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ABSTRACT

Unified multimodal models (UMMs) have emerged as a powerful paradigm in
fundamental cross-modality research, demonstrating significant potential in both
image understanding and generation. However, existing research in the face domain
primarily faces two challenges: (1) fragmentation development, with existing
methods failing to unify understanding and generation into a single one, hindering
the way to artificial general intelligence. (2) lack of fine-grained facial attributes,
which are crucial for high-fidelity applications. To handle those issues, we propose
UniF2ace, the first UMM specifically tailored for fine-grained face understanding
and generation. First, we introduce a novel theoretical framework with a Dual
Discrete Diffusion (D3Diff) loss, unifying masked generative models with discrete
score matching diffusion and leading to a more precise approximation of the
negative log-likelihood. Moreover, this D3Diff significantly enhances the model’s
ability to synthesize high-fidelity facial details aligned with text input. Second,
we propose a multi-level grouped Mixture-of-Experts architecture, adaptively
incorporating the semantic and identity facial embeddings to complement the
attribute forgotten phenomenon in representation evolvement. Finally, to this
end, we construct UniF2aceD-1M, a large-scale dataset comprising 130K fine-
grained image-caption pairs and 1M visual question-answering pairs, spanning a
much wider range of facial attributes than existing datasets. Extensive experiments
demonstrate that UniF2ace outperforms existing models with a similar scale in
both understanding and generation tasks, with 7.1% higher Desc-GPT and 6.6%
higher VQA-score, respectively.1

1 INTRODUCTION

Recently, unified multimodal models (UMMs) have emerged as a vibrant research area enabling
cross-modality understanding and generation within a single “any-to-any” framework, marking a
significant step toward artificial general intelligence (AGI) (Wu et al., 2024a; Shi et al., 2024; Li et al.,
2024a; Zhou et al., 2024; Team, 2024; Xie et al., 2024). Given the central role of faces in daily life,
applying this unified paradigm to achieve fine-grained face understanding and generation is essential
for developing human-centric AGI. The practical applications are vast and critical: accurate face
understanding is pivotal for identity verification (Srinivasan et al., 2024; Roshdy et al., 2024) and
human-computer interaction (Liu, 2024; Chowdary et al., 2023), while high-fidelity face generation
drives progress in creative industries (Melnik et al., 2024), virtual avatars (Yan et al., 2024), and data
augmentation for model robustness (Melzi et al., 2023). These demanding real-world needs urge
facial research to push the boundaries of multimodal understanding and generative modeling.

As shown in Fig. 1, despite the critical importance of human faces, existing research faces two funda-
mental and intertwined challenges: First, the field remains fragmented, with current methodologies
treating face understanding and generation as separate endeavors, failing to unify these capabilities
into a single framework. Typically, face understanding models are often based on fine-tune pretrained
multimodal large language models (MLLMs) on facial images with coarse text descriptions (Chet-
taoui et al., 2025; Sun et al., 2024a; Xing et al., 2024). Face generation models (Huang et al.,
2023; Nair et al., 2023; Kim et al., 2024) often incorporate visual information, such as semantic
masks and sketches, to guide high-fidelity face synthesis, but they cannot achieve direct generation
from detailed captions to faces. This leads to disjointed workflows that are both computationally

1Code is available in the supplementary materials.
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A(VLM): The individual in the picture has curly, dark brown hair that appears to be
medium-length. He also has a full beard, which is well-groomed and seems to have
some texture and is neatly trimmed. 

VLM (AR)

T2I Model (Diffusion)

Prompts：
......

Fine-grained ❌ 
=

A(Ours):  Certainly! He has medium-length curly hair, with a mix of
brown and black tones. The hair is styled with a natural wavy texture.
His beard is full, neatly groomed, and extends into well-maintained
sideburns. Additionally, he has a slightly receding hairline.

Face Understanding ❌ Face Generation ✅ Face Understanding ✅   Face Generation ❌ 

Fine-grained ✅ 

Fine-grained ❌ 

Question：
......

Fine-grained ✅ 

Face Understanding ✅ Face Generation ✅ 

Q: Can you describe his hair and beard?  The woman smiles...... Her experssive eys...... 

Unified Face Understanding and Generation

Face Understanding-Only

Q: Can you describe his hair
and beard? 

①

Prompts: The woman smiles...... Her expressive eyes are framed by arched eyebrows,
and...... Ornate earrings match the elegance of the tiara, contributing......

Face Generation-Only

     UniF2ace (AR+Diffusion)

Figure 1: UniF2ace is the first unified multimodal model designed for face understanding and genera-
tion, encompassing tasks such as visual question answering(VQA) and text-to-image generation. The
generated responses and images demonstrate UniF2ace’s potential in fine-grained face attributes.

inefficient and functionally restrictive. Crucially, the absence of a unified framework represents
a significant hurdle towards the realization of AGI within the domain of human faces. Second,
there is a pervasive lack of fine-grained information processing across both understanding and
generation tasks. This challenge stems from three problems: (a) The discrete diffusion model inherits
the advantages of diffusion for image generation while enabling better scalability modeling with text
tokens in UMMs (Yang et al., 2025; Xie et al., 2024). However, its specific implementation primarily
relies on masked generative models (Chang et al., 2022), lacking a combination with accurate score
matching (Lou et al., 2024), making it challenging to generate precise image details; (b) detailed
attribute representations are prone to being discarded during the learning evolution in multimodal
models (Zeng et al., 2024; He et al., 2025); and (c) the inaccessibility of cross-modality facial
datasets featuring fine-grained attributes. Existing text-face datasets fall into two types: web-scraped
low-resolution facial images with inaccurate captions (Li et al., 2024c; Zheng et al., 2022), and
close-up facial datasets with limited attributes per caption (only 2 to 7) (Xia et al., 2021; Yu et al.,
2023a), which lack detail. Moreover, current facial datasets do not include VQAs, limiting their use
for fine-grained understanding tasks. Furthermore, this deficiency directly impacts high-quality face
generation (Xiao et al., 2025; Deng et al., 2025; Wang et al., 2025a).

To handle these challenges, we propose UniF2ace (see Fig. 1), the first UMM specifically tailored
for unified and fine-grained face understanding and generation. UniF2ace aims to address the
aforementioned critical challenges by simultaneously performing both tasks and capturing fine-
grained facial attributes within a single model. Specifically, we firstly introduce a Dual Discrete
Diffusion (D3Diff) loss within a novel theoretical proof that optimizes the negative log-likelihood,
significantly improving generation quality. After that, we propose an integrated token-level and
sequence-level Mixture-of-Experts(MoE) architecture that adaptively handling semantic and identity
facial embeddings, effectively addressing the attribute forgotten phenomenon in representation
evolvement and specialized fine-grained representation learning for both understanding and generation
tasks. Finally, recognizing the critical role of data, we construct UniF2aceD-1M, a large-scale,
specialized dataset containing 130K facial image-text pairs and 1M visual question-answering
(VQA) pairs, with 17.7 attributes per caption. Extensive experiments on UniF2aceD-1M and other
benchmarks demonstrate that UniF2ace significantly outperforms various top-leading single-task
models or UMMs with a similar scale and dedicated face models across both understanding and
generation tasks, with 7.1% higher Desc-GPT and 6.6% higher VQA-score. Besides, our method
achieves comparable or even better accuracy than larger-scale models and establishes a strong baseline.
Our main contributions are as follows:

• A unified face understanding and generation framework: We introduce UniF2ace, the first unified
multimodal model for fine-grained face understanding and generation, establishing a solid baseline.

• A novel Dual Discrete Diffusion (D3Diff) loss function and a hybrid MoE architecture: We
introduce D3Diff, a novel loss function within that theoretically unifies score-based diffusion
and masked generative models, leading to a better approximation of the negative log-likelihood

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

for high-fidelity generation and fine-grained attribute control. Additionally, we explore a hybrid
Mixture-of-Experts (MoE) architecture at the token and sequence levels, adaptively incorporating
the semantic and identity facial embeddings to complement the attribute forgotten phenomenon in
representation evolvement.

• We construct UniF2aceD-1M, a dataset containing 1M VQAs with an automated pipeline. Extensive
experiments demonstrate that UniF2ace significantly outperforms or is on par with existing state-
of-the-art models with a similar scale on various benchmarks, all while providing a more unified
and efficient solution.

2 RELATED WORK

The field of Unified Multimodal Models (UMMs) has seen significant progress in integrating diverse
understanding and generation tasks within single frameworks for generic domains (Ma et al., 2024;
Team, 2024; Xie et al., 2024). However, their application to fine-grained visual analysis, especially in
the complex domain of human faces, remains largely unexplored. Within the face domain, existing
research is primarily fragmented into separate understanding models (often MLLM-based) (Sun et al.,
2024a; Xing et al., 2024) and generation models (typically diffusion-based) (Dai et al., 2025; Wang
et al., 2024b). Crucially, these approaches often struggle with fine-grained attribute processing and
fail to unify understanding and generation effectively. This dual deficiency represents a significant
gap that UniF2ace addresses. We also provide a more comprehensive review of Unified Multimodal
Models and Face Multimodal Models in Appendix A.

3 METHODOLOGY
We introduce our unified multimodal model, UniF2ace, designed to model both the understanding
and generation of fine-grained facial attributes. Our approach is realized from two perspectives:
loss function (Sec. 3.1) and network architecture (Sec. 3.2). Regarding the generation strategy, we
recognize that the generation of fine-grained facial attributes is significantly more challenging than
understanding tasks, as highlighted in prior studies (Du et al., 2017; Zhou et al., 2024; Xie et al., 2024).
To address this, we harness the theory of score matching in discrete diffusion (Lou et al., 2024) and
propose the dual discrete diffusion (D3Diff) training strategy, ensuring the meticulous synthesis of
facial details. For network architecture, existing UMMs typically focus on dense architectures (Zhou
et al., 2024; Xie et al., 2024) or solely on achieving token-level MoE (Deng et al., 2025), lacking the
selective integration of instance features. To overcome these limitations, we introduce token-level and
sequence-level MoE layers. Distinct MoE modules are designed for generation and understanding
tasks, selectively integrating information such as facial embeddings to enhance the model’s ability to
capture subtle facial attributes.

3.1 DUAL DISCRETE DIFFUSION

In generative modeling, masked generative models (Chang et al., 2022) are a widely adopted approach.
However, in this section, we introduce discrete score matching and theoretically prove that it offers
a better approximation to the negative log-likelihood. We also establish a theoretical connection
between the two approaches and finally propose a new loss function to ensure stable optimization,
thereby improving the alignment between the generated faces and fine-grained attributes in prompts.

In a discrete diffusion process, each image x0 is associated with a probability q(x0), and its latent
distribution at time t under noise adding is denoted by q(xt). The forward diffusion is modeled as a
continuous-time Markov chain, governed by the linear ordinary differential equation (ODE):

d

dt
qt|s(y | x) = qt|s(y | x)Qt, (1)

which converges to a stationary distribution as t → ∞. Here, Qt denotes a time-dependent sequence
of transition matrices. The closed-form solution of this ODE can be expressed as Qt|s = exp

(
(σ̄(t)−

σ̄(s))Q
)
, where σ̄(t) =

∫ t

0
σ(s) ds represents the cumulative noise level and exp is the matrix

exponential. The reverse process is given by Lou et al. (2024):
dqT−t

dt
= Q̃T−t qT−t, Q̃ =

qt(y)

qt(x)
Qt(x,y) , (2)

where Q̃ is the reverse diffusion matrix. In our work, we focus on the absorbing state, which is widely
used in masked generative models (Chang et al., 2022; Xie et al., 2024). Assuming independence
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among tokens, as supported by Sahoo et al. (2024); Shi et al. (2025), the exact formulation is
deferred to Appendix D. The score-based discrete diffusion model (Lou et al., 2024) introduces a
training-stable loss Lscore(sθ) to estimate the denoising score. It is defined as:

Lscore(sθ) = Ex∼p

∑
y ̸=x

wxy

(
sθ(x)y−

q(y)

q(x)
log sθ(x)y+K

(
q(y)

q(x)

)) , (3)

where sθ(xt, t) ≈
[
qt(yt)
qt(xt)

]
yt∈X

is the predicted score from the neural network, and K(a) =

a(log a− 1) is a normalizing constant ensuring Lscore ≥ 0.

To illustrate the advantage of Lscore, we start from the negative log-likelihood (NLL), which serves
as a fundamental criterion for evaluating the quality of training in generative models. Since exact
computation of the NLL is generally infeasible, prior works have derived two different surrogate
formulations that upper bound the NLL while remaining computationally tractable. Specifically, one
is L1 = Lscore(sθ) +DKL

(
qT |0(·|x0) ∥ pbase

)
, which predicts the score (Lou et al., 2024). And the

other is L2 = −
∑T

t=1 Eq(x0) q(xt|x0)

[
log pθ(x0|xt)

]
−C, widely used to predict masked tokens (Xie

et al., 2024). where C is a residual constant independent of the model parameters (see Appendix E for
details). The following theorem formally establishes the relationship between these two surrogates
and demonstrates that L1, which incorporates the score loss, yields a tighter upper bound on NLL.
Theorem 1. Let − log pθ(x0) denote the negative log-likelihood of the original data distribution.
Then the following inequality holds:

− log pθ(x0) ≤ L1 ≤ L2 . (4)

The proof is deferred to Appendix E. Importantly, this result implies that Lscore provides a tighter
relaxation of the maximum likelihood objective compared to the masked generative related loss L2,
thereby offering a more precise approximation of the NLL. In practice, the marginal distribution q(y)
is often intractable, and the exact analytical form of q(x) is unknown. A key insight is that, in masked
generative models, the posterior probability model pθ(x0|xt) can be related to the discrete diffusion
score function via Bayes’ theorem:

pθ(x0 |xt) ≈ qt(xt |x0)

[
qt(x0)

qt(xt)

]
θ

=qt(xt |x0)sθ(xt). (5)

Leveraging this relation, we propose the dual discrete diffusion (D3Diff) loss for training posterior
networks:

LD3Diff = −
T∑

t=1

Eq(x0)q(xt|x0) [log pθ(x0|xt)] + αLscore (pθ(x0|xt)/qt(xt|x0)) , (6)

where q(x0) is the data distribution, q(xt|x0) is the forward diffusion distribution, and pθ(x0|xt) is
the learned posterior parameterized by θ. The score loss Lscore is weighted by a hyperparameter α.
Eq. 6 establishes a computationally tractable connection between masked generative models and
score-based models. Unlike traditional masked generative losses, which rely solely on likelihood,
our D3Diff loss jointly optimizes two distinct upper bounds of the maximum likelihood objective,
enabling stable optimization and fine-grained generation (See Tab. 5).

3.2 MULTI-LEVEL GROUPED MIXTURE-OF-EXPERT

To capture fine-grained facial attributes while maintaining facial embeddings, we design distinct MoE
layers, termed Multi-level Grouped MoE, tailored for both generation and understanding subtasks.
This ensures optimal performance for each task, as illustrated in Fig. 2. We incorporate a sequence-
level MoE layer after the token-level MoE layer to effectively process instance-level inputs, such as
images and facial embeddings.

Token-Level MoE. We partition a feedforward neural network (FFN) into multiple experts with
reduced hidden dimensions and use a Top-K activation strategy (Fig. 2). We also employ integrate
generalized knowledge across contexts. Unlike prior methods, we introduce grouped MoE, dividing
experts into two groups based on the different tasks of Text-to-Image (T2I) and Multimodal Un-
derstanding (MMU). Each group combines shared and routed MoE, with expert-level balance loss
computed independently per group:

4
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Tokenizer
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Noise       
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Tokenizer

Image
encoder

Und Task

Text QA

Grouped Sequence Level MoE

Grouped Token Level MoE

LayerNorm

LayerNorm

Next-token Loss D3Diff Loss

WW W

Image Image

Mask Generative Score Matching

CLIP
Expert

Face
Expert

Copy
Expert

Copy
Expert

Und Sequence

Router Top K = 2

Output Sequence

Copy
Expert

Zero
Expert

Noise
Expert

Copy
Expert

Gen Sequence

Router Top K = 2

Output Sequence

1 2 3 4 ... N-1 N

Und Token

Router
......

Top K = 4

Output Token

1 2 3 4 ... N-1 N

Gen Token

Router
......

Top K = 4

Output Token

Shared
Expert

Shared
Expert

Figure 2: Our UniF2ace centered on two key innovations. First, we design the Transformer with
Mixture-of-Experts (MoE) hierarchy: a token-level MoE provides task-specific routing for individual
tokens, while a sequence-level MoE injects holistic, domain-specific features. Second, the model’s
generative capability is optimized by our proposed D3Diff loss, which unifies masked generation
with score matching to ensure high-fidelity synthesis of fine-grained facial details.

LBalance = λt2i

Nt2i∑
i=1

fiPi + λmmu

Nmmu∑
j=1

fjPj , (7)

where λt2i and λmmu are balance factors; Nt2i and Nmmu means the number of routed experts for T2I
and MMU tasks, respectively; fi and Pj denote expert selection frequency and probability.

Sequence-Level MoE. We propose sequence-level MoE, where distinct experts process the entire
image feature. We design three experts for the T2I group: copy expert (skip operation), zero expert
(discard operation), and noise expert. The copy and zero experts require no additional parameters.

Ecopy(x) = x and Ezero(x) = 0, (8)

where Ecopy(·) is the copy expert and Ezero(·) is the zero expert. For the noise expert Enoise(·), we
first integrate the time-step embedding, which operates on the noise level σ̄(t) to obtain the noise
embedding vector vnoise, following score-based discrete diffusion models (Lou et al., 2023). Then,

Figure 3: Clip/Face Expert enhances
the model’s understanding of fine-
grained facial attributes by incor-
porating semantic and identity fea-
tures.

CLIP/InsightFace

Image Input

Semantic / Identity Feature 

Resampler

Input
Hidden States

Wc
🔥🔥

Output

a resampler S : Rh → RL×D maps vnoise into the sequence
feature space (see Appendix E for resampler details). The re-
sampled noise embedding is added as a matrix to the sequence
feature. Formally, the noise expert’s output is:

Enoise(x) = wx+ (1− w)S(vnoise), (9)
w = Softmax(Wnoise · Flatten(x)), (10)

where Wnoise ∈ R2×(L·D) is a trainable weight matrix. In the
MMU task, we include copy experts and introduce CLIP ex-
perts and face experts (See Figure 3), which are similar to noise
experts. Next we extract image embeddings by CLIP (Rad-
ford et al., 2021) and face embeddings using AntelopeV2 as
supplementary features to enhance fine-grained facial attribute
capture. Formally, the outputs of the CLIP and face experts
are:

ECLIP(x) = wclipx+ (1− wclip)S(G(X)), (11)
Eface(x) = wfacex+ (1− wface)S(F(X)), (12)

where G and F are the image encoder and face encoder, re-
spectively. X is the input face image.
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3.3 OVERALL TRAINING OBJECTIVES

To perform both auto-regressive and discrete score-based diffusion modeling, we employ two learning
objectives: 1) Next Token Prediction (NTP) and 2) Dual Discrete Diffusion. Given a sequence with
N image tokens X = {X1,X2, . . . ,XN} and M text tokens Y = {Y1,Y2, . . . ,YM}. Then we
maximize the likelihood of text tokens Y by employing the standard language modeling objective
(NTP loss):

LMMU =

M∑
i=1

logP (Yi | Y<i,X ), (13)

Next, the overall training objectives of UniF2ace are formulated as:

Ltotal = LMMU + LD3Diff, (14)

4 EXPERIMENT

4.1 UNIF2ACED-1M DATASET FOR FINE-GRAINED FACE UNDERSTANDING AND GENERATION

Dataset Face Resolution VQA
Availability Image Caption Tokens

(Avg.)
Face Attributes

(Avg. per Caption)
LAION-Face (Zheng et al., 2022) Low ✗ 50M 16 2.7

FLIP-80M (Li et al., 2024c) ✗ 80M 22 4.4

FFHQ-Text (Zhou & Shimada, 2021)

High

✗ 760 45 12.2
MM-CelebA-HQ (Karras et al., 2018) ✗ 30K 26 6.2

CelebV-Text (Yu et al., 2023b) ✗ 70K 80 4.3
UniF2aceD-1M (Ours) ✓(1M) 130K 120 17.7

UniF2ace
D-1M
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Figure 4: UniF2aceD-1M contains high-resolution facial images, the largest number of facial at-
tributes, 130K fine-grained image-caption pairs and 1 million VQAs.

Existing datasets for multimodal facial modeling frequently suffer from significant limitations,
hindering advancements in fine-grained understanding and generation. Common deficiencies include
low-resolution imagery, imprecise or web-scraped captions lacking subtle attribute details, and
a pervasive absence of comprehensive visual question-answering (VQA) pairs tailored to facial
specifics (Li et al., 2024c; Zheng et al., 2022; Xia et al., 2021; Yu et al., 2023a; Karras, 2019).
These shortcomings mean that current models struggle to synthesize nuanced facial expressions,
comprehend intricate visual semantics, or reason effectively about complex facial attributes. To
overcome these challenges and truly enable unified and fine-grained multimodal facial intelligence,
we introduce UniF2aceD-1M. This high-quality dataset serves as a cornerstone of our framework,
meticulously designed to bridge these critical data gaps.

As shown in Fig. 4, our UniF2aceD-1M provides a resource distinguished by its fine-grained detail
and scale. It comprises nearly 130K high-fidelity facial images, each paired with richly detailed
captions that encompass a wide spectrum of 46 attributes related to appearance, actions, and emotions.
This meticulous level of detail is paramount for both robust model training and the generation
of highly controllable and realistic facial outputs. Furthermore, a key innovation of UniF2aceD-
1M is the inclusion of approximately 1M specialized VQA pairs. Unlike general VQAs, ours are
meticulously crafted to probe diverse facial appearances, emotions, and provide detailed reasoning
for character actions. This unique VQA collection is specifically designed to enhance MLLMs ability
to understand and reason about fine-grained facial attributes through instruction tuning. By offering a
substantial collection of high-quality facial imagery, richly detailed captions, and a unique, large-scale
set of facial VQAs, UniF2aceD-1M sets a new standard, providing the indispensable resources for
developing next-generation unified models capable of sophisticated fine-grained facial intelligence.
More collection and operation details can be found in the Appendix B.

4.2 METRICS AND OTHER FACIAL DATASETS

We rigorously evaluate UniF2ace’s performance across both generation and understanding tasks on
our UniF2aceD-1M test set. To provide a comprehensive assessment and verify the generalizability of
our method, we also conduct evaluations on other public benchmarks, including FFHQ-Text (Zhou &
Shimada, 2021), MM-CelebA (Xia et al., 2021), and CelebV-Text (Yu et al., 2023b). For generation
tasks, we used VQAscore to measure the relevance of generated images to captions, reporting results

6
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based on CLIP-FlanT5-11B (VQAscore-CF5) (Lin et al., 2024b) and LLaVA-v1.5-13B (VQAscore-
LV) (Liu et al., 2024c) for robust assessment. We also employ Fréchet Inception Distance (FID) to
measure similarity to ground truth and VLM-score to evaluate facial realism. For understanding
tasks, we follow LLaVA (Liu et al., 2023) and use GPT-4o (Hurst et al., 2024) and DeepSeek-v3 (Liu
et al., 2024a) to score responses on a 1-10 scale across two dimensions: detailed captioning (Desc-
GPT, Desc-DS), assessing accuracy in capturing face attributes, and VQA (Conv-GPT, Conv-DS),
measuring precision in responding to fine-grained queries. To fully validate UniF2ace, we compare it
with SOTA models. This includes generative models such as autoregressive LlamaGen (Yu et al.,
2023c) and diffusion-based Stable Diffusion 3 (SD3) (Esser et al., 2024), as well as leading unified
multimodal models (UMMs) like TokenFlow (Qu et al., 2024) and OmniFlow (Li et al., 2024a). More
implementations details are in Appendix C.

4.3 FACE GENERATION

Table 1: Comparison of face generation of UniF2ace with generative-only and UMMs. Bold indicates
the best, while underlined denotes the best. We use red to highlight the larger-scale model.

Type Model Method # Params VQAscore-CF5↑ VQAscore-LV↑ FID↓ VLM-score↑

Gen. Only

LlamaGen (Sun et al., 2024b) AR 0.8B 0.746 0.551 183.466 49.773
DALL-E 3 (Betker et al., 2023) AR - 0.845 0.644 106.477 50.122
SD3 (Esser et al., 2024) Diff 2B 0.903 0.671 93.471 75.944
SDXL (Podell et al., 2023) Diff 2.6B 0.876 0.660 123.095 72.764
Flux.1-dev (Labs, 2024) Diff 12B 0.893 0.674 76.427 84.513

Und. and Gen.

TokenFlow (Qu et al., 2024) AR 7B 0.871 0.664 98.194 73.177
OmniFlow (Li et al., 2024a) Diff 3.4B 0.798 0.585 180.933 24.960
JanusFlow (Ma et al., 2024) AR + Diff 1.3B 0.881 0.653 72.825 61.593
Show-o (Xie et al., 2024) AR + Diff 1.3B 0.855 0.650 142.557 75.618
UniF2ace(Ours) AR + Diff 1.8B 0.894 0.679 66.005 88.049

Table 2: Comparison of face generation on other public datasets. The experimental setup utilized the
built-in short captions of datasets as text prompts for generation.

Type Model Params FFHQ-Text MM-CelebA CelebV-Text
VQAScore↑ FID↓ VLM-Score↑ VQAScore↑ FID↓ VLM-Score↑ VQAScore↑ FID↓ VLM-Score↑

Gen.Only

LlamaGen (Sun et al., 2024b) 0.8B 0.336 201.341 46.412 0.358 187.311 48.121 0.721 289.841 46.906
DALL-E 3 (Betker et al., 2023) - 0.385 196.132 49.131 0.413 158.795 49.130 0.792 295.131 54.359
SD3 (Esser et al., 2024) 2B 0.423 156.129 74.492 0.459 105.141 80.142 0.803 239.313 74.127
SDXL (Podell et al., 2023) 2.6B 0.396 181.261 64.255 0.420 139.028 73.149 0.788 271.319 70.991
Flux.1-dev (Labs, 2024) 12B 0.434 136.360 83.621 0.467 128.462 87.764 0.806 254.043 84.901

Gen.&Und.

TokenFlow (Qu et al., 2024) 7B 0.409 160.023 74.349 0.421 129.562 71.092 0.781 273.972 79.526
OmniFlow (Li et al., 2024a) 3.4B 0.376 228.094 25.431 0.368 201.413 27.892 0.800 290.131 36.839
JanusFlow (Ma et al., 2024) 1.3B 0.413 149.231 60.984 0.445 129.131 63.418 0.797 259.236 66.587
Show-o (Xie et al., 2024) 1.3B 0.391 177.053 73.141 0.428 141.311 74.242 0.785 260.210 70.482
UniF2ace(Ours) 1.8B 0.451 125.287 87.412 0.481 85.179 86.978 0.804 224.412 94.986

SDXL TokenFlow OmniFlow Show-o UniF2ace(Ours)

"A young female child with a round face, wearing a playful green hat with monster-like features including white eyes. Her long hair peeks out from under the hat.
The child's cheeks are rosy, and her lips are slightly parted. She has light-colored eyes, giving an expression of curiosity or wonder. Dressed in a bright red
jacket, she adds a vibrant contrast to the scene. The background is a softly blurred outdoor winter setting."

"The image features a female with long, straight black hair. She has a fair complexion with a smooth skin texture and well-defined, arched eyebrows that
complement her deep-set, dark brown eyes. Her nose is pointy and she has full lips with a natural, subtle color. The person is wearing hoop earrings and smiling or
laughing conveying a sense of happiness, with an overall expression that is calm and composed."

Figure 5: Comparative analysis of face images generation quality across SDXL (Podell et al., 2023),
TokenFlow (Qu et al., 2024), OmniFlow (Li et al., 2024a), Show-o (Xie et al., 2024), and UniF2ace.
Our proposed UniF2ace effectively captures more detailed information from prompts.

Generation Performance on UniF2aceD-1M and Public Dataset. On our UniFaceD-1M benchmark
(Tab. 1), our 1.8B parameter UniF2ace sets a new state-of-the-art, outperforming all competing UMMs
on key generation metrics including FID, VQA-score, and VLM-score. Furthermore, the model
also demonstrates robust generalization, consistently achieving leading scores on public cross-facial
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Figure 6: Activation frequency of Token-Level and Sequence-Level MoE in different layers. The
left column indicates understanding tasks, while the right column indicates generation tasks. Larger
circles indicate experts who are activated more frequently.

datasets such as FFHQ-Text (Zhou & Shimada, 2021), MM-CelebA (Xia et al., 2021), and CelebV-
Text (Yu et al., 2023a) (Tab. 2). This strong and consistent performance validates the effectiveness of
our D3Diff loss and multi-level grouped MoE architecture for high-quality, fine-grained facial image
generation across diverse settings.
Visualization Analysis. As shown in Fig. 5, we conduct qualitative evaluation on challenging
UniF2aceD-1M test scenarios involving complex facial details. UniF2ace excels at generating
realistic faces that capture fine-grained details from complex prompts (e.g., ”rosy cheeks,” ”hoop
earrings”), visibly outperforming other models. More examples can be found in Fig. 8 and Fig. 9.
Besides, as shown in Fig. 6, we analyze MoE activation frequencies across layers. For token-level
MoEs, high activation frequencies are concentrated between experts 5 and 8, indicating limited token
feature variability in the generation task. For sequence-level MoEs, noise and zero expert activations
are evenly distributed, indicating effective training with selective noise embedding and truncation.

4.4 FACE UNDERSTANDING

Table 3: Comparison of face understanding of UniF2ace with understanding-only and UMMs.

Type Model Method # Params Desc-GPT↑ Conv-GPT↑ Desc-DS↑ Conv-DS↑

Und. Only

VILA1.5 (Lin et al., 2023) AR 3B 4.76 5.20 6.56 6.54
Qwen2-VL (Wang et al., 2024a) AR 7B 5.16 6.27 5.50 6.86
LLaVA-v1.5 (Liu et al., 2024b) AR 7B 4.28 5.48 4.84 6.20
InternVL2.5 (Chen et al., 2024) AR 8B 5.62 5.89 6.30 6.55
Qwen2.5-VL (Bai et al., 2025) AR 3B 4.88 6.38 4.98 6.75

Und. and Gen.

TokenFlow (Qu et al., 2024) AR 7B 5.02 5.80 5.82 6.39
OmniFlow (Li et al., 2024a) Diff 3.4B 1.62 - 1.90 -
JanusFlow (Ma et al., 2024) AR + Diff 1.3B 4.88 6.06 5.42 6.77
Show-o (Xie et al., 2024) AR + Diff 1.3B 3.88 4.17 5.24 4.90
UniF2ace(Ours) AR + Diff 1.8B 6.02 6.53 7.38 7.29

Table 4: Comparison of face understanding on other public datasets. The experiments utilized the
dataset’s captions as labels for captioning task evaluation, showing the robustness of UniF2ace.

Type Model Params FFHQ-Text MM-CelebA CelebV-Text
Desc-GPT Desc-DS Desc-GPT Desc-DS Desc-GPT Desc-DS

Und.Only

VILA1.5 (Lin et al., 2023) 3B 4.29 4.79 4.48 4.59 4.61 4.76
Qwen2-VL (Wang et al., 2024a) 7B 4.68 5.41 5.11 5.40 4.90 4.95
LLaVA-v1.5 (Liu et al., 2024b) 7B 4.01 4.60 4.29 4.26 4.54 4.50
InternVL2.5 (Chen et al., 2024) 8B 5.09 5.58 4.75 4.98 5.07 5.01
Qwen2.5-VL (Bai et al., 2025) 3B 4.38 4.92 4.72 4.70 5.20 5.10

Gen.&Und.

TokenFlow (Qu et al., 2024) 7B 5.04 5.75 4.99 5.01 4.86 5.10
OmniFlow (Li et al., 2024a) 3.4B 2.83 3.06 3.41 3.38 2.90 3.03
JanusFlow (Ma et al., 2024) 1.3B 4.31 5.15 4.60 4.71 4.54 4.86
Show-o (Xie et al., 2024) 1.3B 3.86 4.67 4.38 4.39 4.49 4.57
UniF2ace(Ours) 1.8B 5.12 5.92 6.24 6.80 5.87 5.29

Understanding Performance on UniF2aceD-1M and Public Dataset. On our UniF2aceD-1M
benchmark (Tab. 3), UniF2ace sets a new state-of-the-art in fine-grained facial understanding, achiev-
ing the highest scores across all metrics. Crucially, it surpasses even larger, specialized models like
InternVL2.5 (8B) and all competing UMMs. Furthermore, as shown in Tab. 4, this superior under-
standing capability demonstrates strong generalization, as UniF2ace also consistently achieves top
captioning scores on public cross-facial datasets. This robust performance across diverse benchmarks
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validates the effectiveness of our approach in learning transferable, fine-grained facial representations,
affirming UniF2ace’s leading position in comprehensive multimodal facial understanding.

Quantitative Evaluation. We compare UniF2ace with advanced autoregressive multimodal models
like Qwen2-VL (Wang et al., 2024a) (7B) and similar UMMs (Wu et al., 2024c; Xie et al., 2024).

VILA1.5: The man in the image has a
messy, unkempt hairstyle with his hair
sticking up in all directions.

Uni2Face: Certainly! He has brown hair that is thick and
wavy, styled in a slightly tousled manner. His hairstyle also
includes sideburns that complement the overall look.

Q：Can you describe his hairstyle?

JanusFlow: The person has a messy, spiky hairstyle with
a lot of volume and texture. The hair is light brown and
appears to be somewhat unkempt.

Uni2Face: Yes, she is wearing earrings, which add to her
stylish appearance.

Q：Is she wearing any earrings？
InternVL2.5: The image is not clear
enough to determine if she is wearing
any earrings.
Show-o: Yes, the woman is wearing earrings.

score:4

score:8

score:9

score:3

score:7

score:6

Visual comparisons (right Fig.) confirm UniF2ace’s su-
perior fine-grained understanding in VQA tasks, where
it accurately identifies subtle details like ”sideburns”
and ”earrings” that competitors miss. We also pro-
vide more examples for captioning in the Appendix
(Fig. 10). Besides, as shown in Fig. 6 (left column),
we analyze MoE activation frequencies in the under-
standing task. Token-level MoEs often select the same
expert in the top (the closest to the prediction head)
and bottom layers. For sequence-level MoEs, face and
CLIP experts are more frequently activated in layers
closer to the top, indicating that deeper layers benefit
from visual embeddings to better understand face im-
ages. Notably, activation patterns are different across
the generation groups, highlighting the effectiveness of
our group-based strategy.
4.5 ABLATION STUDIES

Coefficient in Dual Discrete Diffusion. As shown in Table 5, we analyze the D3Diff loss.
The optimal weight is α = 0.01 , which balances the 200× magnitude difference between the

Table 5: Ablation study with different loss weights.
Loss Type Weight α VQAscore-CF5↑ VQAscore-LV↑ FID↓ VLM-score↑
Only Mask 0 0.879 0.661 77.463 85.993

Only Score 0.01 0.886 0.670 69.694 87.951

D3Diff
0.1 0.887 0.673 68.903 86.378
0.01 0.894 0.679 66.005 88.049

0.001 0.884 0.668 72.736 89.220

score-matching and masked generative
losses. The complete D3Diff loss sig-
nificantly outperforms using either loss
component individually. Crucially, the
superiority of the score-only loss over the
masked-only loss empirically validates
our theoretical analysis in Appendix E.

Table 6: Ablation of Face and CLIP Expert.
Expert Type Understanding
Face CLIP Desc-GPT↑ Conv-GPT↑ Desc-DS↑ Conv-DS↑

✗ ✗ 5.21 5.31 6.27 6.36
✓ ✗ 5.67 5.93 6.86 7.10
✗ ✓ 5.81 5.46 7.12 5.84
✓ ✓ 6.02 6.53 7.38 7.29

Table 7: Ablation of Top-k in Seq-level MoE.

Top-K Generation Understanding
VQAscore↑ FID↓ VLM-score↑ Desc↑ Conv↑

1 0.879 74.914 74.314 6.57 6.42
2 0.894 66.005 88.049 7.38 7.29
3 0.895 65.413 85.401 7.26 7.34
4 0.897 63.632 87.795 7.23 7.36

Ablation of MoEs Architecture. We ablate our multi-level MoE design ( Tab. 6, Tab. 7, Tab. 8). The
results (Tab. 8) first confirm that combining token-level and sequence-level MoEs achieves the best

Table 8: Ablation study of token- and sequence-level MoE.

Token
MoE

Sequence
MoE

Generation Understanding
VQAscore↑ FID↓ VLM-score↑ Desc↑ Conv↑

✗ ✗ 0.878 72.877 84.432 4.988 6.031
✓ ✗ 0.887 67.415 87.917 5.678 6.495
✗ ✓ 0.889 69.312 86.790 5.864 6.247
✓ ✓ 0.894 66.005 88.049 6.023 6.532

performance, with each component
individually outperforming the non-
MoE baseline. We further analyze the
sequence-level MoE, finding that: (1)
for understanding tasks, using both
CLIP and Face experts is optimal
in fine-grained facial understanding
(Tab. 6); and (2) a Top-k=2 selection strategy provides the best balance between performance
and efficiency (Tab. 7). These findings validate our hierarchical and specialized MoE design.

5 CONCLUSION

This paper introduces UniF2ace, the first unified multimodal model (UMM) designed for fine-
grained face understanding and generation. The model bridges the gap between score-based models
and masked generative models in discrete diffusion, while leveraging token-level and sequence-
level mixture-of-experts (MoE) to sparsify the model. Extensive experiments show that UniF2ace
outperforms existing UMMs and even surpasses larger generation-only or understanding-only models.
This underscores the potential of our improvements to guide future research in face applications of
UMM. Additionally, we constructed a large-scale face-text aligned dataset, UniF2aceD-1M, to further
advance multimodal research in the community.
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A RELATED WORKS

Unified Multimodal Models. Recent works (Ma et al., 2024; Li et al., 2024d; Wu et al., 2024a;
Chen et al., 2025; Wang et al., 2024c) in image understanding and generation have primarily focused
on unified multimodal models (UMMs). Early approaches (Li et al., 2024b; Wu et al., 2024b) often
integrated external decoders of diffusion models (DMs) with text autoregressive models (ARMs).
Inspired by next-token prediction tasks, they proposed using a single Transformer (Vaswani et al.,
2017) model to unify understanding and generation (Wu et al., 2024c). For instance, Janus-Pro (Chen
et al., 2025) decouples the visual encoder into specialized tokenizers for separate handling of
understanding and generation tasks. Chameleon (Team, 2024) and Emu3 (Wang et al., 2024c) employ
an ARM to simultaneously manage both tasks, highlighting the advantages of autoregressive models
in multitask settings. Additionally, Transfusion (Zhou et al., 2024) and Show-o (Xie et al., 2024)
combine a text ARM with a visual DM, enabling seamless integration of image understanding and
generation. These studies have advanced the fusion of visual and text generation models, enhancing
performance on multimodal tasks. However, despite the proliferation of UMMs, their application has
largely been limited to generic domain tasks, with limited exploration in fine-grained visual analysis,
particularly in the face domain. Unlike previous UMMs that simply combine ARMs and DMs, we
pioneer sparse UMMs by introducing both token-level and sequence-level Mixture of Experts (MoEs),
significantly improving model performance.

Face Multimodal Models. Face multimodal models are primarily categorized into two types:
face understanding models and face generation models. For understanding, early models were
task-specific and lacked multimodality (Miyato et al., 2018; Zhang et al., 2024; Wang et al., 2023;
Lee et al., 2023). Recent works (Chettaoui et al., 2025; Sun et al., 2024a; Xing et al., 2024; Zhao
et al., 2024) leverage the reasoning capabilities of LLMs or MLLMs, often using MLLM-generated
face Q&A data to fine-tune or post-train foundation models, incorporating face domain knowledge.
For example, EMO-LLaMA (Xing et al., 2024) introduces facial experts to extract facial features,
which are aggregated with handcrafted prompts and fed into LLaMA (Touvron et al., 2023), enabling
it to answer facial-related queries. Recent research (Wang et al., 2025b; Li et al., 2025; Zhao
et al., 2025) has increasingly focused on performing fine-grained facial attribute analysis. On the
modeling front, FaceInsight (Li et al., 2025) advances facial perception by introducing visual-textual
alignment of facial knowledge and segmentation maps. FaVChat Zhao et al. (2025) extends these
fine-grained perceptual capabilities to the domain of video understanding. Complementing these
modeling advancements, a new wave of benchmarks has emerged for rigorous evaluation (Narayan
et al., 2025; Wang et al., 2025c). A notable example is FaceXBench (Narayan et al., 2025), which
provides a comprehensive assessment covering 14 tasks across 6 broad categories, including bias
and fairness, authentication, recognition, and analysis. Collectively, these synergistic efforts in both
model development and evaluation are driving the field of fine-grained face understanding forward.
For generation, recent works (Dai et al., 2025; Wang et al., 2024b; Huang et al., 2023; Kim et al.,
2024) focus on using diffusion models to personalize face images by conditioning on textual and
visual information, such as semantic masks, but avoid directly capturing fine-grained face attributes
from text prompts. Despite these advances in understanding and generation separately, developing
unified multimodal models (UMMs) remains a significant research challenge. Addressing this gap
can enhance cross-modal capabilities and advance progress toward Artificial General Intelligence
(AGI).

B DATASET CONSTRUCTION

To overcome the limitations of existing datasets in the realm of multimodal facial modeling, we
introduce a high-quality dataset called UniF2aceD-1M, which boasts a remarkable alignment between
facial images and textual descriptions (see Fig. 7). This dataset encompasses nearly 130K facial
images, each paired with richly detailed captions. Additionally, it contains approximately 1M visual
question answers, significantly enhancing its value for training and evaluating multimodal models. By
offering such a comprehensive resource, we aim to propel advancements in facial image understanding
and generation, establishing a solid foundation for a wide range of multimodal learning tasks. The
creation of UniF2aceD-1M encompassed three key stages. (1) Step-1: Collect high-quality facial
images. (2) Step-2: Generate detailed captions. (3) Step-3: Create question-answering pairs. Each
stage is outlined in detail below.
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Step-1 Step-2

Fine-grained VQAs: 
Q1: Can you describe her hairstyle?
A1: Certainly! She has light blonde hair styled in a braid that wraps around the top of her
head, which gives her a neat and tidy appearance.
Q2: What action is she captured in?
A2: Based on the description, she is captured in the action of engaging in a conversation,
as indicated by her open mouth and expressive, focused eyes.
Q3: Does she appear tired or energetic?
A3: She appears slightly tired, as suggested by the slight bags under her eyes, though
her expression remains engaged and friendly. 

CelebV-HQ 

MM-CelebA-HQ 

FFHQ 

    GPT4o

Initial Captions: The person in the image
has a fair complexion with a slightly flushed
appearance on the cheeks. Their hair is light
blonde and styled in a braid that wraps
around the top of the head, giving a neat and
tidy look. The eyes are light-colored,possibly
blue or green, and are expressive, with a
focused gaze. The eyebrows are light and
naturally shaped, complementing the overall
facial features. The person has a straight
nose and a subtle smile, which adds a
friendly demeanor to their expression. They
are wearing a blue sports shirt with a
patterned design near the neckline,
suggesting they might be engaged in or
discussing a sporting activity.

Appearance: female,
young, rosy cheeks, blonde
hair, bags under eyes
Action: gaze, talk
Emotion: neutral

Step-3

Fine-grained Captions: The young female in
the image has a fair complexion with rosy
cheeks and light blonde hair styled in a braid
that wraps around the top of her head, giving a
neat appearance. Her light-colored eyes,
possibly blue or green, are expressive and
focused, combined with her open mouth
suggesting she is engaged in conversation. She
has naturally shaped, light eyebrows that
complement her straight nose and subtle smile,
adding a friendly demeanor to her neutral
expression. There are slight bags under her
eyes, indicating possible tiredness or
concentration. She is wearing a blue sports
shirt with a patterned design near the
neckline, hinting at involvement in a sporting
activity.

Face
Encoder

❄️

Image
Encoder

❄️

Action
Head

🔥

Appearance
Head

🔥

 Emotion
Head

🔥

Fine-grained
VQAs

 Attribute 
Classifier

❄️

    GPT4o     GPT4o

    GPT4

 Attribute 
Classifier

❄️

Examples

Figure 7: Pipeline and examples of UniF2aceD-1M construction. Left: A three-stage pipeline for
building UniF2aceD-1M. Step-1: High-quality face images are collected. Step-2: Detailed captions
are generated by GPT-4o with a face attribute model trained to classify fine-grained appearance,
action, and emotion. Step-3: Question-answering pairs are created. These stages collectively refine
GPT-4o-generated captions and produce fine-grained descriptions for VQAs generation. Right: A
representative example showcasing UniF2aceD-1M’s ability to correct (e.g., gender), enhance (e.g.,
bags under eyes), and reason (e.g., talking, slight tiredness) in GPT-4o-generated captions.

(1) Step-1: Collect High-quality Facial Images. In this step, we curated more than 130,000 high-
quality facial images from the following distinguished datasets. CelebV-HQ (Zhu et al., 2022) is a
large-scale video dataset featuring 35,666 clips representing 15,653 identities, each clip meticulously
annotated with 83 facial attributes. We extracted one key frames from each video to utilize detailed
annotations for fine-grained face-text alignment. Flickr-Faces-HQ (FFHQ) (Karras, 2019) provided
70,000 high-quality PNG images at a resolution of 1024 by 1024, offering substantial diversity
in attributes such as age and ethnicity. Multi-Modal-CelebA-HQ (MM-CelebA-HQ) (Xia et al.,
2021) contributed 30,000 high-resolution images paired with descriptive captions that have proven
invaluable for facial generation and analysis.

(2) Step-2: Generate Detailed Captions. Existing face image datasets often lack detailed descrip-
tions of fine-grained attributes like bags under eyes or jewelry. To handle this, we develop a two-stage
caption generation process.

In Stage I, we employed an advanced MLLM such as GPT-4o (Hurst et al., 2024) to produce initial
captions. We designed a specialized prompt that incorporated brief face descriptions from the
MM-CelebA-HQ dataset (Xia et al., 2021) to help GPT-4o accurately describe key facial attributes,
including appearance, emotion, and actions. The detailed descriptions of all prompts are presented
later (see Fig. 11).

In Stage II, we refined these captions by training face attribute classification models using the CelebV-
HQ dataset (Zhu et al., 2022). Focusing on single-person images, we used the pretrained face model
AntelopeV22 to extract face embeddings. By combining these with image embeddings from CLIP
(Radford et al., 2021), we trained classification heads for appearance, action, and emotion attributes.
We selected 29 appearances with accuracies over 93%, 10 actions with accuracies over 87%, and 7
emotions with accuracies over 80% as final preditions for inference. These highly accurate attributes
were then predicted for all remaining images in FFHQ and MM-CelebA-HQ datasets (Karras, 2019;
Xia et al., 2021). Finally, a prompt integrating these classification results with the Stage I captions
was fed into GPT-4o to generate final captions that are both highly accurate and diverse.

(3) Step-3: Create Question-answering Pairs. In this step, we proposed 1M VQAs covering
diverse facial appearances, emotions, and character action reasoning for our UniF2aceD-1M dataset.

2https://github.com/deepinsight/insightface
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These VQAs are designed to enhance MLLMs’ ability to understand fine-grained facial attributes
through instruction tuning. Inspired by LLaVA (Liu et al., 2024c), we carefully designed prompts
to enable GPT-4 (Achiam et al., 2023) to generate a series of VQAs based on image captions,
facilitating fine-grained understanding and reasoning. Most current face-text datasets lack VQAs,
while VQAs in general image-text datasets often focus on people’s clothing, location, and behavior,
neglecting detailed facial descriptions. In contrast, our proposed VQAs encompass diverse facial
details, including hair, nose, eyes, mouth, ears, skin, eyebrows, and adornments. Additionally, since
facial attributes can reflect a character’s ongoing actions, our VQAs incorporate detailed reasoning
processes to infer and describe these actions. By organizing the VQAs into the same format as the
LLaVA dataset (Liu et al., 2024c), we streamlined the process of adapting multimodal face models for
post-training. This alignment minimizes alteration costs, ensuring efficient integration and enabling
the models to leverage both datasets seamlessly for improved performance.

C IMPLEMENTATIONS DETAILS

We train our model on the UniF2aceD-1M training dataset part, comprising 120K 256 × 256 face
images, each annotated with detailed captions and seven to eight VQAs, about 900K. UniF2ace
utilizes discrete image tokens as input, represented by the pre-trained MAGVIT-v2 (Yu et al., 2023c).
For token-level MoE, each group (generation and understanding tasks) includes one shared expert and
eight routed experts, selected via a top-2 strategy. The expert structure is a single-layer MLP with the
gating mechanism (Dai et al., 2024). In sequence-level MoE, the generation group employs two copy
experts, one zero expert, and one noise expert. Noise embedding is implemented using sinusoidal
embedding, following (Nichol et al., 2021). The noise resampler uses a 4-layer Multi-Head Attention
mechanism to map noise embeddings to the UniF2ace hidden space. For the understanding group,
there are two copy experts, one CLIP expert, and one face expert. We use CLIP-ViT for image
embedding and AntelopeV2 for face embedding, with the resampler configuration matching that
of the noise expert. Moreover, training is divided into two stages: Stage I uses only captions for
generation and understanding tasks, while Stage II incorporates VQAs into the understanding task.
This pipeline transitions the model from general image feature understanding to fine-grained feature
capture. Both stages are trained on 8 NVIDIA A100 (80GB) GPUs, optimized using AdamW with a
weight decay of 0.01, 5K warm-up steps, and an initial learning rate of 5e-5 with cosine scheduling.
The total batch size is 600 for Stage I and 480 for Stage II, with 20K steps for Stage I and 40K steps
for Stage II. For a fair comparison, we also performed full-parameter fine-tuning on all competing
models using an identical amount of data, leveraging their official fine-tuning scripts where available.
In the inference process of UniF2ace, following the computation method in (Lin et al., 2024a), we
compute the maximum and minimum activation parameters for UniF2ace under the Top-2 strategy
due to the different number of parameters included between different experts in the sequence-level
MoE. The total number of parameters for UniF2ace is 1.84B, the maximum activation parameter is
about 1.63B, and the minimum activation parameter is about 1.42B. The average number of activation
parameters tested in the UniF2aceD-1M test dataset is 1.47B.

D ABSORBING-STATE CASE WITH INDEPENDENCE BETWEEN TOKENS.

The absorbing-state case means that for any single token x with possible values in X = {1, . . . , N},
the transition matrix is

Qabsorb =


−1 0 · · · 0 1
0 −1 · · · 0 1
...

...
. . .

...
...

0 0 · · · −1 1
0 0 · · · 0 0

 . (15)

The reverse transition rate matrix of the reverse process from state xt to state x̂t is

Q̃t (xt, x̂t) =

{
qt(x̂t)
qt(xt)

Qt (x̂t,xt) , x̂t ̸= xt

−
∑

k ̸=xt
Q̃t (xt, k) , x̂t = xt

. (16)
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As Qt (x̂t,xt) is known, it is sufficient to estimate the concrete score qt(x̂t)
qt(xt)

by a score network

sθ (xt, t) ≈
[
qt(x̂t)
qt(xt)

]
x̂t∈X

. Score based discrete diffusion model is an effective objective to train

the score network (Meng et al., 2022; Lou et al., 2023). Specifically, the score function in a
multidimensional discrete space is

sθ (xt, t)x̂t
= sθ

(
x1
t . . .x

i
t . . .x

d
t , t
) [

i, x̂i
t

]
≈

qt
(
x1
t . . . x̂

i
t . . .x

d
t

)
qt
(
x1
t . . .x

i
t . . .x

d
t

) , (17)

and accordingly,

Q̃t

(
x1
t . . .x

i
t . . .x

d
t ,x

1
t . . . x̂

i
t . . .x

d
t

)
≈ Qt

(
x̂i
t,x

i
t

)
sθ
(
x1
t . . .x

i
t . . .x

d
t , t
) [

i, x̂i
t

]
. (18)

E PROOF OF THEOREM 1

To prove Theorem 1, we first introduce two loss formulas and establish useful lemmas.

(1) L1 = Lscore (sθ) +DKL

(
qT |0 (· | x0) ∥qbase

)
, where Lscore (x0) is the diffusion weighted

denoising score entropy for data point x0, and sθ = qθ(x0|xt)
q(xt|x0)

Lscore (sθ) =

∫ T

0

Ext∼qt|0(·|x0)

∑
y ̸=xt

Qt (xt, y)
(
sθ (xt, t)y

−
qt|0 (y | x0)

qt|0 (xt | x0)
log sθ (xt, t)y +K

(
qt|0 (y | x0)

qt|0 (xt | x0)

))
dt .

(19)

(2) L2 = −
∑T

t=1 Eq(x0)q(xt|x0) [log pθ (x0 | xt)]− C , where C is a constant independent of
the model parameters. By (Xie et al., 2024), C = C1 + C2, and constants C1 and C2 are
shown as:

C1 = Eq(x0:T )

− T∑
t=1

log q (xt | xt−1) + log p (xT )︸ ︷︷ ︸
Note that p(xT )=q(xT )


= Eq(x0:T )

[
−

T∑
t=1

log q (xt,xt−1) +

T∑
t=0

log q (xt)

]

C2 = Eq(x0:T )

[
T∑

t=1

log q (xt−1 | xt)

]
− Eq(x0:T )

[
T∑

t=1

∑
x̃0

q (x̃0 | xt−1) log q (x̃0 | xt)

]

= Eq(x0:T )

[
T∑

t=1

log q (xt,xt−1)−
T∑

t=1

log q (xt)

]

−
T∑

t=1

Eq(x0:T )q(x̃0|xt−1) [log q (x̃0 | xt)] .

(20)

C1 + C2 = Eq(x0:T )

[
log q (x0)−

T∑
t=1

log q (x0 | xt)

]
. (21)

Let L = log pθ(x0) be the model’s log-likelihood for a data point x0, and let K be its variational
lower bound:

K = Eq(x0)q(x1:T |x0)

[
log

pθ (x0:T−1 | xT )

q (x1:T | x0)
+ log p (xT )

]
. (22)

Then, the following inequality chain holds:
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L ≥ K = −L1 ≥ −L2 , (23)

where L1 and L2 are defined as above.

The proof is based on two applications of Jensen’s inequality to the log-likelihood.

1. Proving L ≥ K

This is the standard variational lower bound for diffusion models, derived by applying Jensen’s
inequality:

log pθ(x0) = log

∫
pθ(x0:T )dx1:T

= Eq(x0)

[
logEq(x1:T |x0)

[
pθ(x0:T−1 | xT )pθ(xT )

q(x1:T | x0)

]]
(a)

≥ Eq(x0:T )

[
log

pθ(x0:T−1 | xT )

q(x1:T | x0)
+ log pθ(xT )

]
= K

(24)

Here, we assume pθ(xT ) ≈ q(xT ). This proves the first part of the inequality.

2. Proving K = −L1

K = Eq(x0:T )

[
log

T∏
t=1

pθ(xt−1|xt)

q(xt|xt−1)
+ log pθ(xT )

]

=

T∑
t=1

Eq(x0:T )

[
log

pθ(xt−1|xt)

q(xt|xt−1)

]
+ Eq(x0:T ) [log pθ(xT )]

(25)

From the derivations in (Sohl-Dickstein et al., 2015), the variational lower bound K can be strictly
rewritten in terms of KL divergences, which directly correspond to our L1. Specifically,

K = −
T∑

t=2

∫
dx0dxT q (x0,xT ) · KL (q (xT−1 | xT ,x0) ∥p (xT−1 | xT ))

+Hq (xT | x0)−Hq (x1 | x0)−Hp (xT )

(26)

Since

Hq (xT | x0)−Hp (xT ) =

∫
xT

∫
x0

q (xT | x0) q (x0) log q (xT | x0) dx0dxT

−
∫
xT

∫
x0

q (xt | x0) q (x0) dx0 log p (xT ) dxT

=

∫
xT

∫
x0

q (xT | x0) q (x0) log
q (xT | x0)

p (xT )
dx0dxT

= Epdata(x0) [KL (q (xT | x0) ∥p (xT )] ,

(27)

and Hq (x1 | x0) = Epdata Eq(x1|x0)

[
log p0|1 (x0 | x1)

]
, then the above formula is equivalent to

−Ext∼qT |0(·|x0)

[
DKL

(
Px0

(· | xt) ∥Pθ (· | xt)
)]

−DKL

(
qT |0 (· | x0) ∥π

)
, (28)

which is equal to L1, according to (Lou et al., 2024).

3. Proving K ≥ −L2
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The derivation of L2 involves a second application of Jensen’s inequality on K:

K = Eq(x0:T )

[
T∑

t=1

log
pθ (xt−1 | xt)

q (xt | xt−1)
+ log p (xT )

]

= Eq(x0:T )

[
T∑

t=1

log

(∑
x̃0

q(xt−1 | xt, x̃0)p̃θ(x̃0 | xt)

)]
+ C1

(b)

≥ Eq(x0:T )

[
T∑

t=1

∑
x̃0

q(x̃0 | xt−1) log

(
q(xt−1 | xt)

q(x̃0 | xt)
p̃θ(x̃0 | xt)

)]
+ C1

=

T∑
t=1

Eq(xt,x0)[log p̃θ(x0 | xt)] + C1 + C2

= −L2

(29)

In summary, − log pθ(x0) ≤ L1 ≤ L2 holds.

F IMPLEMENTATION OF THE RESAMPLER

We define a resampler S : Rh → RL×D , where h is the length of the input vector, L is the length of
the sequence and D is the hidden dimension of UniF2ace. Specifically, we define a learnable hidden
latent matrix:

M0 ∈ RL×d, M0 = LearnableParameter (30)

where d is the hidden dimension of the resampler. Its process involves:

1. Project the noise embedding x ∈ Rh via

H = xWin ∈ R1×d (31)

2. Iteratively refine the latent matrix through T layers, sucn as the l-th layer:

M′
l = Ml−1 + MHA (Ml−1, Concat(H,Ml−1)) (32)

Ml = M′
l + FFN(M′

l) (33)

where MHA denotes the Multi-Head Attention mechanism, FFN denotoes the Feed-Forward Network.
In MHA, the query, key, and value are denoted as:

Ql = Ml−1W
(l)
Q (34)

Kl = [H;Ml−1]W
(l)
K (35)

Vl = [H;Ml−1]W
(l)
V (36)

3. Project the final latent to the output space:

Y = LayerNorm(MTWout) ∈ RL×D (37)

This enables adaptive fusion of input vector into sequence features through learned latent queries.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used solely to aid in writing and polishing the text (e.g., improving clarity and grammar),
with all outputs verified by the authors.
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SDXL TokenFlow OmniFlow Show-o UniF2ace(Ours)

"A male with short, slightly tousled gray hair and a distinct goatee. His face is characterized by a broad forehead and prominent cheekbones. The nose is straight
and well-defined. The skin tone is warm, with natural texture and some visible lines, indicative of age and life experience."

"The image features a male with a receding hairline and short, gray hair. He has a mustache and a neatly trimmed beard. The person is wearing thin-framed
eyeglasses that rest on his nose. His expression appears serious or contemplative, with closed lips and focused eyes. The lighting highlights the contours of his
face, emphasizing the forehead and cheekbones. The background is slightly blurred, featuring an American flag, suggesting a formal or official setting. The overall
composition conveys a sense of gravity and focus."

"The person in the image has a warm and friendly expression, characterized by a gentle smile that conveys happiness. They appear to be female and have light skin,
with long hair partially covered by a patterned headscarf in shades of green and blue, adding elegance to their appearance. The decorative headpiece features a
central red gem and dangling elements across the forehead. Their eyes are accentuated with dark eyeliner, and they have arched eyebrows that complement their
facial features. The person is wearing lipstick, which enhances their smile, and they have a pointy nose. Additionally, they are wearing earrings that add a touch of
sophistication. The lighting highlights the smooth texture of their skin, enhancing the natural beauty of their face."

Figure 8: More comparison of generated face images with other models. Fine-grained attributes are
highlighted in the prompt.

Figure 9: More face images generated by UniF2ace
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Q: Break down the elements of the image in a detailed manner.
VILA1.5: The image captures a close-up portrait of a woman, her face filling most of the frame. Her hair, a vibrant
shade of blonde. She is adorned with a pair of earrings, a subtle accessory that complements her overall look. Her
gaze is directed straight at the camera, creating a sense of connection with the viewer. The background is a stark
black, providing a striking contrast to her blonde hair and white blouse. The image does not contain any discernible
text or additional objects. The relative position of the woman in the frame and the absence of other elements give
the image a minimalist aesthetic. The image is a study in contrasts - the blonde hair against the black background,
the white blouse against the black background, and the woman's direct gaze against the surrounding darkness. 

Qwen2-VL: The image features a person with short, blonde hair styled in a neat, straight manner. The hair is parted slightly off-center,
and the individual is wearing a white, high-collared garment. The background is plain and dark, which helps to highlight the subject. The
person is looking directly at the camera, giving a sense of direct engagement with the viewer. The lighting is soft, evenly illuminating the
subject's face and hair, without casting harsh shadows. The overall composition is simple and focused, emphasizing the subject's facial
features and attire.

LLaVA-v1.5: The image features a woman with short blonde hair, wearing a white shirt and a necklace. She is looking directly at the
camera, giving a confident and professional appearance. The woman appears to be well-dressed and poised, possibly for a formal event or a
professional setting.

InternVL2.5: The image captures a close-up portrait of a woman with light skin and short, straight blond hair. Her hair falls just above
her shoulders, framing her face in soft waves at the ends. Her eyes are a light shade, possibly hazel or blue, and she has a slight smile on
her lips. She wears makeup that includes mascara and possibly a neutral lipstick, enhancing her natural features without appearing overly
done. The woman's ears are adorned with small, round earrings that catch the light, suggesting they may be made of a metallic or pearl-
like material. The background is not visible, focusing attention solely on the woman's face. There are no discernible texts, symbols, or
other objects in the image.

OmniFlow: a woman with blonde hair and bangs.

JanusFlow: The image features a woman with short, blonde hair styled in a layered cut. Her hair is parted to the side, and she has a few
strands framing her face. She is wearing small, round earrings. The background is dark, which contrasts with her light-colored hair and
clothing. The woman is wearing a white or light-colored top with a high collar, which appears to be made of a textured or patterned
fabric.

Show-o: The image features a woman with blonde hair and a white collar, wearing a white dress. She is looking directly at the camera, her
gaze steady and confident. The background is dark, providing a stark contrast to her bright attire. The woman's expression and pose give
the impression of a professional portrait, possibly for a magazine or a professional setting.

Uni2Face(Ours): The image features a female with short, blonde hair styled in a layered cut with bangs. Her hair appears wavy, and she
has a receding hairline. She has a fair complexion and smooth skin texture. Her well-groomed, arched eyebrows frame expressive eyes
that are highlighted by long lashes. The person has a straight nose and lipstick, contributing to her balanced and symmetrical face. Her
expression is neutral, exuding a calm and confident demeanor with a direct gaze. She is wearing earrings, and her subtle makeup enhances
her natural features beautifully.

score:6

score:8

score:4

score:7
score:6

score:6

score:5

score:9

Figure 10: Comparison of captioning results and DeepSeeek-v3-based scores. We highlight fine-
grained attributes with blue and errors in answers with red.
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User: "Please combine the face caption you just replied to and the following
features into one paragraph: 
Appearance: xxx, xxx, xxx, xxx......
Action: xxx, xxx, xxx......
Emotion: xxx

Step2: Prompt for generating fine-grained captios:

User: "In the image there is a person, describe the image in a paragraph giving detailed fine-grained
attributes of the person face. [Note that the output is mixed with the captions given below: xxxxx]"

Step1: Prompt for generating initial captions:

Step3: Prompt for generating fine-grained VQAs
User: You are an AI visual assistant, and you are seeing a face image. What you see are provided with
a paragraph , describing the same image you are looking at. Answer all questions as you are seeing the
image.
Design a conversation between you and a person asking about this photo. The answers should be in a
tone that a visual AI assistant is seeing the image and answering the question.
Ask diverse questions and give corresponding answers.
Questions cover as many face attributes as possible, such as hair, nose, eyes, mouth, ears, skin,
eyebrows, adornment, and so on. Only include questions that have definite answers:
(1) one can see the content in the image that the question asks about and can answer confidently;
(2) one can determine confidently from the image that it is not in the image.
Do not ask any question that cannot be answered confidently.
Also include closed-ended questions that are relevant to the content in the image, for example, asking
whether the person in the image has earrings, asking whether is the hair of the person in the image
long or short, etc. Again, do not ask about uncertain details.
Also include complex questions that are relevant to the content in the image, for example, asking 
about the action and emotion of the person in the image, asking to discuss about events happening in
the image, etc. Again, do not ask about uncertain details.
Provide detailed answers when answering complex questions. For example, give detailed examples or
reasoning steps to make the content more convincing and well-organized. You can include multiple
paragraphs if necessary.
Please return the results in the following json format:
Example:
{"from": "human", "value": "Can you describe his eyes and eyebrows?"},
{"from": "gpt", "value": "Certainly! His eyes are deep-set and expressive, and his bushy dark eyebrows
complement them well, enhancing his expressive appearance."},
{"from": "human", "value": "What color are her earrings?"},
{"from": "gpt","value": "She wears gold earrings."},

Figure 11: Prompts for building dataset. The first and second prompts are to GPT-4o, while the last
prompt is to GPT-4. In the first prompt, the content in “[]” is used only when the image data includes
built-in captions, such as in the MM-CelebA-HQ dataset.
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