

000 001 UNIF²ACE: A UNIFIED FINE-GRAINED FACE UNDER- 002 STANDING AND GENERATION MODEL 003 004

005 **Anonymous authors**
006 Paper under double-blind review
007
008
009

ABSTRACT

011 Unified multimodal models (UMMs) have emerged as a powerful paradigm in
012 fundamental cross-modality research, demonstrating significant potential in both
013 image understanding and generation. However, existing research in the face domain
014 primarily faces two challenges: **(1) fragmentation development**, with existing
015 methods failing to unify understanding and generation into a single one, hindering
016 the way to artificial general intelligence. **(2) lack of fine-grained facial attributes**,
017 which are crucial for high-fidelity applications. To handle those issues, *we propose*
018 ***UniF²ace***, *the first UMM specifically tailored for fine-grained face understanding*
019 *and generation*. **First**, we introduce a novel theoretical framework with a Dual
020 Discrete Diffusion (D3Diff) loss, unifying masked generative models with discrete
021 score matching diffusion and leading to a more precise approximation of the
022 negative log-likelihood. Moreover, this D3Diff significantly enhances the model's
023 ability to synthesize high-fidelity facial details aligned with text input. **Second**,
024 we propose a multi-level grouped Mixture-of-Experts architecture, adaptively
025 incorporating the semantic and identity facial embeddings to complement the
026 attribute forgotten phenomenon in representation evolution. **Finally**, to this
027 end, we construct UniF²aceD-1M, a large-scale dataset comprising 130K fine-
028 grained image-caption pairs and 1M visual question-answering pairs, spanning a
029 much wider range of facial attributes than existing datasets. Extensive experiments
030 demonstrate that UniF²ace outperforms existing models with a similar scale in
031 both understanding and generation tasks, with 7.1% higher Desc-GPT and 6.6%
032 higher VQA-score, respectively.¹

1 INTRODUCTION

033 Recently, unified multimodal models (UMMs) have emerged as a vibrant research area enabling
034 cross-modality understanding and generation within a single “any-to-any” framework, marking a
035 significant step toward artificial general intelligence (AGI) (Wu et al., 2024a; Shi et al., 2024; Li et al.,
036 2024a; Zhou et al., 2024; Team, 2024; Xie et al., 2024). Given the central role of faces in daily life,
037 applying this unified paradigm to achieve fine-grained face understanding and generation is essential
038 for developing human-centric AGI. The practical applications are vast and critical: accurate face
039 understanding is pivotal for identity verification (Srinivasan et al., 2024; Roshdy et al., 2024) and
040 human-computer interaction (Liu, 2024; Chowdary et al., 2023), while high-fidelity face generation
041 drives progress in creative industries (Melnik et al., 2024), virtual avatars (Yan et al., 2024), and data
042 augmentation for model robustness (Melzi et al., 2023). These demanding real-world needs urge
043 facial research to push the boundaries of multimodal understanding and generative modeling.

044 As shown in Fig. 1, despite the critical importance of human faces, existing research faces two fundamental
045 and intertwined challenges: **First, the field remains fragmented**, with current methodologies
046 treating face understanding and generation as separate endeavors, failing to unify these capabilities
047 into a single framework. Typically, face understanding models are often based on fine-tune pretrained
048 multimodal large language models (MLLMs) on facial images with coarse text descriptions (Chet-
049 taoui et al., 2025; Sun et al., 2024a; Xing et al., 2024). Face generation models (Huang et al.,
050 2023; Nair et al., 2023; Kim et al., 2024) often incorporate visual information, such as semantic
051 masks and sketches, to guide high-fidelity face synthesis, but they cannot achieve direct generation
052 from detailed captions to faces. This leads to disjointed workflows that are both computationally
053

¹Code is available in the supplementary materials.

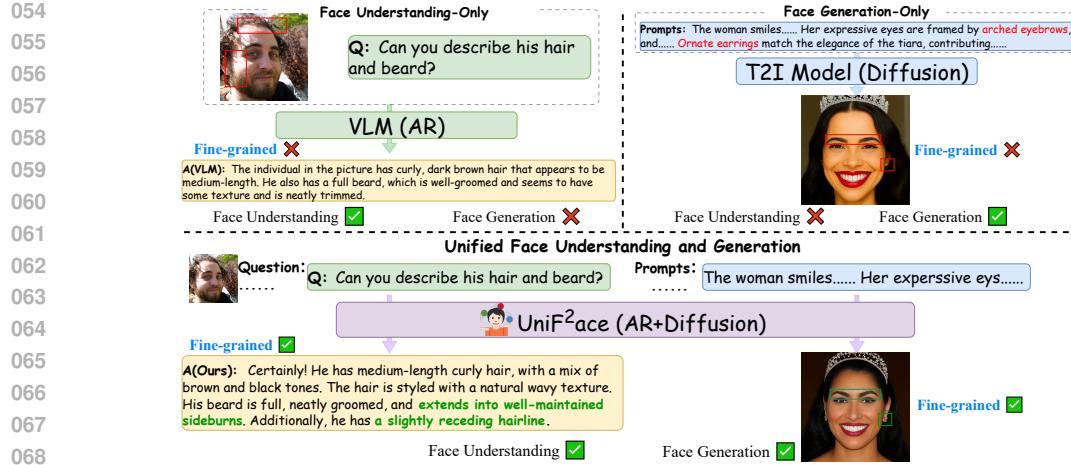


Figure 1: UniF²ace is the first unified multimodal model designed for face understanding and generation, encompassing tasks such as visual question answering(VQA) and text-to-image generation. The generated responses and images demonstrate UniF²ace’s potential in fine-grained face attributes.

inefficient and functionally restrictive. Crucially, the absence of a unified framework represents a significant hurdle towards the realization of AGI within the domain of human faces. **Second, there is a pervasive lack of fine-grained information processing** across both understanding and generation tasks. This challenge stems from three problems: (a) The discrete diffusion model inherits the advantages of diffusion for image generation while enabling better scalability modeling with text tokens in UMMs (Yang et al., 2025; Xie et al., 2024). However, its specific implementation primarily relies on masked generative models (Chang et al., 2022), lacking a combination with accurate score matching (Lou et al., 2024), making it challenging to generate precise image details; (b) detailed attribute representations are prone to being discarded during the learning evolution in multimodal models (Zeng et al., 2024; He et al., 2025); and (c) the inaccessibility of cross-modality facial datasets featuring fine-grained attributes. Existing text-face datasets fall into two types: web-scraped low-resolution facial images with inaccurate captions (Li et al., 2024c; Zheng et al., 2022), and close-up facial datasets with limited attributes per caption (only 2 to 7) (Xia et al., 2021; Yu et al., 2023a), which lack detail. Moreover, current facial datasets do not include VQAs, limiting their use for fine-grained understanding tasks. Furthermore, this deficiency directly impacts high-quality face generation (Xiao et al., 2025; Deng et al., 2025; Wang et al., 2025a).

To handle these challenges, we propose ***UniF²ace*** (see Fig. 1), the first UMM specifically tailored for *unified* and *fine-grained* face understanding and generation. UniF²ace aims to address the aforementioned critical challenges by simultaneously performing both tasks and capturing fine-grained facial attributes within a single model. Specifically, we firstly introduce a Dual Discrete Diffusion (D3Diff) loss within a novel theoretical proof that optimizes the negative log-likelihood, significantly improving generation quality. After that, we propose an integrated token-level and sequence-level Mixture-of-Experts(MoE) architecture that adaptively handling semantic and identity facial embeddings, effectively addressing the attribute forgotten phenomenon in representation evolution and specialized fine-grained representation learning for both understanding and generation tasks. Finally, recognizing the critical role of data, we construct UniF²aceD-1M, a large-scale, specialized dataset containing 130K facial image-text pairs and 1M visual question-answering (VQA) pairs, with 17.7 attributes per caption. Extensive experiments on **UniF²aceD-1M** and other benchmarks demonstrate that UniF²ace significantly outperforms various top-leading single-task models or UMMs with a similar scale and dedicated face models across both understanding and generation tasks, with 7.1% higher Desc-GPT and 6.6% higher VQA-score. Besides, our method achieves comparable or even better accuracy than larger-scale models and establishes a strong baseline. Our main contributions are as follows:

- A unified face understanding and generation framework: We introduce UniF²ace, the first unified multimodal model for fine-grained face understanding and generation, establishing a solid baseline.
- A novel Dual Discrete Diffusion (D3Diff) loss function and a hybrid MoE architecture: We introduce D3Diff, a novel loss function within that theoretically unifies score-based diffusion and masked generative models, leading to a better approximation of the negative log-likelihood

108 for high-fidelity generation and fine-grained attribute control. Additionally, we explore a hybrid
 109 Mixture-of-Experts (MoE) architecture at the token and sequence levels, adaptively incorporating
 110 the semantic and identity facial embeddings to complement the attribute forgotten phenomenon in
 111 representation evolution.

112 • We construct UniF²aceD-1M, a dataset containing 1M VQAs with an automated pipeline. Extensive
 113 experiments demonstrate that UniF²ace significantly outperforms or is on par with existing state-
 114 of-the-art models with a similar scale on various benchmarks, all while providing a more unified
 115 and efficient solution.

116 2 RELATED WORK

118 The field of Unified Multimodal Models (UMMs) has seen significant progress in integrating diverse
 119 understanding and generation tasks within single frameworks for generic domains (Ma et al., 2024;
 120 Team, 2024; Xie et al., 2024). However, their application to fine-grained visual analysis, especially in
 121 the complex domain of human faces, remains largely unexplored. Within the face domain, existing
 122 research is primarily fragmented into separate understanding models (often MLLM-based) (Sun et al.,
 123 2024a; Xing et al., 2024) and generation models (typically diffusion-based) (Dai et al., 2025; Wang
 124 et al., 2024b). Crucially, these approaches often struggle with fine-grained attribute processing and
 125 fail to unify understanding and generation effectively. This dual deficiency represents a significant
 126 gap that UniF²ace addresses. We also provide a more comprehensive review of Unified Multimodal
 127 Models and Face Multimodal Models in **Appendix A**.

128 3 METHODOLOGY

130 We introduce our unified multimodal model, UniF²ace, designed to model both the understanding
 131 and generation of fine-grained facial attributes. Our approach is realized from two perspectives:
 132 loss function (Sec. 3.1) and network architecture (Sec. 3.2). Regarding the generation strategy, we
 133 recognize that the generation of fine-grained facial attributes is significantly more challenging than
 134 understanding tasks, as highlighted in prior studies (Du et al., 2017; Zhou et al., 2024; Xie et al., 2024).
 135 To address this, we harness the theory of score matching in discrete diffusion (Lou et al., 2024) and
 136 propose the dual discrete diffusion (D3Diff) training strategy, ensuring the meticulous synthesis of
 137 facial details. For network architecture, existing UMMs typically focus on dense architectures (Zhou
 138 et al., 2024; Xie et al., 2024) or solely on achieving token-level MoE (Deng et al., 2025), lacking the
 139 selective integration of instance features. To overcome these limitations, we introduce token-level and
 140 sequence-level MoE layers. Distinct MoE modules are designed for generation and understanding
 141 tasks, selectively integrating information such as facial embeddings to enhance the model’s ability to
 142 capture subtle facial attributes.

143 3.1 DUAL DISCRETE DIFFUSION

144 In generative modeling, masked generative models (Chang et al., 2022) are a widely adopted approach.
 145 However, in this section, we introduce discrete score matching and theoretically prove that it offers
 146 a better approximation to the negative log-likelihood. We also establish a theoretical connection
 147 between the two approaches and finally propose a new loss function to ensure stable optimization,
 148 thereby improving the alignment between the generated faces and fine-grained attributes in prompts.

149 In a discrete diffusion process, each image \mathbf{x}_0 is associated with a probability $q(\mathbf{x}_0)$, and its latent
 150 distribution at time t under noise adding is denoted by $q(\mathbf{x}_t)$. The forward diffusion is modeled as a
 151 continuous-time Markov chain, governed by the linear ordinary differential equation (ODE):

$$152 \quad \frac{d}{dt} q_{t|s}(\mathbf{y} \mid \mathbf{x}) = q_{t|s}(\mathbf{y} \mid \mathbf{x}) \mathbf{Q}_t, \quad (1)$$

154 which converges to a stationary distribution as $t \rightarrow \infty$. Here, \mathbf{Q}_t denotes a time-dependent sequence
 155 of transition matrices. The closed-form solution of this ODE can be expressed as $\mathbf{Q}_{t|s} = \exp((\bar{\sigma}(t) -$
 156 $\bar{\sigma}(s)) \mathbf{Q})$, where $\bar{\sigma}(t) = \int_0^t \sigma(s) ds$ represents the cumulative noise level and \exp is the matrix
 157 exponential. The reverse process is given by Lou et al. (2024):

$$158 \quad \frac{dq_{T-t}}{dt} = \tilde{\mathbf{Q}}_{T-t} q_{T-t}, \quad \tilde{\mathbf{Q}} = \frac{q_t(\mathbf{y})}{q_t(\mathbf{x})} \mathbf{Q}_t(\mathbf{x}, \mathbf{y}), \quad (2)$$

161 where $\tilde{\mathbf{Q}}$ is the reverse diffusion matrix. In our work, we focus on the absorbing state, which is widely
 162 used in masked generative models (Chang et al., 2022; Xie et al., 2024). Assuming independence

162 among tokens, as supported by Sahoo et al. (2024); Shi et al. (2025), the exact formulation is
 163 deferred to Appendix D. The score-based discrete diffusion model (Lou et al., 2024) introduces a
 164 training-stable loss $\mathcal{L}_{\text{score}}(s_\theta)$ to estimate the denoising score. It is defined as:
 165

$$166 \quad \mathcal{L}_{\text{score}}(s_\theta) = \mathbb{E}_{\mathbf{x} \sim p} \left[\sum_{\mathbf{y} \neq \mathbf{x}} w_{xy} \left(s_\theta(\mathbf{x})_y - \frac{q(\mathbf{y})}{q(\mathbf{x})} \log s_\theta(\mathbf{x})_y + K \left(\frac{q(\mathbf{y})}{q(\mathbf{x})} \right) \right) \right], \quad (3)$$

169 where $s_\theta(\mathbf{x}_t, t) \approx \left[\frac{q_t(\mathbf{y}_t)}{q_t(\mathbf{x}_t)} \right]_{\mathbf{y}_t \in \mathcal{X}}$ is the predicted score from the neural network, and $K(a) =$
 170 $a(\log a - 1)$ is a normalizing constant ensuring $\mathcal{L}_{\text{score}} \geq 0$.
 171

172 To illustrate the advantage of $\mathcal{L}_{\text{score}}$, we start from the negative log-likelihood (NLL), which serves
 173 as a fundamental criterion for evaluating the quality of training in generative models. Since exact
 174 computation of the NLL is generally infeasible, prior works have derived two different surrogate
 175 formulations that upper bound the NLL while remaining computationally tractable. Specifically, one
 176 is $\mathcal{L}_1 = \mathcal{L}_{\text{score}}(s_\theta) + D_{\text{KL}}(q_T(\cdot | \mathbf{x}_0) \| p_{\text{base}})$, which predicts the score (Lou et al., 2024). And the
 177 other is $\mathcal{L}_2 = -\sum_{t=1}^T \mathbb{E}_{q(\mathbf{x}_0)q(\mathbf{x}_t | \mathbf{x}_0)} [\log p_\theta(\mathbf{x}_0 | \mathbf{x}_t)] - C$, widely used to predict masked tokens (Xie
 178 et al., 2024), where C is a residual constant independent of the model parameters (see Appendix E for
 179 details). The following theorem formally establishes the relationship between these two surrogates
 180 and demonstrates that \mathcal{L}_1 , which incorporates the score loss, yields a tighter upper bound on NLL.
 181

Theorem 1. *Let $-\log p_\theta(\mathbf{x}_0)$ denote the negative log-likelihood of the original data distribution.
 182 Then the following inequality holds:*

$$183 \quad -\log p_\theta(\mathbf{x}_0) \leq \mathcal{L}_1 \leq \mathcal{L}_2. \quad (4)$$

185 The proof is deferred to Appendix E. Importantly, this result implies that $\mathcal{L}_{\text{score}}$ provides a tighter
 186 relaxation of the maximum likelihood objective compared to the masked generative related loss \mathcal{L}_2 ,
 187 thereby offering a more precise approximation of the NLL. In practice, the marginal distribution $q(\mathbf{y})$
 188 is often intractable, and the exact analytical form of $q(\mathbf{x})$ is unknown. A key insight is that, in masked
 189 generative models, the posterior probability model $p_\theta(\mathbf{x}_0 | \mathbf{x}_t)$ can be related to the discrete diffusion
 190 score function via Bayes' theorem:

$$191 \quad p_\theta(\mathbf{x}_0 | \mathbf{x}_t) \approx q_t(\mathbf{x}_t | \mathbf{x}_0) \left[\frac{q_t(\mathbf{x}_0)}{q_t(\mathbf{x}_t)} \right]_\theta = q_t(\mathbf{x}_t | \mathbf{x}_0) s_\theta(\mathbf{x}_t). \quad (5)$$

193 Leveraging this relation, we propose the dual discrete diffusion (D3Diff) loss for training posterior
 194 networks:

$$195 \quad \mathcal{L}_{\text{D3Diff}} = -\sum_{t=1}^T \mathbb{E}_{q(\mathbf{x}_0)q(\mathbf{x}_t | \mathbf{x}_0)} [\log p_\theta(\mathbf{x}_0 | \mathbf{x}_t)] + \alpha \mathcal{L}_{\text{score}}(p_\theta(\mathbf{x}_0 | \mathbf{x}_t) / q_t(\mathbf{x}_t | \mathbf{x}_0)), \quad (6)$$

198 where $q(\mathbf{x}_0)$ is the data distribution, $q(\mathbf{x}_t | \mathbf{x}_0)$ is the forward diffusion distribution, and $p_\theta(\mathbf{x}_0 | \mathbf{x}_t)$ is
 199 the learned posterior parameterized by θ . The score loss $\mathcal{L}_{\text{score}}$ is weighted by a hyperparameter α .
 200 Eq. 6 establishes a computationally tractable connection between masked generative models and
 201 score-based models. Unlike traditional masked generative losses, which rely solely on likelihood,
 202 our *D3Diff* loss jointly optimizes two distinct upper bounds of the maximum likelihood objective,
 203 enabling stable optimization and fine-grained generation (See Tab. 5).
 204

3.2 MULTI-LEVEL GROUPED MIXTURE-OF-EXPERT

206 To capture fine-grained facial attributes while maintaining facial embeddings, we design distinct MoE
 207 layers, termed Multi-level Grouped MoE, tailored for both generation and understanding subtasks.
 208 This ensures optimal performance for each task, as illustrated in Fig. 2. We incorporate a sequence-
 209 level MoE layer after the token-level MoE layer to effectively process instance-level inputs, such as
 210 images and facial embeddings.

211 **Token-Level MoE.** We partition a feedforward neural network (FFN) into multiple experts with
 212 reduced hidden dimensions and use a Top-K activation strategy (Fig. 2). We also employ integrate
 213 generalized knowledge across contexts. Unlike prior methods, we introduce grouped MoE, dividing
 214 experts into two groups based on the different tasks of Text-to-Image (T2I) and Multimodal Under-
 215 standing (MMU). Each group combines shared and routed MoE, with expert-level balance loss
 216 computed independently per group:

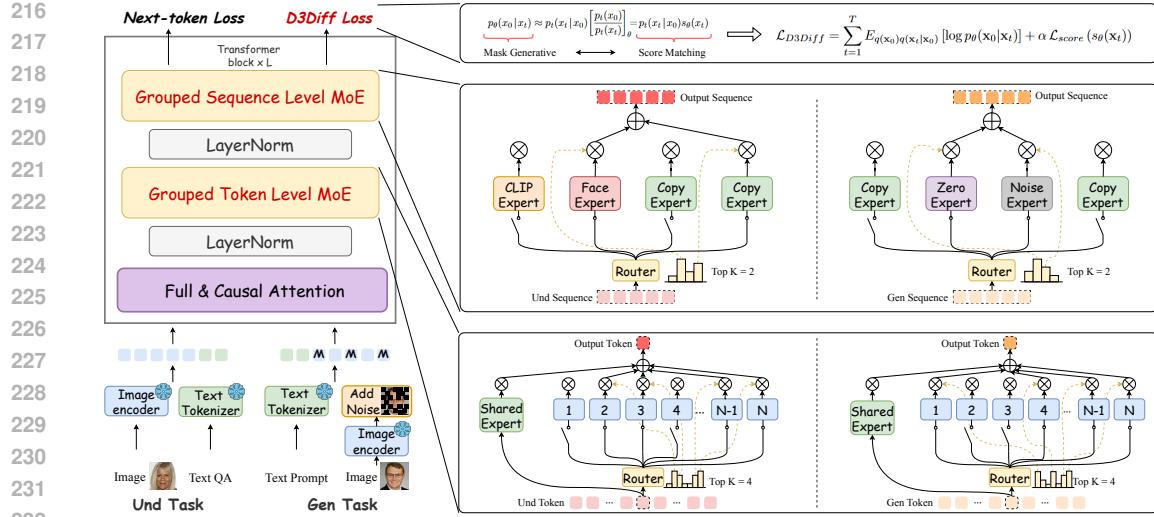


Figure 2: Our UniF²ace centered on two key innovations. First, we design the Transformer with Mixture-of-Experts (MoE) hierarchy: a token-level MoE provides task-specific routing for individual tokens, while a sequence-level MoE injects holistic, domain-specific features. Second, the model’s generative capability is optimized by our proposed D3Diff loss, which unifies masked generation with score matching to ensure high-fidelity synthesis of fine-grained facial details.

$$\mathcal{L}_{\text{Balance}} = \lambda_{\text{t2i}} \sum_{i=1}^{N_{\text{t2i}}} f_i P_i + \lambda_{\text{mmu}} \sum_{j=1}^{N_{\text{mmu}}} f_j P_j, \quad (7)$$

where λ_{t2i} and λ_{mmu} are balance factors; N_{t2i} and N_{mmu} means the number of routed experts for T2I and MMU tasks, respectively; f_i and P_j denote expert selection frequency and probability.

Sequence-Level MoE. We propose sequence-level MoE, where distinct experts process the entire image feature. We design three experts for the T2I group: copy expert (skip operation), zero expert (discard operation), and noise expert. The copy and zero experts require no additional parameters.

$$\mathbf{E}_{\text{copy}}(\mathbf{x}) = \mathbf{x} \quad \text{and} \quad \mathbf{E}_{\text{zero}}(\mathbf{x}) = \mathbf{0}, \quad (8)$$

where $\mathbf{E}_{\text{copy}}(\cdot)$ is the copy expert and $\mathbf{E}_{\text{zero}}(\cdot)$ is the zero expert. For the noise expert $\mathbf{E}_{\text{noise}}(\cdot)$, we first integrate the time-step embedding, which operates on the noise level $\bar{\sigma}(t)$ to obtain the noise embedding vector $\mathbf{v}_{\text{noise}}$, following score-based discrete diffusion models (Lou et al., 2023). Then, a resampler $\mathcal{S} : \mathbb{R}^h \rightarrow \mathbb{R}^{L \times D}$ maps $\mathbf{v}_{\text{noise}}$ into the sequence feature space (see **Appendix E** for resampler details). The resampled noise embedding is added as a matrix to the sequence feature. Formally, the noise expert’s output is:

$$\mathbf{E}_{\text{noise}}(\mathbf{x}) = w\mathbf{x} + (1 - w)\mathcal{S}(\mathbf{v}_{\text{noise}}), \quad (9)$$

$$w = \text{Softmax}(\mathbf{W}_{\text{noise}} \cdot \text{Flatten}(\mathbf{x})), \quad (10)$$

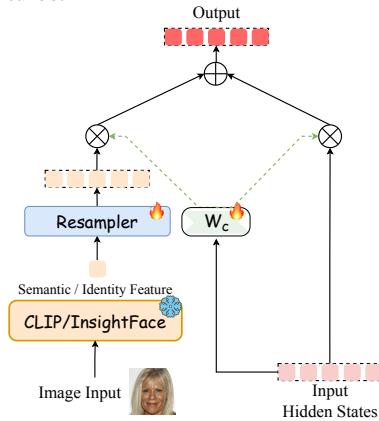
where $\mathbf{W}_{\text{noise}} \in \mathbb{R}^{2 \times (L \cdot D)}$ is a trainable weight matrix. In the MMU task, we include copy experts and introduce CLIP experts and face experts (See Figure 3), which are similar to noise experts. Next we extract image embeddings by CLIP (Radford et al., 2021) and face embeddings using AntelopeV2 as supplementary features to enhance fine-grained facial attribute capture. Formally, the outputs of the CLIP and face experts are:

$$\mathbf{E}_{\text{CLIP}}(\mathbf{x}) = w_{\text{clip}}\mathbf{x} + (1 - w_{\text{clip}})\mathcal{S}(\mathcal{G}(\mathbf{X})), \quad (11)$$

$$\mathbf{E}_{\text{face}}(\mathbf{x}) = w_{\text{face}}\mathbf{x} + (1 - w_{\text{face}})\mathcal{S}(\mathcal{F}(\mathbf{X})), \quad (12)$$

where \mathcal{G} and \mathcal{F} are the image encoder and face encoder, respectively. \mathbf{X} is the input face image.

Figure 3: Clip/Face Expert enhances the model’s understanding of fine-grained facial attributes by incorporating semantic and identity features.



3.3 OVERALL TRAINING OBJECTIVES

To perform both auto-regressive and discrete score-based diffusion modeling, we employ two learning objectives: 1) Next Token Prediction (NTP) and 2) Dual Discrete Diffusion. Given a sequence with N image tokens $\mathcal{X} = \{X_1, X_2, \dots, X_N\}$ and M text tokens $\mathcal{Y} = \{Y_1, Y_2, \dots, Y_M\}$. Then we maximize the likelihood of text tokens \mathcal{Y} by employing the standard language modeling objective (NTP loss):

$$\mathcal{L}_{\text{MMU}} = \sum_{i=1}^M \log P(\mathbf{Y}_i \mid \mathbf{Y}_{<i}, \mathcal{X}), \quad (13)$$

Next, the overall training objectives of UniF²ace are formulated as:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{MMU}} + \mathcal{L}_{\text{D3Diff}}, \quad (14)$$

4 EXPERIMENT

4.1 UNIF²ACED-1M DATASET FOR FINE-GRAINED FACE UNDERSTANDING AND GENERATION

Dataset	Face Resolution	VQA Availability	Image	Caption Tokens (Avg.)	Face Attributes (Avg. per Caption)
LAION-Face (Zheng et al., 2022) FLIP-80M (Li et al., 2024c)	Low	✗ ✗	50M 80M	16 22	2.7 4.4
FFHQ-Text (Zhou & Shimada, 2021)	High	✗	760	45	12.2
MM-CelebA-HQ (Karras et al., 2018)		✗	30K	26	6.2
CelebV-Text (Yu et al., 2023b)		✗	70K	80	4.3
Unif ² ace ² -IM (Ours)		✓ (1M)	130K	120	17.7

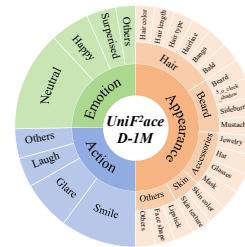


Figure 4: UniF²aceD-1M contains high-resolution facial images, the largest number of facial attributes, 130K fine-grained image-caption pairs and 1 million VQAs.

Existing datasets for multimodal facial modeling frequently suffer from significant limitations, hindering advancements in fine-grained understanding and generation. Common deficiencies include low-resolution imagery, imprecise or web-scraped captions lacking subtle attribute details, and a pervasive absence of comprehensive visual question-answering (VQA) pairs tailored to facial specifics (Li et al., 2024c; Zheng et al., 2022; Xia et al., 2021; Yu et al., 2023a; Karras, 2019). These shortcomings mean that current models struggle to synthesize nuanced facial expressions, comprehend intricate visual semantics, or reason effectively about complex facial attributes. To overcome these challenges and truly enable *unified* and *fine-grained* multimodal facial intelligence, we introduce UniF²aceD-1M. This high-quality dataset serves as a cornerstone of our framework, meticulously designed to bridge these critical data gaps.

As shown in Fig. 4, our UniF²aceD-1M provides a resource distinguished by its fine-grained detail and scale. It comprises nearly 130K high-fidelity facial images, each paired with richly detailed captions that encompass a wide spectrum of 46 attributes related to appearance, actions, and emotions. This meticulous level of detail is paramount for both robust model training and the generation of highly controllable and realistic facial outputs. Furthermore, a key innovation of UniF²aceD-1M is the inclusion of approximately 1M specialized VQA pairs. Unlike general VQAs, ours are meticulously crafted to probe diverse facial appearances, emotions, and provide detailed reasoning for character actions. This unique VQA collection is specifically designed to enhance MLLMs ability to understand and reason about fine-grained facial attributes through instruction tuning. By offering a substantial collection of high-quality facial imagery, richly detailed captions, and a unique, large-scale set of facial VQAs, UniF²aceD-1M sets a new standard, providing the indispensable resources for developing next-generation unified models capable of sophisticated fine-grained facial intelligence. More collection and operation details can be found in the **Appendix B**.

4.2 METRICS AND OTHER FACIAL DATASETS

We rigorously evaluate UniF²ace's performance across both generation and understanding tasks on our UniF²aceD-1M test set. To provide a comprehensive assessment and verify the generalizability of our method, we also conduct evaluations on other public benchmarks, including FFHQ-Text (Zhou & Shimada, 2021), MM-CelebA (Xia et al., 2021), and CelebV-Text (Yu et al., 2023b). **For generation tasks**, we used VQAscore to measure the relevance of generated images to captions, reporting results

324 based on CLIP-FlanT5-11B (VQAscore-CF5) (Lin et al., 2024b) and LLaVA-v1.5-13B (VQAscore-
325 LV) (Liu et al., 2024c) for robust assessment. We also employ Fréchet Inception Distance (FID) to
326 measure similarity to ground truth and VLM-score to evaluate facial realism. **For understanding**
327 **tasks**, we follow LLaVA (Liu et al., 2023) and use GPT-4o (Hurst et al., 2024) and DeepSeek-v3 (Liu
328 et al., 2024a) to score responses on a 1-10 scale across two dimensions: detailed captioning (Desc-
329 GPT, Desc-DS), assessing accuracy in capturing face attributes, and VQA (Conv-GPT, Conv-DS),
330 measuring precision in responding to fine-grained queries. To fully validate UniF²ace, we compare it
331 with SOTA models. This includes generative models such as autoregressive LlamaGen (Yu et al.,
332 2023c) and diffusion-based Stable Diffusion 3 (SD3) (Esser et al., 2024), as well as leading unified
333 multimodal models (UMMs) like TokenFlow (Qu et al., 2024) and OmniFlow (Li et al., 2024a). More
334 implementations details are in **Appendix C**.

335 4.3 FACE GENERATION

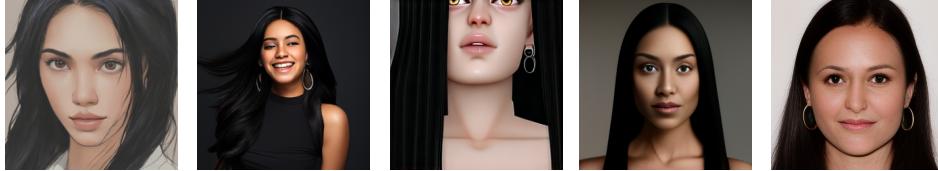
337 Table 1: Comparison of face generation of UniF²ace with generative-only and UMMs. **Bold** indicates
338 the best, while underlined denotes the best. We use **red** to highlight the larger-scale model.

Type	Model	Method	# Params	VQAscore-CF5↑	VQAscore-LV↑	FID↓	VLM-score↑
Gen. Only	LlamaGen (Sun et al., 2024b)	AR	0.8B	0.746	0.551	183.466	49.773
	DALL-E 3 (Betker et al., 2023)	AR	-	0.845	0.644	106.477	50.122
	SD3 (Esser et al., 2024)	Diff	2B	0.903	0.671	93.471	75.944
	SDXL (Podell et al., 2023)	Diff	2.6B	0.876	0.660	123.095	72.764
	Flux.1-dev (Labs, 2024)	Diff	12B	0.893	0.674	76.427	84.513
Und. and Gen.	TokenFlow (Qu et al., 2024)	AR	7B	0.871	0.664	98.194	73.177
	OmniFlow (Li et al., 2024a)	Diff	3.4B	0.798	0.585	180.933	24.960
	JanusFlow (Ma et al., 2024)	AR + Diff	1.3B	0.881	0.653	72.825	61.593
	Show-o (Xie et al., 2024)	AR + Diff	1.3B	0.855	0.650	142.557	75.618
	UniF ² ace(Ours)	AR + Diff	1.8B	0.894	0.679	66.005	88.049

347 Table 2: Comparison of face generation on other public datasets. The experimental setup utilized the
348 built-in short captions of datasets as text prompts for generation.

Type	Model	Params	FFHQ-Text			MM-CelebA			CelebV-Text		
			VQAScore↑	FID↓	VLM-Score↑	VQAScore↑	FID↓	VLM-Score↑	VQAScore↑	FID↓	VLM-Score↑
Gen. Only	LlamaGen (Sun et al., 2024b)	0.8B	0.336	201.341	46.412	0.358	187.311	48.121	0.721	289.841	46.906
	DALL-E 3 (Betker et al., 2023)	-	0.385	196.132	49.131	0.413	158.795	49.130	0.792	295.131	54.359
	SD3 (Esser et al., 2024)	2B	0.423	156.129	74.492	0.459	105.141	80.142	0.803	239.313	74.127
	SDXL (Podell et al., 2023)	2.6B	0.396	181.261	64.255	0.420	139.028	73.149	0.788	271.319	70.991
	Flux.1-dev (Labs, 2024)	12B	0.434	136.360	83.621	0.467	128.462	87.764	0.806	254.043	84.901
Gen. & Und.	TokenFlow (Qu et al., 2024)	7B	0.409	160.023	74.349	0.421	129.562	71.092	0.781	273.972	79.526
	OmniFlow (Li et al., 2024a)	3.4B	0.376	228.094	25.431	0.368	201.413	27.892	0.800	290.131	36.839
	JanusFlow (Ma et al., 2024)	1.3B	0.413	149.231	60.984	0.445	129.131	63.418	0.797	259.236	66.587
	Show-o (Xie et al., 2024)	1.3B	0.391	177.053	73.141	0.428	141.311	74.242	0.785	260.210	70.482
	UniF ² ace(Ours)	1.8B	0.451	125.287	87.412	0.481	85.179	86.978	0.804	224.412	94.986

363 "A young female child with a **round face**, wearing a playful green hat with monster-like features including white eyes. Her long hair peeks out from under the hat.
364 The child's **cheeks are rosy**, and her **lips are slightly parted**. She has **light-colored eyes**, giving an expression of **curiosity or wonder**. Dressed in a **bright red**
365 **jacket**, she adds a **vibrant contrast** to the scene. The background is a **softly blurred outdoor winter setting**."



370 "The image features a female with **long, straight black hair**. She has a **fair complexion** with a **smooth skin texture** and **well-defined, arched eyebrows** that
371 complement her **deep-set, dark brown eyes**. Her nose is **pointy** and she has **full lips with a natural, subtle color**. The person is **wearing hoop earrings** and **smiling or**
372 **laughing**, conveying a **sense of happiness**, with an overall expression that is **calm and composed**."

373 Figure 5: Comparative analysis of face images generation quality across SDXL (Podell et al., 2023),
374 TokenFlow (Qu et al., 2024), OmniFlow (Li et al., 2024a), Show-o (Xie et al., 2024), and UniF²ace.
375 Our proposed UniF²ace effectively captures more detailed information from prompts.

376 **Generation Performance on UniF²aceD-1M and Public Dataset.** On our UniFaceD-1M benchmark
377 (Tab. 1), our 1.8B parameter UniF²ace sets a new state-of-the-art, outperforming all competing UMMs
378 on key generation metrics including FID, VQA-score, and VLM-score. Furthermore, the model
379 also demonstrates robust generalization, consistently achieving leading scores on public cross-facial

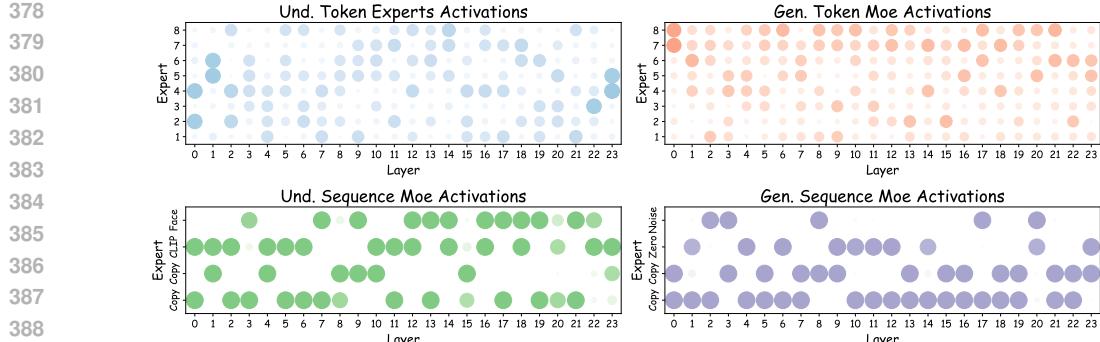


Figure 6: Activation frequency of Token-Level and Sequence-Level MoE in different layers. The left column indicates understanding tasks, while the right column indicates generation tasks. Larger circles indicate experts who are activated more frequently.

datasets such as FFHQ-Text (Zhou & Shimada, 2021), MM-CelebA (Xia et al., 2021), and CelebV-Text (Yu et al., 2023a) (Tab. 2). This strong and consistent performance validates the effectiveness of our D3Diff loss and multi-level grouped MoE architecture for high-quality, fine-grained facial image generation across diverse settings.

Visualization Analysis. As shown in Fig. 5, we conduct qualitative evaluation on challenging UniF²aceD-1M test scenarios involving complex facial details. UniF²ace excels at generating realistic faces that capture fine-grained details from complex prompts (e.g., “rosy cheeks,” “hoop earrings”), visibly outperforming other models. More examples can be found in Fig. 8 and Fig. 9. Besides, as shown in Fig. 6, we analyze MoE activation frequencies across layers. For token-level MoEs, high activation frequencies are concentrated between experts 5 and 8, indicating limited token feature variability in the generation task. For sequence-level MoEs, noise and zero expert activations are evenly distributed, indicating effective training with selective noise embedding and truncation.

4.4 FACE UNDERSTANDING

Table 3: Comparison of face understanding of UniF²ace with understanding-only and UMMs.

Type	Model	Method	# Params	Desc-GPT↑	Conv-GPT↑	Desc-DS↑	Conv-DS↑
Und. Only	VILA1.5 (Lin et al., 2023)	AR	3B	4.76	5.20	6.56	6.54
	Qwen2-VL (Wang et al., 2024a)	AR	7B	5.16	6.27	5.50	6.86
	LLaVA-v1.5 (Liu et al., 2024b)	AR	7B	4.28	5.48	4.84	6.20
	InternVL2.5 (Chen et al., 2024)	AR	8B	5.62	5.89	6.30	6.55
	Qwen2.5-VL (Bai et al., 2025)	AR	3B	4.88	6.38	4.98	6.75
Und. and Gen.	TokenFlow (Qu et al., 2024)	AR	7B	5.02	5.80	5.82	6.39
	OmniFlow (Li et al., 2024a)	Diff	3.4B	1.62	-	1.90	-
	JanusFlow (Ma et al., 2024)	AR + Diff	1.3B	4.88	6.06	5.42	6.77
	Show-o (Xie et al., 2024)	AR + Diff	1.3B	3.88	4.17	5.24	4.90
	UniF ² ace(Ours)	AR + Diff	1.8B	6.02	6.53	7.38	7.29

Table 4: Comparison of face understanding on other public datasets. The experiments utilized the dataset’s captions as labels for captioning task evaluation, showing the robustness of UniF²ace.

Type	Model	Params	FFHQ-Text		MM-CelebA		CelebV-Text	
			Desc-GPT	Desc-DS	Desc-GPT	Desc-DS	Desc-GPT	Desc-DS
Und.Only	VILA1.5 (Lin et al., 2023)	3B	4.29	4.79	4.48	4.59	4.61	4.76
	Qwen2-VL (Wang et al., 2024a)	7B	4.68	5.41	5.11	5.40	4.90	4.95
	LLaVA-v1.5 (Liu et al., 2024b)	7B	4.01	4.60	4.29	4.26	4.54	4.50
	InternVL2.5 (Chen et al., 2024)	8B	5.09	5.58	4.75	4.98	5.07	5.01
	Qwen2.5-VL (Bai et al., 2025)	3B	4.38	4.92	4.72	4.70	5.20	5.10
Gen.&Und.	TokenFlow (Qu et al., 2024)	7B	5.04	5.75	4.99	5.01	4.86	5.10
	OmniFlow (Li et al., 2024a)	3.4B	2.83	3.06	3.41	3.38	2.90	3.03
	JanusFlow (Ma et al., 2024)	1.3B	4.31	5.15	4.60	4.71	4.54	4.86
	Show-o (Xie et al., 2024)	1.3B	3.86	4.67	4.38	4.39	4.49	4.57
	UniF ² ace(Ours)	1.8B	5.12	5.92	6.24	6.80	5.87	5.29

Understanding Performance on UniF²aceD-1M and Public Dataset. On our UniF²aceD-1M benchmark (Tab. 3), UniF²ace sets a new state-of-the-art in fine-grained facial understanding, achieving the highest scores across all metrics. Crucially, it surpasses even larger, specialized models like InternVL2.5 (8B) and all competing UMMs. Furthermore, as shown in Tab. 4, this superior understanding capability demonstrates strong generalization, as UniF²ace also consistently achieves top captioning scores on public cross-facial datasets. This robust performance across diverse benchmarks

432 validates the effectiveness of our approach in learning transferable, fine-grained facial representations,
 433 affirming UniF²ace’s leading position in comprehensive multimodal facial understanding.
 434

435 **Quantitative Evaluation.** We compare UniF²ace with advanced autoregressive multimodal models
 436 like Qwen2-VL (Wang et al., 2024a) (7B) and similar UMMs (Wu et al., 2024c; Xie et al., 2024).
 437 Visual comparisons (right Fig.) confirm UniF²ace’s su-
 438 perior fine-grained understanding in VQA tasks, where
 439 it accurately identifies subtle details like “sideburns”
 440 and “earrings” that competitors miss. We also pro-
 441 vide more examples for captioning in the Appendix
 442 (**Fig. 10**). Besides, as shown in Fig. 6 (left column),
 443 we analyze MoE activation frequencies in the un-
 444 derstanding task. Token-level MoEs often select the same
 445 expert in the top (the closest to the prediction head)
 446 and bottom layers. For sequence-level MoEs, face and
 447 CLIP experts are more frequently activated in layers
 448 closer to the top, indicating that deeper layers benefit
 449 from visual embeddings to better understand face im-
 450 ages. Notably, activation patterns are different across
 451 the generation groups, highlighting the effectiveness of
 452 our group-based strategy.

453 4.5 ABLATION STUDIES

454 **Coefficient in Dual Discrete Diffusion.** As shown in Table 5, we analyze the D3Diff loss.
 455 The optimal weight is $\alpha = 0.01$, which balances the $200\times$ magnitude difference between the
 456 score-matching and masked generative losses. The complete D3Diff loss sig-
 457 nificantly outperforms using either loss
 458 component individually. Crucially, the
 459 superiority of the score-only loss over the
 460 masked-only loss empirically validates
 461 our theoretical analysis in **Appendix E**.

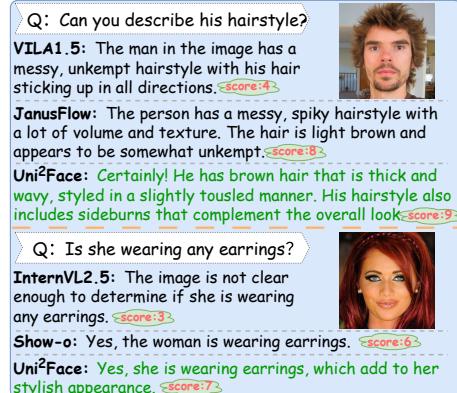
462 Table 6: Ablation of Face and CLIP Expert.

Expert Type		Understanding			
Face	CLIP	Desc-GPT↑	Conv-GPT↑	Desc-DS↑	Conv-DS↑
✗	✗	5.21	5.31	6.27	6.36
✓	✗	5.67	5.93	6.86	7.10
✗	✓	5.81	5.46	7.12	5.84
✓	✓	6.02	6.53	7.38	7.29

463 **Ablation of MoEs Architecture.** We ablate our multi-level MoE design (Tab. 6, Tab. 7, Tab. 8). The
 464 results (Tab. 8) first confirm that combining token-level and sequence-level MoEs achieves the best
 465 performance, with each component
 466 individually outperforming the non-
 467 MoE baseline. We further analyze the
 468 sequence-level MoE, finding that: (1)
 469 for understanding tasks, using both
 470 CLIP and Face experts is optimal
 471 in fine-grained facial understanding
 472 (Tab. 6); and (2) a Top-k=2 selection strategy provides the best balance between performance
 473 and efficiency (Tab. 7). These findings validate our hierarchical and specialized MoE design.

474 5 CONCLUSION

475 This paper introduces UniF²ace, the first unified multimodal model (UMM) designed for fine-
 476 grained face understanding and generation. The model bridges the gap between score-based models
 477 and masked generative models in discrete diffusion, while leveraging token-level and sequence-
 478 level mixture-of-experts (MoE) to sparsify the model. Extensive experiments show that UniF²ace
 479 outperforms existing UMMs and even surpasses larger generation-only or understanding-only models.
 480 This underscores the potential of our improvements to guide future research in face applications of
 481 UMM. Additionally, we constructed a large-scale face-text aligned dataset, UniF²aceD-1M, to further
 482 advance multimodal research in the community.



483 Table 5: Ablation study with different loss weights.

Loss Type	Weight α	VQAscore-CF5↑	VQAscore-LV↑	FID↓	VLM-score↑
Only Mask	0	0.879	0.661	77.463	85.993
Only Score	0.01	0.886	0.670	69.694	87.951
D3diff	0.1	0.887	0.673	68.903	86.378
	0.01	0.894	0.679	66.005	88.049
	0.001	0.884	0.668	72.736	89.220

484 Table 7: Ablation of Top-k in Seq-level MoE.

Top-K	Generation			Understanding	
	VQAscore↑	FID↓	VLM-score↑	Desc↑	Conv↑
1	0.879	74.914	74.314	6.57	6.42
2	0.894	66.005	88.049	7.38	7.29
3	0.895	65.413	85.401	7.26	7.34
4	0.897	63.632	87.795	7.23	7.36

485 Table 8: Ablation study of token- and sequence-level MoE.

Token MoE	Sequence MoE	Generation			Understanding	
		VQAscore↑	FID↓	VLM-score↑	Desc↑	Conv↑
✗	✗	0.878	72.877	84.432	4.988	6.031
✓	✗	0.887	67.415	87.917	5.678	6.495
✗	✓	0.889	69.312	86.790	5.864	6.247
✓	✓	0.894	66.005	88.049	6.023	6.532

486 **6 ETHICS STATEMENT**
487488 I read all respects with the ICLR Code of Ethics <https://iclr.cc/public/CodeOfEthics> and the
489 research conducted in the paper complies in all respects.
490491 **7 REPRODUCIBILITY STATEMENT**
492493 This paper fully discloses all the source code needed to reproduce the main experimental results in
494 the supplementary material. Besides, we also provide the a complete description of the proposed
495 dataset for their data processing steps in the Appendix B. Finally, we also provide clear explanations
496 of our assumptions, and a complete proof of the claims can be included in the Appendix D, E, and F.
497498 **REFERENCES**
499500 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
501 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
502 *arXiv preprint arXiv:2303.08774*, 2023.
503504 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
505 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
506 2025.507 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
508 Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer
509 Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.
510511 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
512 image transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
513 recognition*, pp. 11315–11325, 2022.514 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
515 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
516 scaling. *arXiv preprint arXiv:2501.17811*, 2025.517 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
518 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
519 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024.
520521 Tahar Chettaoui, Naser Damer, and Fadi Boutros. Froundation: Are foundation models ready for face
522 recognition? *Image and Vision Computing*, pp. 105453, 2025.523 M Kalpana Chowdary, Tu N Nguyen, and D Jude Hemanth. Deep learning-based facial emotion
524 recognition for human–computer interaction applications. *Neural Computing and Applications*, 35
525 (32):23311–23328, 2023.526 Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
527 Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
528 of-experts language models. *arXiv preprint arXiv:2401.06066*, 2024.529 Dawei Dai, Mingming Jia, Yinxiu Zhou, Hang Xing, and Chenghang Li. Face-makeup: Multimodal
530 facial prompts for text-to-image generation. *arXiv preprint arXiv:2501.02523*, 2025.531 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao Yu,
532 Xiaonan Nie, Ziang Song, Guang Shi, and Haoqi Fan. Emerging properties in unified multimodal
533 pretraining. *arXiv preprint arXiv:2505.14683*, 2025.534 Xinya Du, Junru Shao, and Claire Cardie. Learning to ask: Neural question generation for reading
535 comprehension. In *Proceedings of the 55th Annual Meeting of the Association for Computational
536 Linguistics*. Association for Computational Linguistics, 2017.

540 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 541 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
 542 high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024.
 543

544 Hulingxiao He, Geng Li, Zijun Geng, Jinglin Xu, and Yuxin Peng. Analyzing and boosting the
 545 power of fine-grained visual recognition for multi-modal large language models. *arXiv preprint*
 546 *arXiv:2501.15140*, 2025.

547 Ziqi Huang, Kelvin CK Chan, Yuming Jiang, and Ziwei Liu. Collaborative diffusion for multi-modal
 548 face generation and editing. In *Proceedings of the IEEE/CVF conference on computer vision and*
 549 *pattern recognition*, pp. 6080–6090, 2023.

550 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 551 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 552 *arXiv:2410.21276*, 2024.

553 Tero Karras. A style-based generator architecture for generative adversarial networks. *arXiv preprint*
 554 *arXiv:1812.04948*, 2019.

555 Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
 556 improved quality, stability, and variation. 2018.

557 Jihyun Kim, Changjae Oh, Hoseok Do, Soohyun Kim, and Kwanghoon Sohn. Diffusion-driven gan
 558 inversion for multi-modal face image generation. In *Proceedings of the IEEE/CVF Conference on*
 559 *Computer Vision and Pattern Recognition*, pp. 10403–10412, 2024.

560 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

561 Bokyeung Lee, Hyunuk Shin, Bonhwa Ku, and Hanseok Ko. Frame level emotion guided dynamic
 562 facial expression recognition with emotion grouping. In *Proceedings of the IEEE/CVF conference*
 563 *on computer vision and pattern recognition*, pp. 5681–5691, 2023.

564 Jingzhi Li, Changjiang Luo, Ruoyu Chen, Hua Zhang, Wenqi Ren, Jianhou Gan, and Xiaochun Cao.
 565 Faceinsight: A multimodal large language model for face perception. In *Proceedings of the 33rd*
 566 *ACM International Conference on Multimedia*, pp. 11052–11061, 2025.

567 Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Zichun Liao, Yusuke Kato, Kazuki Kozuka,
 568 and Aditya Grover. Omnidflow: Any-to-any generation with multi-modal rectified flows. *arXiv*
 569 *preprint arXiv:2412.01169*, 2024a.

570 Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu, Shaoteng
 571 Liu, and Jiaya Jia. Mini-gemini: Mining the potential of multi-modality vision language models.
 572 *arXiv preprint arXiv:2403.18814*, 2024b.

573 Yudong Li, Xianxu Hou, Zheng Dezhi, Linlin Shen, and Zhe Zhao. Flip-80m: 80 million visual-
 574 linguistic pairs for facial language-image pre-training. In *Proceedings of the 32nd ACM Interna-*
 575 *tional Conference on Multimedia*, pp. 58–67, 2024c.

576 Zijie Li, Henry Li, Yichun Shi, Amir Barati Farimani, Yuval Kluger, Linjie Yang, and Peng Wang.
 577 Dual diffusion for unified image generation and understanding. *arXiv preprint arXiv:2501.00289*,
 578 2024d.

579 Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Jinfa Huang, Junwu Zhang, Yatian
 580 Pang, Munan Ning, et al. Moe-llava: Mixture of experts for large vision-language models. *arXiv*
 581 *preprint arXiv:2401.15947*, 2024a.

582 Ji Lin, Hongxu Yin, Wei Ping, Yao Lu, Pavlo Molchanov, Andrew Tao, Huizi Mao, Jan Kautz,
 583 Mohammad Shoeybi, and Song Han. Vila: On pre-training for visual language models, 2023.

584

585 Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
 586 Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. In *European*
 587 *Conference on Computer Vision*, pp. 366–384. Springer, 2024b.

594 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 595 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 596 *arXiv:2412.19437*, 2024a.

597

598 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 599 *neural information processing systems*, 36:34892–34916, 2023.

600 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 601 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 602 pp. 26296–26306, 2024b.

603

604 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 605 *neural information processing systems*, 36, 2024c.

606 Jiaxi Liu. Chatgpt: Perspectives from human–computer interaction and psychology. *Frontiers in*
 607 *Artificial Intelligence*, 7:1418869, 2024.

608

609 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
 610 of the data distribution. *arXiv preprint arXiv:2310.16834*, 2023.

611 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
 612 of the data distribution. In *Forty-first International Conference on Machine Learning*, 2024.

613

614 Yiyang Ma, Xingchao Liu, Xiaokang Chen, Wen Liu, Chengyue Wu, Zhiyu Wu, Zizheng Pan, Zhenda
 615 Xie, Haowei Zhang, Liang Zhao, et al. Janusflow: Harmonizing autoregression and rectified flow
 616 for unified multimodal understanding and generation. *arXiv preprint arXiv:2411.07975*, 2024.

617

618 Andrew Melnik, Maksim Miasayedzenkau, Dzianis Makaravets, Dzianis Pirshtuk, Eren Akbulut,
 619 Dennis Holzmann, Tarek Renusch, Gustav Reichert, and Helge Ritter. Face generation and editing
 620 with stylegan: A survey. *IEEE Transactions on pattern analysis and machine intelligence*, 46(5):
 3557–3576, 2024.

621

622 Pietro Melzi, Christian Rathgeb, Ruben Tolosana, Ruben Vera-Rodriguez, Dominik Lawatsch, Florian
 623 Domin, and Maxim Schaubert. Gandiffface: Controllable generation of synthetic datasets for face
 624 recognition with realistic variations. In *Proceedings of the IEEE/CVF International Conference on*
625 Computer Vision, pp. 3086–3095, 2023.

626

627 Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching: Generalized
 628 score matching for discrete data. *Advances in Neural Information Processing Systems*, 35:34532–
 34545, 2022.

629

630 Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a
 631 regularization method for supervised and semi-supervised learning. *IEEE transactions on pattern*
632 analysis and machine intelligence, 41(8):1979–1993, 2018.

633

634 Nithin Gopalakrishnan Nair, Wele Gedara Chaminda Bandara, and Vishal M Patel. Unite and conquer:
 635 Plug & play multi-modal synthesis using diffusion models. In *Proceedings of the IEEE/CVF*
636 Conference on Computer Vision and Pattern Recognition, pp. 6070–6079, 2023.

637

638 Kartik Narayan, Vibashan VS, and Vishal M Patel. Facebench: Evaluating multimodal llms on face
 639 understanding. *arXiv preprint arXiv:2501.10360*, 2025.

640

641 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 642 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 643 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.

644

645 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 646 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 647 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

648

649 Liao Qu, Huichao Zhang, Yiheng Liu, Xu Wang, Yi Jiang, Yiming Gao, Hu Ye, Daniel K Du, Zehuan
 650 Yuan, and Xinglong Wu. Tokenflow: Unified image tokenizer for multimodal understanding and
 651 generation. *arXiv preprint arXiv:2412.03069*, 2024.

648 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 649 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 650 models from natural language supervision. In *International conference on machine learning*, pp.
 651 8748–8763. PMLR, 2021.

652 Ahmed Roshdy, Abdullah Karar, Samer Al Kork, Taha Beyrouthy, and Amine Nait-ali. Advancements
 653 in eeg emotion recognition: Leveraging multi-modal database integration. *Applied Sciences*, 14(6):
 654 2487, 2024.

655 Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
 656 Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
 657 models. *arXiv preprint arXiv:2406.07524*, 2024.

658 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized
 659 masked diffusion for discrete data. *Advances in Neural Information Processing Systems*, 37:
 660 103131–103167, 2025.

661 Weijia Shi, Xiaochuang Han, Chunting Zhou, Weixin Liang, Xi Victoria Lin, Luke Zettlemoyer, and
 662 Lili Yu. Llamafusion: Adapting pretrained language models for multimodal generation. *arXiv
 663 preprint arXiv:2412.15188*, 2024.

664 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 665 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
 666 pp. 2256–2265. pmlr, 2015.

667 S Srinivasan, R Raja, C Jehan, S Murugan, C Srinivasan, and M Muthulekshmi. Iot-enabled facial
 668 recognition for smart hospitality for contactless guest services and identity verification. In *2024
 669 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and
 Future Directions)(ICRITO)*, pp. 1–6. IEEE, 2024.

670 Haomiao Sun, Mingjie He, Tianheng Lian, Hu Han, and Shiguang Shan. Face-mllm: A large face
 671 perception model. *arXiv preprint arXiv:2410.20717*, 2024a.

672 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 673 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint
 674 arXiv:2406.06525*, 2024b.

675 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint
 676 arXiv:2405.09818*, 2024.

677 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 678 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 679 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

680 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 681 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 682 systems*, 30, 2017.

683 Hanyang Wang, Bo Li, Shuang Wu, Siyuan Shen, Feng Liu, Shouhong Ding, and Aimin Zhou.
 684 Rethinking the learning paradigm for dynamic facial expression recognition. In *Proceedings of the
 685 IEEE/CVF conference on computer vision and pattern recognition*, pp. 17958–17968, 2023.

686 Linqing Wang, Ximing Xing, Yiji Cheng, Zhiyuan Zhao, Jiale Tao, Qixun Wang, Ruihuang Li, Xin
 687 Li, Mingrui Wu, Xinchi Deng, et al. Promptenhancer: A simple approach to enhance text-to-image
 688 models via chain-of-thought prompt rewriting. *arXiv preprint arXiv:2509.04545*, 2025a.

689 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 690 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 691 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

692 Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, Anthony Chen, Huaxia Li, Xu Tang, and Yao Hu.
 693 Instantid: Zero-shot identity-preserving generation in seconds. *arXiv preprint arXiv:2401.07519*,
 694 2024b.

702 Xiaoqin Wang, Xianxu Hou, Meidan Ding, Junliang Chen, Kaijun Deng, Jinheng Xie, and Linlin
 703 Shen. Disfacerep: Representation disentanglement for co-occurring facial components in weakly
 704 supervised face parsing. In *Proceedings of the 33rd ACM International Conference on Multimedia*,
 705 pp. 4020–4029, 2025b.

706 Xiaoqin Wang, Xusen Ma, Xianxu Hou, Meidan Ding, Yudong Li, Junliang Chen, Wenting Chen,
 707 Xiaoyang Peng, and Linlin Shen. Facebench: A multi-view multi-level facial attribute vqa dataset
 708 for benchmarking face perception mllms. In *Proceedings of the Computer Vision and Pattern*
 709 *Recognition Conference*, pp. 9154–9164, 2025c.

710 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 711 Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
 712 *arXiv preprint arXiv:2409.18869*, 2024c.

713 Junfeng Wu, Yi Jiang, Chuofan Ma, Yuliang Liu, Hengshuang Zhao, Zehuan Yuan, Song Bai,
 714 and Xiang Bai. Liquid: Language models are scalable multi-modal generators. *arXiv preprint*
 715 *arXiv:2412.04332*, 2024a.

716 Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multimodal
 717 llm. In *Forty-first International Conference on Machine Learning*, 2024b.

718 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
 719 Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual
 720 understanding and generation. *arXiv preprint arXiv:2409.04429*, 2024c.

721 Weihao Xia, Yujiu Yang, Jing-Hao Xue, and Baoyuan Wu. Tedigan: Text-guided diverse face image
 722 generation and manipulation. In *IEEE Conference on Computer Vision and Pattern Recognition*
 723 (CVPR), 2021.

724 Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li,
 725 Shuting Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. In *Proceedings*
 726 *of the Computer Vision and Pattern Recognition Conference*, pp. 13294–13304, 2025.

727 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 728 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 729 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

730 Bohao Xing, Zitong Yu, Xin Liu, Kaishen Yuan, Qilang Ye, Weicheng Xie, Huanjing Yue, Jingyu
 731 Yang, and Heikki Kälviäinen. Emo-llama: Enhancing facial emotion understanding with instruction
 732 tuning. *arXiv preprint arXiv:2408.11424*, 2024.

733 Yichao Yan, Zanwei Zhou, Zi Wang, Jingnan Gao, and Xiaokang Yang. Dialoguenerf: Towards
 734 realistic avatar face-to-face conversation video generation. *Visual Intelligence*, 2(1):24, 2024.

735 Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
 736 Multimodal large diffusion language models. *arXiv preprint arXiv:2505.15809*, 2025.

737 Jianhui Yu, Hao Zhu, Liming Jiang, Chen Change Loy, Weidong Cai, and Wayne Wu. CelebV-Text:
 738 A large-scale facial text-video dataset. In *CVPR*, 2023a.

739 Jianhui Yu, Hao Zhu, Liming Jiang, Chen Change Loy, Weidong Cai, and Wayne Wu. CelebV-text: A
 740 large-scale facial text-video dataset. In *Proceedings of the IEEE/CVF Conference on Computer*
 741 *Vision and Pattern Recognition*, pp. 14805–14814, 2023b.

742 Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 743 Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion-
 744 tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023c.

745 Yunan Zeng, Yan Huang, Jinjin Zhang, Zequn Jie, Zhenhua Chai, and Liang Wang. Investigating
 746 compositional challenges in vision-language models for visual grounding. In *Proceedings of the*
 747 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14141–14151, 2024.

756 Fengda Zhang, Qianpei He, Kun Kuang, Jiashuo Liu, Long Chen, Chao Wu, Jun Xiao, and Hanwang
757 Zhang. Distributionally generative augmentation for fair facial attribute classification. In *Proceed-
758 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22797–22808,
759 2024.

760 Fufangchen Zhao, Ming Li, Linrui Xu, Wenhao Jiang, Jian Gao, and Danfeng Yan. Favchat:
761 Unlocking fine-grained facial video understanding with multimodal large language models. *arXiv
762 preprint arXiv:2503.09158*, 2025.

763 Zengqun Zhao, Yu Cao, Shaogang Gong, and Ioannis Patras. Enhancing zero-shot facial expression
764 recognition by llm knowledge transfer. *arXiv preprint arXiv:2405.19100*, 2024.

765 Yinglin Zheng, Hao Yang, Ting Zhang, Jianmin Bao, Dongdong Chen, Yangyu Huang, Lu Yuan,
766 Dong Chen, Ming Zeng, and Fang Wen. General facial representation learning in a visual-linguistic
767 manner. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
768 pp. 18697–18709, 2022.

769 Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
770 Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
771 diffuse images with one multi-modal model. *arXiv preprint arXiv:2408.11039*, 2024.

772 Yutong Zhou and Nobutaka Shimada. Generative adversarial network for text-to-face synthesis
773 and manipulation with pretrained bert model. In *2021 16th IEEE International Conference on
774 Automatic Face and Gesture Recognition (FG 2021)*, pp. 01–08, 2021.

775 Hao Zhu, Wayne Wu, Wentao Zhu, Liming Jiang, Siwei Tang, Li Zhang, Ziwei Liu, and Chen Change
776 Loy. CelebV-HQ: A large-scale video facial attributes dataset. In *ECCV*, 2022.

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811

A RELATED WORKS

812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
Unified Multimodal Models. Recent works (Ma et al., 2024; Li et al., 2024d; Wu et al., 2024a; Chen et al., 2025; Wang et al., 2024c) in image understanding and generation have primarily focused on unified multimodal models (UMMs). Early approaches (Li et al., 2024b; Wu et al., 2024b) often integrated external decoders of diffusion models (DMs) with text autoregressive models (ARMs). Inspired by next-token prediction tasks, they proposed using a single Transformer (Vaswani et al., 2017) model to unify understanding and generation (Wu et al., 2024c). For instance, Janus-Pro (Chen et al., 2025) decouples the visual encoder into specialized tokenizers for separate handling of understanding and generation tasks. Chameleon (Team, 2024) and Emu3 (Wang et al., 2024c) employ an ARM to simultaneously manage both tasks, highlighting the advantages of autoregressive models in multitask settings. Additionally, Transfusion (Zhou et al., 2024) and Show-o (Xie et al., 2024) combine a text ARM with a visual DM, enabling seamless integration of image understanding and generation. These studies have advanced the fusion of visual and text generation models, enhancing performance on multimodal tasks. However, despite the proliferation of UMMs, their application has largely been limited to generic domain tasks, with limited exploration in fine-grained visual analysis, particularly in the face domain. Unlike previous UMMs that simply combine ARMs and DMs, we pioneer sparse UMMs by introducing both token-level and sequence-level Mixture of Experts (MoEs), significantly improving model performance.

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
Face Multimodal Models. Face multimodal models are primarily categorized into two types: face understanding models and face generation models. For understanding, early models were task-specific and lacked multimodality (Miyato et al., 2018; Zhang et al., 2024; Wang et al., 2023; Lee et al., 2023). Recent works (Chettaoui et al., 2025; Sun et al., 2024a; Xing et al., 2024; Zhao et al., 2024) leverage the reasoning capabilities of LLMs or MLLMs, often using MLLM-generated face Q&A data to fine-tune or post-train foundation models, incorporating face domain knowledge. For example, EMO-LLaMA (Xing et al., 2024) introduces facial experts to extract facial features, which are aggregated with handcrafted prompts and fed into LLaMA (Touvron et al., 2023), enabling it to answer facial-related queries. Recent research (Wang et al., 2025b; Li et al., 2025; Zhao et al., 2025) has increasingly focused on performing fine-grained facial attribute analysis. On the modeling front, FaceInsight (Li et al., 2025) advances facial perception by introducing visual-textual alignment of facial knowledge and segmentation maps. FaVChat Zhao et al. (2025) extends these fine-grained perceptual capabilities to the domain of video understanding. Complementing these modeling advancements, a new wave of benchmarks has emerged for rigorous evaluation (Narayan et al., 2025; Wang et al., 2025c). A notable example is FaceXBench (Narayan et al., 2025), which provides a comprehensive assessment covering 14 tasks across 6 broad categories, including bias and fairness, authentication, recognition, and analysis. Collectively, these synergistic efforts in both model development and evaluation are driving the field of fine-grained face understanding forward. For generation, recent works (Dai et al., 2025; Wang et al., 2024b; Huang et al., 2023; Kim et al., 2024) focus on using diffusion models to personalize face images by conditioning on textual and visual information, such as semantic masks, but avoid directly capturing fine-grained face attributes from text prompts. Despite these advances in understanding and generation separately, developing unified multimodal models (UMMs) remains a significant research challenge. Addressing this gap can enhance cross-modal capabilities and advance progress toward Artificial General Intelligence (AGI).

853
854

B DATASET CONSTRUCTION

855
856
857
858
859
860
861
862
863
To overcome the limitations of existing datasets in the realm of multimodal facial modeling, we introduce a high-quality dataset called *UniF²aceD-1M*, which boasts a remarkable alignment between facial images and textual descriptions (see Fig. 7). This dataset encompasses nearly 130K facial images, each paired with richly detailed captions. Additionally, it contains approximately 1M visual question answers, significantly enhancing its value for training and evaluating multimodal models. By offering such a comprehensive resource, we aim to propel advancements in facial image understanding and generation, establishing a solid foundation for a wide range of multimodal learning tasks. The creation of **UniF²aceD-1M** encompassed three key stages. **(1) Step-1:** Collect high-quality facial images. **(2) Step-2:** Generate detailed captions. **(3) Step-3:** Create question-answering pairs. Each stage is outlined in detail below.

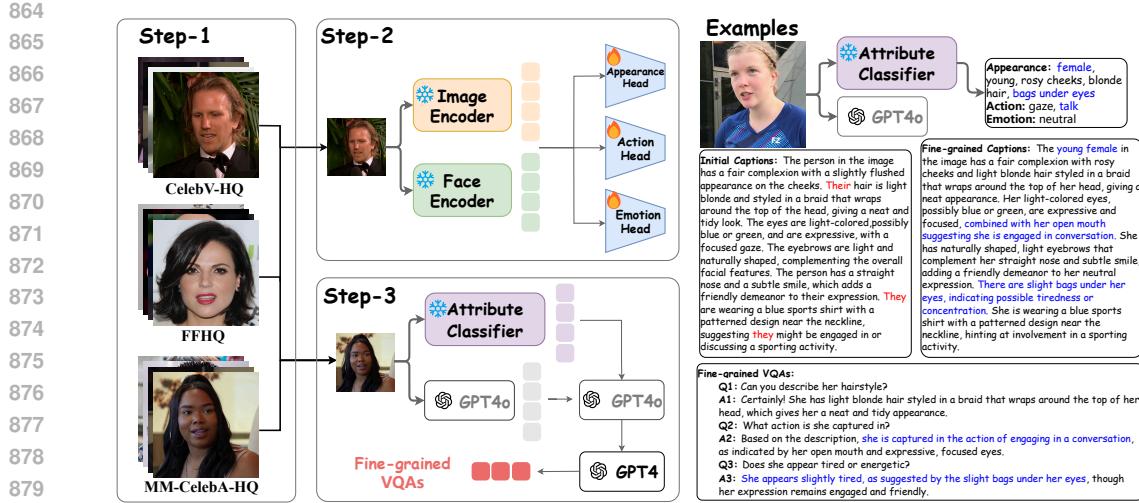


Figure 7: Pipeline and examples of UniF²aceD-1M construction. Left: A three-stage pipeline for building UniF²aceD-1M. Step-1: High-quality face images are collected. Step-2: Detailed captions are generated by GPT-4o with a face attribute model trained to classify fine-grained appearance, action, and emotion. Step-3: Question-answering pairs are created. These stages collectively refine GPT-4o-generated captions and produce fine-grained descriptions for VQAs generation. Right: A representative example showcasing UniF²aceD-1M’s ability to correct (e.g., gender), enhance (e.g., bags under eyes), and reason (e.g., talking, slight tiredness) in GPT-4o-generated captions.

(1) Step-1: Collect High-quality Facial Images. In this step, we curated more than 130,000 high-quality facial images from the following distinguished datasets. CelebV-HQ (Zhu et al., 2022) is a large-scale video dataset featuring 35,666 clips representing 15,653 identities, each clip meticulously annotated with 83 facial attributes. We extracted one key frames from each video to utilize detailed annotations for fine-grained face-text alignment. Flickr-Faces-HQ (FFHQ) (Karras, 2019) provided 70,000 high-quality PNG images at a resolution of 1024 by 1024, offering substantial diversity in attributes such as age and ethnicity. Multi-Modal-CelebA-HQ (MM-CelebA-HQ) (Xia et al., 2021) contributed 30,000 high-resolution images paired with descriptive captions that have proven invaluable for facial generation and analysis.

(2) Step-2: Generate Detailed Captions. Existing face image datasets often lack detailed descriptions of fine-grained attributes like bags under eyes or jewelry. To handle this, we develop a two-stage caption generation process.

In Stage I, we employed an advanced MLLM such as GPT-4o (Hurst et al., 2024) to produce initial captions. We designed a specialized prompt that incorporated brief face descriptions from the MM-CelebA-HQ dataset (Xia et al., 2021) to help GPT-4o accurately describe key facial attributes, including appearance, emotion, and actions. The detailed descriptions of all prompts are presented later (see Fig. 11).

In Stage II, we refined these captions by training face attribute classification models using the CelebV-HQ dataset (Zhu et al., 2022). Focusing on single-person images, we used the pretrained face model AntelopeV2² to extract face embeddings. By combining these with image embeddings from CLIP (Radford et al., 2021), we trained classification heads for appearance, action, and emotion attributes. We selected 29 appearances with accuracies over 93%, 10 actions with accuracies over 87%, and 7 emotions with accuracies over 80% as final predictions for inference. These highly accurate attributes were then predicted for all remaining images in FFHQ and MM-CelebA-HQ datasets (Karras, 2019; Xia et al., 2021). Finally, a prompt integrating these classification results with the Stage I captions was fed into GPT-4o to generate final captions that are both highly accurate and diverse.

(3) Step-3: Create Question-answering Pairs. In this step, we proposed 1M VQAs covering diverse facial appearances, emotions, and character action reasoning for our UniF²aceD-1M dataset.

²<https://github.com/deepinsight/insightface>

These VQAs are designed to enhance MLLMs' ability to understand fine-grained facial attributes through instruction tuning. Inspired by LLaVA (Liu et al., 2024c), we carefully designed prompts to enable GPT-4 (Achiam et al., 2023) to generate a series of VQAs based on image captions, facilitating fine-grained understanding and reasoning. Most current face-text datasets lack VQAs, while VQAs in general image-text datasets often focus on people's clothing, location, and behavior, neglecting detailed facial descriptions. In contrast, our proposed VQAs encompass diverse facial details, including hair, nose, eyes, mouth, ears, skin, eyebrows, and adornments. Additionally, since facial attributes can reflect a character's ongoing actions, our VQAs incorporate detailed reasoning processes to infer and describe these actions. By organizing the VQAs into the same format as the LLaVA dataset (Liu et al., 2024c), we streamlined the process of adapting multimodal face models for post-training. This alignment minimizes alteration costs, ensuring efficient integration and enabling the models to leverage both datasets seamlessly for improved performance.

C IMPLEMENTATIONS DETAILS

We train our model on the UniF²aceD-1M training dataset part, comprising 120K 256×256 face images, each annotated with detailed captions and seven to eight VQAs, about 900K. UniF²ace utilizes discrete image tokens as input, represented by the pre-trained MAGVIT-v2 (Yu et al., 2023c). For token-level MoE, each group (generation and understanding tasks) includes one shared expert and eight routed experts, selected via a top-2 strategy. The expert structure is a single-layer MLP with the gating mechanism (Dai et al., 2024). In sequence-level MoE, the generation group employs two copy experts, one zero expert, and one noise expert. Noise embedding is implemented using sinusoidal embedding, following (Nichol et al., 2021). The noise resampler uses a 4-layer Multi-Head Attention mechanism to map noise embeddings to the UniF²ace hidden space. For the understanding group, there are two copy experts, one CLIP expert, and one face expert. We use CLIP-ViT for image embedding and AntelopeV2 for face embedding, with the resampler configuration matching that of the noise expert. Moreover, training is divided into two stages: Stage I uses only captions for generation and understanding tasks, while Stage II incorporates VQAs into the understanding task. This pipeline transitions the model from general image feature understanding to fine-grained feature capture. Both stages are trained on 8 NVIDIA A100 (80GB) GPUs, optimized using AdamW with a weight decay of 0.01, 5K warm-up steps, and an initial learning rate of 5e-5 with cosine scheduling. The total batch size is 600 for Stage I and 480 for Stage II, with 20K steps for Stage I and 40K steps for Stage II. **For a fair comparison, we also performed full-parameter fine-tuning on all competing models using an identical amount of data, leveraging their official fine-tuning scripts where available.** In the inference process of UniF²ace, following the computation method in (Lin et al., 2024a), we compute the maximum and minimum activation parameters for UniF²ace under the Top-2 strategy due to the different number of parameters included between different experts in the sequence-level MoE. The total number of parameters for UniF²ace is 1.84B, the maximum activation parameter is about 1.63B, and the minimum activation parameter is about 1.42B. The average number of activation parameters tested in the UniF²aceD-1M test dataset is 1.47B.

D ABSORBING-STATE CASE WITH INDEPENDENCE BETWEEN TOKENS.

The absorbing-state case means that for any single token x with possible values in $\mathcal{X} = \{1, \dots, N\}$, the transition matrix is

$$\mathbf{Q}^{\text{absorb}} = \begin{bmatrix} -1 & 0 & \cdots & 0 & 1 \\ 0 & -1 & \cdots & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & 1 \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}. \quad (15)$$

The reverse transition rate matrix of the reverse process from state \mathbf{x}_t to state $\hat{\mathbf{x}}_t$ is

$$\tilde{\mathbf{Q}}_t(\mathbf{x}_t, \hat{\mathbf{x}}_t) = \begin{cases} \frac{q_t(\hat{\mathbf{x}}_t)}{q_t(\mathbf{x}_t)} \mathbf{Q}_t(\hat{\mathbf{x}}_t, \mathbf{x}_t), & \hat{\mathbf{x}}_t \neq \mathbf{x}_t \\ -\sum_{k \neq \mathbf{x}_t} \tilde{\mathbf{Q}}_t(\mathbf{x}_t, k), & \hat{\mathbf{x}}_t = \mathbf{x}_t \end{cases}. \quad (16)$$

As $Q_t(\hat{\mathbf{x}}_t, \mathbf{x}_t)$ is known, it is sufficient to estimate the concrete score $\frac{q_t(\hat{\mathbf{x}}_t)}{q_t(\mathbf{x}_t)}$ by a score network $s_\theta(\mathbf{x}_t, t) \approx \left[\frac{q_t(\hat{\mathbf{x}}_t)}{q_t(\mathbf{x}_t)} \right]_{\hat{\mathbf{x}}_t \in \mathcal{X}}$. Score based discrete diffusion model is an effective objective to train the score network (Meng et al., 2022; Lou et al., 2023). Specifically, the score function in a multidimensional discrete space is

$$s_\theta(\mathbf{x}_t, t)_{\hat{\mathbf{x}}_t} = s_\theta(\mathbf{x}_t^1 \dots \mathbf{x}_t^i \dots \mathbf{x}_t^d, t) [i, \hat{\mathbf{x}}_t^i] \approx \frac{q_t(\mathbf{x}_t^1 \dots \hat{\mathbf{x}}_t^i \dots \mathbf{x}_t^d)}{q_t(\mathbf{x}_t^1 \dots \mathbf{x}_t^i \dots \mathbf{x}_t^d)}, \quad (17)$$

and accordingly,

$$\tilde{Q}_t(\mathbf{x}_t^1 \dots \mathbf{x}_t^i \dots \mathbf{x}_t^d, \mathbf{x}_t^1 \dots \hat{\mathbf{x}}_t^i \dots \mathbf{x}_t^d) \approx Q_t(\hat{\mathbf{x}}_t^i, \mathbf{x}_t^i) s_\theta(\mathbf{x}_t^1 \dots \mathbf{x}_t^i \dots \mathbf{x}_t^d, t) [i, \hat{\mathbf{x}}_t^i]. \quad (18)$$

E PROOF OF THEOREM 1

To prove Theorem 1, we first introduce two loss formulas and establish useful lemmas.

(1) $\mathcal{L}_1 = \mathcal{L}_{\text{score}}(s_\theta) + D_{KL}(q_{T|0}(\cdot | \mathbf{x}_0) \| q_{\text{base}})$, where $\mathcal{L}_{\text{score}}(\mathbf{x}_0)$ is the diffusion weighted denoising score entropy for data point \mathbf{x}_0 , and $s_\theta = \frac{q_\theta(\mathbf{x}_0 | \mathbf{x}_t)}{q(\mathbf{x}_t | \mathbf{x}_0)}$

$$\begin{aligned} \mathcal{L}_{\text{score}}(s_\theta) &= \int_0^T \mathbb{E}_{\mathbf{x}_t \sim q_{t|0}(\cdot | \mathbf{x}_0)} \sum_{\mathbf{y} \neq \mathbf{x}_t} Q_t(\mathbf{x}_t, \mathbf{y}) \left(s_\theta(\mathbf{x}_t, t) \right)_{\mathbf{y}} \\ &\quad - \frac{q_{t|0}(\mathbf{y} | \mathbf{x}_0)}{q_{t|0}(\mathbf{x}_t | \mathbf{x}_0)} \log s_\theta(\mathbf{x}_t, t)_{\mathbf{y}} + K \left(\frac{q_{t|0}(\mathbf{y} | \mathbf{x}_0)}{q_{t|0}(\mathbf{x}_t | \mathbf{x}_0)} \right) dt. \end{aligned} \quad (19)$$

(2) $\mathcal{L}_2 = -\sum_{t=1}^T \mathbb{E}_{q(\mathbf{x}_0)q(\mathbf{x}_t | \mathbf{x}_0)} [\log p_\theta(\mathbf{x}_0 | \mathbf{x}_t)] - C$, where C is a constant independent of the model parameters. By (Xie et al., 2024), $C = C_1 + C_2$, and constants C_1 and C_2 are shown as:

$$\begin{aligned} C_1 &= \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[-\sum_{t=1}^T \log q(\mathbf{x}_t | \mathbf{x}_{t-1}) + \underbrace{\log p(\mathbf{x}_T)}_{\text{Note that } p(\mathbf{x}_T) = q(\mathbf{x}_T)} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[-\sum_{t=1}^T \log q(\mathbf{x}_t, \mathbf{x}_{t-1}) + \sum_{t=0}^T \log q(\mathbf{x}_t) \right] \\ C_2 &= \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\sum_{t=1}^T \log q(\mathbf{x}_{t-1} | \mathbf{x}_t) \right] - \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\sum_{t=1}^T \sum_{\tilde{\mathbf{x}}_0} q(\tilde{\mathbf{x}}_0 | \mathbf{x}_{t-1}) \log q(\tilde{\mathbf{x}}_0 | \mathbf{x}_t) \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\sum_{t=1}^T \log q(\mathbf{x}_t, \mathbf{x}_{t-1}) - \sum_{t=1}^T \log q(\mathbf{x}_t) \right] \\ &\quad - \sum_{t=1}^T \mathbb{E}_{q(\mathbf{x}_{0:T})q(\tilde{\mathbf{x}}_0 | \mathbf{x}_{t-1})} [\log q(\tilde{\mathbf{x}}_0 | \mathbf{x}_t)]. \end{aligned} \quad (20)$$

$$C_1 + C_2 = \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\log q(\mathbf{x}_0) - \sum_{t=1}^T \log q(\mathbf{x}_0 | \mathbf{x}_t) \right]. \quad (21)$$

Let $L = \log p_\theta(\mathbf{x}_0)$ be the model's log-likelihood for a data point \mathbf{x}_0 , and let K be its variational lower bound:

$$K = \mathbb{E}_{q(\mathbf{x}_0)q(\mathbf{x}_{1:T} | \mathbf{x}_0)} \left[\log \frac{p_\theta(\mathbf{x}_{0:T-1} | \mathbf{x}_T)}{q(\mathbf{x}_{1:T} | \mathbf{x}_0)} + \log p(\mathbf{x}_T) \right]. \quad (22)$$

Then, the following inequality chain holds:

1026

1027

$$L \geq K = -\mathcal{L}_1 \geq -\mathcal{L}_2, \quad (23)$$

1029

1030 where \mathcal{L}_1 and \mathcal{L}_2 are defined as above.

1031 The proof is based on two applications of Jensen's inequality to the log-likelihood.

1032

1033 **1. Proving $L \geq K$** 1034 This is the standard variational lower bound for diffusion models, derived by applying Jensen's
1035 inequality:

1036

$$\begin{aligned} \log p_\theta(\mathbf{x}_0) &= \log \int p_\theta(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T} \\ &= \mathbb{E}_{q(\mathbf{x}_0)} \left[\log \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_0)} \left[\frac{p_\theta(\mathbf{x}_{0:T-1} | \mathbf{x}_T) p_\theta(\mathbf{x}_T)}{q(\mathbf{x}_{1:T} | \mathbf{x}_0)} \right] \right] \\ &\stackrel{(a)}{\geq} \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\log \frac{p_\theta(\mathbf{x}_{0:T-1} | \mathbf{x}_T)}{q(\mathbf{x}_{1:T} | \mathbf{x}_0)} + \log p_\theta(\mathbf{x}_T) \right] = K \end{aligned} \quad (24)$$

1044

1045 Here, we assume $p_\theta(\mathbf{x}_T) \approx q(\mathbf{x}_T)$. This proves the first part of the inequality.

1046

1047 **2. Proving $K = -\mathcal{L}_1$**

1048

$$\begin{aligned} K &= \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\log \prod_{t=1}^T \frac{p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)}{q(\mathbf{x}_t | \mathbf{x}_{t-1})} + \log p_\theta(\mathbf{x}_T) \right] \\ &= \sum_{t=1}^T \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\log \frac{p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)}{q(\mathbf{x}_t | \mathbf{x}_{t-1})} \right] + \mathbb{E}_{q(\mathbf{x}_{0:T})} [\log p_\theta(\mathbf{x}_T)] \end{aligned} \quad (25)$$

1054

1055 From the derivations in (Sohl-Dickstein et al., 2015), the variational lower bound K can be strictly
1056 rewritten in terms of KL divergences, which directly correspond to our \mathcal{L}_1 . Specifically,

1057

$$\begin{aligned} K &= - \sum_{t=2}^T \int d\mathbf{x}_0 d\mathbf{x}_T q(\mathbf{x}_0, \mathbf{x}_T) \cdot \text{KL}(q(\mathbf{x}_{T-1} | \mathbf{x}_T, \mathbf{x}_0) \| p(\mathbf{x}_{T-1} | \mathbf{x}_T)) \\ &\quad + H_q(\mathbf{x}_T | \mathbf{x}_0) - H_q(\mathbf{x}_1 | \mathbf{x}_0) - H_p(\mathbf{x}_T) \end{aligned} \quad (26)$$

1061

1062 Since

1063

$$\begin{aligned} H_q(\mathbf{x}_T | \mathbf{x}_0) - H_p(\mathbf{x}_T) &= \int_{\mathbf{x}_T} \int_{\mathbf{x}_0} q(\mathbf{x}_T | \mathbf{x}_0) q(\mathbf{x}_0) \log q(\mathbf{x}_T | \mathbf{x}_0) d\mathbf{x}_0 d\mathbf{x}_T \\ &\quad - \int_{\mathbf{x}_T} \int_{\mathbf{x}_0} q(\mathbf{x}_T | \mathbf{x}_0) q(\mathbf{x}_0) d\mathbf{x}_0 \log p(\mathbf{x}_T) d\mathbf{x}_T \\ &= \int_{\mathbf{x}_T} \int_{\mathbf{x}_0} q(\mathbf{x}_T | \mathbf{x}_0) q(\mathbf{x}_0) \log \frac{q(\mathbf{x}_T | \mathbf{x}_0)}{p(\mathbf{x}_T)} d\mathbf{x}_0 d\mathbf{x}_T \\ &= \mathbb{E}_{p_{\text{data}}(\mathbf{x}_0)} [\text{KL}(q(\mathbf{x}_T | \mathbf{x}_0) \| p(\mathbf{x}_T))], \end{aligned} \quad (27)$$

1073

1074 and $H_q(\mathbf{x}_1 | \mathbf{x}_0) = \mathbb{E}_{p_{\text{data}}} \mathbb{E}_{q(x_1 | \mathbf{x}_0)} [\log p_{0|1}(\mathbf{x}_0 | x_1)]$, then the above formula is equivalent to

1075

1076

$$-\mathbb{E}_{\mathbf{x}_t \sim q_{T|0}(\cdot | \mathbf{x}_0)} [D_{\text{KL}}(\mathbb{P}_{\mathbf{x}_0}(\cdot | \mathbf{x}_t) \| \mathbb{P}^\theta(\cdot | \mathbf{x}_t))] - D_{\text{KL}}(q_{T|0}(\cdot | \mathbf{x}_0) \| \pi), \quad (28)$$

1077

1078

1079 which is equal to \mathcal{L}_1 , according to (Lou et al., 2024).1080 **3. Proving $K \geq -\mathcal{L}_2$**

1080 The derivation of \mathcal{L}_2 involves a second application of Jensen's inequality on K :
 1081

$$\begin{aligned}
 1082 \quad K &= \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\sum_{t=1}^T \log \frac{p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)}{q(\mathbf{x}_t | \mathbf{x}_{t-1})} + \log p(\mathbf{x}_T) \right] \\
 1083 \\
 1084 \quad &= \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\sum_{t=1}^T \log \left(\sum_{\tilde{\mathbf{x}}_0} q(\mathbf{x}_{t-1} | \mathbf{x}_t, \tilde{\mathbf{x}}_0) \tilde{p}_\theta(\tilde{\mathbf{x}}_0 | \mathbf{x}_t) \right) \right] + C_1 \\
 1085 \\
 1086 \quad &\stackrel{(b)}{\geq} \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\sum_{t=1}^T \sum_{\tilde{\mathbf{x}}_0} q(\tilde{\mathbf{x}}_0 | \mathbf{x}_{t-1}) \log \left(\frac{q(\mathbf{x}_{t-1} | \mathbf{x}_t)}{q(\tilde{\mathbf{x}}_0 | \mathbf{x}_t)} \tilde{p}_\theta(\tilde{\mathbf{x}}_0 | \mathbf{x}_t) \right) \right] + C_1 \\
 1087 \\
 1088 \quad &= \sum_{t=1}^T \mathbb{E}_{q(\mathbf{x}_t, \mathbf{x}_0)} [\log \tilde{p}_\theta(\mathbf{x}_0 | \mathbf{x}_t)] + C_1 + C_2 \\
 1089 \\
 1090 \quad &= -\mathcal{L}_2
 \end{aligned} \tag{29}$$

1095 In summary, $-\log p_\theta(\mathbf{x}_0) \leq \mathcal{L}_1 \leq \mathcal{L}_2$ holds.
 1096

1097 F IMPLEMENTATION OF THE RESAMPLER

1099 We define a resampler $S : \mathbb{R}^h \rightarrow \mathbb{R}^{L \times D}$, where h is the length of the input vector, L is the length of
 1100 the sequence and D is the hidden dimension of UniF²ace. Specifically, we define a learnable hidden
 1101 latent matrix:
 1102

$$1103 \quad \mathbf{M}_0 \in \mathbb{R}^{L \times d}, \quad \mathbf{M}_0 = \text{LearnableParameter} \tag{30}$$

1104 where d is the hidden dimension of the resampler. Its process involves:
 1105

1107 1. Project the noise embedding $\mathbf{x} \in \mathbb{R}^h$ via

$$1108 \quad \mathbf{H} = \mathbf{x} \mathbf{W}_{\text{in}} \in \mathbb{R}^{1 \times d} \tag{31}$$

1110 2. Iteratively refine the latent matrix through T layers, such as the l -th layer:
 1111

$$1112 \quad \mathbf{M}'_l = \mathbf{M}_{l-1} + \text{MHA}(\mathbf{M}_{l-1}, \text{Concat}(\mathbf{H}, \mathbf{M}_{l-1})) \tag{32}$$

$$1113 \quad \mathbf{M}_l = \mathbf{M}'_l + \text{FFN}(\mathbf{M}'_l) \tag{33}$$

1115 where MHA denotes the Multi-Head Attention mechanism, FFN denotes the Feed-Forward Network.
 1116 In MHA, the query, key, and value are denoted as:
 1117

$$Q_l = \mathbf{M}_{l-1} \mathbf{W}_Q^{(l)} \tag{34}$$

$$K_l = [\mathbf{H}; \mathbf{M}_{l-1}] \mathbf{W}_K^{(l)} \tag{35}$$

$$V_l = [\mathbf{H}; \mathbf{M}_{l-1}] \mathbf{W}_V^{(l)} \tag{36}$$

1122 3. Project the final latent to the output space:
 1123

$$1124 \quad \mathbf{Y} = \text{LayerNorm}(\mathbf{M}_T \mathbf{W}_{\text{out}}) \in \mathbb{R}^{L \times D} \tag{37}$$

1125 This enables adaptive fusion of input vector into sequence features through learned latent queries.
 1126

1127 G THE USE OF LARGE LANGUAGE MODELS (LLMs)

1130 LLMs were used solely to aid in writing and polishing the text (e.g., improving clarity and grammar),
 1131 with all outputs verified by the authors.
 1132

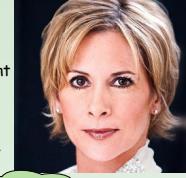
1133

Figure 8: More comparison of generated face images with other models. Fine-grained attributes are highlighted in the prompt.

Figure 9: More face images generated by UniF²ace

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202

Q: Break down the elements of the image in a detailed manner.



score:8

ViTAL1.5: The image captures a close-up portrait of a woman, her face filling most of the frame. Her hair, a vibrant shade of blonde, is adorned with a pair of earrings, a subtle accessory that complements her overall look. Her gaze is directed straight at the camera, creating a sense of connection with the viewer. The background is a stark black, providing a striking contrast to her blonde hair and white blouse. The image does not contain any discernible text or additional objects. The relative position of the woman in the frame and the absence of other elements give the image a minimalist aesthetic. The image is a study in contrasts - the blonde hair against the black background, the white blouse against the black background, and the woman's direct gaze against the surrounding darkness.

Qwen2-VL: The image features a person with short, blonde hair styled in a neat, straight manner. The hair is parted slightly off-center, and the individual is wearing a white, high-collared garment. The background is plain and dark, which helps to highlight the subject. The person is looking directly at the camera, giving a sense of direct engagement with the viewer. The lighting is soft, evenly illuminating the subject's face and hair, without casting harsh shadows. The overall composition is simple and focused, emphasizing the subject's facial features and attire.

score:6

LlaVA-v1.5: The image features a woman with short blonde hair, wearing a white shirt and a necklace. She is looking directly at the camera, giving a confident and professional appearance. The woman appears to be well-dressed and poised, possibly for a formal event or a professional setting.

score:4

InternVL2.5: The image captures a close-up portrait of a woman with light skin and short, straight blond hair. Her hair falls just above her shoulders, framing her face in soft waves at the ends. Her eyes are a light shade, possibly hazel or blue, and she has a slight smile on her lips. She wears makeup that includes mascara and possibly a neutral lipstick, enhancing her natural features without appearing overly done. The woman's ears are adorned with small, round earrings that catch the light, suggesting they may be made of a metallic or pearl-like material. The background is not visible, focusing attention solely on the woman's face. There are no discernible texts, symbols, or other objects in the image.

score:7

OmniFlow: a woman with blonde hair and bangs.

score:6

JanusFlow: The image features a woman with short, blonde hair styled in a layered cut. Her hair is parted to the side, and she has a few strands framing her face. She is wearing small, round earrings. The background is dark, which contrasts with her light-colored hair and clothing. The woman is wearing a white or light-colored top with a high collar, which appears to be made of a textured or patterned fabric.

score:6

Show-o: The image features a woman with blonde hair and a white collar, wearing a white dress. She is looking directly at the camera, her gaze steady and confident. The background is dark, providing a stark contrast to her bright attire. The woman's expression and pose give the impression of a professional portrait, possibly for a magazine or a professional setting.

score:5

Uni²Face(Ours): The image features a female with short, blonde hair styled in a layered cut with bangs. Her hair appears wavy, and she has a receding hairline. She has a fair complexion and smooth skin texture. Her well-groomed, arched eyebrows frame expressive eyes that are highlighted by long lashes. The person has a straight nose and lipstick, contributing to her balanced and symmetrical face. Her expression is neutral, exuding a calm and confident demeanor with a direct gaze. She is wearing earrings, and her subtle makeup enhances her natural features beautifully.

score:9

Figure 10: Comparison of captioning results and DeepSeeek-v3-based scores. We highlight fine-grained attributes with blue and errors in answers with red.

1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249

1250
1251

1252 **User:** "In the image there is a person, describe the image in a paragraph giving detailed fine-grained
1253 attributes of the person face. [Note that the output is mixed with the captions given below: xxxxx]"
1254

1255 **Step2: Prompt for generating fine-grained captions:**
1256

1257 **User:** "Please combine the face caption you just replied to and the following
1258 features into one paragraph:
1259 Appearance: xxx, xxx, xxx, xxx.....
1260 Action: xxx, xxx, xxx.....
1261 Emotion: xxx
1262

1263 **Step3: Prompt for generating fine-grained VQAs**
1264

1265 **User:** You are an AI visual assistant, and you are seeing a face image. What you see are provided with
1266 a paragraph , describing the same image you are looking at. Answer all questions as you are seeing the
1267 image.
1268 Design a conversation between you and a person asking about this photo. The answers should be in a
1269 tone that a visual AI assistant is seeing the image and answering the question.
1270 Ask diverse questions and give corresponding answers.
1271 Questions cover as many face attributes as possible, such as hair, nose, eyes, mouth, ears, skin,
1272 eyebrows, adornment, and so on. Only include questions that have definite answers:
1273 (1) one can see the content in the image that the question asks about and can answer confidently;
1274 (2) one can determine confidently from the image that it is not in the image.
1275 Do not ask any question that cannot be answered confidently.
1276 Also include closed-ended questions that are relevant to the content in the image, for example, asking
1277 whether the person in the image has earrings, asking whether is the hair of the person in the image
1278 long or short, etc. Again, do not ask about uncertain details.
1279 Also include complex questions that are relevant to the content in the image, for example, asking
1280 about the action and emotion of the person in the image, asking to discuss about events happening in
1281 the image, etc. Again, do not ask about uncertain details.
1282 Provide detailed answers when answering complex questions. For example, give detailed examples or
1283 reasoning steps to make the content more convincing and well-organized. You can include multiple
1284 paragraphs if necessary.
1285 Please return the results in the following json format:
1286 Example:
1287 {"from": "human", "value": "Can you describe his eyes and eyebrows?"},
1288 {"from": "gpt", "value": "Certainly! His eyes are deep-set and expressive, and his bushy dark eyebrows
1289 complement them well, enhancing his expressive appearance."},
1290 {"from": "human", "value": "What color are her earrings?"},
1291 {"from": "gpt", "value": "She wears gold earrings."},
1292
1293
1294
1295

1287 Figure 11: Prompts for building dataset. The first and second prompts are to GPT-4o, while the last
1288 prompt is to GPT-4. In the first prompt, the content in “[]” is used only when the image data includes
1289 built-in captions, such as in the MM-CelebA-HQ dataset.
1290
1291
1292
1293
1294
1295