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1. Introduction

Bayesian modelling represents an important approach that enables favourable predictive
performance in the small-sample regime and allows for the quantification of predictive un-
certainty which is vital for high-stakes applications. Yet for many machine learning (ML)
algorithms it can be difficult to derive or implement their Bayesian counterpart. For exam-
ple, the development of Bayesian neural network (NN) methods encounters challenges with
inference (Sun et al., 2018; Wang et al., 2018) and model misspecification (Aitchison, 2020;
Fortuin et al., 2021); AutoML algorithms (Karmaker et al., 2021) involve complex processes
for hyperparameter tuning and model aggregation which are hard to replicate in a Bayesian
framework; and when algorithms are provided as black-box services (e.g., OpenAI, 2023),
adapting them to Bayesian principles becomes impossible.

How can we bring back the benefits of the Bayesian paradigm without being limited
by its traditional constraints? In this work we present a promising approach towards this
challenge based on the following basic postulation: the ML algorithm of interest has
competitive average-case performance on hypothetical datasets—or tasks—from a possibly
unknown task distribution π, and our present task can be viewed as a random sample from
the same π. Formally, suppose the algorithm A maps a training dataset z1:n to a parameter
estimate A(z1:n); we require it to satisfy an inequality of the following form,

Eθ0∼πE(z1:n,z∗)∼Pθ0
ℓ(A(z1:n), z∗) ≤ inf

A′
Eθ0∼πE(z1:n,z∗)∼pθ0

ℓ(A′(z1:n), z∗) + ϵn. (1)

In the above, θ0 is a parameter that determines the data generating process pθ0 in an ML
task; (z1:n, z∗) denote the training and test samples; ℓ(θ, z) denotes the loss function; and
A′ ranges over all possible algorithms that maps z1:n to an A′(z1:n) ≈ θ0.

To understand this postulation, imagine a practitioner working on a new image classi-
fication dataset. To understand the suitability of a certain algorithm A (which may be a
combination of an NN model, optimisation and hyperparameter tuning recipes), it is natural
for them to start by reviewing past literature that evaluated A on datasets deemed similar
to the present one. At a high level, the past and present tasks can be viewed as i.i.d. samples
from the distribution π, and promising reports from past literature will provide evidence
that (1) holds with a smaller ϵn. The practitioner may then commit to the choice of A that
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corresponds to the smallest ϵn. As another type of example, condition (1) is also relevant
in multi-task learning scenarios, where it often appears as an assumption of the algorithm
(e.g., Pentina and Lampert, 2014; Riou et al., 2023). Foundation models (Bommasani et al.,
2021) that are pretrained on a diverse mix of datasets can also be viewed as optimised for
(1), with a choice of π designed to align with the downstream task of interest.

Algorithms that satisfy (1) are near-Bayes optimal, and the knowledge of the Bayesian
posterior defined by π would enable the minimisation of (1) (Ferguson, 1967). As exempli-
fied above, there are many scenarios where it is more reasonable to assume knowledge of
a near-optimal A than that of a correctly specified π. Yet with such a choice of A, there
remain the challenge of uncertainty quantification, and the risk of overfitting in a small-
sample regime: for example, for regular parametric models maximum likelihood estimation
(MLE) can be asymptotically near-Bayes optimal (Van der Vaart, 2000), but it does not
provide any (epistemic) uncertainty estimate, and the predictive performance of MLE in
the small-sample regime may well be improvable.

To address these issues, we build on the ideas of Fong et al. (2024); Holmes and Walker
(2023) and investigate martingale posteriors (MPs; See §2 for a review). As our first con-
tribution, we prove that when the algorithm A defines an approximate martingale, satisfies
(1) and additional conditions, we can use A to construct an approximate MP which will
provide a good approximation for the Bayesian posterior defined by π in a Wasserstein sense
(§3). Such results allow us to draw from the benefits of the latter without requiring explicit
knowledge of π. Our results cover high-dimensional models and the pre-asymptotic regime;
in this aspect it demonstrates advantages over classical approaches such as bootstrap ag-
gregation (Breiman, 1996).

As a further contribution, in §4 we present MP-inspired algorithms for uncertainty
quantification. Our method is based on sequential applications of a base estimation algo-
rithm and applies to both NN and non-NN algorithms. We illustrate the method using a
wide range of base algorithms, including Gaussian process models, boosting trees, AutoML
algorithms, and diffusion models. In all experiments the proposed method outperforms com-
petitive baselines such as bootstrap and deep ensemble (Lakshminarayanan et al., 2017).

2. Background

We briefly review the idea of martingale posteriors (Fong et al., 2024) which serve as the
basis of our work, and refer readers to the full paper for a full introduction.

From Bayesian to martingale posteriors. Suppose we have i.i.d. observations z1:n ∈
Z⊗n and access to a suitable algorithm Ā which, for any j ≥ n, maps any j observations
z1:j ∈ Z⊗j to a possibly random parameter Ā(z1:j) ∈ Θ. For simplicity, suppose for the
moment that any parameter θ ∈ Θ indexes a distribution pθ over Z which we can sample
from.1 Consider a sequence of data and parameter samples defined as follows:

θ̂j := Ā(z1:n ∪ ẑn+1:j), ẑj+1 ∼ p
θ̂j
, for j = n, n+ 1, . . . (2)

1. As we explain in the full paper, this can be extended to supervised learning where z = (x, y) and θ only
indexes a conditional distribution pθ(y | x), and our theory and methodology will continue to apply.
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Intuitively, for any reasonable Ā, we expect the resulted {θ̂j : j > n} to converge almost
surely w.r.t. a suitably chosen (semi-)metric d, because after observing infinite samples the
parameter uncertainty should vanish.2 Denote this stochastic limit as θ̂∞, then the variation
in the distribution p(θ̂∞ | z1:n) reflects the uncertainty due to the missing observations
{zj}∞j=n+1 and thus measures epistemic uncertainty (Der Kiureghian and Ditlevsen, 2009).

As we review in the full paper, the above formulation is justified in part through the
fact that it generalises Bayesian posteriors: the latter can be recovered by defining Ā(z1:j)
to sample from a Bayesian posterior π(θ | z1:j), assuming Doob’s theorem (Doob, 1949)
applies (e.g., if the posterior mean is bounded w.r.t. a certain vector semi-norm ∥ · ∥). More
generally, as long as an algorithm is such that {E

θ̂j∼Ā(z1:j)
θ̂j}∞j=n form a martingale and is

bounded w.r.t. ∥ · ∥, by Doob’s theorem the limit θ̂∞ exists. The distribution p(θ̂∞ | z1:n)
is hence called a martingale posterior (MP).

Martingales for machine learning? The MP framework requires an explicitly and
correctly specified prior, instead requiring our prior knowledge be expressible in the form of
an algorithm Ā, but it also requires Ā to define a martingale. Recent works have explored
purposely constructed A (Fong et al., 2024; Lee et al., 2022; Ghalebikesabi et al., 2023) to
satisfy this requirement, but it is unclear how common ML algorithms can be adapted for
this goal. In this work we bridge this gap, building on the observation that online gradient
descent (GD) defines a valid MP (Holmes and Walker, 2023): for

θ̂j+1 := θ̂j + ηj∇θ log pθ̂j (ẑj+1), where ẑj+1 ∼ p
θ̂j
, (3)

we have E(θ̂j+1 | z1:j) = θ̂j . We start from the observation that a natural gradient variant of
(3) connects to sequential MLE and can be near Bayes-optimal. This algorithm, along with
its regularised variant, provide the motivating examples for our theory and methodology.

Another unaddressed question is how general MPs can be justified theoretically, beyond
the somewhat vague belief that the imputations from a suitable Ā may “approximate the
missing data well”. While previous works established consistency for specific MPs (Fong
et al., 2024; Holmes and Walker, 2023), such results do not provide justification for the
uncertainty estimates. Moreover, the intuition that imputations approximate the missing
data well is somewhat flawed in the small-sample regime, where uncertainty quantification
is most needed. Our theoretical analysis will address this question.

3. Analysis of Martingale Posteriors with Near-Optimal Algorithms

Informal summary of the main result. Our analysis applies in simplified scenarios to
algorithms that are near-Bayes optimal in the sense of (1) and satisfy additional conditions.
A stronger version of its assumptions can be summarized as follows:

(A1) We have an online, deterministic estimation algorithm which defines

θ̂j+1 := Âlgj+1(θ̂j , ẑj+1), ẑj+1 ∼ p
θ̂j
. (2’)

{θ̂j} approximately forms a martingale w.r.t. some vector semi-norm ∥ · ∥.

2. For overparameterised models the semi-metric d(θ, θ′) should only measure the difference between pθ
and pθ′ ; this is also related to previous works on “function-space inference” (e.g., Sun et al., 2018).
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(A2) ∥θ − θ′∥ dominates the 2-Wasserstein distance W2,∥·∥z(pθ, pθ′) defined by some ∥ · ∥z.

(A3) For all l > n, let θ̆l be the estimate obtained by applying {Âlgj} to l samples from
the prior predictive distribution: z1:l ∼ pθ0 , θ0 ∼ π. Introduce ε̄2B,l := Ez1:l,θ0∼π∥E(θ0 |
z1:l)− θ0∥2, and ε̆2ex,l := E∥θ̆l − θ0∥2 − ε̄2B,l. Then ε̆2ex,l ≲ l−sε̄2B,l for some s > 0.

(A4) (i) The function ∆̂j(θ, z) := Âlgj(θ, z) − θ is O(ηj)-Lipschitz continuous w.r.t. both

(θ, ∥·∥) and (z, ∥·∥z) where ηj ≍ j−1. (ii) Ez∼pθ′ ∆̂j(θ, z
′) = ηjHθ,j(θ

′−θ)+O(∥θ′−θ∥2).

In the above, (A3) formalises the condition (1), and (A4) are stability conditions; for GD
algorithms, ηj may correspond to the step-size. We also introduce miscellaneous conditions
which generally hold for parametric models and the asymptotic (n ≫ dim θ) regime, but
also in the nonasymptotic examples below. We refer readers to the full paper for a formal
statement and discussion of all assumptions and the result.

Under the above conditions we prove the following 2-Wasserstein distance bound be-
tween the unknown Bayesian posterior πn, and the MP p̂mp,n:

EπW
2
2,θ(πn, p̂mp,n)≪ ε̄2B,n. (4)

As ε̄2B,n above also equals the expected squared radius of πn under ∥·∥, the result essentially
states that the difference between the MP and the Bayesian posterior a higher-order term.
It then follows that the MP can provide meaningful uncertainty estimates on new datasets
sampled from π, which is especially interesting when explicit knowledge of π is not available.

Examples. While the theorem does not cover deep NN models, it justifies similar algo-
rithms on examples that cover high-dimensional models and the small-sample regime. We
summarize the examples below and refer readers to the full paper for derivations and details.

(E1) Let pθ be an exponential family. Then a sequential MLE algorithm has the form of
(A1), and will satisfy (A1), (A3) and (A4) if n ≳

√
dim θ and π is a conjugate prior

which is not “too concentrated”. (A2) needs to be verified on a case-by-case basis;
we show it holds for e.g. Gaussian, exponential and Bernoulli families. Note that the
result applies when the true parameter is not yet identified (n≪ dim θ).

(E2) Let π be the iso-Gaussian process over a Hilbert space H,3 and A : H → Z be
a Hilbert-Schmidt operator. Suppose pθ(z) = N (z | Aθ, I) where NZ denotes the
shifted iso-Gaussian process on Z. Define ∥θ − θ′∥ = ∥(A⊤A)1/2(θ − θ′)∥H, and let

Âlgj be defined through sequential maximum-a-posteriori (MAP) estimation. Then
our theorem will always apply, providing a bound of EW 2

2,θ(πn, p̂mp,n) = O(ε̄2B,n/n).
Note how this result does not depend on the extrinsic dimensionality of θ.

As we explain in the full paper, (E2) above is closely related to Gaussian process (GP)
regression which is similarly an infinite-dimensional linear inverse problem.4 The same

3. See Skorohod (2012). π is the white noise process if H is an L2 space, or standard Gaussian if H = Rd.
4. For example, note π = GP(0, k) (the GP prior) if H is the reproducing kernel Hilbert space defined by

k.
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principle of sequential MAP estimation leads to the following algorithm, which can be
easily implemented if we use random feature approximations for H:

θ̂j+1 := argminθ∈H
∑j

i=1(fθ̂j (xi)− fθ(xi))
2 + (fθ(xj+1)− yj+1)

2 + n−1∥θ − θ̂j∥2H. (5)

While conjugate GP inference is a well-studied problem, previous works on Bayesian neural
networks (BNNs) often justify their method by analysing similar random feature models
(e.g., Osband et al., 2018; He et al., 2020) due to their connection to wide NN models (Lee
et al., 2019). From our perspective, (5) is also interesting because it connects to a proximal
Bregman objective (Bae et al., 2022) we will use for DNN models in the following.

4. MP-Inspired Uncertainty Quantification for General ML Algorithms

In §3 we have demonstrated the efficacy of the MP (2’) instantiated with sequential MLE
or its regularised variant. It may be reasonable to expect that similar methods are broadly
applicable beyond the scope of our analysis. We thus consider a general method as follows:

1. Initialisation: Dn := z1:n, θ̂n ← A0(Dn)

2. for j ← n, n+ 1, . . . , n+ ⌊N/∆n⌋

(a) Sample ẑnj :nj+∆n ∼ p
θ̂j
; Dj+1 ← Dj ∪ ẑnj :nj+∆n

(b) θ̂j+1 ← A(Dj+1; θ̂j)

3. Repeat 1–2 for K times; use the resulted {θ̂(k)n+⌊N/∆n⌋}
K
k=1 to form an ensemble

In the above, (A0(D),A(D; θ)) denote a general point estimation algorithm; our analysis
loosely suggests that any algorithm may be used if it is efficient in the sense of (1). We
allow A(D; θ) to resume from the previous-iteration optima θ if possible, but it may also
refit a predictor from scratch. Compared with (2’), we also modify the algorithm to process
∆n > 1 samples at each iteration. The resulted ensemble enables us to quantify epistemic
uncertainty and improve predictive performance of the base algorithm.

Remark 1 (comparison with bootstrap) The above algorithm has a similar form to
the parametric bootstrap (Efron, 2012), which defines an ensemble by repeatedly drawing
n samples from an initial p

θ̂n
and computing a parameter estimate sole on these samples.

In comparison, our method retains the original dataset {z1:n} and may be justified as ap-
proximating MPs if we consider ∆n→ 1, N →∞. In the full paper we provide two specific
examples where our algorithm has a more desirable theoretical behaviour than parametric
and nonparametric bootstrap. We will also compare to these approaches empirically.

Remark 2 (comparison with Fong et al. 2024) The resampling scheme above resem-
bles that in Fong et al. (2024). A key distinction is that we allow for base algorithms that
do not satisfy the coherence condition in Fong et al. (2024, §3.2); the coherence condition
required the algorithm A to possess a notion of epistemic uncertainty by itself and implied
A can already be viewed as “implicitly Bayesian” (Mlodozeniec et al., 2024; see also Berti
et al., 2021). In contrast, we allow the use of point estimation algorithms such as MLE,
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as justified by the analysis in §3, and uses the resampling scheme to augment them with
a coherent notion of epistemic uncertainty. It is nonetheless interesting to note that the
same method can be applied to both estimation and Bayesian prediction algorithms and, in
contrast to standard bootstrap approaches, will not inflate the predictive uncertainty in the
latter case (Fong et al., 2024).

Remark 3 (a modified objective for DNNs) Many ML algorithms can be plugged into
our method directly, but for DNN-based algorithms it can be beneficial to modify them to
model the effect of early stopping: while DNNs are often trained to minimise a (regularised)
empirical risk, due to early stopping θ̂j will typically not reach the optima of its objective
w.r.t. Dj; when processing new samples, it can be desirable to avoid further optimisation on
the old Dj. We thus follow Bae et al. (2022) and modify the empirical risk by replacing the
loss for Dj with a function-space Bregman divergence; see our full paper for details. As a
special case, for square loss, the new objective has the form of (5) (minus regularisation).

5. Experiments

We evaluate the proposed method empirically across a variety of tasks. For space reasons,
we summarise the findings below and defer setup details and full results to the full paper.

Synthetic multi-task learning experiments. We first complement the theoretical re-
sults in §3 with numerical simulations, on a setup inspired by previous theoretical works
on multi-task learning (Tripuraneni et al., 2020; Du et al., 2020; Wang et al., 2022): we
have m i.i.d. pretraining tasks, each with npret samples, and a test task with n∗ observa-
tions sampled from the same π. In each task we generate y | x, θ ∼ N (0, fθ(Φ0(x))) where
fθ ∼ GP(0, k̄) with k̄ being an RBF kernel and Φ0 defined by a DNN. Both k̄ and Φ0 are
unknown to the user, who constructs an MP using (5), with H defined by applying the
kernel learning algorithm in Wang et al. (2022) to the pretraining dataset. Therefore, all
assumptions in §3 hold true, with the only exception of (A3) which we expect to hold when
npret ≫ n∗. We verify both (A3) and our theoretical claim (4) numerically. As shown in
Fig. 1 below, (4) appears to hold (middle subplot) when (A3) is fulfilled (left subplot), in
which case the credible intervals constructed from the MP also demonstrates valid coverage.
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Figure 1: Result for the multi-task learning simulation, with n∗ = 20,m = 200 and varying
npret. Plotted are the mean and 95% confidence interval for each metric.

Hyperparameter learning for GP regression. We investigate if the proposed method
may alleviate overfitting in empirical Bayesian hyperparameter learning. We evaluate our
method on 9 UCI regression datasets adopted by Salimbeni and Deisenroth (2017), each
subsampled to n ∈ {75, 300} training observations. As shown in the full paper, our method
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outperforms the empirical Bayes algorithm, bootstrap aggregation and a vanilla ensem-
ble method based on initialisation randomness, in terms of test mean squared error, log
predictive density and continuous ranked probability score (CRPS).

Classification with tree and AutoML algorithms. We apply our method to two base
algorithms: (i) XGBoost (Chen and Guestrin, 2016) which implements gradient boosting
decision trees (Friedman, 2001), and (ii) AutoGluon (Erickson et al., 2020), an AutoML
system which performs stacking (Wolpert, 1992) using a variety of tree and DNN models.
Both are highly competitive approaches that outperform deep learning methods (Grinsztajn
et al., 2022; Shwartz-Ziv and Armon, 2022) but lack a natural Bayesian counterpart. We
evaluate on 30 OpenML datasets adopted by Hollmann et al. (2022); for each algorithm
we apply our method (IPB), and compare with bootstrap aggregation (BS) as well as the
base algorithm without aggregation. The results are summarised in Table 1: for both base
algorithms, our method improves over the base algorithm and its bagging variant.

Table 1: Classification experiment: average rank (↓) of test metrics across 30 datasets.

Metric
XGBoost AutoGluon

(Base) + BS + IPB (Base) + BS + IPB

Log likelihood 4.77 4.33 3.20 3.60 3.03 2.07
Accuracy 4.87 4.43 3.23 3.50 2.50 2.47

Table 2: Interventional density estimation: average rank (↓) across all synthetic datasets.

n PB Ens. NTKGP BS IPB

100 3.6 1.9 5.0 3.1 1.0
1000 4.0 1.9 5.0 2.4 1.2

Table 3: Results on the fMRI datasets. We drop PB and NTKGP as they are uncompetitive
in Table 2, but add the baselines and the flow-based method in Khemakhem et al.
(2021) for reference. Boldface indicates the best result (p < 0.05 in a Z test).

Metric Linear ANM Flow D + Ens D + BS D + IPB

CRPS .738±.10 .551±.01 .546±.02 .520±.00 .518±.00 .518±.00

Med. Abs. Err .658±.03 .655±.01 .605±.02 .609±.01 .611±.01 .604±.00

Interventional density estimation with diffusion models. We evaluate our method
on the task of interventional density estimation (Khemakhem et al., 2021), which can be seen
as conditional density estimation with distribution shifts induced by the intervention. We
apply our method to the algorithm of Chao et al. (2023) which is based on diffusion models,
and compare with the following ensemble methods: parametric (PB) and nonparametric (BS)
bootstrap, deep ensemble (Ens), and the method of He et al. (2020, NTKGP). We evaluate on
(i) 8 synthetic datasets in Chao et al. (2023), and (ii) a set of real-world fMRI datasets in
Khemakhem et al. (2021). Following the original papers, we report an average maximum
mean discrepancy (MMD) metric for (i), and the median absolute error for (ii). To evaluate
the quality of uncertainty estimates, we further report the coverage of credible intervals for
interventional mean functions for (i) (in Appendix D.4 of the full paper) and CRPS for (ii).
As shown in Table 2–3, the proposed method (IPB) attains the best overall performance.
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