-55:21.

Falkner, S., Klein, A., and Hutter, F. (2018). BOHB: Robust and Efficient Hyperparameter Optimiza-
tion at Scale. In International Conference on Machine Learning, pages 1437-1446. PMLR.

Gregor, K. and LeCun, Y. (2010). Learning fast approximations of sparse coding. In Proceedings of
the International Conference on International Conference on Machine Learning.

Hammernik, K., Klatzer, T., Kobler, E., Recht, M. P., Sodickson, D. K., Pock, T., and Knoll, F. (2018).
Learning a variational network for reconstruction of accelerated MRI data. Magnetic Resonance
in Medicine, 79(6):3055-3071.

Hammernik, K., Wiirfl, T., Pock, T., and Maier, A. (2017). A Deep Learning Architecture for
Limited-Angle Computed Tomography Reconstruction. In Bildverarbeitung fiir die Medizin 2017,
Informatik aktuell, pages 92-97. Springer Berlin Heidelberg.

He, C, Ye, H., Shen, L., and Zhang, T. (2020). Milenas: Efficient neural architecture search via
mixed-level reformulation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR.

11

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR.

Kandasamy, K., Neiswanger, W., Schneider, J., Péczos, B., and Xing, E. P. (2018). Neural architecture
search with bayesian optimisation and optimal transport. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems NeurlIPS.

Klatzer, T., Hammernik, K., Knobelreiter, P., and Pock, T. (2016). Learning joint demosaicing
and denoising based on sequential energy minimization. In IEEE International Conference on
Computational Photography (ICCP).

Kobler, E., Klatzer, T., Hammernik, K., and Pock, T. (2017). Variational networks: Connecting
variational methods and deep learning. In Pattern Recognition, Lecture Notes in Computer
Science, pages 281-293. Springer.

Li, G, Qian, G., Delgadillo, I. C., Miiller, M., Thabet, A. K., and Ghanem, B. (2020). SGAS: sequential
greedy architecture search. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2018). Hyperband: A Novel
Bandit-Based Approach to Hyperparameter Optimization. Journal of Machine Learning Research,
18(185):1-52.

Li, L., Khodak, M., Balcan, N., and Talwalkar, A. (2021). Geometry-aware gradient algorithms for
neural architecture search. In International Conference on Learning Representations, ICLR.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L., Fei-Fei, L., Yuille, A. L., Huang, J., and
Murphy, K. (2018). Progressive neural architecture search. In European Conference on Computer
Vision, ECCV.

Liu, H., Simonyan, K., and Yang, Y. (2019). DARTS: differentiable architecture search. In International
Conference on Learning Representations, ICLR.

Lukasik, J., Friede, D., Zela, A., Hutter, F., and Keuper, M. (2021). Smooth variational graph
embeddings for efficient neural architecture search. In International Joint Conference on Neural
Networks (IJCNN).

Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics. In
Proc. of the International Conference in Computer Vision.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). Efficient neural architecture search via
parameter sharing. In Dy, J. G. and Krause, A., editors, Proceedings of the International Conference
on Machine Learning, ICML.

Riegler, G., Riither, M., and Bischof, H. (2016). Atgv-net: Accurate depth super-resolution. In
European Conference on Computer Vision, pages 268—284. Springer.

Ru, B. X., Wan, X., Dong, X., and Osborne, M. A. (2021). Interpretable neural architecture search via
bayesian optimisation with weisfeiler-lehman kernels. In International Conference on Learning
Representations, ICLR.

Schmidt, U. and Roth, S. (2014). Shrinkage fields for effective image restoration. In IEEE Conference
on Computer Vision and Pattern Recognition.

12

White, C., Neiswanger, W., and Savani, Y. (2021). BANANAS: bayesian optimization with neural
architectures for neural architecture search. In Conference on Artificial Intelligence, AAAL

White, C., Safari, M., Sukthanker, R., Ru, B, Elsken, T., Zela, A., Dey, D., and Hutter, F. (2023).
Neural architecture search: Insights from 1000 papers. arXiv.org, abs/2301.08727.

Wu, Y, Liu, A, Huang, Z., Zhang, S., and Gool, L. V. (2021). Neural architecture search as sparse
supernet. In Conference on Artificial Intelligence, AAAL

Xie, S., Zheng, H., Liu, C., and Lin, L. (2019). SNAS: stochastic neural architecture search. In
International Conference on Learning Representations, ICLR.

Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G., Tian, Q., and Xiong, H. (2020). PC-DARTS: partial
channel connections for memory-efficient architecture search. In International Conference on
Learning Representations, ICLR.

Yang, A., Esperanga, P. M., and Carlucci, F. M. (2020). NAS evaluation is frustratingly hard. In
International Conference on Learning Representations, ICLR.

Zela, A, Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., and Hutter, F. (2020). Understanding
and robustifying differentiable architecture search. In International Conference on Learning
Representations, ICLR.

Zhang, K., Zuo, W,, Chen, Y., Meng, D., and Zhang, L. (2017). Beyond a Gaussian Denoiser:
Residual Learning of Deep CNN for Image Denoising. IEEE Transactions on Image Processing,
26(7):3142-3155.

Zhang, M., Su, S. W,, Pan, S., Chang, X., Abbasnejad, M. E., and Haffari, R. (2021). idarts: Differen-
tiable architecture search with stochastic implicit gradients. In Proceedings of the International
Conference on Machine Learning, ICML.

Zoph, B.and Le, Q. V. (2017). Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, ICLR.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transferable architectures for
scalable image recognition. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR.

13

In this supplementary material, we further include results about the rank disorder and poor test
generalization when removing degenerated results in the search as well as evaluation step in Sec.
A.In Sec. B we include additional evaluations regarding weight initialization. In Sec. C we provide
additional information about the hyperparameter stability in the non-sequential search space and
visualize two found architectures in this search space in Sec. D. All used hyperparameters in this
paper are listed in Sec. E and the used computational setup in Sec. F.

A Non-Degenerated Search

Here, we visualize in Fig. 6 the trials without degenerated search results from the experiment in
Tab. 1, i.e., search PSNR results with less than 9 PSNR, and without generated results in total, i.e.,
search and eval PSNR less than 9 PSNR. As we can see, the correlation decreases, if we only remove
the degenerated search outcome but improves as soon as all degenerated results are removed.

24

~ = 18
0
{:,3 22 hY -g‘- § 16 % - o .--
& 20 L 1 & S 14 e &~ &8)
% 18 o | o0 o % 12 d ° o ® e
Y 16 ° ° g 10 ° °
S 14 5 8 .
®
o - 2 & -
® 12 Operations 8, Operations
2 10 ® Good Operations, c=0.02 2 N ® Good Operations, c=0.21
§ 8 e 0% aRom o All Operations, ¢=0.17 § o e ° ° @ All Operations, ¢=0.32
12 14 16 18 20 22 9 10 11 12 13 14 15 16 17 18
Validation PSNR (search) Validation PSNR (search)
24
— — 18 C) °
< o < o o
- ' = 16 °
o 20 ° & S o® I Q@ P Vo o:;.”..
“ 15 o @g © ° P
Z & LI % °
L 18 °® 00 . Y 14 R Jes o °
c c 13 o °0o
o <] o
S 16 * ; 5 12 * ;
© Operations © Operations
2 14 @ Good Operations, c=0.02 21 @ Good Operations, c=0.21
g ® e All Operations, c=0.29 § 10 ° ° @ All Operations, c=0.34
14 16 18 20 22 9 10 11 12 13 14 15 16 17 18
alidation searc alidation searc
Validat PSNR (h) Validat PSNR (h)

Figure 6: Scatter plot corresponding to Tab. 1 without degenerated results showing architecture PSNR
(y-axis) plotted against 1-shot validation PSNR (i.e., the validation performance on the DAS
objective) for blur (left) and downsampling (right). Top: Scatter plots without degenerated
search results. Bottom: Scatter plots without all degenerated results.

B Improving the Initialization

Several works, such as Zela et al. (2020); Li et al. (2021), investigate the instability of the bi-level
approximation of DAS w.r.t. the weight initialization; the random initialization of the network
weights can cause promising operations having poor initialization and thus tend to be entirely
discarded during the architecture search, which eventually leads to poor test generalization. Li
et al. (2021) overcomes this by proposing a single-level optimization. Therefore, we evaluate the
impact of this initialization by modifying the DAS search, such that it only has to search for the
optimal architecture parameters to build the resulting architecture, also resulting in a single-level
search approach.

For this DAS-single approach, we pre-train the operations {learnable gradient descent} and
{2-layer-CNN} as baseline architectures, compared to Learnable Grad. only and Nets only from
Sec. 4.2, and keep the operation weights fixed. This is generally only possible for the feed-forward
architectures that we consider and requires only a weak specialization between layers. Thereby,

14

[N}
=

N
N

°

°
°

22

E -' ° E ° @ 4
S 5 o 8.-0..--.- S 5 o hw o 393
1 18 ? °s o0 o 18 o %%° g8
°

< © o < 5 p
516 . 00° » 16 o 3
a R oy °
c 14 — c °
kel e o ° S 12 ° °
& 12 ®
2 10 Method © 10 Method
= o DAS, c=0.02 T s o © DAS, c=0.49 boeo
> g ° ° ° T | o DAS-single, c=0.64 > 6 © DAS-single, c=0.64

-40 -30 -20 -10 0 10 20 8 10 12 14 16 18 20 22

Validation PSNR (search) Validation PSNR (search)

Figure 7: Left: Architecture search with BOHB-searched hyperparameter sets for DAS with single-
level optimization on the blur data formation. Right: Both methods with their own BOHB
hyperparameters on the blur data formation.

we avoid the random initialization of the operations weights in the DAS search. Figure 7 shows the
results of DAS-single search with BOHB-optimized hyperparameters for all operations. Notably,
BOHB-optimized hyperparameters for the DAS-single one-shot validation (Fig. 7 left) lead to a
positive impact on the correlation of the one-shot and architecture validation PSNR using DAS-
single and to a negative impact for DAS. In addition, when comparing DAS and DAS-single with
their hyperparameters being individually optimized with BOHB with respect to their one-shot
validation (Fig. 7 right), DAS finds a higher architecture validation PSNR than DAS-single, whereas
DAS-single becomes more robust against possible outliers, making this search less sensitive.

Hyperparameter Stabitily in the Non-sequential Search Space

In this section we investigate the stability of our DAS framework w.r.t. hyperparameters within the
non-sequential search space from subsubsection 3.1.2 for the blur data formation. We also visualize
architectures found by our DAS approach for two different operation sets (Figure 11).

Z 16 o wulgth . 216 e .
2 15 ° ” 2 15 (Y Y A
RV ® < % $3°
pt e o = 14 O 4
Z 13 Z 13
2 12 ” & 12
© of Qo oy °HP Mg ©
L) ° ()

§n o §n i
é 10 Operations _f;é 10 Operations
'r_T: 9 o © @ Good Operations, c=-0.47 '{_; 9 ° ry ® Good Operations, c=-0.51
> 8 . @ All Operations, c=-0.26 > 3 ® ee e All Operations, c=-0.19

17 18 19 20 21 22 23 17 18 19 20 21 22 23

Validation PSNR (search) Validation PSNR (search)

Figure 8: Scatter plot for the non-sequential DAS search space corresponding to Table 5, with hyperpa-
rameters H1I (left) and H2 (right), showing architecture PSNR (y-axis) plotted against 1-shot
validation PSNR (i.e., the validation performance on the DAS objective).

We conduct experiments using the same BOHB-optimized hyperparameters as in subsection 4.3
and additionally included BOHB-optimized hyperparameters for this non-sequential search space
for first targeting the one-shot validation performance (BOHB-Non-Seq-one-shot-Blur) and second
targeting the final architecture performance (BOHB-Non-Seq-Blur). Table 5 however shows similar
results as in subsection 4.3: changing the hyperparameters does not improve the stability of the
search process. Figure 8 shows all trials for the non-sequential search space for the manually
chosen hyperparameters HI and H2. This plot clarifies further that the search space change does
not improve the DAS search process. The correlation between the one-shot validation and the
architecture validation even becomes negative. Yet, these plots also show 2 different “failure” cases
for both operations sets, only beneficial operations and all operations, and both data formations:

15

16

S 16 00 %0 %03 P o838 <
o 000’ o ® © G 14 o °’i‘
~ 14 8 ° = ° °
: : e W
= = °
12 o,
g 12 .) = S
c c
10
gy ; Operati g ° o 0 [operat)
° perations o © Q) ° perations
% g ©°% e od oo 84, Good Operations, c=0.31 % 8 o % & ® Good Operations, c=-0.18
> @ All Operations, c=0.58 > ° ® All Operations, c=0.22
8 10 12 14 16 18 20 22 24 14 16 18 20 22
Validation PSNR (search) Validation PSNR (search)

S 16 o % L

s s °

A ° ° &

L

o 14

= e ﬁ

0 °

a o

Z 12 o 9o 0y

=]

§ 10 40perations

= 4 © Good Operations, c=0.10

> 8 ° @ All Operations, c=-0.02
8 10 12 14 16 18 20 22 24

Validation PSNR (search)

Figure 9: Scatter plot for the non-sequential DAS search space on blur with BOHB-optimized hyperpa-
rameters for this search space, showing architecture PSNR (y-axis) plotted against one-shot
validation PSNR (x-axis). Top (Left): Blur with hyperparameters BOHB-one-shot-Blur. Top
(Right): Blur with hyperparameters BOHB-one-shot-DS. Bottom: Blur with hyperparameters

BOHB-Blur
< 16 S S o 4%%e o S wiaginCwg
o o 16 oo A e
B T ° o & o
o 14 T o °o%
& @ S
a1y a 12 ° ° oS oboo B
c c
<] o
2 10 - = 10
g Operations g ° o |Operations
= @ Good Operations, ¢=0.03 = g . ° Qo ® Good Operations, ¢c=0.15
© ©
> 8 e @ All Operations, ¢=0.28 > / ® All Operations, c=-0.26
-30 -20 -10 0 10 20 -10 -5 0 5 10 15 20 25
Validation PSNR (search) Validation PSNR (search)

Figure 10: Scatter plot for the non-sequential DAS search space on blur with hyperparameters searched
for this search space, showing architecture PSNR (y-axis) plotted against one-shot validation
PSNR (x-axis). Left: Blur with hyperparameters BOHB-Non-Seq-one-shot-Blur Right: Blur
with hyperparameters searched for the final architecture performance BOHB-Non-Seq-Blur.

The validation PSNR is stable, whereas the architecture validation performance is clustered in
two different regions, one being very low and the other being around 15 PSNR. Note, the mean
architecture validation PSNR for all operations in the sequential search space from subsection 4.3
in Table 3 is also around 15 PSNR.

For additional visualization, we also display the results using BOHB found hyperparameters in
the sequential search space in Figure 9 as well as BOHB-found hyperparameters tuned for this non-
sequential search space in Figure 10. However, hyperparameter search for the non-sequential search
space via BOHB on both the one-shot validation performance and the architecture performance as
a target does not improve the stability of the search, as demonstrated in Figure 10. Accordingly, we
find on the one hand that the findings in the previous section 4.2 regarding the non-applicability
of DAS as a one-shot model for inverse problems translate to a cell-based search space and on
the other hand (investigating the overall performance metrics for both search spaces), that the

16

Table 5: Architecture validation PSNR values in the non-sequential search space for the 1D inverse
problems setting with cosine data. Shown is the maximal, mean and median PSNR over 75

trials.
Data Hyperparameters Architecture Validation (PSNR)
Good Ops. All
Max. Mean Med. Max. Mean Med.
Hi1 1534 13.08 12.51 16.15 13.56 13.73
H2 1538 1317 12.52 16.28 14.11 15.58
BOHB-one-shot-Blur 1638 13.25 12.76 16.71 11.73 11.8
Blur BOHB-one-shot-DS 1493 12.73 12.44 15.86 12.37 11.72
BOHB-Blur 16.5 13.83 13.06 16.82 14.07 14.44
BOHB-Non-Seq-one-shot-Blur | 16.50 8.84 8.09 16.82 13.96 15.50
BOHB-Non-Seq-Blur 16.74 9.73 8.11 17.03 1345 1542

sequential search space appears to be a helpful prior for architecture search for inverse problems,
given that its PSNR scores are overall higher.

D Visualizations

i

—> output 1

Figure 11: Found architectures in the non-sequential search space for two different operation sets for
the data formation blur. Hyperparameter H1 is used for these searches. Top: all operations.
Bottom: only beneficial operations.

In this section, we visualize in Figure 11 two found architectures using the H1 hyperparameters
for the operation sets “all operations” and “only good operations” for the data formation blur in the
non-sequential search space from the experiments in subsection 4.2.

E Hyperparameters

In this section, we show the hyperparameters used for our experiments in the main paper. In Table 7
are the manually chosen hyperparameters H1 and H2 from Table 3 in the main paper. In addition
Table 8 lists all BOHB optimized hyperparameters for the data formations blur and downsampling
as well as the hyperparameters optimized for the final architecture performance and also for the
DAS-single method; the search range for the BOHB search is given in the second column. In Table 9
the BOHB search hyperparameters for the non-sequential search space from Appendix C are listed.
Table 6 lists all other general hyperparameters used for our experiments.

Table 6: General Hyperparameters.

Hyperparameter Default Value

Epochs 50
Batch size 128
Noise Level 0.10

17

Table 7: Manually chosen hyperparameters H1 and H2

Hyperparameter Hi1 H2
Param. learning rate 0.001 0.001
Param. weight decay le—8 le—8
Param. warm up False False
Alpha learning rate 0.001 0.0001
Alpha weight decay 0.001 0.0001
Alpha warm up True True
Alpha scheduler Linear Linear
Alpha optimizer Gradient Descent ~ Gradient Descent

Table 8: BOHB optimized hyperparameters for different data formations, objectives and methods.

Hyperparameter Search Range BOHB-one-shot-Blur BOHB-one-shot-DS BOHB-Blur BOHB-DAS-single
Param. learn. rate [1e —05,1] 0.0014232405 0.0020448382 0.0020882283 0.0014232405
Param. weight decay [1e —08,0.1] 8.616e — 07 5.04e — 08 4.4e — 08 8.616e — 07
Param. warm up [True,False] False True False False

Alpha learn. rate [1e —05,0.1] 0.0836808765 0.0100063746 8.43195e — 05 0.025012337102395577
Alpha weight decay [1e —05,0.1] 5.05099¢ — 05 0.0058022776 0.0127425783 1.390640076980444e — 05
Alpha warm up [True, False] False True True False

Alpha scheduler [None, Linear] Linear Linear Linear None

Alpha optimizer [Adam, Gradient Descent] Adam Gradient Descent Adam Adam

Computational Setup

All experiments in the main body were run on a single Nvidia GTX 2080ti graphics card of which
two were utilized. The hyperparameter tuning with BOHB was conducted on a single Nvidia GTX

1080 Ti graphics card.

Table 9: BOHB optimized hyperparameters for the non-sequential search space for data formation

blur and different objectives.

Hyperparameter Search Range BOHB-Non-Seq-one-shot-Blur BOHB-Non-Seq-Blur
Param. learn. rate [1e = 05,1] 0.0050969066 0.0037014752
Param. weight decay [1e — 08,0.1] 2.423e — 07 1.4573¢ — 06
Param. warm up [True,False] False False

Alpha learn. rate [le — 05,0.1] 1.32499e — 05 0.0012395056
Alpha weight decay [1e — 05,0.1] 0.0010171142 0.0002855732
Alpha warm up [True, False] False False

Alpha scheduler [None, Linear] None None

Alpha optimizer [Adam, Gradient Descent] Adam Adam

18

	Introduction
	Related Work
	Differentiable Architecture Search
	Proposed Search Spaces
	Sequential Search Space
	Non-Sequential Search Space
	Network Operations for Inverse Problems

	Evaluating DAS for Inverse Problems
	Experimental Setup
	Experimental Analysis
	Correlation between Architecture and DAS Performance
	Image Reconstruction Experiments

	Conclusions
	Non-Degenerated Search
	Improving the Initialization
	Hyperparameter Stabitily in the Non-sequential Search Space
	Visualizations
	Hyperparameters
	Computational Setup

