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Abstract
Recent breakthroughs in solving reasoning, math
and coding problems with Large Language Mod-
els (LLMs) have been enabled by investing sub-
stantial computation budgets at inference time.
Therefore, inference speed is one of the most crit-
ical properties of LLM architectures, and there is
a growing need for LLMs that are efficient and
fast at inference. Recently, LLMs built on the
xLSTM architecture have emerged as a powerful
alternative to Transformers, offering linear com-
pute scaling with sequence length and constant
memory usage, both highly desirable properties
for efficient inference. However, such xLSTM-
based LLMs have yet to be scaled to larger mod-
els and assessed and compared with respect to
inference speed and efficiency. In this work,
we introduce xLSTM 7B, a 7-billion-parameter
LLM that combines xLSTM’s architectural ben-
efits with targeted optimizations for fast and ef-
ficient inference. Our experiments demonstrate
that xLSTM 7B achieves performance on down-
stream tasks comparable to other similar-sized
LLMs, while providing significantly faster infer-
ence speeds and greater efficiency compared to
Llama- and Mamba-based LLMs. These results
establish xLSTM 7B as the fastest and most effi-
cient 7B LLM, offering a solution for tasks that re-
quire large amounts of test-time computation. Our
work highlights xLSTM’s potential as a founda-
tional architecture for methods building on heavy
use of LLM inference. Our model weights, model
code and training code are open-source.
Model: https://huggingface.co/NX-AI/xLSTM-7b
Code: https://github.com/NX-AI/xlstm and
https://github.com/NX-AI/xlstm-jax.
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1. Introduction
Recent breakthroughs in test-time compute scaling have
unlocked significant improvements in solving complex rea-
soning and math problems. By sampling multiple promising
solutions, the best answers can be provided to the user or
used as training targets (Yao et al., 2023; Hao et al., 2023;
Guan et al., 2025). However, as state-of-the-art models
such as OpenAI o11 and DeepSeek-R1 (DeepSeek-AI et al.,
2025) leverage these methods to push the capabilities of
language models to new heights, the significantly increased
computational overhead of test-time compute methods re-
quires more efficient architectures that provide greater in-
ference speeds. A promising path involves linear recurrent
neural networks with gating mechanisms, including GLA
(Yang et al., 2024b), Mamba (Gu & Dao, 2024; Dao & Gu,
2024), RWKV (Peng et al., 2023; 2024), RetNet (Sun et al.,
2023), and xLSTM (Beck et al., 2024). Compared to Trans-
formers, these models offer a parallel mode for efficient
training (e.g. Yang et al., 2024b) and a recurrent generation
mode that both scale linearly with context length. The in-
creased compute efficiency combined with constant memory
usage during inference allows spending more compute at
test-time, but also enables running models locally on edge
devices acting as an interface to the user with fast response
times.

xLSTM has shown competitive performance compared to
alternative recurrent models and even Transformers in a
controlled experimental setting using the same data and sim-
ilar parameter counts (Beck et al., 2024). Moreover, this
architecture also excelled in other domains, such as com-
puter vision (Alkin et al., 2025), robotics (Schmied et al.,
2024), molecular biology (Schmidinger et al., 2025), and
time series (Kraus et al., 2024). However, so far, xLSTM
has not been scaled to datasets beyond 300B tokens and
1.3B parameters. It therefore remains uncertain whether this
architecture can match the Transformer’s ability to scale
effectively with larger model sizes and extract meaningful
patterns from ever-larger datasets.

In this work, we scale the xLSTM to 7B parameters and
present our xLSTM 7B, a large language model trained on
2.3T tokens from the DCLM dataset (Li et al., 2024) with
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context length 8192 using 128 H100 GPUs. To achieve this,
we improve and optimize the initial xLSTM architecture
from Beck et al. (2024) for optimal training efficiency and
stability, without sacrificing performance in downstream
tasks. Our new architecture fully relies on mLSTM cells
with parallel training mode to achieve maximum speed at
high language modeling performance. We further optimize
the throughput by modifying the surrounding block archi-
tecture. By operating the mLSTM in a lower dimensional
space and adding position-wise feedforward MLP layers
similar to the default Transformer blocks, we increase the
amount of compute spent for highly optimized linear layers.
Additionally, we discard components such as channel-wise
convolutions or learnable skip connections to increase the
GPU utilization during training. We find that this optimized
block architecture has a 2× to 4× higher token throughput
compared to the previous xLSTM architecture of Beck et al.
(2024), while achieving similar performance on language
modeling. In addition to the efficiency optimizations, we
optimize the new xLSTM architecture for improved training
stability, focusing specifically on the gating mechanism of
the mLSTM cell. By introducing soft-capping for input
and forget gates and improved initializations for the input
gate we effectively mitigate high gradient norm spikes and
variance, and improve the performance of our xLSTM 7B.

In our evaluations on language downstream and long-
context tasks, xLSTM 7B shows comparable performance
to Transformers and Mamba models of the same size, but
with our optimized block architecture it achieves the high-
est prefill and generation throughput with the lowest GPU
memory footprint on our inference efficiency benchmarks.

To summarize, in this work we present targeted modifica-
tions to the xLSTM architecture in order to (i) improve
training and inference efficiency, and (ii) ensure training
stability at large scales. (iii) We introduce a new language
model with 7B parameters based on the xLSTM architec-
ture trained on 2.3 T tokens with 8k context length demon-
strating the highest inference speed and efficiency in our
benchmarks.

We release the pre-trained model xLSTM 7B on Hugging-
face2 and provide the model implementation and training
code 3 including optimized triton kernels 4 for fast training
and inference.

2. Background: xLSTM with Matrix Memory
In this section, we reassess the mLSTM (Beck et al., 2024),
on which we build our xLSTM 7B. The mLSTM cell is
fully parallelizable, and, therefore, enables highly efficient

2https://huggingface.co/NX-AI/xLSTM-7b
3https://github.com/NX-AI/xlstm-jax
4https://github.com/NX-AI/mlstm_kernels

large-scale model training while maintaining fast recurrent
inference with constant memory.

Generation Mode. During inference, when generating
tokens, the mLSTM cell processes the series of input vec-
tors xt ∈ Rd for time steps t ∈ {1, . . . , T} in a recurrent
manner, mapping a state (ht−1,Ct−1,nt−1,mt−1) to a
successor state (ht,Ct,nt,mt) given an input xt. Here,
ht ∈ Rdhv denotes the hidden state, Ct ∈ Rdqk×dhv

denotes the cell state responsible for long-term memory,
nt ∈ Rdqk denotes the normalizer state, and mt ∈ R de-
notes the max state controlling the magnitude of the expo-
nential input gate.

In the recurrent mode (generation), the mLSTM cell

ht = mLSTMCell (xt,ht−1,Ct−1,nt−1,mt−1) , (1)

is defined by the following state update equations:

mt = max
{
log σ(̃ft) +mt−1, ĩt

}
, (2)

Ct = ft Ct−1 + it kt v
⊤
t , (3)

nt = ft nt−1 + it kt, (4)

h̃t =
C⊤

t

(
qt/

√
dqk

)
max

{∣∣n⊤
t

(
qt/

√
dqk

)∣∣, exp(−mt)
} , (5)

ht = ot ⊙ Norm( h̃t ). (6)

The gate activations are computed as:

ft = exp
(
log σ(̃ft) +mt−1 −mt

)
, (7)

it = exp(̃it −mt), (8)
ot = σ (õt) . (9)

The query, key, and value vectors qt,kt ∈ Rdqk , vt ∈ Rdhv

are computed as {qt,kt,vt} = W{q,k,v} xt + b{q,k,v}.
The scalar input and forget gates it, ft ∈ R are computed
from the pre-activations {̃it, f̃t} = w⊤

{i,f} xt + b{i,f} and
the vector output gate ot ∈ Rdhv is computed from the
pre-activation õt = Wo xt + bo with the sigmoid func-
tion σ. The normalization layer Norm in (6) can be either
RMSNorm (Zhang & Sennrich, 2019) or LayerNorm (Ba
et al., 2016).

Training Mode. In training, the mLSTM cell processes a
full sequence of input vectors X ∈ RT×d and computes the
hidden states H ∈ RT×dhv for all time steps T in parallel.
We denote the mLSTM cell in parallel mode (training) as

H = mLSTMCell (X) . (10)

Due to the linear nature of the recurrence in equations (2)-
(9), the hidden states H can be computed in chunks without
materializing the intermediate memory states (Ct,nt,mt).
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Figure 1. Sketch of the updated xLSTM Block. The lower part
is an output-gated sequence-mix layer with the mLSTM at its
core, whereas the upper part is a gated MLP (SwiGLU) as a
feature/channel-mix layer. See Fig. 8 for details.

This chunkwise-parallel form enables highly efficient train-
ing kernels, analogous to FlashLinearAttention (Yang et al.,
2024b; Yang & Zhang, 2024), surpassing the training speeds
of FlashAttention (Dao, 2024; Shah et al., 2024). For details
on the chunkwise-parallel training kernels for the mLSTM
cell, we refer to Beck et al. (2025).

Multi-Head mLSTM. Similar to multi-head attention
in Transformers (Vaswani et al., 2017), the xLSTM has
Nhead = d/dhv different mLSTM cells mLSTMCell(i).
The hidden states H(i) of every head are then concatenated
and once again projected, resulting in the mLSTM layer

mLSTM(X) = Concat(H(1), . . . ,H(Nhead)) W⊤
proj, (11)

where H(i) = mLSTMCell(i)(X). We discuss key con-
siderations for choosing the number of parallel heads or in
other words the head dimension dhv in Sec. 3.1.

3. Optimized xLSTM 7B Architecture
The emerging paradigm of increasing test-time computation
necessitates i) the development of novel architectures opti-
mized for efficient inference. Additionally, new architectures
must ii) be viable in large-scale pre-training setups, thus be
highly efficient during training, and iii) exhibit stable con-
vergence. Our xLSTM 7B is designed to meet these three
challenges by offering an architecture that can be trained
efficiently and with stable convergence and is also highly
efficient at inference. In Sec. 3.1, we detail our optimiza-
tion of the xLSTM architecture for efficiency during both
inference and training. We then describe in Sec. 3.2 our ac-
tions to improve and ensure stable convergence for training
large xLSTM models, focusing specifically on the gating
mechanism of the mLSTM cell.

3.1. Optimizing for Efficiency

The core of the xLSTM 7B architecture, the mLSTM cell,
with its recurrent and parallel mode enable efficient infer-
ence and training. To leverage its full potential, we revisit
the design of the surrounding block structures.

Previous mLSTM Block. Similarly to other linear RNNs
like Mamba (Gu & Dao, 2024; Hua et al., 2022), the pre-
vious xLSTM architecture places the mLSTM cell com-
bined with channel-wise convolutions in between a linear
up-projection and down-projection, which is referred to as
pre up-projection block (Beck et al., 2024). These blocks
combine sequence mixing and channel mixing in one block
and are therefore stacked homogeneously without interleav-
ing position-wise feed-forward MLP layers. Although the
pre up-projection block architecture has proven competi-
tive language modeling performance for the xLSTM up to
1.4B parameters, it comes with a substantial trade-off in
computational efficiency for the following reasons:

1. Within the pre up-projection block, the mLSTM oper-
ates in a significantly higher dimension than the em-
bedding dimension of the model. This leads to a sub-
stantially higher computational cost and GPU memory
usage for the mLSTM operation.

2. Omitting position-wise feed-forward MLP layers re-
sults in a decreased proportion of highly efficient linear
layer FLOPs in the model.

3. The previous xLSTM architecture uses several addi-
tional components such as learnable skip connections,
channel-wise convolutions, and small (block-diagonal)
projection layers to compute queries, keys and val-
ues. Without custom kernel fusion, these small opera-
tions result in multiple short kernel calls on the GPU,
which cannot effectively utilize tensor cores5 and, con-
sequently, significantly reduce GPU utilization.

4. Previously, the input and forget gate pre-activations
were computed from concatenated query, key and value
projections. In a large-scale tensor-parallel training
setup this requires an additional all-reduce operation
per mLSTM block, which increases the overall com-
munication cost.

These limitations prevent efficient scaling of the xLSTM
architecture as introduced by Beck et al. (2024) beyond 1.4B
parameters. To scale the xLSTM to even larger model sizes,
we optimize the mLSTM block for maximal efficiency by
addressing these four limitations.

Optimizing the mLSTM Block. To begin, we operate
the mLSTM cell in the models’ embedding dimension, in-

5Tensor cores are specialized compute units that accelerate
matrix multiplications on GPUs.
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stead of a higher dimensional space and place position-wise
feed-forward MLP layers after each mLSTM layer. This
modification increases the proportion of highly optimized
linear layer (i.e. matrix multiplication) FLOPs and reduces
the computation cost of the mLSTM operation (see App. E
for details on the FLOP computation). The significantly
reduced GPU memory usage enables larger batch sizes dur-
ing training, which also increases training efficiency. The
result is the default dense Transformer block configuration
referred to as post up-projection block by Beck et al. (2024):

z = x+mLSTM
(
Norm(x)

)
, (12a)

y = z +MLP
(
Norm(z)

)
, (12b)

where x is the input to the block, z is the intermediate
output of the mLSTM layer defined in (11), and y is the
block output. The MLP is a SwiGLU (Shazeer, 2020) (see
Fig. 1).

Moreover, we discard operations like the channel-wise con-
volution and the learnable skip-connection, and replace the
block-wise query, key and value projections by dense linear
layers. This again increases linear layer FLOPs and ensures
effective usage of tensor cores within the mLSTM layer.

Finally, we ensure that the gate pre-activations for every
head are computed independently as outlined in (11). This
allows us to apply the model parallelization strategies opti-
mized for Transformers with self-attention (Shoeybi et al.,
2020) to our xLSTM 7B architecture and therefore minimize
additional communication cost.

These optimizations result in our optimized mLSTM block
described in Fig. 1 and Fig. 8 in the appendix, of which we
stack 32 in our xLSTM 7B architecture. We observe that our
optimizations achieve a 3.5× speedup in training for 1.4B
models, with a slight trade-off in validation perplexity that
can be mitigated by a few more training steps (see Tab. 2).
Although the modified block structure reduces the size of
the mLSTM cell memory states C, we find that it does not
compromise the language modeling quality of our model.

Optimizing the Memory Capacity. The overall memory
capacity of the xLSTM, i.e. the amount of information that
can be stored from an input sequence, is related to the phys-
ical size of its memory cell states C of shape dqk × dhv
in GPU memory. By choosing either the number of heads
or the head dimension dhv, the other is given by the rela-
tion to the embedding dimension d = #heads × dhv. For
the xLSTM 7B we set dqk = dhv/2 similar to Sun et al.
(2023). We can then compute the total memory state size by
#blocks × #heads × dqk × dhv × 4 bytes, assuming that the
state is stored in float32 format. In Tab. 3 we show the
memory state size for different number of heads as well as
their trade-offs with language modeling performance and
training efficiency. We use a larger memory state size and

a slightly longer train step time to make sure the model is
not constrained by a lack of memory. We elaborate further
on this in Sec. 5. We choose 8 heads with head dimension
dhv = 512 for xLSTM 7B.

Fused Generation Kernels for the mLSTM Cell. Dur-
ing autoregressive generation, the hidden state outputs of the
mLSTM cell are computed, with its recurrent formulation
given by (1) – (9). The recurrent formulation consists of a
combination of an outer-product, dot-products and several
pointwise operations, which translates to individual con-
secutive GPU kernels. Since each kernel loads its inputs
from and stores its outputs to GPU memory, this increases
the amount of slow memory operations. To ensure that
intermediate results of equations (2)–(5) are not unneces-
sarily transferred to GPU memory, but instead remain on
the GPU’s compute chips, we write fused GPU kernels for
the mLSTM generation mode. This results in significantly
faster generation as shown in speed benchmarks in Sec. 5.2.

3.2. Optimizing for Stability

We find that the previous xLSTM architecture at the 7B
parameter scale often becomes unstable in early stages of
training. In particular, we noticed that training at higher
learning rates leads to large spikes in the gradient magnitude
and loss value, similar to reports from previous works on
Mamba-based models (Lieber et al., 2024; Dao & Gu, 2024;
Zuo et al., 2024). We further observed and attribute these
spikes to very large outlier features, i.e. individual feature
values that are significantly larger than the average feature
value (He et al.). We address these stability issues by (i) the
use of RMSNorm instead of LayerNorm, (ii) soft-capping of
the input and forget gates, and (iii) a negative initialization
of the input gate bias.

Pre-Norm with RMSNorm. Many works report that re-
placing the LayerNorm by RMSNorm at the input of each
layer (e.g. in the pre-norm setting (Xiong et al., 2020))
improves training stability for Transformers (OLMo et al.,
2025; Touvron et al., 2023; Gemma Team, 2024a; Yang
et al., 2024a) and Mamba models (Zuo et al., 2024). Our
experiments in App. C.2, Fig. 9 confirm that this also ap-
plies to the pre-norm normalization layers in (12) in our
xLSTM architecture. Therefore, we replace the LayerNorm
by RMSNorm in our xLSTM architecture.

Gate Soft-Capping. To reduce potential large outlier fea-
tures and related loss spikes, we apply soft-capping to the
input and forget gate pre-activations ĩt and f̃t, such that their
values stay between −a and a for a specific cap value a. We
cap the gates using a = 15 with the function

softcapa(x) = a · tanh(x/a). (13)

In Sec. 5.3 and App. Sec. C.2, we confirm that this sig-
nificantly improves the stability and performance of our
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Figure 2. Loss and Gradient Norm during Pretraining of xLSTM 7B. We show the mean and maximum value over 50 steps. Our enhanced
architecture and initialization enable stable pretraining of xLSTM 7B, exhibiting only two brief loss spikes early in training, both of which
were rapidly recovered.

Table 1. Model Performance on Huggingface Leaderboard v2. ↑ indicates larger values are better.

MODEL BBH ↑ MMLU-PRO ↑ MATH ↑ MUSR ↑ GPQA ↑ IFEVAL ↑ AVERAGE ↑
TRANSFORMERS
Llama-3.1-8B 0.465 0.325 0.042 0.379 0.312 0.125 0.275
Llama-2-7B-hf 0.349 0.186 0.013 0.363 0.269 0.264 0.241
OLMo-7B-hf 0.330 0.118 0.010 0.357 0.257 0.280 0.225
Gemma-7B 0.426 0.293 0.061 0.408 0.295 0.272 0.292
Ministral-8B-Instruct-2410 0.496 0.350 0.151 0.430 0.319 0.322 0.345
Bloom-7B1 0.311 0.111 0.000 0.354 0.264 0.138 0.196
Gpt-j-6B 0.321 0.125 0.009 0.363 0.261 0.250 0.222
Pythia-6.9B 0.326 0.116 0.006 0.355 0.270 0.232 0.217
Qwen2.5-7B 0.541 0.435 0.165 0.446 0.329 0.359 0.379
Gemma-2-9B 0.543 0.414 0.117 0.453 0.334 0.217 0.346
DCLM-7B 0.426 0.312 0.030 0.392 0.303 0.228 0.282

TRANSFORMER-RECURRENT HYBRIDS
Zamba2-7B 0.489 0.319 0.114 0.402 0.318 0.375 0.336

RECURRENT MODELS
Falcon-Mamba-7B (pre-decay) 0.373 0.177 0.024 0.387 0.275 0.252 0.248
Falcon-Mamba-7B 0.429 0.229 0.039 0.412 0.299 0.335 0.290
MambaCodestral-7B (v0.1) 0.405 0.191 0.023 0.359 0.266 0.322 0.261
RKWV-v5-Eagle-7B 0.325 0.121 0.007 0.322 0.243 0.266 0.214
RWKV-v6-Finch-7B 0.342 0.154 0.014 0.338 0.265 0.264 0.230
xLSTM 7B 0.381 0.242 0.036 0.379 0.280 0.244 0.260
xLSTM 7B LCTX 0.390 0.252 0.040 0.374 0.253 0.234 0.257
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xLSTM architecture. Additionally, we apply soft-capping
with a = 30 to the final layer logits, similar to Gemma
Team (2024b).

Negative Input Gate Bias Initialization. We observe that
early on in training our xLSTM models experience large
gradient norm spikes, which affect the final performance of
our model (see Fig. 11 in App. C.2). Initializing the input
gate at large negative values (e.g. -10) effectively mitigates
these gradient norm spikes and improves performance. We
analyze the impact of the input gate further in Sec. 5.3.

In summary, our optimizations enable a remarkably stable
pre-training of xLSTM 7B, as we show in Figure 2.

We outline the detailed block architecture of our xLSTM 7B
in Appendix A and our training recipe in Appendix B.

4. Related Work
Although the largest language models to date have predomi-
nantly relied on Transformer-based architectures, recurrent
LLMs and hybrid models have recently gained traction as
alternative architectures due to their enhanced efficiency in
processing long contexts. Many recent efforts have targeted
the 7B parameter scale (or nearby), striking a balance be-
tween model capacity and resource constraints. Griffin (De
et al., 2024) is one of the first hybrid recurrent models that
was trained with up to 14B parameters. Later, the same
architecture was used to train RecurrentGemma with 9B pa-
rameters (Botev et al., 2024). The Griffin architecture uses
a 1D temporal convolution of size 4 before the sequence
mixing part, similar to H3 (Fu et al., 2023) and Mamba
(Gu & Dao, 2024), but the hidden state is vector valued
with independent updates per each (scalar) dimension. In
contrast, Eagle-7B (Peng et al., 2024) builds on the RWKV
architecture and uses a matrix-valued hidden state similar
to linear attention and gated linear attention (Katharopoulos
et al., 2020; Yang et al., 2024b).

Among the Mamba models at the 7B parameter scale, Wal-
effe et al. (2024) provided the first comparative analysis
of Mamba 1, Mamba 2, and a hybrid Mamba architecture.
In their experiments, the performance of both Mamba 1
and Mamba 2 significantly lagged behind Transformers,
while the hybrid architecture was shown to surpass the
performance of Transformers. Aligned with this finding,
several new hybrid Mamba architectures have been pro-
posed, including Samba (3.8B) (Ren et al., 2024), Zamba
(7B) (Glorioso et al., 2024), and the 12B parameter mixture-
of-experts-model Jamba (Lieber et al., 2024). More re-
cently, FalconMamba (Zuo et al., 2024) based on Mamba 1
and Codestral Mamba (Mistral AI Team, 2024) based on
Mamba 2 have shown that a purely recurrent architecture
is capable of exceeding the performance of both hybrid
Mamba models and Transformers.

5. Experiments
5.1. Language Modeling Performance

Huggingface Leaderboard. We start by benchmarking
xLSTM 7B against state-of-the-art Transformer and recur-
rent LLMs on the 7B parameter scale. To this end, we
evaluate the performance on the Open LLM Leaderboard v2
using the LM Evaluation Harness (Gao et al., 2024; Fourrier
et al., 2024). The results are summarized in Tab. 1, show-
ing that xLSTM 7B ranks in the mid-range among 7B-scale
models, several of which benefited from substantially larger
training datasets. We believe that with a larger and better
curated training dataset, including a greater emphasis on
math and code data in earlier training phases, xLSTM 7B
could match the performance of the strongest 7B models.

Long-Context Evaluation and Fine-Tuning. To evalu-
ate long-context capabilities, we use the RULER bench-
mark (Hsieh et al., 2024), which consists of a set of syn-
thetic needle-in-a-haystack, question-answering and vari-
able tracking tasks, with varying context length from 4K
to 131K tokens. For this benchmark, we consider both our
standard xLSTM 7B and a long-context version (xLSTM 7B
LCTX), where we replace the standard cool-down phase
described in App. B with a long-context variant. For the
long-context cool-down phase, we add long-context data
(see App. Tab. 5) to the training corpus and train the model
with a context length of 32K, while adjusting the batch size
to maintain the number of tokens per batch. We compare
to Llama 2 7B (not long-context fine-tuned) and Llama 3.1
8B (long-context fine-tuned up to 131K tokens) as Trans-
former baselines, CodestralMamba and FalconMamba as
State Space Model baselines, and RWKV-5/6 as additional
RNN baselines.

The results on RULER are shown in Fig. 3. As expected,
Llama 3 provides the strongest baseline, since it is heavily
fine-tuned on very long contexts and with a more advanced
and optimized approach (Grattafiori et al., 2024). On the
other hand, Llama 2 fails entirely for context lengths be-
yond 4k, for which it has not been trained. For xLSTM 7B,
the long-context cool-down stage in pre-training largely im-
proves long-context capabilities, resulting in competitive
performance compared to state-space models and outper-
forming RWKV-5/6. Notably, the long-context xLSTM 7B
achieves 20% average accuracy at a context length 131k,
although it was trained only with a context length up to 32k
during the cool-down phase. This is particularly remarkable
given that, unlike Transformers with a growing KV cache,
xLSTM 7B must store information from the entire sequence
in a fixed-size memory with limited capacity (see Tab. 3).
We assume that xLSTM 7B’s performance could be pushed
further by explicitly training on even longer sequences and
with a more advanced fine-tuning protocol as it was used in
the training of Llama 3 (Grattafiori et al., 2024).
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Figure 3. RULER results of xLSTM 7B in comparison to Trans-
fomers (with and without long context finetuning) and State Space
Models, with and without medium context cooldown.

In Sec. 5.3, we further investigate the effect of the memory
state size and the input gate on the long context capabilities
of xLSTM 7B.

5.2. Speed Benchmarks

The constant memory size and linear compute scaling with
context length of our xLSTM architecture enable highly ef-
ficient generative inference in large scale-inference serving
environments as well as local inference running on edge
devices.

We focus on the local single user inference setting, which
is common when models are deployed on edge devices.
Therefore, we benchmark generative inference with our
xLSTM 7B model on a single NVIDIA H100 GPU with
batch size 1, unless specified otherwise. We compare
our xLSTM 7B to Llama 2 and Llama 3 models as Trans-
former baselines and Falcon Mamba (Mamba 1 architec-
ture) and Codestral Mamba (Mamba 2 architecture) as
Mamba baselines. We use model implementations from
Huggingface transformers library and optimize each with
torch.compile 6 and PyTorch CUDA Graphs (Nguyen
et al., 2021). In Appendix D, we additionally compare our
optimized Huggingface xLSTM 7B to Llama2, Llama3, Fal-
con Mamba and Codestral Mamba in the vLLM (Kwon
et al., 2023) inference framework.

Generation Throughput. The generation throughput
measures the generation speed in tokens per second at vary-
ing prefill lengths, i.e., varying length of documents the
model gets to read before it starts to generate text. In Fig. 4,
we observe that due to the quadratic scaling with input con-
text length of the attention mechanism, the speed at which

6
https://github.com/huggingface/transformers
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Figure 4. Throughput for generating 100 tokens with batch size 1
at varying prefill lengths.

the Transformer models can generate text significantly drops
for longer prefill lengths. In contrast, recurrent architectures
with constant cost per generated token have a constant gen-
eration speed independent of the input context length.

We find that xLSTM 7B is about 50% faster in text gener-
ation than Mamba, which we attribute mostly to our opti-
mized block design (see Sec. 3), and even faster than Llama-
based Transformer models with a similar block design at
prefill length 0.

Generation Time and Memory Consumption. We mea-
sure the token generation time and GPU memory usage
(without pre-fill) for different generation lengths. Fig. 5
(left) demonstrates the linear scaling of recurrent models
vs. the quadratic scaling of Transformers in compute (run-
time), while Fig. 5 (right) shows the constant memory size
of recurrent models compared to the linear growth of the
Transformer KV-cache. Since Llama 3 uses grouped query
attention (Ainslie et al., 2023) the memory usage grows
slower compared to Llama 2, which uses default multi-head
attention.

With our optimized block design, we operate the mLSTM
in a lower dimensional space. This results in a significantly
lower memory footprint (Fig. 5 (right)) and lower generation
times (Fig. 5 (left)) of our xLSTM 7B model compared to
the Mamba models.

Time To First Token. In applications, where the language
model operates as interface to the user (potentially on edge
devices), it is important to have short response times. In
Fig. 6, we measure this response time or latency as the time
the model takes to generate 1 or 100 token after consuming
varying prefill lengths. Our xLSTM 7B achieves the fastest
response times for all prefill lengths.
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Figure 5. Time and GPU memory used for generation of a single
sequence of varying lengths for generation without prefill.
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Figure 6. Time to first (1) token and time to first 100 tokens at
varying prefill lengths for batch size 1.

Prefill Throughput. Finally, we measure the prefill
throughput in tokens per second for 65,536 tokens at varying
batch size and context length. Due to the quadratic scaling
with context length, the throughput of the Llama models
decreases with longer contexts. In contrast, our xLSTM 7B
achieves the highest throughput (about 70% higher than
Codestral Mamba) independent of the context length.

5.3. Ablation Studies

Finally, we validate our design choices to optimize the train-
ing stability and efficiency of our xLSTM 7B architecture.

Pre-Up vs. Post-Up Projection Block. We compare the
pre-up projection block architecture against our optimized
mLSTM block in terms of validation perplexity and training
step time for three model sizes. For both block architec-
tures, we apply gate soft-capping and the input gate bias
initialization described in Sec. 3. The results in Tab. 2 show
only a slight performance difference in terms of validation
perplexity at the largest model size. However, the 3.5×
speedup in training step time confirms our choice for the
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Figure 7. Prefill throughput varying batch size and context length.

post-up projection block in xLSTM 7B, deviating from the
pre-up projection of Mamba (Gu & Dao, 2024; Dao & Gu,
2024) and the previous xLSTM architecture (Beck et al.,
2024).

Memory State Size. The memory state size as well as
the training step time is directly influenced by the number
of heads (see Sec. 3.1 and Tab. 3). In this experiment we
investigate how the memory state size affects the perfor-
mance of the xLSTM in validation perplexity, on down-
stream tasks as well as on long context tasks. To do so,
we train xLSTM models with 7B parameters and different
number of heads on 160B tokens of our pre-training dataset.
In our evaluations in perplexity (Tab. 3) and on downstream
tasks (Tab. 7 and 8), we find that the performance remains
stable across different the number of heads, i.e., memory
state sizes, with a slight improvement for more heads (e.g.
16). In contrast, our long context evaluation in Fig. 13 sug-
gests that at very long contexts 4 and 8 heads (i.e., larger
memory states) seem to perform better. While this is in line
with our intuition that larger memory state size corresponds
to better long-context capabilities, we believe that an even
larger study (e.g., training on more tokens) than our ablation
at 7B parameters and 160B tokens would be necessary to
fully explore this connection.

Norm Layer Types. Our update on the xLSTM block
architecture has two normalization layers, a pre-norm at the
block entry and a head-wise norm layer after the mLSTM
cell. In this ablation, we test the effect of the types of these
normalization layers on training stability and performance,
with LayerNorm (Ba et al., 2016) and RMSNorm (Zhang
& Sennrich, 2019) as the options. In Fig. 9 in App. C.2 we
confirm that, for the pre-norm the RMSNorm type has a
strong stabilizing effect, whereas for the mLSTM cell state
norm there is no impact on stability and performance.
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Table 2. Comparison between the previous xLSTM architec-
ture (Beck et al., 2024) and our xLSTM 7B architecture in terms of
step time and perplexity for different number of parameters. Mod-
els of size 160M and 400M use batch size 128 distributed over 16
GPUs, and 1.4B parameter models use batch size 256 (32 GPUs).
For the 7B parameter model, our new architecture uses batch size
512 (128 GPUs), whereas the previous architecture uses only batch
size 256 (128 GPUs) because of the architecture’s increased GPU
memory requirements. Due to the expensive computational costs,
we only compute the token throughput and did not fully train the
7B parameter models for this ablation.
↑ / ↓ indicates larger / smaller values are better.

MODEL THROUGHPUT ↑ SPEEDUP ↑ PPL ↓ ∆ PPL
1K TOKENS/SEC

160M PREVIOUS 76.20 20.43
OURS 225.99 ×2.97 21.34 +0.91

400M PREVIOUS 28.13 15.26
OURS 102.40 ×3.64 15.74 +0.48

1.4B PREVIOUS 10.57 12.46
OURS 37.03 ×3.50 12.68 +0.22

7B PREVIOUS 3.46 -
OURS 9.15 × 2.64 -

Table 3. Head dimension ablation for a 7B parameter xLSTM
model with 32 blocks, embedding dimension 4096 and training
context length 8192. KV Cache in Tokens shows how many tokens
in a similar sized Transformer correspond to our state size. FLOPs
forward are the mLSTM cell forward FLOPs for a full sequence.
↓ indicates smaller values are better.

#Heads dhv
Total Memory
State in MB

KV Cache
in Tokens

FLOPs
forward ↓ Val

PPL ↓ Train Step
Time in s ↓

4 1024 268.4 256 7.6e11 9.58 3.97
8 512 134.2 128 4.1e10 9.52 3.63

16 256 67.1 64 2.4e10 9.52 3.51
32 128 33.6 32 1.5e10 9.55 3.41

Soft-capping. Soft-capping (Eq. (13)) of the output logits
and the input and forget gate pre-activations, is important for
training stability. In Fig. 10 of the appendix, we visualize
the validation loss and gradient norms during training on
160B tokens with and without soft-capping. The run without
soft-capping shows a higher variance in the gradient norms
and an overall worse validation loss.

Input Gate. We initialize the input gate with larger negative
values (e.g. -10) to mitigate large gradient norm spikes and
variance (see Sec. 3.2). This suggests that the input gate
is important for the performance of the xLSTM architec-
ture. Therefore, in App. C.2 we test the effect of having
the input gate non-trainable. We compare a version with
fixed input gate at one (i.e. setting weights and biases to
zero) with a version, where the input gate bias is fixed at
our low default initialization value of -10. We find that,
while the learnable input gate only slightly improves perfor-
mance of our xLSTM over the fixed input gate versions on
our standard downstream tasks (App. C.2, Tab. 7 and 8), it
significantly improves performance on long-context evalua-
tions (App. C.2, Fig. 13).

6. Conclusion
In this work, we demonstrate how our targeted modifica-
tions enable the xLSTM architecture to scale to models with
7B parameters, trained on 2.3 T tokens. By switching to a
post-up-projection structure, gate soft-capping and proper
initialization, we largely improve training stability and to-
ken throughput, making the xLSTM the fastest RNN-based
architecture at the 7B scale, while competitive in perfor-
mance with Transformers and other recurrent models. We
believe that xLSTM’s very high decoding speeds in combi-
nation with its good performance highlight its potential as
foundational architecture for methods investing substantial
compute at inference time.

Impact Statement
This paper presents a novel architecture for fast and effi-
cient language modeling, reducing computational costs and
energy consumption without sacrificing performance. By
making high-quality language models more accessible, our
approach helps bridge the digital divide, enabling equitable
AI deployment in low-resource settings. Additionally, the
efficiency gains contribute to environmental sustainability
by lowering the carbon footprint of large-scale NLP systems.
However, there might be both positive and negative societal
impacts. We are aware of the risks, but believe that our and
the overall advancements in the field of machine learning
technology provide a net benefit to society and the world.
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xLSTM-7B

A. xLSTM 7B Architecture Summary
The xLSTM 7B architecture consists of 32 post-up projection blocks and is described in Fig. 1 and Tab. 4. We use the
GPT-NeoX-20B tokenizer (Black et al., 2022) with vocabulary size 50257 and do not tie the weights for input layers
(embedding) and output layers (logits).

Table 4. Hyperparameters of xLSTM 7B.

NUM
PARAMS

VOCAB
SIZE

NUM
BLOCKS

MODEL
DIM

NUM
HEADS

6,865,424,896 50257 32 4096 8

f
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mLSTM

Headwise Norm
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Swish
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Figure 8. Improved xLSTM Block. The lower part is a output-gated sequence-mix layer with the mLSTM at its core, whereas the upper
part is a Gated MLP (SwiGLU) as a feature/channel-mix layer. Multiple Heads are shown in depth, larger light gray boxes without are
linear layers. For the SwiGLU we use a projection factor of 2.66 matching common Transformers. For the query/key dimension we use a
factor of 0.5. The Norm layers are RMS norms (Zhang & Sennrich, 2019), the Headwise Norm is a Layernorm (Ba et al., 2016).
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B. Training Recipe
Optimization. Pre-training was conducted on a high-performance computing cluster comprising 128 NVIDIA H100
GPUs. We use Fully Sharded Data Parallel (FSDP) and activation checkpointing to reduce the parameter and activation
memory footprint. We pre-train xLSTM 7B for a total of 550K (thousand) training steps with batch size 512 and context
length 8192, encompassing a total of 2.3T (trillion) training tokens. We apply batch size ramp-up with batch size 128 for
the first 2000 steps, 256 for the next 2000 steps, and the full batch size (512) afterward. We use the AdamW optimizer
(Loshchilov & Hutter, 2019) with (peak) α = 5× 10−4, β1 = 0.99, β2 = 0.95, ϵ = 10−8, weight decay 0.1 and gradient
clipping norm 0.5. The learning rate schedule comprises a linear warm-up over 3000 training steps, an exponential decay
phase that spans 540,000 steps, and a linear cool-down lasting 7000 steps. The exponential decay factor is chosen so that
0.1× α is reached after 500,000 steps.

Sequence packing. Language datasets come with documents of highly varying lengths. To efficiently train a model
by processing fixed sequence length sequences (e.g. 8192 tokens), multiple shorter documents are typically packed into
a sequence, and the different documents are separated by an end-of-document (EOD) token. In order to avoid leaking
information between independent documents that are packed into the same sequence, we reset the memory states of each
mLSTM cell at the document borders signified by the EOD token. This can be easily achieved by explicitly setting the
forget gate value to zero, resetting the memory state to the zero matrix.

Dataset selection. We only use publicly available high-quality datasets for pre-training. The dataset selection is divided
into two training stages: In the first stage lasting 500K (thousand) training steps, we train exclusively on the DCLM dataset
(Li et al., 2024). In the second stage (50K steps) towards the end of the training, we use a combination of datasets that
prioritizes math, coding, and question-and-answer (Q&A) data. The dataset proportions for the second stage are listed in the
second column of Tab. 5.

Similarly to Zuo et al. (2024), the second training stage includes a collection of small supervised fine-tuning (SFT) Q&A
datasets to improve the model’s understanding of texts involving questions and answers. These SFT datasets are all publicly
available and consist of NuminaMath CoT (LI et al., 2024), MetaMathQA (Yu et al., 2023), Tulu v3.1 (Lambert et al.,
2024), OpenHermes 2.5 (Teknium, 2023), GSM8K (Cobbe et al., 2021), and Smoltalk (subsets magpie-ultra, longalign, and
self-oss-instruct) (Allal et al., 2024).

For longer context training we replace the high-quality data cool-down by a longer context version keeping the number of
tokens per step and the number of steps fixed. The batch size is reduced from 512 to 128, while increasing the context length
to 32768. We replace a large share of the DCLM dataset part with long context text collections, namely LongDataCollec-
tions (TogetherCompute, 2023), LongAlign10k (Bai et al., 2024), AntiHayStack (Pan, 2024) and LongAlpaca12k (Chen
et al., 2024), see third column of Tab. 5.

Table 5. Dataset Proportions for second training stage in standard and longer context mode.

DATASET NAME PROPORTION STANDARD PROPORTION LONGCTX

DCLM (Li et al., 2024) 40% 20 %
FineWeb-Edu (Lozhkov et al., 2024) 15% 15%
Cosmopedia (Ben Allal et al., 2024) 10% 10%
ProofPile-2 (Azerbayev et al., 2023) 15% 15%
TheStack (Kocetkov et al., 2023) 15% 15%
SFT datasets (see Sec. B) 5% 5%
LongDataCollections (TogetherCompute, 2023) - 15%
LongAlign10k (Bai et al., 2024) - 1%
AntiHayStack (Pan, 2024) - 1%
LongAlpaca12k (Chen et al., 2024) - 2%

Ablation Training For hyperparameter tuning and ablation trainings (”-abl”) at the 7B scale, we use a shorter training
cycle with 76,000 training steps at context length 8192 and batch size 256, resulting in 160B tokens. We use a linear
warmup of 3000 steps, cosine decay to 10% of the peak learning rate at 75,000 steps and a linear cooldown of 1,000 steps to
learning rate 0 at the end. Here, we only train on a subset of the DCLM dataset, without high-quality data in the late phase
of pre-training. Peak learning rate and other training hyperparameters are the same as for the main training.

15



xLSTM-7B

C. Experiments
C.1. Extended Evaluation

To enable comparability to older models, we evaluate our models on the task selection from the first version of the
HuggingFace leaderboard using HuggingFace’s lighteval (Beeching et al., 2023; Fourrier et al., 2023). The results in Tab. 6
show that there is a trend upwards in metrics from older (e.g. Llama 2) to newer models (e.g. Llama 3.1), but that the
differences and ordering between models vary across the tasks.

Table 6. Model Performance on Huggingface Leaderboard v1 based on lighteval by HuggingFace. ↑ indicates larger values are better.

MODEL ARC-C ↑ MMLU ↑ HELLASWAG ↑ WINOGRANDE ↑ TRUTHFULQA ↑ OPENBOOKQA ↑ PIQA ↑ AVERAGE ↑
TRANSFORMERS
Llama-3.1-8B 0.562 0.663 0.720 0.745 0.362 0.447 0.818 0.617
Llama-2-7B-hf 0.511 0.468 0.687 0.706 0.318 0.412 0.786 0.555
OLMo-7B-hf 0.443 0.286 0.673 0.661 0.301 0.383 0.801 0.507
Qwen2.5-7B 0.617 0.753 0.700 0.717 0.478 0.458 0.804 0.647
Gemma-7B 0.593 0.640 0.721 0.740 0.381 0.436 0.813 0.618

HYBRID MODELS
Zamba2-7B 0.672 0.683 0.740 0.801 0.479 0.468 0.802 0.664

RECURRENT MODELS
Falcon-Mamba-7B 0.599 0.622 0.709 0.743 0.459 0.460 0.822 0.631
Falcon-Mamba-7B (pre-decay) 0.520 0.573 0.699 0.719 0.312 0.430 0.801 0.579
Mamba-Codestral-7B (v0.1) 0.486 0.501 0.626 0.618 0.358 0.380 0.771 0.534
RWKV-v5-Eagle-7B 0.449 0.313 0.622 0.663 0.330 0.393 0.772 0.506
RWKV-v6-Finch-7B 0.471 0.442 0.656 0.696 0.347 0.399 0.792 0.543
xLSTM 7B 0.574 0.578 0.714 0.738 0.419 0.448 0.819 0.613
xLSTM 7B LCTX 0.516 0.588 0.715 0.740 0.374 0.429 0.819 0.597

C.2. Ablation Experiments

Effect of the Pre-norm Layer Choice (Fig. 9). Here we asses the effect of different normalization layer choices for the
pre-norm in (12) and the state-norm in (6), both for the xLSTM with a pre-up projection block of Beck et al. (2024) and our
new post-up projection architecture used for xLSTM 7B. We use soft-capping and the negative input bias initialization (see
Sec. 3.2 and 5.3) for both architectures. For this experiment, we train models with 1.4B parameters for 31,000 steps using
context length 8192 and batch size 256. Fig. 9 shows the validation loss and gradient norm for the different architectures and
normalization layer choices over the course of training (only the 15,000 steps are shown). As can be seen, using LayerNorm
as the pre-norm layer leads to very large gradient norms and diverging validation loss after a few training steps, whereas
models with RMSNorm train stably. For the state-norm layer, the norm type has no impact on the training dynamics.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Steps 1e4

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n 
Lo

ss

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Steps 1e4

10 1

100

101

102

103

Gr
ad

ie
nt

 N
or

m

Post-Up Projection with Pre-LN & State-LN
Post-Up Projection with Pre-RMSN & State-LN
Post-Up Projection with Pre-RMSN & State-RMSN

Pre-Up Projection with Pre-LN & State-LN
Pre-Up Projection with Pre-RMSN & State-RMSN

Figure 9. Comparison of pre-up projection and post-up projection blocks with different combinations of RMSNorm and LayerNorm. At
each step, the plot shows the maximum gradient norm observed within the previous 50 steps.

16



xLSTM-7B

Effect of Soft-Capping (Fig. 10). The two runs in Fig. 10 show the effect of soft-capping for two 7B sized xLSTM
models trained for 76,000 steps at batch size 256 and context length 8192, for an effective 160B tokens.
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Figure 10. Effect of softcapping. Two 7B sized xLSTM models are trained with and without soft-capping for 160B tokens. The lower
gradient norm noise on the right is a clear indicator for better model performance on the left of the model trained with softcapping. At
each step, the plot shows the maximum gradient norm observed within the previous 50 steps.

Effect of Negative Input Gate Bias Init (Fig. 11). In this experiment we train 160M parameter models with batch size
128 and context length 4096 and vary the input gate bias initialization [0, -2, -5, -10]. The weights of the input gates are
initialized to 0.

In Figure 11 we observe that initializing the input gate biases at -10 effectively mitigates gradient norm spikes and reduces
gradient norm variance during training. In our experiments up to 7B parameters we observed this behavior transfers across
model scales.

We therefore initialize the input gate biases to -10. For an extensive discussion of this behavior we refer to concurrent work
by ?.
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Figure 11. Effect of the Bias Initialization. We conduct experiments with four different input gate biases at the 160M parameter scale,
with validation loss on depicted to left and gradient norm on the right, along the training steps. The higher input gate bias initializations
show large gradient norm spikes, which results in worse training results. Only the lowest initialization can maintain smooth and low
gradient norms with at the best validation perplexities. The reason for this behavior is studied in more detail in (?). At each step, the plot
shows the maximum gradient norm observed within the previous 50 steps.
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Effect of the Learning Rate Scheduler (Fig. 12). In our largest experiments, we choose a linear warmup followed by an
exponential decay as a learning rate schedule in order to enable a continued pre-training with more tokens and without an
additional warmup. However, smaller-scale experiments in Fig. 12 show the benefit of a cosine schedule over an exponential
one.
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Figure 12. Effect of Learning Rate Scheduler. The tested learning rate schedules are shown on the left, with the corresponding training
perplexities on the right. While the exponential learning rate schedule can be continued trivially, the cosine schedule actually works
slightly better given a fixed number of iterations. The learning rate cooldown to zero at the end gives a similar and significant benefit in
both cases.

Effect of Memory State Size and Input Gate on Long Context Evaluations (Fig. 13, Tab. 7 and 8). In order to test the
influence of the head numbers (cell dimensions) and input gate on long context abilities, we test the ablation models trained
in Sec. 5.3 for their performance in the RULER benchmark (Hsieh et al., 2024). The results in Fig. 13 show that, while
the effect of the head number and equivalently the recurrent memory is inconclusive, the models strongly benefit from the
learnable, exponential input gate for the long context performance.
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Figure 13. RULER average accuracies for different number of heads/cell dimensions, and fixed input gate. The ablations are trained on
160B tokens at 8k context.

Additionally, we evaluate our ablation versions trained for 160B tokens and evaluated on the current and old HuggingFace
LLM Leaderboard as in Tab. 1 and 6, respectively. Results in Tab. 7, 8 show only slight influence of the head dimensions or
fixing input gate. Only fixing the input gate to the very small value of its standard bias initialization has a stronger impact on
the Leaderboard v1.
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Table 7. Model Performance for different number of heads and non-trainable input gate on the Huggingface Leaderboard v2 tasks.
↑ indicates larger values are better.

MODEL BBH ↑ MMLU-PRO ↑ MATH ↑ MUSR ↑ GPQA ↑ IFEVAL ↑ AVERAGE ↑
xLSTM 7B abl NH4 0.306 0.114 0.004 0.363 0.253 0.160 0.200
xLSTM 7B abl NH8 0.304 0.115 0.002 0.363 0.248 0.173 0.201
xLSTM 7B abl NH16 0.317 0.119 0.002 0.390 0.258 0.161 0.208
xLSTM 7B abl NH32 0.327 0.120 0.001 0.379 0.256 0.171 0.209
xLSTM 7B abl NH8 IGateFixed 0 0.303 0.117 0.004 0.381 0.229 0.149 0.197
xLSTM 7B abl NH8 IGateFixed -10 0.308 0.109 0.000 0.357 0.253 0.165 0.199

xLSTM 7B 0.381 0.242 0.036 0.379 0.280 0.244 0.260
xLSTM 7B LCTX 0.390 0.252 0.040 0.374 0.253 0.234 0.257

Table 8. Model Performance for different number of heads and non-trainable input gate on the Huggingface Leaderboard v1 tasks.
↑ indicates larger values are better.

MODEL ARC-C ↑ MMLU ↑ HELLASWAG ↑ WINOGRANDE↑ TRUTHFULQA ↑ OPENBOOKQA ↑ PIQA ↑ AVERAGE ↑
xLSTM 7B abl NH4 0.492 0.296 0.665 0.672 0.282 0.405 0.798 0.516
xLSTM 7B abl NH8 0.487 0.292 0.669 0.680 0.302 0.426 0.791 0.521
xLSTM 7B abl NH16 0.505 0.351 0.668 0.701 0.294 0.409 0.796 0.532
xLSTM 7B abl NH32 0.500 0.378 0.666 0.676 0.325 0.411 0.799 0.536
xLSTM 7B abl NH8 IGateFixed 0 0.464 0.292 0.658 0.672 0.280 0.415 0.788 0.510
xLSTM 7B abl NH8 IGateFixed -10 0.241 0.250 0.340 0.519 0.286 0.226 0.681 0.363

xLSTM 7B 0.574 0.578 0.714 0.738 0.419 0.448 0.819 0.613
xLSTM 7B LCTX 0.516 0.588 0.715 0.740 0.374 0.429 0.819 0.597

D. Speed Comparison to Optimized Inference Frameworks
While we tune the baseline models’ HuggingFace implementations for speed in a similar way as for our xLSTM 7B
architecture, there are other frameworks, e.g. vLLM (Kwon et al., 2023), which are optimized further for inference speeds.
In Figures (18, 19), we compare our HuggingFace generation speeds to vLLM generation speeds. In Figures (14, 15, 16, 17),
we show the respective comparison for prefill, prefill+generation time and prefill throughput. We compare xLSTM in
the HuggingFace implementation to Llama-3.1-8B, Llama-2-7B-hf, Falcon-Mamba-7B and Mamba-Codestral-7B in both
optimized HuggingFace and vLLM. For all vLLM speeds, we use PyTorch 2.6.0 to enable Codestral-Mamba-7b, whereas
for the HuggingFace speed experiments, we use PyTorch 2.5.1. Although there are speed improvements in vLLM, especially
for Transformer-based Llama models, xLSTM 7B continues to be the fastest model compared to others in both frameworks.
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Figure 14. Prefill time (time to first and to first 100 tokens)
for HuggingFace implementations. Repetition of Figure 6 for
comparison to vLLM on the right.

Figure 15. Prefill time (time to first and to first 100 tokens)
for vLLM implementations, except xLSTM 7B (HuggingFace
implementation).
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tions. Repetition of Figure 7 to compare to vLLM on the right.
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Figure 17. Pre-fill throughput for HuggingFace implementa-
tions, except for xLSTM 7B (HuggingFace implementation).

Figure 18. Generation Time comparison HuggingFace to
vLLM. While for short generation sequences, all models are
close in their generation time, for the vLLM backend is faster
for Transformers than for Mamba models within the 16k gen-
erated tokens. xLSTM in the HuggingFace backend continues
to be the fastest model from short to long sequences.

Figure 19. Generation Throughput comparison HuggingFace
to vLLM. Transformers (Llama models) show a strong speed
up in vLLM, but still xLSTM is the fastest model throughout
the prefill context lengths. There is an odd transition for
Mamba models from 4k to 8k prefill context.
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E. FLOP Counting
We count the number of FLOPs in a forward pass of the mLSTM. We use a factor of 2 to describe the multiply accumulate
cost.

We use factors denoted as F X to describe the number of FLOPs for operation X (e.g. F exp for the exponential function).
By default we set all of these factors to 1.

E.1. FLOPs for the mLSTM Operation

• Inter-chunk recurrent:

– Chunkwise gates: num heads × num chunks
× ( 0.5×chunk size × (chunk size + 1) + 2×chunk size )

– Gates & max state: num heads × num chunks
× ( 3 + F max + F exp + chunk size × (3 + 2 × F exp))

– Numerator: num heads × num chunks
× (2×d qk × d v + 4×chunk size × d qk × d v + 3×chunk size × d qk)

– Denominator: num heads × num chunks × ( d qk + 4×chunk size × d qk )

• Intra-chunk parallel:

– Gate matrix: num heads × num chunks
× ( 0.5 × chunk size × (chunk size + 1)
+ chunk size × chunk size × (3 + F mask + F max + F exp)
+ chunk size × (1 + F max) )

– Gated Attn logits: num heads × num chunks
× 2×chunk size × chunk size × ( 1 + d qk )

– Numerator: num heads × num chunks
× 2×chunk size × chunk size × d v

– Denominator: num heads × num chunks × 2 × chunk size × chunk size
– Output combination: num heads × num chunks

× ( chunk size × ( 1 + F max )
+ chunk size × ( 2 + F abs + F exp + F max + 2×d v ) )

E.2. FLOPs for the mLSTM in a Transformer Backbone

For computing the number of FLOPs we follow the procedure from Hoffmann et al. (2022). We include the FLOPs
contributed by the embedding matrices. We do not include RMS- or Layer-Norm and skip connection FLOPs We assume
that the backward pass has 2 times the number of FLOPs of the forward pass. For the forward pass, the number of FLOPs of
the mLSTM for a single sequence can be approximated by:

• Embeddings

– 2 × seq len × vocab size × d model

• mLSTM (single layer)

– Query, key, value, input and forget gate projections:
2 × seq len × d model × num heads × (2 × d qk + d v + 2)

– Output gate and projection:
4 × seq len × d model × num heads × d v
+ seq len × num heads × d v × F sig

– mLSTM cell: See above.

• Gated Feedforward (single layer)
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– 6 × seq len × d model × d model × proj factor ff
+ 2 × seq len × d model × F swish

• Final Logits

– 2 × seq len × d model × vocab size

• Total forward pass FLOPs:
embeddings + num layers × (mLSTM + feedforward) + final logits

E.3. FLOPs for the Transformer with Self-Attention

We use the FLOP computations from Hoffmann et al. (2022), with the difference that we use gated feedforward blocks.

• Embeddings

– 2 × seq len × vocab size × d model

• Attention (single layer)

– Key, query and value projections:
2 × seq len × d model × num heads × (2 × d qk + d v)

– Key @ query logits: 2 × seq len × seq len × (d qk × num heads)
– Softmax: 3 × seq len × seq len × num heads
– Softmax @ query reductions: 2 × seq len × seq len × (num heads × d qk)
– Final linear: 2 × seq len × d model × (num heads × d v)

• Gated Feedforward (single layer)

– 6 × seq len × d model × d model × proj factor ff
+ 2 × seq len × d model × F swish

• Final Logits

– 2 × seq len × d model × vocab size

• Total forward pass FLOPs:
embeddings + num layers × (attention + feedforward) + final logits

F. Parameter Counting
In this section we count the number of paramters in the mLSTM and compare it to the number of parameters in a Transformer
with self-attention. We assume that the model does not use weight tying and omits biases.

F.1. Parameter Counting for the mLSTM

• Embeddings

– vocab size × d model

• mLSTM (single layer)

– qkv: d model × num heads × (2 × d qk + d v)
– Input and forget gate: 2 × d model × num heads + 2 × num heads
– Output gate: d model × d model
– Output projection: d model × d model
– Norm: d model

• Gated Feedforward (single layer)
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– 3 × d model × d model × proj factor ff

• Norm (single layer)

– d model

• Final Logits:

– d model × vocab size

• Total number of parameters:
embeddings + num layers × (mLSTM + feedforward + 2 × norm) + norm + final logits

F.2. Parameter Counting for the Transformer with Self-Attention

• Embeddings

– vocab size × d model

• Attention (single layer)

– qkv: d model × num heads × (2 × d qk + d v)
– Output projection: d model × d model

• Gated Feedforward (single layer)

– 3 × d model × d model × proj factor ff

• Norm (single layer)

– d model

• Final Logits:

– d model × vocab size

• Total number of parameters:
embeddings + num layers × (attention + feedforward + 2 × norm) + norm + final logits
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