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1. Introduction

Bayesian modelling represents an important approach that enables favourable predictive
performance in the small-sample regime and allows for the quantification of predictive un-
certainty which is vital for high-stakes applications. Yet for many machine learning (ML)
algorithms it can be difficult to derive or implement their Bayesian counterpart. For exam-
ple, the development of Bayesian neural network (NN) methods encounters challenges with
inference (Sun et al., 2018; Wang et al., 2018) and model misspecification (Aitchison, 2020;
Fortuin et al., 2021); AutoML algorithms (Karmaker et al., 2021) involve complex processes
for hyperparameter tuning and model aggregation which are hard to replicate in a Bayesian
framework; and when algorithms are provided as black-box services (e.g., OpenAI, 2023),
adapting them to Bayesian principles becomes impossible.

How can we bring back the benefits of the Bayesian paradigm without being limited
by its traditional constraints? In this work we present a promising approach towards this
challenge based on the following basic postulation: the ML algorithm of interest has
competitive average-case performance on hypothetical datasets—or tasks—from a possibly
unknown task distribution π, and our present task can be viewed as a random sample from
the same π. Formally, suppose the algorithm A maps a training dataset z1:n to a parameter
estimate A(z1:n); we require it to satisfy an inequality of the following form,

Eθ0∼πE(z1:n,z∗)∼Pθ0
ℓ(A(z1:n), z∗) ≤ inf

A′
Eθ0∼πE(z1:n,z∗)∼pθ0

ℓ(A′(z1:n), z∗) + ϵn. (1)

In the above, θ0 is a parameter that determines the data generating process pθ0 in an ML
task; (z1:n, z∗) denote the training and test samples; ℓ(θ, z) denotes the loss function; and
A′ ranges over all possible algorithms that maps z1:n to an A′(z1:n) ≈ θ0.

To understand this postulation, imagine a practitioner working on a new image classi-
fication dataset. To understand the suitability of a certain algorithm A (which may be a
combination of an NN model, optimisation and hyperparameter tuning recipes), it is natural
for them to start by reviewing past literature that evaluated A on datasets deemed similar
to the present one. At a high level, the past and present tasks can be viewed as i.i.d. samples
from the distribution π, and promising reports from past literature will provide evidence
that (1) holds with a smaller ϵn. The practitioner may then commit to the choice of A that
corresponds to the smallest ϵn. As another type of example, condition (1) is also relevant
in multi-task learning scenarios, where it often appears as an assumption of the algorithm
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(e.g., Pentina and Lampert, 2014; Riou et al., 2023). Foundation models (Bommasani et al.,
2021) that are pretrained on a diverse mix of datasets can also be viewed as optimised for
(1), with a choice of π designed to align with the downstream task of interest.

Algorithms that satisfy (1) are near-Bayes optimal, and the knowledge of the Bayesian
posterior defined by π would enable the minimisation of (1) (Ferguson, 1967). As exempli-
fied above, there are many scenarios where it is more reasonable to assume knowledge of
a near-optimal A than that of a correctly specified π. Yet with such a choice of A, there
remain the challenge of uncertainty quantification, and the risk of overfitting in a small-
sample regime: for example, for regular parametric models maximum likelihood estimation
(MLE) can be asymptotically near-Bayes optimal (Van der Vaart, 2000), but it does not
provide any (epistemic) uncertainty estimate, and the predictive performance of MLE in
the small-sample regime may well be improvable.

To address these issues, we build on the ideas of Fong et al. (2021) and investigate mar-
tingale posteriors (MPs; See §2 for a review). As our first contribution, we prove that when
the algorithm A defines an approximate martingale, satisfies (1) and additional conditions,
we can use A to construct an approximate MP which will provide a good approximation
for the Bayesian posterior defined by π in a Wasserstein sense (§3). Such results allow us to
draw from the benefits of the latter without requiring explicit knowledge of π. Our results
cover high-dimensional models and the pre-asymptotic regime; in this aspect it demonstrates
advantages over classical approaches such as bootstrap aggregation (Breiman, 1996).

As a further contribution, in §4 we present MP-inspired algorithms for uncertainty
quantification. Our method is based on sequential applications of a base estimation algo-
rithm and applies to both NN and non-NN algorithms. We illustrate the method using a
wide range of base algorithms, including Gaussian process models, boosting trees, AutoML
algorithms, and diffusion models. In all experiments the proposed method outperforms com-
petitive baselines such as bootstrap and deep ensemble (Lakshminarayanan et al., 2017).

2. Background

We briefly review the idea of martingale posteriors (Fong et al., 2021) which serve as the
basis of our work, and refer readers to the full paper for a full introduction.

From Bayesian to martingale posteriors. Suppose we have i.i.d. observations z1:n ∈
Z⊗n and access to a suitable algorithm Ā which, for any j ≥ n, maps any j observations
z1:j ∈ Z⊗j to a possibly random parameter Ā(z1:j) ∈ Θ. For simplicity, suppose for the
moment that any parameter θ ∈ Θ indexes a distribution pθ over Z which we can sample
from.1 Consider a sequence of data and parameter samples defined as follows:

θ̂j := Ā(z1:n ∪ ẑn+1:j), ẑj+1 ∼ p
θ̂j
, for j = n, n+ 1, . . . (2)

Intuitively, for any reasonable Ā, we expect the resulted {θ̂j : j > n} to converge almost
surely w.r.t. a suitably chosen (semi-)metric d, because after observing infinite samples the
parameter uncertainty should vanish.2 Denote this stochastic limit as θ̂∞, then the variation

1. As we explain in the full paper, this can be extended to supervised learning where z = (x, y) and θ only
indexes a conditional distribution pθ(y | x), and our theory and methodology will continue to apply.

2. For overparameterised models the semi-metric d(θ, θ′) should only measure the difference between pθ
and pθ′ ; this is also related to previous works on “function-space inference” (e.g., Sun et al., 2018).
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in the distribution p(θ̂∞ | z1:n) reflects the uncertainty due to the missing observations
{zj}∞j=n+1 and thus measures epistemic uncertainty (Der Kiureghian and Ditlevsen, 2009).

As we review in the full paper, the above formulation is justified in part through the
fact that it generalises Bayesian posteriors: the latter can be recovered by defining Ā(z1:j)
to sample from a Bayesian posterior π(θ | z1:j), assuming Doob’s theorem (Doob, 1949)
applies (e.g., if the posterior mean is bounded w.r.t. a certain vector semi-norm ∥ · ∥). More
generally, as long as an algorithm is such that {E

θ̂j∼Ā(z1:j)
θ̂j}∞j=n form a martingale and is

bounded w.r.t. ∥ · ∥, by Doob’s theorem the limit θ̂∞ exists. The distribution p(θ̂∞ | z1:n)
is hence called a martingale posterior (MP).

Martingales for machine learning? The MP framework requires an explicitly and
correctly specified prior, instead requiring our prior knowledge be expressible in the form of
an algorithm Ā, but it also requires Ā to define a martingale. Recent works have explored
purposely constructed A (Fong et al., 2021; Lee et al., 2022; Ghalebikesabi et al., 2023) to
satisfy this requirement, but it is unclear how common ML algorithms can be adapted for
this goal. In this work we bridge this gap, building on the observation that online gradient
descent (GD) defines a valid MP (Holmes and Walker, 2023): for

θ̂j+1 := θ̂j + ηj∇θ log pθ̂j (ẑj+1), where ẑj+1 ∼ p
θ̂j
, (3)

we have E(θ̂j+1 | z1:j) = θ̂j . We start from the observation that a natural gradient variant of
(3) connects to sequential MLE and can be near Bayes-optimal. This algorithm, along with
its regularised variant, provide the motivating examples for our theory and methodology.

Another unaddressed question is how general MPs can be justified theoretically, beyond
the somewhat vague belief that the imputations from a suitable Ā may “approximate the
missing data well”. While previous works established consistency for specific MPs (Fong
et al., 2021; Holmes and Walker, 2023), such results do not provide justification for the
uncertainty estimates. Moreover, the intuition that imputations approximate the missing
data well is somewhat flawed in the small-sample regime, where uncertainty quantification
is most needed. Our theoretical analysis will address this question.

3. Analysis of Martingale Posteriors with Near-Optimal Algorithms

Informal summary of the main result. Our analysis applies in simplified scenarios to
algorithms that are near-Bayes optimal in the sense of (1) and satisfy additional conditions.
A stronger version of its assumptions can be summarized as follows:

(A1) We have an online, deterministic estimation algorithm which defines

θ̂j+1 := Âlgj+1(θ̂j , ẑj+1), ẑj+1 ∼ p
θ̂j
. (2’)

{θ̂j} approximately forms a martingale w.r.t. some vector semi-norm ∥ · ∥.
(A2) ∥θ − θ′∥ dominates the 2-Wasserstein distance W2,∥·∥z(pθ, pθ′) defined by some ∥ · ∥z.

(A3) For all l > n, let θ̆l be the estimate obtained by applying {Âlgj} to l samples from
the prior predictive distribution: z1:l ∼ pθ0 , θ0 ∼ π. Introduce ε̄2B,l := Ez1:l,θ0∼π∥E(θ0 |
z1:l)− θ0∥2, and ε̆2ex,l := E∥θ̆l − θ0∥2 − ε̄2B,l. Then ε̆ex,l ≲ l−sε̄2B,l for some s > 0.
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(A4) (i) The function ∆̂j(θ, z) := Âlgj(θ, z) − θ is O(ηj)-Lipschitz continuous w.r.t. both

(θ, ∥·∥) and (z, ∥·∥z) where ηj ≍ j−1. (ii) Ez∼pθ′ ∆̂j(θ, z
′) = ηjHθ,j(θ

′−θ)+O(∥θ′−θ∥2).
In the above, (A3) formalises the condition (1), and (A4) are stability conditions; for GD
algorithms, ηj may correspond to the step-size. We also introduce miscellaneous conditions
which generally hold for parametric models and the asymptotic (n ≫ dim θ) regime, but
also in the nonasymptotic examples below. We refer readers to the full paper for a formal
statement and discussion of all assumptions and the result.

Under the above conditions we prove the following 2-Wasserstein distance bound be-
tween the unknown Bayesian posterior πn, and the MP p̂mp,n:

EπW
2
2,θ(πn, p̂mp,n)≪ ε̄2B,n. (4)

As ε̄2B,n above also equals the expected squared radius of πn under ∥·∥, the result essentially
states that the difference between the MP and the Bayesian posterior a higher-order term.
It then follows that the MP can provide meaningful uncertainty estimates on new datasets
sampled from π, which is especially interesting when explicit knowledge of π is not available.

Examples. While the theorem does not cover deep NN models, it justifies similar algo-
rithms on examples that cover high-dimensional models and the small-sample regime. We
summarize the examples below and refer readers to the full paper for derivations and details.

(E1) Let pθ be an exponential family. Then a sequential MLE algorithm has the form of
(A1), and will satisfy (A1), (A3) and (A4) if n ≳

√
dim θ and π is a conjugate prior

which is not “too concentrated”. (A2) needs to be verified on a case-by-case basis;
we show it holds for e.g. Gaussian, exponential and Bernoulli families. Note that the
result applies when the true parameter is not yet identified (n≪ dim θ).

(E2) Let π be the iso-Gaussian process over a Hilbert space H,3 and A : H → Z be
a Hilbert-Schmidt operator. Suppose pθ(z) = N (z | Aθ, I) where NZ denotes the
shifted iso-Gaussian process on Z. Define ∥θ − θ′∥ = ∥(A⊤A)1/2(θ − θ′)∥H, and let

Âlgj be defined through sequential maximum-a-posteriori (MAP) estimation. Then
our theorem will always apply, providing a bound of EW 2

2,θ(πn, p̂mp,n) = O(ε̄2B,n/n).
Note how this result does not depend on the extrinsic dimensionality of θ.

As we explain in the full paper, (E2) above is closely related to Gaussian process (GP)
regression which is similarly an infinite-dimensional linear inverse problem.4 The same
principle of sequential MAP estimation leads to the following algorithm, which can be
easily implemented if we use random feature approximations for H:

θ̂j+1 := argminθ∈H
∑j

i=1(fθ̂j (xi)− fθ(xi))
2 + (fθ(xj+1)− yj+1)

2 + n−1∥θ − θ̂j∥2H. (5)

While conjugate GP inference is a well-studied problem, previous works on Bayesian neural
networks (BNNs) often justify their method by analysing similar random feature models
(e.g., Osband et al., 2018; He et al., 2020) due to their connection to wide NN models (Lee
et al., 2019). From our perspective, (5) is also interesting because it connects to a proximal
Bregman objective (Bae et al., 2022) we will use for DNN models in the following.

3. See Skorohod (2012). π is the white noise process if H is an L2 space, or standard Gaussian if H = Rd.
4. For example, note π = GP(0, k) (the GP prior) if H is the reproducing kernel Hilbert space defined by

k.
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4. MP-Inspired Uncertainty Quantification for General ML Algorithms

In §3 we have demonstrated the efficacy of the MP (2’) instantiated with sequential MLE
or its regularised variant. It may be reasonable to expect that similar methods are broadly
applicable beyond the scope of our analysis. We thus propose a general method as follows:

1. Initialisation: Dn := z1:n, θ̂n ← A0(Dn)

2. for j ← n, n+ 1, . . . , n+ ⌊N/∆n⌋

(a) Sample ẑnj :nj+∆n ∼ p
θ̂j
; Dj+1 ← Dj ∪ ẑnj :nj+∆n

(b) θ̂j+1 ← A(Dj+1; θ̂j)

3. Repeat 1–2 for K times; use the resulted {θ̂(k)n+⌊N/∆n⌋}
K
k=1 to form an ensemble

In the above, (A0(D),A(D; θ)) denote a general point estimation algorithm; our analysis
loosely suggests that any algorithm may be used if it is efficient in the sense of (1). We
allow A(D; θ) to resume from the previous-iteration optima θ if possible, but it may also
refit a predictor from scratch. Compared with (2’), we also modify the algorithm to process
∆n > 1 samples at each iteration. The resulted ensemble provides a means to quantify
epistemic uncertainty and can also be used to improve predictive performance.

Remark 1 (comparison with bootstrap) The above algorithm has a similar form to
the parametric bootstrap (Efron, 2012), which defines an ensemble by repeatedly drawing
n samples from an initial p

θ̂n
and computing a parameter estimate sole on these samples.

In comparison, our method retains the original dataset {z1:n} and may be justified as ap-
proximating MPs if we consider ∆n→ 1, N →∞. In the full paper we provide two specific
examples where our algorithm has a more desirable theoretical behaviour than parametric
and nonparametric bootstrap. We will also compare to these approaches empirically.

Remark 2 (a modified objective for DNNs) Many ML algorithms can be plugged into
our method directly, but for DNN-based algorithms it can be beneficial to modify them to
model the effect of early stopping: while DNNs are often trained to minimise a (regularised)
empirical risk, due to early stopping θ̂j will typically not reach the optima of its objective
w.r.t. Dj; when processing new samples, it can be desirable to avoid further optimisation on
the old Dj. We thus follow Bae et al. (2022) and modify the empirical risk by replacing the
loss for Dj with a function-space Bregman divergence; see our full paper for details. As a
special case, for square loss, the new objective has the form of (5) (minus regularisation).

5. Experiments

We evaluate the proposed method empirically across a variety of tasks. For space reasons,
we summarise the findings below and defer setup details and full results to the full paper.

Hyperparameter learning for GP regression: We investigate if the proposed method
may alleviate overfitting in empirical Bayesian hyperparameter learning. We evaluate our
method on 9 UCI regression datasets adopted by Salimbeni and Deisenroth (2017), each
subsampled to n ∈ {75, 300} training observations. As shown in the full paper, our method
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outperforms the empirical Bayes algorithm, bootstrap aggregation and a vanilla ensem-
ble method based on initialisation randomness, in terms of test mean squared error, log
predictive density and continuous ranked probability score (CRPS).

Classification with tree and AutoML algorithms: We apply our method to two base
algorithms: (i) XGBoost (Chen and Guestrin, 2016) which implements gradient boosting
decision trees (Friedman, 2001), and (ii) AutoGluon (Erickson et al., 2020), an AutoML
system which performs stacking (Wolpert, 1992) using a variety of tree and DNN models.
Both are highly competitive approaches that outperform deep learning methods (Grinsztajn
et al., 2022; Shwartz-Ziv and Armon, 2022) but lack a natural Bayesian counterpart. We
evaluate on 30 OpenML datasets adopted by Hollmann et al. (2022); for each algorithm
we apply our method (IPB), and compare with bootstrap aggregation (BS) as well as the
base algorithm without aggregation. The results are summarised in Table 1: for both base
algorithms, our method improves over the base algorithm and its bagging variant.

Table 1: Classification experiment: average rank (↓) of test metrics across 30 datasets.

Metric
XGBoost AutoGluon

(Base) + BS + IPB (Base) + BS + IPB

Log likelihood 4.77 4.33 3.20 3.60 3.03 2.07
Accuracy 4.87 4.43 3.23 3.50 2.50 2.47

Table 2: Interventional density estimation: average rank (↓) across all synthetic datasets.

n PB Ens. NTKGP BS IPB

100 3.6 1.9 5.0 3.1 1.0
1000 4.0 1.9 5.0 2.4 1.2

Table 3: Results on the fMRI datasets. We drop PB and NTKGP as they are uncompetitive
in Table 2, but add the baselines and the flow-based method in Khemakhem et al.
(2021) for reference. Boldface indicates the best result (p < 0.05 in a Z test).

Metric Linear ANM Flow D + Ens D + BS D + IPB

CRPS .738±.10 .551±.01 .546±.02 .520±.00 .518±.00 .518±.00

Med. Abs. Err .658±.03 .655±.01 .605±.02 .609±.01 .611±.01 .604±.00

Interventional density estimation with diffusion models: We evaluate our method
on the task of interventional density estimation (Khemakhem et al., 2021), which can be seen
as conditional density estimation with distribution shifts induced by the intervention. We
apply our method to the algorithm of Chao et al. (2023) which is based on diffusion models,
and compare with the following ensemble methods: parametric (PB) and nonparametric (BS)
bootstrap, deep ensemble (Ens), and the method of He et al. (2020, NTKGP). We evaluate on
(i) 8 synthetic datasets in Chao et al. (2023), and (ii) a set of real-world fMRI datasets in
Khemakhem et al. (2021). Following the original papers, we report an average maximum
mean discrepancy (MMD) metric for (i), and the median absolute error for (ii). To evaluate
the quality of uncertainty estimates, we further report the coverage of credible intervals for
interventional mean functions for (i) (in Appendix D.4 of the full paper) and CRPS for (ii).
As shown in Table 2–3, the proposed method (IPB) attains the best overall performance.
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Abstract

Bayesian modelling allows for the quantification of predictive uncertainty which
is crucial in safety-critical applications. Yet for many machine learning (ML)
algorithms, it is difficult to construct or implement their Bayesian counterpart. In
this work we present a promising approach to address this challenge, based on the
hypothesis that commonly used ML algorithms are efficient across a wide variety
of tasks and may thus be near Bayes-optimal w.r.t. an unknown task distribution.
We prove that it is possible to recover the Bayesian posterior defined by the
task distribution, which is unknown but optimal in this setting, by building a
martingale posterior using the algorithm. We further propose a practical uncertainty
quantification method that apply to general ML algorithms. Experiments based on
a variety of non-NN and NN algorithms demonstrate the efficacy of our method.

1 Introduction

Bayesian modelling represents an important approach that enables favourable predictive performance
in the small-sample regime and allows for the quantification of predictive uncertainty which is vital
for high-stakes applications. Yet for many machine learning (ML) algorithms it can be difficult to
derive or implement their Bayesian counterpart. For example, neural network (NN)-based algorithms
often rely on implicit regularisation mechanisms (Zhang et al., 2021) which are hard to replicate
with explicitly constructed Bayesian priors (Razin and Cohen, 2020); approximate inference in
overparameterised models can be challenging (Sun et al., 2018; Wang et al., 2018); and when
algorithms are offered as a black-box service (e.g., OpenAI, 2023), adapting them to Bayesian
principles becomes impossible.

How can we bring back the benefits of the Bayesian paradigm without being limited by its traditional
constraints? In this work we present a promising approach towards addressing this issue, based on the
following basic postulation: the ML algorithm of interest has competitive average-case performance
on hypothetical datasets, or tasks, sampled from an unknown task distribution π, and our present
task can be viewed as a random sample from the same π. Formally, suppose the algorithm A maps
a training dataset z1:n to a parameter estimate A(z1:n); we require it to satisfy an inequality of the
following form,

Eθ0∼πE(z1:n,z∗)∼Pθ0
ℓ(A(z1:n), z∗) ≤ inf

A′
Eθ0∼πE(z1:n,z∗)∼pθ0

ℓ(A′(z1:n), z∗) + ϵn. (1)

In the above, θ0 is a parameter that determines the data generating process pθ0 in an ML dataset, or a
task; (z1:n, z∗) denote the training and test samples; ℓ(θ, z) denotes the loss function; and A′ ranges
over all possible algorithms that maps z1:n to an A′(z1:n) ≈ θ0.

To understand this postulation, imagine a practitioner working on a new image classification dataset.
To understand the suitability of a certain algorithm A (which may be a combination of an NN model,
optimisation and validation protocols), it is natural for them to start by reviewing past literature that
evaluated A on datasets deemed similar to the present one. At a high level, the past and present tasks
can be viewed as independent samples from the unknown distribution π, and promising reports from



past literature provide evidence that (1) holds with a small ϵn. The practitioner may then commit
to the algorithm with the smallest ϵn, within their other constraints. As another type of example,
condition (1) is also relevant in multi-task learning scenarios, where it often appears as an assumption
of the algorithm (e.g., Pentina and Lampert, 2014; Riou et al., 2023). Foundation models (Bommasani
et al., 2021) that are pretrained on a diverse mix of datasets can also be viewed as optimised for (1),
with a distribution π designed to align with the characteristics of the downstream task of interest.

Algorithms that satisfy (1) are near-Bayes optimal, as knowledge of the Bayesian posterior defined
by π would enable the minimisation of (1) (Ferguson, 1967). As exemplified above, there are many
practical scenarios where it is more reasonable to assume knowledge of a near-optimal A than that of
a correctly specified π. Yet the challenge of uncertainty quantification with such an A remains: as an
example, for parametric models and regular choices of π maximum likelihood estimation provides a
near-Bayes optimal algorithm for parameter estimation (Van der Vaart, 2000), but it does not provide
any uncertainty estimate which is especially needed in the small-sample regime.

To address this issue, we build on the ideas of Fong et al. (2021) and study martingale posteriors
(MPs), defined as the distribution of parameter estimates obtained by first using A to generate a
synthetic dataset, and then applying A to the combined sample of real and synthetic data (see Sec. 2
for a review). We prove that when the algorithm defines an approximate martingale, satisfies (1) and
additional technical conditions, the resulted MP will provide a good approximation for the Bayesian
posterior defined by π in a Wasserstein distance. Such results allow us to draw from the benefits of
the latter without requiring explicit knowledge of π. As we will discuss in detail, our results also
improves the understanding of MPs, by covering a wider range of algorithms and the pre-asymptotic
(n < dim θ) regime. In the latter aspect it also demonstrates advantages over traditional approaches
such as bootstrap aggregation (Breiman, 1996).

As a further contribution, we present MP-inspired algorithms based on sequential minimisation of the
empirical risk. Our method is related to the classical nonparametric and parametric bootstrap methods
but demonstrates advantages over both approaches. It can further be extended to NN models using a
modified maximum likelihood objective. We evaluate the proposed method empirically on a variety
of tasks including hyperparameter learning for Gaussian process models, classification with boosting
tree and stacking algorithms, and conditional density estimation with diffusion models, where it
consistently outperforms standard ensemble methods such as deep ensemble (Lakshminarayanan
et al., 2017) and bootstrapping.

The rest of the paper is structured as follows: in Sec. 2 we review the background on Bayesian models
and martingale posteriors which motivates the present work. Sec. 3 presents our theoretical results;
Sec. 4 presents the proposed method, which is evaluated in Sec. 5. We provide concluding remarks in
Sec. 6. For space reasons, discussion of related work is deferred to App. C.

2 Background

Notations. We adopt the following notations throughout the paper: (·)m:n denotes a range of
subscripts (e.g., zm:n = (zm, zm+1, . . . , zn)). ≲,≳,≍ denote (in)equality up to a multiplicative
constant. ∼ denotes asymptotic equivalence.

Bayesian modelling. Suppose we are given i.i.d. samples {zi}ni=1 from an unknown distribution
pθ0 and wish to learn a p̂n ≈ pθ0 . In Bayesian modelling we specify a parameter space Θ, a
likelihood function p(z | θ) and a prior π over Θ. We can then compute (or approximate) the
posterior π(dθ | z1:n) ∝ π(dθ)

∏n
i=1 p(zi | θ). The posterior defines the predictive distribution

π(zn+1 ∈ · | z1:n) =
∫
π(dθ | z1:n)p(z ∈ · | θ) that provides the learned approximation for pθ0 . It

also quantifies the uncertainty in the prediction process through the variation in π(· | z1:n).
When π is correctly specified, predictors derived from the posterior generally enjoy good theoretical
guarantees. One way to understand their benefits is through their ability to minimise various average-
case losses where data is sampled from the prior predictive distribution: for instance, the posterior
predictive density minimises the log loss Llog(f̂n) := Eθ0∼πE(z1:n,zn+1)∼pθ0

log f̂n(zn+1; z1:n).

As the loss functional is defined w.r.t. training and test data (z1:n, zn+1) sampled from the prior
predictive distribution, such statements are only relevant when the prior π is correctly specified to
model the true data distribution.
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All Bayesian models are correctly specified for some tasks, but they do not necessarily cover
the present task at hand. In many cases, specifying models based on vague subjective beliefs
or computational considerations can lead to disappointing performance. As mentioned in Sec. 1,
Bayesian NN models may constitute such an example. Here we note that the specification of NN
priors is non-trivial: for instance, the convenientN (0, αI) prior can lead to undesirable consequences,
despite its apparent connection to standard ℓ2 regularisation (Fortuin et al., 2021; Tran et al., 2022).
Such issues—coupled with challenges in inference—motivate the search of alternative methods for
uncertainty quantification.

Martingale posteriors. We review the framework of martingale posteriors (Fong et al., 2021)
which will serve as the basis of our work. In a nutshell, the idea of Fong et al. (2021) can be
described as follows: suppose we have the observations z1:n and a suitable collection of predictive
distributions {pj(zj+1|z1:j) : j ≥ n}, then we can sample from {pj} recursively to impute the
missing observations ẑj+1 ∼ pj(· | z1:n, ẑn+1:j), n ≤ j < N, and obtain a random θ̂N estimated
on the combined sample {z1:n, ẑn+1:N}. The randomness of θ̂N comes from the randomness of the
imputations. Thus, when N →∞ is large, it reflects our uncertainty about the true data distribution
pθ0 ; and when θ0 is identifiable, this is the only relevant source of uncertainty about θ0, i.e., the
epistemic uncertainty (Der Kiureghian and Ditlevsen, 2009). This line of reasoning suggests that the
distribution of θ̂N | z1:n can fulfil a similar role as the Bayesian posterior in quantifying the epistemic
uncertainty. The framework is justified in part through the fact that it generalises Bayesian posteriors,
as we explain shortly.

To have a principled construction, we need assumptions on the predictive distributions {pj}. In this
work we are primarily interested in scenarios where {pj} is defined by an algorithm A that maps any
collection of j observations z1:j to a (deterministic or stochastic) parameter θ̂j . Formally,

pj(zj+1 = · | z1:j) := Eθ̂j∼A(z1:j)
pθ̂j (·). (2)

Restricting to such scenarios, a sufficient condition for the resulted θ̂N to have a well-defined limit is
for the conditional mean {E(θ̂j | z1:n, ẑn+1:j)}∞j=n to form a bounded martingale: it then follows
from Doob’s theorem (Doob, 1949) that θ̂N converges a.s. to some θ̂∞. The distribution θ̂∞ | z1:n is
thus called a martingale posterior (MP).

We now demonstrate that the above construction recovers the Bayesian posterior if we use the
posterior predictive distributions as {pj}, under the assumption that the posterior mean, θ̄Bj , is
bounded under a certain norm ∥ · ∥. In such cases, the conditional mean E(θ̂j | z1:j) = θ̄Bj , and we
have E(θ̄Bj+1 | Fj) =

∫∫
θ π(dθ | z1:j+1)π(dzj+1 | z1:j) = θ̄Bj for all j ≥ n. Thus, Doob’s theorem

applies and θ̂N → θ̂∞ a.s. for some θ̂∞. By de Finetti’s representation theorem, we can see that
θ̂∞ | Fn will distribute as π(· | z1:n) if θ0 is identifiable. In other words, the MP is now equivalent to
the Bayesian posterior.
Remark 2.1 (supervised learning). The above formulation can be extended to cover supervised
learning tasks where zi = (xi, yi) and θ parameterises the distribution p(y | x), if we sample xj+1 in
(2) from an external distribution independent of θ (e.g., a generative model, the empirical distribution
defined by x1:j , or unlabelled data if available).
Remark 2.2 (identifiability and norm). θ0 will not be identifiable in overparameterised ML models if
we use standard choices of ∥ · ∥ (e.g., Euclidean norm for NN parameters). However, the framework
can still apply if we can determine suitable semi-norms over Θ, or replace the notion of parameter
with equivalence classes of parameters that define the same prediction function (Sun et al., 2018)
which in turn defines the likelihood. For instance, if the prediction function is determined by a linear
map of a (transformed) parameter, as in the wide NN model in Jacot et al. (2018), we can use that
linear map to define a semi-norm.

Martingales for machine learning? The MP framework relieves the requirement for an explicitly
and correctly specified prior, as long as the user can express their prior knowledge in the form of an
algorithm A. Nonetheless, there is still the requirement that A define a martingale. Past works have
explored various choices of A, including nonparametric resampling and copula-based algorithms
(Fong et al., 2021) and purpose-built NN models that satisfy this requirement (Lee et al., 2022;
Ghalebikesabi et al., 2023). Yet it is unclear how common ML algorithms, such as approximate
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empirical risk minimisation (ERM) on general NN models, can be adapted for this purpose. In this
work we bridge this gap, building on the observation that online gradient descent (GD) defines a valid
MP (Holmes and Walker, 2023): for

θ̂j+1 := θ̂j + ηj∇θ log pθ̂j (ẑj+1), where ẑj+1 ∼ pθ̂j , (3)

we have E(θ̂j+1 | z1:j) = θ̂j . Our starting point is the observation that a natural gradient variant of
(3) enjoys desirable properties and connects to sequential maximum likelihood estimation (MLE)
(Sec. 3.2.1). We will show how the latter perspective allows us to derive algorithms for high-
dimensional models (Sec. 3.2.2) and, from a methodological point of view, DNN models (Sec. 4).

Another unaddressed question is how general MPs can be justified theoretically, beyond the somewhat
vague belief that the imputations from a suitable A may “approximate the missing data well”. While
previous works established consistency for specific MPs (Fong et al., 2021; Holmes and Walker,
2023), consistency results do not justify the uncertainty estimates from the MPs: they only guarantee
the MP credible sets converges to the true parameter θ0, but do not imply such sets include θ0 in any
finite-sample scenario. Moreover, the intuition that imputations approximate the missing data well
is somewhat flawed in the small-sample regime, in which case our estimate A(z1:n) is still a poor
approximation to θ0; yet it is in this regime where uncertainty quantification is most needed. In the
next section we address this question, starting from the basic postulation (1).

3 Martingale Posteriors with Near-Optimal Algorithms

In this section we present our theoretical contribution. We will state our result formally in Sec. 3.1;
it can be informally summarised as follows: for algorithms that define approximate MPs, satisfy
stability conditions and is “efficient” on a task distribution π in the sense of (1), the resulted MP will
be close to the Bayesian posterior defined by π in a Wasserstein distance. It follows that the MP will
provide useful uncertainty estimates on new tasks sampled from π, which is valuable when explicit
knowledge of π is not available and thus cannot be used to construct the Bayesian posterior.

As discussed in Sec. 1, our conceptual setup covers generic ML algorithms such as approximate
MLE on DNN models: they are generally considered efficient on a variety of tasks that, loosely
speaking, may represent samples from π; and based on prior knowledge, a practitioner may assume
the present task also falls into this category. While our theorem will not cover deep models, we
illustrate in Sec. 3.2 how it justifies similar algorithms on examples that cover high-dimensional,
overparameterised models and the small-sample regime. The examples will provide valuable insight
to the algorithm’s behaviour in more complex settings.

3.1 Setup and Main Result

Additional notations and setup. Our theoretical analysis applies to simplified scenarios that
nonetheless capture interesting aspects of ML applications. We first restrict to online algorithms,
where the MP can be defined through

θ̂j+1 := Âlgj+1(θ̂j , ẑj+1), where ẑj+1 ∼ pθ̂j ,

and {Âlgj : Θ×Z 7→ Θ} is a sequence of measurable functions. This covers the GD algorithm (3),
which will serve as an important example to motivate our assumptions. We also assume the existence
of a (semi-)norm ∥ · ∥ that, informally speaking, measures relevant differences between parameters
(see Rem. 2.2).

Let us define θ̄Bj := Eθ∼π(θ|z1:n,zB
n+1:j)

θ, zBj+1 ∼ π(zj+1|z1:n, zBn+1:j) so that limN→∞ θ̄BN exists

and distributes as the posterior π(θ|z1:n) assuming boundedness (see Sec. 2). Define ∆̂j(θ, z) :=

Âlgj(θ, z)− θ, ∆B
j := θ̄Bj − θ̄Bj−1. We use Eπ to denote the expectation w.r.t. the prior predictive

distribution: for all j ∈ N, g : Z⊗j → R, Eπg(z1:j) = Eθ0∼π,z1:j∼pθ0
g(z1:j). Define the expected

posterior contraction rate

ε̄2B,j := E
θ0∼π,z1:j

iid∼ pθ0

Eθp,j∼π(·|z1:j)∥θp,j − θ̄
B
j ∥2,

where with slight abuse of notation we use θ̄Bj to refer to the posterior mean w.r.t. z1:j . Note that
in the above probability space, θp,j and θ0 are conditionally i.i.d. given z1:j , so ε̄B,j also equals an
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expected error rate for the estimator θ̄Bj , which minimises the expected error. We hence define the

average “excess error” incurred by our Âlgj

ε̆2ex,j := E
θ0∼π,z1:j

iid∼ pθ0

(∥θ̆j − θ0∥2 − ∥θ̄Bj − θ0∥2),

where θ̆j := Âlgj(θ̆j−1, zj) is defined by applying Âlgj to the same set of z1:j . (Note the subtrahend
equals ε̄2B,j .)

Assumptions. We now introduce the assumptions. First we require Âlgj to define an approximate
martingale:

Assumption 3.1 (approximate martingale). There exists δ > 0 s.t. for all j ≥ n and θ ∈ Θ, we have

∥Eẑ∼pθ
∆̂j(θ, ẑ)∥2 ≤ j−2(1+δ)ε̄2B,j . (4)

Now we introduce our first assumption on stability. For the GD algorithm (3), its condition (i) merely
requires ∇θ log pθ(z) to be Lipschitz continuous w.r.t. θ and z. Condition (ii) below relates the norm
∥ · ∥ to a 2-Wasserstein distance.

Assumption 3.2 (stability I). There exist a norm ∥·∥z over Z , ι > 0, L1, L2 > 0 and ηj ≤ j−(1+ι)/2

s.t. (i) for all j ≥ n, the following inequalities hold for all θ, θ′ ∈ Θ, z, z′ ∈ Z:

∥∆̂j(θ, z)− ∆̂j(θ
′, z)∥2 ≤ η2jL2

1∥θ − θ′∥2, ∥∆̂j(θ, z)− ∆̂j(θ, z
′)∥2 ≤ η2jL2

2∥z − z′∥2z.

(ii) one of the following holds:

W 2
2,z(pθ, pθ′) ≤ CΘ∥θ − θ′∥2, (5)

or W 2
2,z(pθ, pθ′) ≤ CΘ∥θ − θ′∥, ηj ≤ j−(3+ι)/4, (5’)

where W2,z denotes the 2-Wasserstein distance under ∥ · ∥z .

The following assumption characterises efficiency. Its first inequality merely requires the excess
error to have a higher order. All examples in Sec. 3.2 will satisfy ηj ≍ j−1, in which case its second
inequality is also satisfied if ε̆2ex,j ≲ j−sε̄2B,j for an arbitrarily small s > 0.

Assumption 3.3 (efficiency). There exist s ∈ (0,min{δ, ι}) and a sequence {νl} → 0 s.t. for all
l ≥ n, we have

ε̆2ex,n = on(ε̄
2
B,n),

∞∑
j=l

j1+sη2j ε̆
2
ex,j ≤ νlε̄2B,l.

The following is a further condition on stability. It has appeared in previous work studying the
convergence of similar GD algorithms (Moulines and Bach, 2011, H6).

Assumption 3.4 (stability II). There exist CA, C
′
A ≥ 0, {Hθ,j ∈ Rd×d : θ ∈ Θ, j ∈ N} s.t. for all

θ, θ′ ∈ Θ, we have

∥(Ez′∼Pθ′ Âlgj+1(θ, z
′)− θ)− ηjHθ,j(θ

′ − θ)∥ ≤ CA∥θ′ − θ∥2.

Moreover, we have supj≥n,θ∈Θ ∥Hθ,j∥2op ≤ C ′
A <∞.

Finally, we introduce a set of conditions that are typically trivial in the large-sample regime
(e.g., ε̄2B,n ≍ d/n, d ≤ nι−s). It can also hold in the pre-asymptotic regime if CA is small, as
we will see in Sec. 3.2.1.

Assumption 3.5 (miscellaneous conditions).

(i) For all j ≥ n we have ε̆ex,j ≤ 1, ε̄B,j ≥ j−1.

(ii) limj→∞ ε̄B,j = 0. {ε̆ex,j} is non-increasing.

(iii) CA
∑

j≥n j
1+sη2j ε̄

4
B,j ≤ νnε̄2B,n.
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Main result. Our main result is the following:

Theorem 3.1 (proof in App. A.1). Let πn, p̂mp,n denote the Bayesian posterior and the (approximate)
MP defined by z1:n, and W2,θ be the 2-Wasserstein distance w.r.t. ∥ · ∥. Under Asm. 3.1-3.5, there
exists some C > 0 determined by (CΘ, CA, C

′
A, L1, L2) s.t. for χn = C/(sns)→ 0 we have

EπW
2
2,θ(πn, p̂mp,n) ≤ eχn((χn + νn)ε̄

2
B,n + ε̆2ex,n) (6)

= on(ε̄
2
B,n). (7)

Theorem 3.1 provides an average-case upper bound on the 2-Wasserstein distance between the MP
and the Bayesian posterior. Such Wasserstein distance bounds justify the use of MP credible sets
to approximate their Bayesian counterpart, which is desirable in our setting as π is assumed to be
correct but unknown. To see how W2 bounds link Bayesian and MP credible sets, observe that by
the Chebyshev inequality, any MP-credible sets A with nominal level 1 − γ can be enlarged by
∆ϵn,t := t

−1/2
n W2,θ(πn, p̂mp,n), so that the resulted set {θ ∈ Θ : ∃θ′ ∈ A s.t. ∥θ′ − θ∥ ≤ ∆ϵn,t}

has a Bayesian posterior mass ≥ 1− γ − tn. The radii of Bayesian credible balls generally have the
order of the posterior contraction rate; it follows from (7) that Eπ∆ϵ

2
n,t can have a higher order than

the expectation of the squared radii, which is O(ε̄2B,j), and this holds even for some tn → 0. In this
sense, the modification is asymptotically negligible.

3.2 Examples

3.2.1 Exponential Family Models and Sequential MLE

Let p̄η(z) ∝ eη
⊤T (z)−A(η) denote an exponential family model with natural parameter η, and

θ(η) := Ez∼p̄ηT (z) denote the corresponding mean parameter. Then we have θ = ∇ηA, and we can
use pθ := p̄(∇A)−1(θ) to denote the model distribution corresponding to θ.

Consider an algorithm that, for any set of n observations {zi}ni=1, computes the maximum likelihood
estimate θ̂n = 1

n

∑n
i=1 T (zi). The algorithm can be expressed as

Âlgj(θ̂j−1, zj) := θ̂j−1 + j−1(T (zj)− θ̂j−1). (8)

Note that (8) is equivalent to the natural gradient algorithm with step-size j−1 (Amari, 2016) and
thus generalises (3).

We choose π to be a conjugate prior, defined by the following density in the space of natural
parameters, π̄(η) ∝ eη

⊤θπ−αA(η). (α > 0, θπ ∈ Rd are its hyperparameters.) We consider any π
s.t. n+ α > 2, α = O(1) is not too large and ε̄2B,j <∞, and assume the function T is L-Lipschitz.
It then follows that

• Asm. 3.1 holds for all δ as (8) defines an exact martingale. Asm. 3.2 (i) holds for ηj = (j +
1)−1, L1 = 1, L2 = L. Asm. 3.4 holds for Hθ,j = I, CA = 0, C ′

A = 1.

• Asm. 3.3 holds with any s ∈ (0, 1) and νl ≤ 2αl−1+s, because we have ε̆2ex,j ≤ 2αj−1ε̄2B,j for all
j ≥ n; see App. A.2.1 for its proof.

• Asm. 3.5 holds when ε̄2B,n ≤ n/2α. For d-dimensional models where ε̄2B,n ≲ d/n, it suffices to
have n ≳

√
d.

Validation of Asm. 3.2 (ii) is more challenging due to a somewhat lack of understanding of Wasserstein
distance properties for exponential family models. We first note that it can be established on a case-
by-case basis by studying optimal transport plans; in this way we can verify that the Gaussian model
pθ = N (θ,Σ0), and the exponential model pθ = Exp(θ) satisfy its (5) with CΘ = O(∥Σ0∥−1

op ) and
CΘ = 1, respectively, and the Bernoulli model satisfies (5’) with CΘ = 8. Another scenario where
a similar version of (5’) hold is when supz∈Z ∥T (z)∥ is bounded and the eigenvalues of the Fisher
information matrices are bounded from both sides. See App. A.2.1 for a detailed discussion.

When the assumption holds, our theorem will apply and provide a bound of W 2
2,θ(p̂mp,n, πn) ≲

α1/2n−1/2ε̄2B,n. Note that this applies to the pre-asymptotic regime of
√
d ≲ n ≲ d, even though the

estimation error is ∥θ̂n − θ0∥ ≳ 1.
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3.2.2 Regularised Algorithms in High Dimensions

The above example involves unregularised MLE, which is known to have poor performance in various
high-dimensional problems. We now present a high-dimensional example where a regularised variant
of the MP enjoys good guarantees established by our theorem. We will also discuss how the example
connects to Gaussian processes (GPs).

A linear-Gaussian inverse problem. Let (∥ · ∥H, ∥ · ∥Z) be two Hilbert norms for θ and z,
respectively, and A : H → Z be a Hilbert-Schmidt operator. Suppose the observations are generated
by zi | θ ∼ NZ(Aθ, I) where NZ denotes the shifted iso-normal process on Z .1 We define our MP
using preconditioned GD:

Âlgj(θ, z) := θ + ηjGj∇ log p(z; θ) (9)

where ηj = j−1, Gj = (A⊤A+ j−1I)−1, and compare with the Bayesian posterior determined by
π = NH(0, I).

The above setup is closely related to the classical inverse problems defined by Gaussian white
noise (Cavalier, 2008). Following a convention in that literature, we assume the singular values
si(A) ≍ i−β for some β > 1/2, and quantify the difference between the MP and posterior through
the norm ∥θ − θ′∥ = ∥(A⊤A)α/2(θ − θ′)∥H, where α ∈ R is a problem parameter. With α = 1, the
problem can be viewed as regression in a Sobolev space. See App. A.2.2 for details.

It then follows that (see proofs in Appendix A.2.2)

• Asm. 3.1, 3.2 and 3.4 holds for the above ηj , all δ > 0, and L1 = L2 = CΘ = C ′
A = 1, CA = 0.

Asm. 3.5 always when, e.g., α = 1.

• Asm. 3.3 holds for all s and {νj}, because ε̆ex,j = 0.

Our theorem thus applies and gives a bound of O(ε̄2B,n/n).

We note that {Âlgj} will produce the same output as the posterior mean if we apply it to π-generated
data. However, the result is still non-trivial, because the model samples used to define the MP,
{ẑj}∞j=n+1, is different from {zBj }: the latter comes from the Bayesian predictive distribution, which
is defined by a mixture of parameters—the full posterior—as opposed to merely the posterior mean
estimate. It is thus interesting that the ratio between the Wasserstein distance and ε̄B,j remains
bounded by a dimension-free factor.

Connections to GP regression. The above example connects to GP regression through its connec-
tion to certain nonparametric inverse problem that is asymptotically equivalent to regression (Cavalier,
2008). We can also observe that if we chooseH to be a reproducing kernel Hilbert space defined by
a kernel kx, the above prior π will reduce to the standard GP prior defined by kx, and the operator
A : H ∋ f 7→ (f(x1), . . . , f(xn)) is Hilbert-Schmidt; hence, the derivations should apply to GP
regression.

We refer readers to App. A.2.2 for a detailed discussion along the above lines, where we also note
that the MP defined by (9) can be used for GP inference. However, the following algorithm provides
a more practical alternative:

θ̂j+1 := argmin
θ∈H

( j∑
i=1

(fθ̂j (xi)− fθ(xi))
2 + (fθ(x̂j+1)− ŷj+1)

2 +
1

n
∥θ − θ̂j∥2H

)
, (10)

where fθ refers to the regression function defined by θ ∈ H, x̂j+1 ∼ Uniform({xi}ji=1) (see
Rem. 2.1), ŷj+1 ∼ p(ŷj+1 | f(X) = θ̂j , x̂j+1), and with a slight abuse of notation we use (xi, yi) to
refer to the i-th (real or synthetic) observation received by the algorithm. As we discuss in App. A.2.2,
the algorithm (10) is based on the same principle of iterative maximum-a-posteriori estimation as (9).

Similar to some previous works for GP inference (which we review in App. C), we can implement
(10) by using random feature approximations for H; we can also apply the resulted algorithm to

1See van der Vaart et al. (2008, p. 207). In particular, if ∥ · ∥Z is a Euclidean norm, NZ will be the standard
Gaussian distribution.
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overparameterised random feature models which represent a simplified theoretical model for DNNs
(Lee et al., 2019). We refrain from a full analysis in light of the rich literature on this topic, but refer
readers to App. D.1 where we validate (10) empirically. From our perspective, (10) is particularly
interesting because as we explain shortly, its first term corresponds to a function-space Bregman
divergence of the log likelihood loss, which motivates the use of similar algorithms in broader
scenarios.

4 MP-Inspired Uncertainty for General ML Algorithms

In Sec. 3.2 we have illustrated the efficacy of MP-based uncertainty quantification (UQ) based on a
sequential MLE algorithm and its regularised variant. Such results suggest that similar procedures
should be broadly applicable, even to models beyond the scope of our analysis. In this section we
discuss the implementation of such MP-inspired procedures.

From MLE/MP to an “iterative parametric bootstrap” scheme. All MP procedures in Sec. 3.2
have the following structure: at each iteration j, (i) sample ẑj+1 ∼ pθ̂j ; (ii) let θ̂j+1 be the (regu-
larised) MLE on all past samples {z1:n, ẑn+1:j+1}. It is thus natural to generalise the algorithm as
follows:

Algorithm 1 MP-inspired uncertainty quantification

1. Initialisation: Dn := z1:n, θ̂n ← A0(Dn)

2. for j ← n, n+ 1, . . . , n+ ⌊N/∆n⌋
(a) Sample ẑnj :nj+∆n ∼ pθ̂j ; Dj+1 ← Dj ∪ ẑnj :nj+∆n

(b) θ̂j+1 ← A(Dj+1; θ̂j)

3. Repeat 1–2 for K times, possibly in parallel; use the resulted {θ̂(k)n+⌊N/∆n⌋}
K
k=1 to form an

ensemble predictor

In the above, (A0(D),A(D; θ)) denote a general parameter estimation algorithm that approximately
optimise a regularised empirical risk (through e.g., MLE or MAP estimation). Our analysis loosely
suggests that any algorithm may be used if it is efficient in the sense of (1). To accelerate convergence,
we allow optimisation to resume from the previous-iteration optima θ which can be close to the
new one. Compared with the previous examples, we also modify the procedure to process ∆n > 1
samples at each iteration.

The above procedure has a form similar to parametric bootstrap (Efron, 2012), which at each
round k draws n samples {ẑ(k)pb,j}nj=1 from the initial pθ̂n and computes a parameter sample θ̂(k)pb :=

A({ẑ(k)pb,j}). Our procedure can be viewed as an iterative variant of the above scheme, but we also
retain the original dataset {z1:n}. With a choice of ∆n < n and N > n, we may hope to achieve
better performance. This is suggested by our previous analysis which may become applicable at
∆n = 1, N →∞, and we will also support this claim with additional examples and experiments.

A modified objective for DNNs. Many ML algorithms can be viewed as optimising a (regularised)
empirical risk, in which case they can be directly plugged into Alg. 1. However, DNN-based
algorithms represent a notable exception: in the estimation of DNN models early stopping can play a
crucial role. It is thus inadvisable to apply Alg. 1 directly to DNNs using standard learning objectives
such as log likelihood: if an old parameter θ̂j does not reach the optima of its respective objective,
when processing the new samples {ẑnj :nj+∆n}, the loss for the old samples Dj will continue to be
reduced as well, which is undesirable as it cancels the effect of early stopping. To address this issue
we adopt the modified objective in Bae et al. (2022). Concretely, suppose the original objective for
θ̂j+1 has the form of

∑
z∈Dj+1

ℓ(f(z, θ), z), where f(z, θ) denotes the output from the DNN model;
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we adopt the following modified objective for θ̂j+1:

∑
z∈Dj

ℓB(f(z, θ), z; f(z; θ̂j)) +

nj+∆n∑
l=nj

ℓ(f(ẑl, θ), ẑl), (11)

where ℓB(f, z; f̄) := ℓ(f, z) − ℓ(f̄ , z) − ∇f ℓ(f̄ , z)(f − f̄) defines a “function-space” Bregman
divergence for the original ℓ. Hence, as long as ℓ(f(z, θ), z) is convex w.r.t. the function value
f(z, θ), the first term of (11) is always minimised by the old parameter θ̂j , thus retaining the
regularisation effect of its optimisation non-convergence. As a concrete example, when ℓ is the
squared loss for regression, the above objective will have the form of (10) (minus the regularisation
term). The objective can be augmented with explicit regularisation if desired. UQ for DNNs can
then be implemented by plugging the resulted estimation algorithm A into Alg. 1. We discuss
implementation details in App. B.

Comparison to conventional bootstrap. The proposed method is broadly similar to bootstrap
aggregation methods: both build an ensemble of model parameters by estimating on perturbed versions
of the training set, where perturbation is implemented through either the addition or resampling of
samples. We will demonstrate the superior empirical performance of our method in Sec. 5; here we
present simplified examples which may provide additional insight.

Example 4.1 (comparison to nonparametric bootstrap). Suppose the training data z1:n ∼ N (θ0, I)
with d := dim zi satisfying n ≪ d ≪ n2. Let our Alg. 1 be defined with ∆n = 1, N ≫ n and
the sequential MLE algorithm as A. It follows by Sec. 3.2.1 that p(θ̂N | z1:n) = N (θ̂n,Σn) where
Σn ∼ I . Note how this distribution quantifies a non-trivial amount of uncertainty in the (d − n)-
dimensional null space of the empirical covariance 1

n

∑n
i=1(zi − z̄i)(zi − z̄i)⊤. In contrast, the

sampling distribution of nonparametric bootstrap will have no variation in this subspace, falsely
indicating complete confidence in the subspace where the data does not provide any information at
all.

Example 4.2 (comparison to parametric bootstrap). Consider a two-dimensional dataset generated
as follows: zi,1 ∼ Bern(1− ϵ), zi,2|zi,1 ∼ N (θz1=zi,1 , 1). With n ∼ ϵ−1/2 the expected number of
observations with zi,1 = 0 is 0.5, so there should be significant uncertainty about θz1=0. However,
parametric bootstrap may underestimate the uncertainty: the probability of a resampled dataset D(k)

n

containing no samples with zi,1 = 0 is (1 − ϵ−1)n ∼ e−1/2, in which case there may not be any
meaningful variation in the respective estimate, θ̂(k)z1=0, e.g., if the estimation algorithm applies a
small regularisation on |θz1=0|. However, our method with N ≫ n will eventually update all θ̂(k)
with probability 1− (1− ϵ−1)N → 1.

The above examples are clearly oversimplified. In practice, the initialisation randomness in optimi-
sation will also contribute to the uncertainty estimates and may help narrow the gap between these
procedures, especially on DNN models (Lakshminarayanan et al., 2017). Still, the examples illus-
trated how our method may have a more direct impact on the final uncertainty estimates, especially in
aspects which the training data is not informative about. It may thus offer additional improvements
over conventional ensemble approaches that rely solely on initialisation randomness.

5 Experiments

In this section we evaluate the proposed method empirically, across a variety of tasks involving NN
and non-NN models.

Hyperparameter learning for GPs. We first evaluate the proposed method on a GP hyperparameter
learning task, using empirical Bayes (EB) as the base estimation algorithm. EB is a standard approach
for this problem, but on problems with fewer observations it can suffer from overfitting and local
optima issues (Williams and Rasmussen, 2006). Thus, we investigate the possibility of alleviating
overfitting using the proposed method (IPB), and compare it with nonparametric bootstrap (BS) and a
vanilla ensemble method (Ens) that aggregates approximate local optima obtained by starting from
random initialisations.
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We adopt GP models with a Matérn-3/2 kernel and a Gaussian likelihood, and optimise a vector-valued
bandwidth hyperparameter (as in Automatic Relevance Detection; Neal, 1996) and the likelihood
variance. We evaluate on 9 UCI regression datasets frequently used in recent works on GP and BNN
models (e.g., Salimbeni and Deisenroth, 2017; Sun et al., 2018; Dutordoir et al., 2020), and subsample
n ∈ {75, 300} data points for training. We report the following metrics: root mean-squared error
(RMSE), negative log predictive density (NLPD) and continuous ranked probability score (CRPS).
All experiments are repeated on 50 random train/test splits. For space reasons, we defer full details
and results to App. D.2, and report the average rank of each method in Table 1. We can see that the
proposed method (IPB) attains the best average rank w.r.t. all metrics.

Table 1: GP experiment: average rank across all UCI datasets for each metric. Boldface denotes the
best method.

Metric
n = 75 n = 300

EB BS Ens IPB EB BS Ens IPB

RMSE 3.1 2.7 2.4 1.4 2.9 3.0 2.0 1.1
NLPD 3.0 2.0 2.6 1.6 2.7 3.0 2.2 1.1
CRPS 3.0 2.3 2.6 1.4 2.7 3.3 2.1 1.1

Classification with boosting tree and stacking algorithms. We now turn to classification tasks and
illustrate our method using two predictive algorithms: (i) gradient boosting decision trees (GBDTs,
Friedman, 2001), and (ii) stacking (Wolpert, 1992; Caruana et al., 2004) based on a variety of tree
and DNN models. Both are highly competitive approaches that outperform deep learning methods
(Grinsztajn et al., 2022; Shwartz-Ziv and Armon, 2022), yet they do not have a natural Bayesian
counterpart. Our method fills in this important gap and provides a means to mitigate overfitting and
conduct uncertainty quantification based on Bayesian principles.

We adopt the implementations of XGBoost (Chen and Guestrin, 2016) and AutoGluon (Erickson
et al., 2020) for the two base algorithms, and evaluate on 30 OpenML (Bischl et al., 2017) datasets
as chosen by Hollmann et al. (2022). For each algorithm, we apply our method (IPB) and compare
with bootstrap aggregation (BS) and the base algorithm without additional aggregation. Our Alg. 1 is
implemented by sampling x̂n+i from the empirical distribution of all past inputs. All hyperparameters
for the base algorithms, and (∆n,N) in our algorithm, are determined using log likelihood on a
validation set. Full details are deferred to App. D.3.

Table 2 reports the average test accuracy and negative log likelihood (NLL), which are computed
using 10 random splits for each dataset. We can see that for both choices of base algorithms, our
method outperforms over the base algorithm as well as its bagging variant. The improvement of
the likelihood metric is particularly notable and is expected for methods that better account for
the predictive uncertainty. Full results are deferred to App. D.3, where we further show that the
improvement is consistent across all datasets, and that our method produces informative uncertainty
estimates for the feature importance scores from GDBT.

Table 2: Classification experiment: average test metrics and average ranks across 30 OpenML datasets.
Boldface indicates the best result within each group of methods. Ranks are calculated by sorting
across all six methods.

Metric
GBDT Stacking

(Base) + BS + IPB (Base) + BS + IPB

NLL 0.215 0.207 0.200 0.215 0.190 0.185
NLL Rank 4.77 4.33 3.20 3.60 3.03 2.07
Accuracy 90.4 90.7 90.9 91.0 91.3 91.5
Acc. Rank 4.87 4.43 3.23 3.50 2.50 2.47

Interventional density estimation with diffusion models. Finally, we present a set of NN-based
experiments which concern the estimation of interventional distributions (Pearl, 2009) given a causal
graph. Such a task can be seen as conditional density estimation but involves distribution shifts
induced by the intervention. Recent works demonstrated the efficacy of variational auto-encoder
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(Sánchez-Martin et al., 2022), flow (Khemakhem et al., 2021) and diffusion models (Chao et al.,
2023) on this task. We are interested in whether our algorithm could lead to further improvements by
accounting for predictive uncertainty, which can be especially relevant here due to the presence of
distribution shift.

We instantiate Alg. 1 using a collection of diffusion models following Chao et al. (2023), and the
modified objective (11). We use a fully-connected NN model and determine hyperparameters using
the training objective evaluated on an (in-distribution) validation set. We evaluate on two sets of
datasets: (i) 8 synthetic datasets in Chao et al. (2023); (ii) a set of real-world fMRI datasets constructed
by Khemakhem et al. (2021). In both cases we repeat all experiments 30 times, using independently
sampled train/validation splits and initialisation for NN parameters. We note that this deviates from
Khemakhem et al. (2021) who appear to have only averaged over patients (i.e., different datasets) but
not NN initialisation. See App. D.4 for full details.

For the synthetic datasets, we compute the maximum mean discrepancy (MMD) w.r.t. the ground truth
on a grid of queries, following Chao et al. (2023). We compare with alternative ensemble methods
applied to the same model: aggregation with parametric (PB) and nonparametric (BS) bootstrap,
deep ensemble (Ens), and the method of He et al. (2020, NTKGP). Among the baselines, Ens has
demonstrated strong performance in previous benchmarks (e.g., Gustafsson et al., 2020; Ovadia
et al., 2019), and NTKGP is motivated from a setup similar to our Sec. 3.2.2 (see App. C for details).
Table 3 reports the average rank of the MMD metric across all datasets; we can see that the proposed
method (IPB) achieves the best overall performance. Full results and additional discussions are
deferred to App. D.4, where we also evaluate the credible/confidence intervals (for interventional
expectation functions) produced by all methods, and find our method generally provides the best
coverage, followed by the two bagging baselines.

Table 3: Interventional density estimation: average rank across all synthetic datasets. Boldface
indicates the best result.

n PB Ens. NTKGP BS IPB

100 3.6 1.9 5.0 3.1 1.0
1000 4.0 1.9 5.0 2.4 1.2

On the fMRI datasets, we report the median absolute error following Khemakhem et al. (2021);
Chao et al. (2023), as well as the CRPS which puts more emphasis on the estimation quality for the
entire distribution. We compare with the flow-based method of Khemakhem et al. (2021) and the
two baselines evaluated therein, as well as the same diffusion model combined with deep ensemble
(D+Ens) and nonparametric bootstrap (D+BS). As shown in Table 4, our method (D+IPB) achieves the
best overall performance.

Table 4: Results for the fMRI datasets. Boldface indicates the best result (p < 0.05 in a Z test).

Metric Linear ANM Flow D + Ens D + BS D + IPB

CRPS .738±.10 .551±.01 .546±.02 .520±.00 .518±.00 .518±.00

Abs. Err .658±.03 .655±.01 .605±.02 .609±.01 .611±.01 .604±.00

6 Conclusion

We studied uncertainty quantification using general ML algorithms, starting from the postulation
that commonly used algorithms should be near-Bayes optimal on an unknown task distribution. We
proved in simplified settings that it is possible to recover the unknown but optimal Bayesian posterior
through a martingale posterior, and proposed a novel method which is applicable across NN and
non-NN models. Experiments confirmed the efficacy of the method.

Our work is clearly not without limitations: the theoretical results do not cover real-world applications
such as those involving practical NN models, and the experiments largely focuses on small-sample
datasets. Nonetheless, our work demonstrates the potential of the cross-task perspective in Bayesian
modelling, and we hope that it may inspire further investigation into this problem.
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A Deferred Proofs

In the proofs we adopt the following notations: for all j ≥ n, let Fj be the σ-algebra generated
by “all observations up to iteration j”; this includes {z1:n, ẑn+1:j , z

B
n+1:j} as well as the samples

{z̆n+1:j} which will be defined shortly below. Define Ej := E(· | Fj). We will also make frequent
use of the inequality

∥a+ b∥2 = ∥a∥2 + ∥b∥2 + 2⟨δ1/2a, δ−1/2b⟩ ≤ (1 + δ)∥a∥2 + (1 + δ−1)∥b∥2, (12)

which holds for all Hilbert norms, a, b and δ > 0. This implies, in particular, ∥a+ b∥2 ≤ 2(∥a∥2 +
∥b∥2). It also follows that, for any {Fj}-adapted {aj} and any {bj},

Ej∥aj + bj∥2 = ∥aj∥2 + Ej∥bj∥2 + 2⟨δ1/2aj ,Ejδ
−1/2bj⟩

≤ (1 + δ)∥aj∥2 + Ej∥bj∥2 + δ−1∥Ejbj∥2. (13)

A.1 Proof for Theorem 3.1

By the first inequality in assumption 3.3 it suffices to prove (6). By definitions, it suffices to create a
coupled version of (θ̂∞, θ̄B∞) | Fn so that Eπ∥θ̂∞ − θ̄B∞∥2 is bounded by the RHS of (6). And since
Asm. 3.5 (ii) and 3.3 imply that limj→∞ ε̆ex,j = 0, we have limj→∞ Eπ∥θ̆j − θ̄B∞∥2 = 0, and

Eπ∥θ̆∞ − θ̂∞∥2 = Eπ∥θ̄B∞ − θ̂∞∥2, (14)

and it suffices to bound the LHS. We will construct a sequence of couplings between {ẑj+1} and
{zBj+1} so that the LHS is bounded as claimed. For this purpose, we will introduce an additional
r.v. z̆j+1 s.t. P(z̆j+1 ∈ · | Fj) = Pθ̆j

, and define the joint distribution P(z̆j+1, ẑj+1, z
B
j+1 | Fj) =

P(z̆j+1 | Fj)P(ẑj+1 | z̆j+1,Fj)P(zBj+1 | z̆j+1,Fj) with the last two terms determined by various
optimal transport plans.

Let s > 0 be defined in assumption 3.3. Consider the decomposition

Ej∥θ̂j+1 − θ̆j+1∥2

= Ej∥θ̂j + ∆̂j(θ̂j , ẑj+1)− (θ̆j + ∆̂j(θ̆j , z̆j+1)− ∆̂j(θ̆j , z̆j+1) + ∆̂j(θ̆j , z
B
j+1))∥2

(13)
≤ (1 + j−(1+s))Ej∥θ̂j − θ̆j − (∆̂j(θ̆j , z̆j+1)− ∆̂j(θ̆j , z

B
j+1))∥2

+ Ej∥∆̂j(θ̂j , ẑj+1)− ∆̂j(θ̆j , z̆j+1)∥2 + j1+s(2∥Ej∆̂j(θ̂j , ẑj+1)∥2 + 2∥Ej∆̂j(θ̆j , z̆j+1)∥2)
=: (1 + j−(1+s))Aj +Bj + j1+sCj . (15)

We will bound the three terms in turn.

For Cj , we note that by Asm. 3.3, Asm. 3.1 also holds for δ = s, and thus we have

j1+sCj ≤ 2j−(1+s)ε̄2B,j . (16)

For Bj , first note that by assumption 3.2 (i) we have

Bj ≤ 2(Ej∥∆̂j(θ̂j , ẑj+1)− ∆̂j(θ̆j , ẑj+1)∥2 + Ej∥∆̂j(θ̆j , ẑj+1)− ∆̂j(θ̆j , z̆j+1)∥2)

≤ 2η2j (L
2
1∥θ̂j − θ̆j∥2 + L2

2Ej∥ẑj+1 − z̆j+1∥2z). (17)

Let P(ẑj+1 | Fj , z̆j+1) be defined by the optimal transport plan that minimises the transport cost
above. Then if (5) holds, the above will be bounded by 2η2j (L

2
1 + L2

2CΘ)∥θ̂j − θ̆j∥2, and we have
ηj ≤ j−(1+ι)/2; otherwise (5’) must hold, and we have j1/4ηj ≤ j−(1+ι)/2, and

2η2jL
2
2Ej∥ẑj+1 − z̆j+1∥2z ≤ 2η2jL

2
2CΘ∥θ̆j − θ̂j∥ = L2

2CΘ · 2j−1/2(j1/4ηj) · (j1/4ηj)∥θ̆j − θ̂j∥

≤ L2
2CΘ ·

(
(j−1/2(j1/4ηj))

2 + (j1/4ηj∥θ̆j − θ̂j∥)2
)

= L2
2CΘ · (j1/4ηj)2

(
∥θ̆j − θ̂j∥2 + j−1

)
≤ L2

2CΘ · (j1/4ηj)2(∥θ̆j − θ̂j∥2 + ε̄2B,j),
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where the last inequality follows from Assumption 3.5. Define η′j := j−(1+ι)/2, then in both cases
we have

2η2jL
2
2Ej∥ẑj+1 − z̆j+1∥2z ≤ L2

2CΘη
′2
j (∥θ̆j − θ̂j∥2 + ε̄2B,j). (18)

Plugging back to (17) we have

Bj ≤ 2η′2j (L2
1 + L2

2CΘ)(∥θ̂j − θ̆j∥2 + ε̄2B,j). (19)

For Aj , we first use (13) to bound it as

Aj ≤ Ej((1 + j−(1+s))∥θ̂j − θ̆j∥2 + ∥∆̂j(θ̆j , z̆j+1)− ∆̂j(θ̆j , z
B
j+1)∥2)

+ j1+s∥Ej(∆̂j(θ̆j , z̆j+1)− ∆̂j(θ̆j , z
B
j+1))∥2

≤ (1 + j−(1+s))∥θ̂j − θ̆j∥2 + Ej∥∆̂j(θ̆j , z̆j+1)− ∆̂j(θ̆j , z
B
j+1)∥2 + 2j1+sCj+

2j1+s∥Ej∆̂j(θ̆j , z
B
j+1)∥2. (20)

We now bound the second and last terms above. For the second term we introduce our coupling
between (z̆j+1, z

B
j+1) | Fj as follows. Recall the conditional distribution zBj+1 | Fj can be represented

as θ ∼ π(θ | Fj), z
B
j+1 ∼ Pθ; we thus define P(zBj+1 | Fj , ẑj+1) through

θ ∼ π(θ | Fj), z
B
j+1 | (θ, z̆j+1) ∼ ΓPθ̆j

→Pθ
(· | z̆j+1), (21)

where ΓP→Q denotes the conditional probability derived from the optimal transport plan from P to
Q. Clearly this preserves both marginal distributions as required, and we have

Ej∥∆̂j(θ̆j , z̆j+1)− ∆̂j(θ̆j , z
B
j+1)∥2 ≤ η2jL2

2Ej∥z̆j+1 − zBj+1∥2z (Asm. 3.2 (i))
(21)
≤ η2jL

2
2Eθ∼π(·|Fj)W

2
2 (Pθ̆j

,Pθ).

Repeating the proof for (18) we find the above is bounded as

η2jL
2
2Eθ∼π(·|Fj)W

2
2 (Pθ̆j+1

,Pθ) ≤ L2
2CΘη

′2
j (Eθ∼π(·|Fj)∥θ̆j − θ∥

2 + ε̄2B,j)

= L2
2CΘη

′2
j (ε̆2ex,j + 2ε̄2B,j), (22)

where the last line follows from the fact that θ | Fj
d
= θ̄B∞ | Fj . Now, turning to the last term of (20),

we have

∥Ej∆̂j(θ̆j , z
B
j+1)∥2

(21)
= ∥Eθ∼π(·|Fj)Ez∼Pθ

∆̂j(θ̆j , z)∥2

= ∥Eθ|Fj
Ez|θ(∆̂j(θ̆j , z)− ηjHθ̆j

(θ − θ̆j) + ηjHθ̆j
(θ − θ̆j))∥2

≤ 2∥Eθ|Fj
Ez|θ(∆̂j(θ̆j , z)− ηjHθ̆j

(θ − θ̆j))∥2 + 2∥Eθ|Fj
ηjHθ̆j

(θ − θ̆j)∥2

≤ 2(Eθ|Fj
∥Ez∼Pθ

∆̂j(θ̆j , z)−Hθ̆j
(θ − θ̆j)∥)2 + 2∥ηjHθ̆j

(θ̄Bj − θ̆j)∥2

≤ 2(Eθ|Fj
CAΘηj∥θ̆j − θ∥2)2 + 2C ′

Aη
2
j ε̆

2
ex,j (Asm. 3.4)

= 2η2jC
2
A(ε̆

2
ex,j + ε̄2B,j)

2 + 2C ′
Aη

2
j ε̆

2
ex,j ≤ 4η2j (C

′2
A ε̆

2
ex,j + CAε̄

4
B,j). (Asm. 3.5 (i)) (23)

Plugging (23) and (22) into (20), we have

Aj ≤ (1 + j−(1+s))∥θ̂j − θ̆j∥2 + η′2j L
2
2CΘ(ε̆

2
ex,j + 2ε̄2B,j)

+ 8j1+sη2j (C
′
Aε̆

2
ex,j + CAε̄

4
B,j) + 2j1+sCj

≤ (1 + j−(1+s))∥θ̂j − θ̆j∥2 + C ′
Θ(η

′2
j ε̄

2
B,j + j1+sη2j (ε̆

2
ex,j + CAε̄

4
B,j)) + 2j1+sCj , (24)

where the constant C ′
Θ is determined by L1, L2, CΘ and C ′

A. Plugging (24), (19) and (16) into (15)
and taking expectation, we find

Eπ∥θ̂j+1 − θ̆j+1∥2 ≤ (1 + 2j−(1+s) + η′2j C
′
Θ)Eπ∥θ̂j − θ̆j∥2

+ 3C ′
Θ(η

′2
j ε̄

2
B,j + j1+sη2j (ε̆

2
ex,j + CAε̄

4
B,j)) + 8j−(1+s)ε̄2B,j .
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Define ∆χj := 2j−(1+s) + C ′
Θη

′2
j , χl :=

∑∞
j=l ∆χj . Then χl <∞ and we have

Eπ∥θ̂j+1 − θ̆j+1∥2

≤ e∆χjEπ∥θ̂j − θ̆j∥2 + 3C ′
Θ(η

′2
j ε̄

2
B,j + j1+sη2j (ε̆

2
ex,j + CAε̄

4
B,j)) + 8j−(1+s)ε̄2B,j ,

Eπ∥θ̂N − θ̆N∥2

≤ eχn

(
En∥θ̂n − θ̆n∥2 +

N∑
j=n

3C ′
Θ(η

′2
j ε̄

2
B,j + j1+sη2j (ε̆

2
ex,j + CAε̄

4
B,j)) + 8j−(1+s)ε̄2B,j

)
≤ eχn(En∥θ̂n − θ̆n∥2 + C(χn + νn)ε̄

2
B,n),

where the last inequality follows by Asm. 3.3, 3.5 (iii) and the constant C is determined by C ′
Θ. This

completes the proof.

A.2 Deferred Proofs in Section 3.2

A.2.1 Proof for the claims in Section 3.2.1

Claim A.1. In the setting of Sec. 3.2.1 we have ε̆2ex,j ≤ 2αj−1ε̄2B,j .

Proof. It follows by our choice of π that

θ̄Bj =
jθ̆j + θπ
j + α

= θ̄Bj−1 +
1

j + α
(zBj − θ̄Bj−1).

To bound ε̄B,j we use the above representation, and the fact that {θ̄Bj } define a martingale; it follows
that

ε̄2B,j = Eπ∥θ̄Bj − θ̄B∞∥2 =

∞∑
k=j

Eπ∥θ̄Bk − θ̄Bk+1∥2 =

∞∑
k=j

Eπ

∥T (zBk+1)− θ̄Bk ∥2

(k + α)2
.

Observe that P(zBk+1 ∈ dz | θ̄Bk ) =
∫
Pθ̃k

(dz)πk,θ̄B
k
(dθ̃k), where πk,θ̄B

k
(dθ) = π(θ | zB≤k) is the

posterior measure, and is determined by the posterior mean θ̄Bk : the posterior for natural parameter is
π(η | zB≤k) ∝ exp((k + α)η⊤θ̄Bk − (k + α)A(η)), and π(θ | zB≤k) is merely its pushforward by∇A.
Therefore, we have zBk+1 ⊥⊥ θ̄Bk | θ̃k, and

E∥T (zBk+1)− θ̄Bk ∥2 = E∥T (zBk+1)− θ̃k∥2 + E∥θ̃k − θ̄Bk ∥2 + E⟨(T (zBk+1)− θ̃k | θ̃k,��̄θ
B
k ), θ̃k − θ̄Bk ⟩

(i)
= E∥T (zBk+1)− θ̃k∥2 + E∥θ̃k − θ̄Bk ∥2

≥ E∥T (zBk+1)− θ̃k∥2

(ii)
= Eθ∼π,z∼Pθ

∥T (z)− θ∥2 =: Vπ.

In the above, (i) holds because θ̃k is the mean parameter for zBk+1, and (ii) holds because the marginal
distributions for all posterior samples θ̃k equal the prior. Plugging back, we find

ε̄2B,j ≥
∞∑
k=j

Vπ
(k + α)2

≥ 1

j + α
Vπ.

For ε̆ex,j , we have

Eπ∥θ̂j − θ0∥2 = Eθ∼π,z1:j∼P⊗j
θ
(E(∥θ̂j − θ∥2 | θ))

= Eθ∼π,z1:j∼P⊗j
θ

(
E
(∥∥∥∥1j

j∑
k=1

T (zk)− θ
∥∥∥∥2 ∣∣∣∣ θ))

= Eθ∼π,z∼Pθ

∥T (z)− θ∥2

j
=

1

j
Vπ,
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where the last equality follows from conditional independence. It thus follows that

ε̆2ex,j ≤
α

j(j + α− 1)
Vπ ≤

α

j
· j + α

j + α− 1
ε̄2B,j ≤

2α

j
ε̄2B,j .

This completes the proof.

Claim A.2. Let Fθ denote the Fisher information matrix for pθ. In the setting of Sec. 3.2.1,
Theorem 3.1 holds if (∥T∥∞ := supz∈Z ∥T (z)∥, supθ λmax(Fθ), supθ λ

−1
min(Fθ)) are all bounded.

Proof for Claim A.2. Observe that Theorem 3.1 will continue to hold if we replace all occurrences of
z with T (z) (and the norm ∥ · ∥z with ∥ · ∥) in its proofs and assumptions: this is because both the MP
and the Bayesian posterior only depend on z through T (z). Therefore, to prove the claim it suffices
to establish Assumption 3.2 (ii)–or Eq. (5’)–after the replacement. The equation holds because

W 2
2 (T#pθ, T#pθ′)

≤ 2 sup
z,z′<∞

∥T (z)− T (z′)∥2DTV (T#pθ, T#pθ′) (Villani, 2009, Theorem 6.15)

≤ 8∥T∥2∞DTV (pθ, pθ′)

≤ 8∥T∥2∞
√

KL(pθ, pθ′)/2 (Pinsker’s inequality)

= 8∥T∥2∞
√
A(η′)−A(η)−∇A(η)⊤(η′ − η)

≤ 4
√
2∥T∥2∞(sup

η̃
∥∇2A(η̃)∥op)1/2∥η − η′∥

≤ 4
√
2∥T∥2∞ sup

η̃
∥∇2A(η̃)∥1/2op (sup

η̃′
∥(∇2A(η̃′))−1∥op)∥θ − θ′∥.

In the above, η = (∇A)−1(θ), η′ = (∇A)−1(θ′) are the respective natural parameters, T# denotes
the pushforward measure, the LHS is the replaced LHS of (5’), and the coefficients in the RHS are
bounded by assumptions, in particular because∇2A(η) = F−1

θ . This completes the proof.

We note that it should be possible to replace the uniform boundedness conditions with their local
counterparts (that only holds in a neighbourhood of θ0); the resulted conditions can be used to
establish a conditional version of the theorem (which can be easily proved by adapting the existing
proof). We omit the discussion for brevity.

Finally, we substantiate on the claims about specific exponential family models: for Gaussian model
(5) holds because the transport plan is z 7→ z + θ′ − θ; for {Exp(θ)} (5) holds by considering the
transport plan z 7→ θ′

θ z. For the Bernoulli model we can establish (5’) using the first two inequalities
in the above proof.

A.2.2 Deferred proofs and additional discussion for Section 3.2.2

Connection to nonparametric inverse problems and regression. Section 3.2.2 is closely con-
nected to the following inverse problem:

z̄n = Aθ0 + n−1/2W, where W ∼ NZ(0, I). (25)

Indeed, we can recover the above problem by setting z̄n := 1
n

∑n
i=1 zi. The latter is the classical

(nonparametric) linear inverse problem; see Cavalier (2008) for a review. Strictly speaking, our setup
is different from (25) as we observe {zi}, but the difference is irrelevant to our discussion, since we
can verify that both the MP and the Bayesian posterior only depend on {zi} through z̄n and are thus
applicable to (25).

When α = 1, the problem can be equivalently stated as z̄n = θ′0+n
−1/2W where θ′0 := Aθ0; and the

norm of interest becomes ∥θ̂ − θ0∥ = ∥Aθ̂ − θ′0∥Z . This is the signal-in-white noise problem which
is asymptotically equivalent to regression (Brown and Low, 1996). The prior π for θ corresponds
to the GP2 prior π′ := NZ(0, AA

⊤) for θ′. Such priors are “infinitesimally weaker” than assuming

2see van der Vaart et al. (2008) for a definition of GPs in Hilbert spaces.
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θ′0 to live in S2β−1 := {θ′ =
∑

i i
−(2β−1)/2aiψi for some {ai} ∈ ℓ2(N)} where {ψi} denotes the

left singular vectors of A, as θ′ ∼ π′ will fall into S2β−1−ϵ a.s. for all ϵ > 0 (van der Vaart et al.,
2008). The spaces S(·) are known as Sobolev classes (see e.g., Cavalier, 2008) and can recover the
L2-Sobolev spaces for suitable choices of β and {ψi}.

Inapplicability of MLE / natural gradient. For both (25) and the data generating process in
Section 3.2.2, the MLE θ̂n satisfies Aθ̂n = z̄n = 1

n

∑n
i=1 zi. When α = 1, the estimation error

∥θ̂n − θ0∥ thus equals the dimensionality of Z , and is unbounded if the dimensionality is so; the
same applies to the natural gradient algorithm with ηj = j−1 due to its exact equivalence to MLE in
this scenario. In contrast, the Bayesian estimator have a bounded error (see (26) below) due to its
regularisation effect.

Validating the assumptions for the linear-Gaussian MP. Observe that the posterior equals

π(θ | z≤j) = N (θ | Σ̂−1
j A⊤z̄j , (jΣ̂j)

−1),

where Σ̂j := A⊤A+ j−1I, z̄j :=
1
j

(∑n
i=1 zi +

∑j
i=n+1 z

B
i

)
, and A⊤ denotes the adjoint. And

we have

ε̄2B,j = Tr((A⊤A)α(jΣ̂j)
−1) =

∞∑
i=1

s2αi
js2i + 1

≍ j−1 + j−αmj , (26)

where mj := max{m ∈ N : s2m ≥ j−1} ≍ j1/2β . We have introduced the Hilbert spacesH,Z and
defined the parameter norm ∥θ∥ := ∥(A⊤A)α/2θ∥H =: ∥Sθ∥H. In instantiating the theorem we will
set the data norm as ∥z∥z := ∥(AA⊤)(α−1)/2z∥Z .
We now verify the assumptions in turn.

1. Assumption 3.1 holds for all δ > 0 because Âlgj defines an exact martingale.
2. Assumption 3.2 holds because for its (i), we have

∥∆̂j(θ, z)− ∆̂j(θ
′, z)∥2 = ∥S(∆̂j(θ, z)− ∆̂j(θ

′, z))∥2H
= ∥j−1gj(A

⊤A)A⊤AS(θ − θ′)∥2H ≤ j−2∥θ − θ′∥2,
∥∆̂j(θ, z)− ∆̂j(θ, z

′)∥2 = ∥S · j−1gj(A
⊤A)A⊤(z − z′)∥2H

≤ j−2∥(A⊤A)gj(A
⊤A)∥2op∥(AA⊤)(α−1)/2(z − z′)∥2Z ≤ j−2∥z − z′∥2z.

And for its condition (ii),

W 2
2 (pθ, pθ′ ; ∥ · ∥) = ∥Aθ −Aθ′∥2 = ∥θ − θ′∥2.

3. To verify assumption 3.3 we first prove that

∆̂j(θ̄
B
j , z

B
j+1) = ∆B

j .

This is because there exist independent rvs ei ∼ N (0, σ2I), ∆ei ∼ N (0, j−1AΣ̂−1
j A⊤) s.t. for

ēi := ei +∆ei, we can have

∆B
j = Σ̂−1

j A⊤
(
j − 1

j
z̄j−1 +

1

j
(Aθ̄Bj + ēj)

)
− Σ̂−1

j−1A
⊤z̄j−1 = j−1Σ̂−1

j A⊤ēj = ∆̂j(θ̄
B
j , z

B
j+1).

Since we also have θ̆n = θ̄Bn , it follows by induction that θ̆j = θ̄Bj for all j ≥ n. Thus, ε̆ex,j ≡ 0,
and the assumption holds for νl ≡ 0.

4. Assumption 3.4 holds for CA = 0, C ′
A = 1 and ηj = j−1 because

Ez′∼Pθ′ ∆̂j(θ, z
′) = j−1 gj(A

⊤A)A⊤A︸ ︷︷ ︸
=:Hθ,j

(θ′ − θ).

5. Assumption 3.5 holds when α = 1 since ε̄2B,j ≍ j−1+1/2β . It also holds for a range of α
depending on the value of β.
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(Non-asymptotic) connections to GP regression. Consider a GP model with input space X , prior
πgp = GP(0, k) and likelihood p(y | f(x)) = N (f(x), 1). Let H̄ be the reproducing kernel Hilbert
space (RKHS) defined by k, {(x1, y1), . . . , (xn, yn)} be the training data, and K := (k(xi, xj))ij ∈
Rn×n be the Gram matrix. Introduce the notations f(X) := (f(x1); . . . ; f(xn)) ∈ Rn and Y :=
(y1; . . . ; yn) ∈ Rn. Let H ⊂ H̄ be the subspace spanned by {k(xi, ·)}ni=1 with the inherited
norm. Then we can identify the projection of any f ∈ H̄ ontoH with f(X), and its norm satisfies
∥f(X)∥2H = f(X)⊤K−1f(X). Let Z = Rn be equipped with the Euclidean norm. We substitute
the remaining quantities in section 3.2.2 as follows:

θ = f(X), Aθ =
1√
n
f(X),

1

n

n∑
i=1

zi =
1√
n
Y.

Then it is clear that θ follows the prior π and the conditional distribution 1
n

∑n
i=1 zi | θ equals that

defined by the likelihood in section 3.2.2, and we can readily verify that the posterior in Sec. 3.2.2 for
θ = f(X) equals the GP marginal posterior. Following section 3.2.2, we can consider an MP defined
by (9) and ẑj ∼ N (θ̂j , n

−1I), which provides a high-quality approximation to the GP marginal
posterior.

As noted above, on {zj} sampled from the prior predictive distribution (9) has a behaviour equivalent
to sequential posterior mean estimation which, for linear-Gaussian Bayesian models, is equivalent
to sequential maximum-a-posteriori (MAP) estimation. Based on the same idea of sequential MAP
estimation we can derive the update rule (10) for GP regression. Note that (10) and (9) are not an
exact match because the GP MAP also depends on the sampled x̂j . (If we continue the analogy
above, (10) can be viewed as an MAP in a Bayesian model where we impute at all n input locations
simultaneously in each iteration, and scale the resulted log likelihood by 1/

√
n.) Nonetheless, we

expect their behaviour to be similar. A separate analysis for (10) may be possible, but we forego this
discussion given the rich literature on GP inference. Instead, we refer readers to Appendix D.1 for an
empirical evaluation for (10).
Remark A.1. The above discussion restricted to the marginal posterior f(X) | (X,Y ) and does not
cover predictive uncertainty in out-of-distribution (OOD) regions. We note that for models that define
continuous prediction functions, the uncertainty for f(X) always translates to some uncertainty in
OOD regions due to the continuity constraint; the MP will also provides additional uncertainty if we
sample x̂j from the OOD regions. However, an equally important source of OOD uncertainty is from
the model’s initialisation randomness, which can be fully characterised in the GP example above.

To see this, consider an MP defined by (10) and the choice of x̂j+1 ∼ Unif{x1:n, x̂n+1:j}. We claim
that the resulted algorithm will fully retain the initialisation randomness for uncertainty in OOD
regions. Formally, for any f ∈ H̄, or an interpolating RKHS which cover all GP samples (Steinwart,
2019), and any x∗ ∈ X , we can decompose f(x∗) = f∥(x∗) + f⊥(x∗) by projecting f =: f∥ + f⊥
intoH and its orthogonal complement. Then the GP posterior for f∥ and f⊥ are then independent,
and the latter is equivalent to the prior; this is because the likelihood is independent of f⊥. The MP
update admits a similar factorisation for the same reason, and thus any initialisation randomness will
be retained in the MP, and an exact match to the GP posterior can be possible if we initialise based on
the GP prior.

B Implementation Details for Algorithm 1

Choices of ∆n andN . If the base algorithm is “correctly specified” for the problem as hypothesised,
we should ideally choose ∆n and N to match the exact martingale posterior (∆n = 1, N → ∞)
as close as possible, but computational constraints may prevent an exact match. A larger ∆n or a
smaller N generally leads to an underestimation of uncertainty.

We note that no adjustment is needed if, as in many applications, the goal is merely to improve
predictive performance by better accounting for epistemic uncertainty, since the algorithm can still
account for a substantial proportion of the uncertainty; and similar underestimation issues may also
emerge in the applications of approximate Bayesian inference to complex models, when due to
computational constraints we cannot recover the exact posterior. Nonetheless, for the construction
of credible sets, we provide a rule of thumb to compensate for this effect by analysing simplified
settings. Specifically, consider the natural GD algorithm

θ̂j+1 := θ̂j + (j + 1)−1F−1

θ̂j
∇θ log pθ̂j (ẑj+1), (27)
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where Fθ denotes the Fisher information matrix. Suppose n/∆n ∈ N for simplicity, then the
covariance of the parameter ensemble from Algorithm 1 is

∞∑
j′=n/∆n

∆n

((j′ + 1)∆n)2
F−1

θ̂j
≈

∞∑
j′=n/∆n

∆n

((j′ + 1)∆n)2
F−1
θ0
∼

(
1

n+∆n
− 1

N +∆n

)
F−1
θ0
.

(28)
The exact MP has covariance∼ n−1F−1

θ0
, so to match the exact MP it suffices to inflate the covariance

by a factor ∼ ∆n
n + n

N . The same inflation applies to credible sets for linear functionals of the
parameter which, for linear-in-parameter regression models, include pointwise credible intervals for
the true regression function. Note that the same adjustment applies to any GD algorithms with a
step-size of ηj ∼ j−1, which is generally related with sequential ERM algorithms (and thus Alg. 1) as
shown in Section 3.2. And the above discussion is relevant in a deep learning context if we consider
ultrawide NNs (Lee et al., 2019).

In reality, we expect the adjustment to produce conservative credible sets for NN-based algorithms,
since it also (unnecessarily) inflates the initialisation randomness. However, the scale of the adjust-
ment is generally small, and together with the unadjusted credible sets they can provide a two-sided
bound for the predictive uncertainty.

In our experiments we adopt N ≍ n ≍ ∆n where the ratios (N/n, n/∆n) are in the range of [1, 10],
and determine the adjustment scale by explicitly numerical approximation of the ratio between the
coefficient of (28) and n−1. For base algorithms that are potentially misspecified we determine the
ratio through cross validation.

Early stopping for NN-based algorithms. While the objective (11) always prevent overfitting to
past samples, we still need to determine the number of optimisation iterations for the new samples
ẑnj :nj+∆n. In our experiments we use a simple strategy: we use a validation set to determine the
number of iterations L for estimation on the n real samples, and optimise for L∆n/n iterations when
“finetuning” on (each group of) ∆n synthetic samples. Other optimisation hyperparameters are also
kept consistent across the initial estimation and finetuning.

C Related Work

Our work is motivated by challenges of designing and implementing Bayesian counterparts for ML
methods. As discussed in Section 2, NN methods may constitute an important example, due in
part to the challenges in inference and prior specification. Another issue is the choice of likelihood:
applications in computer vision and natural language processing often involve loss functions that do
not have a likelihood interpretation (Lin et al., 2017; Li et al., 2019), and even when a likelihood-based
objective leads to efficient point predictors, its suitability for Bayesian NNs can still be debatable if
the application involves human-annotated datasets (Aitchison, 2020a) or data augmentation (Nabarro
et al., 2022).3 Compared with the general success of non-Bayesian deep learning approaches, these
issues indicate that in typical deep learning applications, it is often easier to express the “prior
knowledge” about what method is best suited for a given problem through algorithms, rather than
through explicitly defined Bayesian models.

Our work provides an efficient ensemble method for uncertainty quantification. Many ensemble
methods have been proposed for NN models (see e.g., Liu and Wang, 2016; Lakshminarayanan
et al., 2017; Osband et al., 2018; Wang et al., 2018; D’Angelo and Fortuin, 2021, to name a few).
Our method stands out for its applicability beyond NN models, while it also retains advantages over
the bootstrap aggregation method—known for a similar trait—by more effectively leveraging the
parametric model when it is available (Example 4.1). Restricting to NN models, however, our method
could be combined with the low-rank ensemble methods (Wen et al., 2020; Dusenberry et al., 2020)
to improve its scalability; it may also be interesting to analyse an “ensemble of ensembles”, as in Yao
et al. (2022), which may also be beneficial in our setting.

The GP example in Section 3.2.2 is connected to the ensemble algorithms in Osband et al. (2018);
Pearce et al. (2020); He et al. (2020), which are designed for DNNs but motivated from the same

3See also the works of Wenzel et al. (2020); Izmailov et al. (2021) who reported performance issues with
Bayesian NNs (with Gaussian priors) in the presence of data augmentation.
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GP regression setting. As observed in He et al. (2020), the GP example is relevant in a deep
learning context given the connection between ultrawide NNs and GPs (Lee et al., 2019). While GP
regression serves as an interesting motivating example, the ultrawide NNs in that literature represent
an oversimplified model (Chizat et al., 2019) and should not be viewed as a “correct prior” for NNs
(Aitchison, 2020b). Yet to ensure a close match to the GP posterior, those ensemble methods involve
design choices that may not be generally beneficial, such as an ℓ2 regularisation with a fixed n−1

scaling. Our method is motivated from a more general perspective, but we also compare with He
et al. (2020) empirically. We also note that the specific problem of (conjugate) GP inference is by
now well-understood; there exist algorithms with good statistical and computational guarantees (Burt
et al., 2019; Nieman et al., 2022).

From a theoretical perspective, our result is related to the work of Efron (2012) who connected
parametric bootstrap to a specific Bayesian posterior defined by the Jeffreys prior (Jeffreys, 1939).
However, the Jeffreys prior has counterintuitive behaviours for multidimensional (d > 1) models
(see e.g., Syversveen, 1998) and cannot be defined for infinite-dimensional models such as our
Section 3.2.2. There is also a literature on statistical inference with bootstrap resampling and gradient
descent methods (see Lam and Wang 2023 and references therein), which studies similar but different
algorithms to the example (3). Such works have the different goal of recovering the sampling
distribution for regular parametric models (d < ∞ does not grow w.r.t. n), which is not relevant
beyond that setting (see Appendix A.2.2). Our requirement on the “excess error” ε̆ex,j , which is
defined using a Hilbert norm, may be generalisable to a condition on the mutual information; this
is somewhat reminiscent of the development in Xu and Raginsky (2022). However, this is not
straightforward as the martingale condition still requires a norm.

D Experiment Details and Full Results

D.1 Toy Experiment: Gaussian Process Regression

We first illustrate the proposed method on a 1-dimensional GP regression task, to understand its
behaviour and complement the GP discussion in Section 3.2.2.

0 1 2 3 4 5 6

2.0

1.5

1.0

0.5

0.0

0.5

1.0

modified MAP

0 1 2 3 4 5 6

MP (xj + 1 Unif[0, 6])

0 1 2 3 4 5 6

MP (xj + 1 Unif{x1 : n, xn + 1 : j})

Figure 1: GP example: visualisation of the approximate MP defined by Eq. (10), compared with the
ensemble predictors defined by a modified MAP estimator with similar initialisation randomness
(Eq. (29)). Solid line and shade indicate the mean estimate and 80% pointwise credible intervals
(CIs) for the true regression function. Dashed line indicates the 80% CIs from the exact posterior.
Dots at bottom indicate the location of training inputs.

Experiment setup. We instantiate Algorithm 1 using (10) as the estimation algorithm, with random
Fourier approximation for the RKHS. We adopt the Snelson dataset (Snelson, 2008) and remove the
samples with input within the [0.4, 0.6] quantile to create an out-of-distribution region for visualisation.
We adopt a Matérn-3/2 kernel with bandwidth 1 approximated with 200 random Fourier features, and
specify a Gaussian likelihood with variance σ2 = 0.64. We set N = 6n,∆n = 0.1n in Algorithm 1,
and consider two choices for x̂j : (i) uniform sampling from [0, 6], and (ii) nonparametric resampling
as in Remark A.1. We compare with an ensemble of the following modified MAP predictor:

f̂n := argmin
f

n∑
i=1

(f(xi)− yi)2 +
σ2

n
∥f − f̃0∥2H, where f̃0 ∼ GP(0, kx), (29)

and kx denotes the Matérn kernel. The random f̃0 provides a source of initialisation randomness
which is also needed for the MP to match the exact Bayesian posterior in out-of-distribution regions
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(Remark A.1). More broadly, (29) is analogous to the deep ensemble method (Lakshminarayanan
et al., 2017) in which the predictive uncertainty is also derived solely from initialisation randomness,
and the comparison between (10) and (29) may provide insights for the more general case.

Results and discussion. Figure 1 visualises the predictive uncertainty from the MP, the modified
MAP ensemble, and the exact posterior. We can see that the MP produces a close match to the GP
posterior, as expected in Section 3.2.2; and the results are highly consistent across the two choices of
samplers for x̂j . In contrast, (29) underestimates uncertainty, especially in in-distribution regions.
While conjugate GP inference is a well-studied problem, the above result suggests that in more
general scenarios, the uncertainty derived from our method may also have a more desirable behaviour
than that from methods relying solely on initialisation randomness. We will observe such results in
the DNN experiments in Appendix D.4.

D.2 Hyperparameter learning for Gaussian processes

Setup details. To implement Algorithm 1, we sample x̂n+i from a kernel density estimate and
ŷn+i | x̂n+i from the GP’s marginal predictive distribution, and use ∆n = 0.25n,N = 4n. In
preliminary experiments we find that a larger choice of N or a smaller choice of ∆n appears to
lead to diminishing improvements for performance; thus we adopt this choice for simplicity. For all
methods, we implement the base empirical Bayes algorithm with the L-BFGS-B optimiser (Zhu et al.,
1997) using a step-size of 0.05 and 1600 iterations, and build an ensemble of K = 16 predictors.

The hyperparameter learning process has a high variation across randomly sampled training sets due
to the small sample sizes. Therefore, we use Wilcoxon signed-rank tests to check for statistically
significant improvement, and account for ties in computing the ranks for Table 1, by defining the
rank of each method as the number of methods that significantly outperform it as determined by the
Wilcoxon test.

Full results and discussion. Full results are shown in Table 5. As we can see, our method
consistently improves upon the EB baseline and is competitive against the other ensemble approaches.
Nonparametric bootstrap also demonstrates competitive performance with n = 75, but generally
underperforms the EB baseline when n = 300. It is possible that the distribution of parameter
estimates from bootstrap has a very high variation, which may be only beneficial when overfitting is
severe. We note that the performance difference is often small compared to the standard deviation,
but the improvement over baselines is consistent as evidenced by the Wilcoxon test.

D.3 Classification with boosting tree and stacking algorithms

Deferred setup details. We evaluate on the 30 datasets from the OpenML CC18 benchmark (Bischl
et al., 2017) with n ≤ 2000,dimx ≤ 100,dim y ≤ 10. In all experiments we adopt a 60-20-20 split
for train/validation/test, and determine the hyperparameters for the base algorithm using the log loss
on validation set. We implement our method by refitting a predictor from scratch at each iteration; in
other words, in Algorithm 1 we define both A0(Dj+1; θ̂j) and A0(Dn) as the predictor resulted by
applying the base algorithm to the respective dataset.

For the GDBT algorithm, we adopt the implementation from XGBoost and conduct search for
the following hyperparameters: tree depth D ∈ {4, 5, 6, 7}, number of boosting iterations L ∈
{50, 100, 200} and learning rate η ∈ {10, 30, 100}/L. We also conduct early stopping using the
validation set with a tolerance of 10 rounds. For the instantiations of our method and bagging, we build
an ensemble of 50 predictors; for our method, we determine ∆n ∈ {0.125n, 0.25n, n}, N ∈ {n, 3n}
based on the same validation loss.

For stacking, we use the default implementation in AutoGluon
(TabularPredictor(eval_metric="log_loss") .fit), which determines the hyperpa-
rameters for the individual models based on pre-defined rules and uses the validation set to estimate a
linear stacking model following Caruana et al. (2004). As the stacking algorithm is more computation
intensive, we build an ensemble of 20 predictors for our method and bagging, and set ∆n = N = n
for our method.
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Figure 2: Classification experiment: scatter plot of the test metrics (for each dataset averaged over 10
random splits; higher is better) for the base algorithm vs the proposed method.

Additional results. Table 6–7 report the full test metrics on all 30 datasets; for each baseline
method we further conducts a Wilcoxon test to compare its distribution of loss metrics (for each
dataset, averaged over 10 random splits) against that of the proposed method, and report the p-value
in the respective table. As we can see, except for the test accuracy of the stacking+bagging baseline,
our method always leads to a statistically significant improvement (p < 0.05).

We note that for stacking, the AutoGluon library recommends a more sophisticated multi-level algo-
rithm (corresponding to .fit(presets="best_quality")) for the best predictive performance.
We evaluated that algorithm under identical conditions, and found it to perform better than our chosen
base algorithm but worse than bagging and our method applied to the latter (average accuracy 91.1%,
NLL 0.198 in the setting of Table 2). As the algorithm also has a significantly higher computational
cost, we refrain from testing our method with it, although we expect a similar improvement in
performance if our method were applied.

Figure 3 visualises the uncertainty estimates for the information gain-based feature importance scores,
obtained using our method on the UCI adult dataset. As we can see, the correlation structure of the
approximate MP is informative about feature dependencies; for example, the strong negative correla-
tion between “marital status” and “relationship” indicates that these two features are interchangeable
for prediction.

D.4 Interventional density estimation

Setup details. For the base estimation algorithm, we adopt a fully-connected NN model with 128
hidden units in each layer, and determine the other hyperparameters in the following range: (i) number
of hidden layers D ∈ {2, 3, 4}, (ii) learning rate η ∈ {0.1, 0.5, 1, 5} × 10−3, (iii) training iterations
L ∈ {2, 4, 8} × 1000, and (iv) activation function from {swish, selu, tanh}. The hyperparameters are
determined by evaluating the training objective on an in-distribution validation set, on the chain-na
dataset from Chao et al. (2023). We use the AdamW optimiser (Loshchilov and Hutter, 2019)
with default hyperparameters in Optax (DeepMind, 2020). For our method, we instantiate the
proximal Bregman objective (11) using the weighted score matching loss in Ho et al. (2020), and
set ∆n = 0.1n,N = 6n: beyond this range, a larger value of N leads to diminishing improvement,
and the results appear somewhat insensitive to the choice of ∆n. Other implementation details are
discussed in Appendix B.

On the synthetic datasets, we consider two evaluation setups:

• Following Chao et al. (2023) we evaluate distributional estimates for P(xdesc(i) | do(xi =
x)), where desc(i) denotes the descendents of node i in the causal graph and x ranges over
a uniform grid of the [0.1, 0.9] quantile. We report the maximum mean discrepancy for in
this setup.

• We present a more direct evaluation of the uncertainty estimates, by evaluating the average
coverage of pointwise credible intervals for the mean outcome E(xd | do(x1:d−1 = ·))
and the L2 distance between the estimated CDF and ground truth. The latter is equivalent
to CRPS and is thus a meaningful surrogate for forecasting error. The value for x1:d−1

is determined by varying one of the variables on a uniform grid and fixing the others to
{−0.5, 0, 0.5}, consecutively.

On the fMRI dataset, we report the median of absolute error following Khemakhem et al. (2021);
Chao et al. (2023) and the CRPS. Our setup, where we average over random seeds (which determine
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Table 6: Classification experiment: average negative log likelihood across random train/test splits in
each dataset.

Dataset
GBDT Stacking

(Base) + BS + IPB (Base) + BS + IPB

banknote-authentication .002±.00 .003±.00 .003±.00 .009±.01 .002±.00 .001±.00

blood-transfusion-service-center .504±.03 .486±.02 .487±.02 .473±.02 .470±.02 .469±.03

breast-w .139±.02 .129±.02 .128±.02 .138±.03 .103±.01 .110±.02

mfeat-karhunen .012±.00 .022±.00 .012±.00 .008±.01 .086±.04 .031±.03

mfeat-morphological .018±.01 .021±.00 .014±.00 .014±.01 .030±.02 .009±.00

eucalyptus .802±.04 .786±.03 .771±.03 .689±.05 .704±.04 .679±.05

mfeat-zernike .017±.01 .021±.00 .012±.00 .241±.43 .059±.03 .089±.13

cmc .028±.01 .018±.00 .016±.00 .019±.01 .022±.01 .020±.01

credit-approval .169±.03 .159±.02 .132±.02 .122±.03 .125±.02 .120±.03

vowel .533±.02 .506±.02 .505±.02 .504±.03 .501±.02 .500±.02

credit-g .011±.00 .018±.00 .010±.00 .003±.00 .004±.00 .005±.00

analcatdata_authorship .044±.03 .045±.02 .030±.01 .052±.04 .029±.01 .038±.02

balance-scale .421±.06 .362±.03 .361±.03 .663±.64 .137±.04 .163±.05

analcatdata_dmft .501±.02 .490±.01 .487±.01 .476±.02 .472±.01 .471±.02

diabetes .222±.02 .205±.01 .201±.01 .200±.01 .200±.01 .196±.01

pc4 .279±.02 .270±.02 .270±.02 .264±.02 .264±.02 .263±.02

pc3 .019±.01 .022±.01 .024±.01 .078±.10 .026±.01 .038±.02

kc2 .016±.01 .014±.01 .014±.01 .021±.02 .021±.01 .024±.02

pc1 .009±.01 .003±.00 .003±.00 .001±.00 .001±.00 .001±.00

tic-tac-toe .551±.03 .536±.02 .510±.02 .448±.02 .450±.02 .424±.02

vehicle .141±.03 .117±.03 .110±.03 .119±.05 .094±.03 .095±.04

wdbc .025±.02 .015±.01 .011±.00 .034±.03 .027±.02 .009±.01

qsar-biodeg .558±.02 .543±.01 .538±.01 .533±.02 .524±.01 .523±.01

dresses-sales .678±.01 .672±.01 .672±.01 .701±.02 .683±.02 .683±.02

mfeat-fourier .025±.01 .027±.00 .019±.00 .010±.01 .031±.02 .010±.00

MiceProtein .023±.01 .025±.00 .011±.00 .008±.01 .020±.01 .002±.00

steel-plates-fault .021±.01 .024±.01 .016±.00 .010±.01 .020±.01 .005±.00

climate-model-simulation-crashes .165±.04 .158±.03 .152±.03 .140±.03 .139±.02 .136±.03

car .050±.01 .072±.01 .048±.01 .028±.01 .047±.01 .025±.01

cylinder-bands .454±.05 .429±.02 .422±.03 .407±.05 .407±.03 .396±.04

Wilcoxon p-value vs IPB 3.1e-08 6e-07 - 2.2e-06 0.029 -

Table 7: Classification experiment: average test accuracy across random train/test splits in each
dataset.

Dataset
GBDT Stacking

(Base) + BS + IPB (Base) + BS + IPB

banknote-authentication 99.9±0.1 99.9±0.1 100.0±0.0 99.9±0.1 100.0±0.1 100.0±0.0

blood-transfusion-service-center 77.5±2.1 79.0±1.6 78.7±1.7 78.7±1.1 78.7±1.2 78.9±1.6

breast-w 95.4±0.6 95.9±0.9 95.7±0.6 96.5±0.7 96.6±0.4 96.6±0.5

mfeat-karhunen 99.9±0.1 99.8±0.1 99.9±0.1 99.8±0.1 99.9±0.1 100.0±0.1

mfeat-morphological 99.4±0.4 99.6±0.2 99.8±0.2 99.6±0.2 99.7±0.2 99.8±0.2

eucalyptus 66.2±2.2 65.9±2.0 67.2±2.0 69.5±2.9 69.1±2.9 70.6±2.4

mfeat-zernike 99.7±0.2 99.7±0.2 99.8±0.2 89.7±18.5 99.9±0.1 99.8±0.1

cmc 99.0±0.3 99.5±0.1 99.5±0.2 99.5±0.2 99.6±0.2 99.4±0.2

credit-approval 94.8±0.8 95.0±0.4 95.6±0.8 96.2±1.1 95.7±0.7 95.9±1.1

vowel 74.5±2.1 75.5±1.7 76.5±1.9 75.8±1.8 75.0±1.8 76.2±2.0

credit-g 99.8±0.2 99.8±0.2 99.9±0.1 99.9±0.1 99.9±0.1 99.9±0.1

analcatdata_authorship 98.9±0.6 98.7±0.7 98.9±0.6 98.9±0.6 99.1±0.4 99.0±0.5

balance-scale 84.6±1.9 89.2±1.9 87.3±1.7 95.0±1.2 94.8±0.9 95.4±0.9

analcatdata_dmft 75.6±1.9 75.6±2.3 76.6±2.5 76.4±1.5 76.6±2.1 76.6±1.6

diabetes 89.7±1.0 90.4±0.9 90.4±1.0 91.1±1.0 90.8±1.0 90.9±0.9

pc4 88.7±1.2 89.2±1.1 89.0±1.2 89.1±1.1 89.1±1.0 89.1±1.0

pc3 99.5±0.3 99.6±0.3 99.2±0.6 99.2±0.6 99.4±0.5 99.3±0.5

kc2 99.6±0.2 99.6±0.3 99.6±0.2 99.6±0.3 99.7±0.2 99.6±0.2

pc1 99.9±0.2 99.9±0.2 99.9±0.2 99.9±0.1 100.0±0.0 99.9±0.1

tic-tac-toe 74.5±1.7 74.0±1.5 74.1±1.3 76.6±1.3 77.1±0.9 78.1±1.2

vehicle 95.4±1.3 95.7±1.2 96.6±1.1 97.0±0.7 97.3±0.6 97.6±0.5

wdbc 99.5±0.3 99.5±0.3 99.7±0.2 99.4±0.3 99.8±0.2 99.7±0.2

qsar-biodeg 68.9±1.4 69.3±1.6 70.3±1.5 70.1±1.5 69.8±1.5 69.1±1.6

dresses-sales 59.1±1.7 60.4±2.0 60.4±1.9 57.9±2.7 57.8±2.6 58.0±2.9

mfeat-fourier 99.5±0.2 99.6±0.2 99.7±0.2 99.6±0.1 99.8±0.1 99.7±0.1

MiceProtein 99.7±0.2 99.5±0.3 99.9±0.1 99.8±0.1 100.0±0.0 100.0±0.0

steel-plates-fault 99.5±0.2 99.7±0.2 99.8±0.1 99.8±0.1 99.9±0.1 99.9±0.1

climate-model-simulation-crashes 94.4±1.5 94.3±1.4 94.6±1.3 94.7±1.4 94.4±1.6 94.7±1.4

car 98.4±0.4 97.6±0.4 98.4±0.3 98.8±0.5 98.3±0.5 99.2±0.4

cylinder-bands 79.4±2.3 79.7±2.4 80.6±1.7 80.7±1.6 81.1±2.0 81.4±1.4

Wilcoxon p-value vs IPB 5e-05 0.0047 - 0.0011 0.056 -
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Figure 3: Classification experiment: approximate MP for the GDBT feature importance scores and
their pairwise correlations. Plotted are the top 5 features in the UCI adult dataset.

the initialisation and train/validation split), appears different from Khemakhem et al. (2021), and we
can exactly match their reported results using a single (default) seed set in their codebase. Nonetheless,
the results remain statistically consistent.

Full results and discussion. Full results for the synthetic experiments are shown in Table 8 (in the
setting of Table 3 and Chao et al. (2023)) and Table 9–10 (for the evaluation of uncertainty). As we can
see, our method attains the best overall performance for both prediction and uncertainty quantification.
The vanilla ensemble method achieves the best predictive performance across baselines, which
is consistent with previous reports (Fort et al., 2019; Gorishniy et al., 2021). NTKGP is generally
uncompetitive; even through the method is applied to the same DNN models, it is possible that the
ultrawide NN perspective which motivated their design choices is less applicable to diffusion models
which utilise multi-output NNs. The predictive performance of PB is uncompetitive possibly related to
its discard of real data. For uncertainty quantification, however, both bootstrap baselines demonstrate
better performance than the other baselines, although our method still achieves better performance.
Note that due to the distribution shift we cannot expect the coverage of credible intervals to match
their exact nominal level.
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Table 8: Interventional density estimation: full results in the setting of Table 3. Reported is the
estimate and 95% CI for the 100×MMD2 metric across 30 trials. Boldface indicates the best result
(p < 0.05 in a Wilcoxon signed-rank test).

Method chain-na chain-nonlin diamond-na diamond-nonlin triangle-na triangle-nonlin y-na y-nonlin

N = 100

PB 31.75±4.25 8.40±1.37 13.84±1.50 18.86±3.90 29.59±4.58 20.77±4.98 10.35±0.92 7.36±0.98

Ens 27.40±3.55 6.72±1.02 11.87±1.43 15.40±3.18 25.28±3.85 18.55±4.83 9.42±0.93 6.54±0.77

NTKGP 47.80±0.87 11.96±1.43 31.45±1.12 51.96±2.25 38.92±1.67 42.52±2.45 19.97±1.22 22.10±1.63

BS 30.30±3.36 6.83±1.05 12.81±1.40 19.88±3.54 28.21±4.81 23.09±5.21 11.54±1.73 6.76±0.78

IPB 19.94±2.35 6.31±0.87 8.74±0.92 9.64±1.38 16.35±1.42 10.02±1.77 8.14±0.76 6.56±0.93

N = 1000

PB 9.28±0.69 2.63±0.22 3.52±0.32 4.02±0.43 5.98±0.43 3.42±0.27 3.35±0.30 2.62±0.23

Ens 7.45±0.60 2.42±0.17 2.85±0.22 3.49±0.36 4.84±0.35 3.13±0.21 2.84±0.27 2.40±0.17

NTKGP 21.55±0.39 2.83±0.20 8.03±0.20 11.64±0.38 12.42±0.37 6.13±0.25 5.39±0.24 3.85±0.22

BS 8.58±0.68 2.31±0.15 3.15±0.28 3.67±0.39 5.80±0.42 3.08±0.26 3.05±0.26 2.31±0.13

IPB 6.25±0.46 2.58±0.20 2.78±0.15 3.22±0.37 4.23±0.31 2.79±0.19 2.98±0.21 2.27±0.13

Table 9: Interventional density estimation experiment: additional results for quality of uncertainty
estimates, when n = 100. Reported are the estimate and 95% CI for the mean of each test metric.
Boldface indicates the best result (p < 0.05 in a Wilcoxon signed-rank test).

Method chain-na chain-nonlin diamond-na diamond-nonlin triangle-na triangle-nonlin y-na y-nonlin

CDF L2

PB 0.023±0.004 0.008±0.002 0.041±0.005 0.068±0.010 0.073±0.008 0.049±0.010 0.013±0.002 0.012±0.003

Ens 0.019±0.003 0.007±0.002 0.035±0.002 0.078±0.011 0.075±0.008 0.049±0.010 0.013±0.002 0.009±0.002

NTKGP 0.039±0.002 0.009±0.002 0.053±0.002 0.098±0.005 0.086±0.006 0.082±0.006 0.027±0.002 0.028±0.003

BS 0.022±0.004 0.006±0.001 0.037±0.004 0.083±0.011 0.076±0.008 0.058±0.010 0.015±0.003 0.010±0.001

IPB 0.013±0.002 0.006±0.001 0.028±0.002 0.054±0.010 0.059±0.006 0.035±0.007 0.010±0.001 0.011±0.002

Average coverage of 90% CI

PB 0.960±0.017 0.731±0.109 0.762±0.090 0.637±0.073 0.506±0.065 0.640±0.068 0.750±0.095 0.806±0.088

Ens 0.388±0.101 0.334±0.090 0.231±0.046 0.244±0.043 0.181±0.025 0.271±0.049 0.304±0.082 0.345±0.085

NTKGP 0.388±0.094 0.412±0.095 0.256±0.044 0.152±0.024 0.151±0.015 0.158±0.017 0.182±0.045 0.265±0.075

BS 0.861±0.075 0.806±0.080 0.762±0.081 0.572±0.074 0.511±0.068 0.638±0.075 0.801±0.062 0.798±0.094

IPB 0.966±0.009 0.865±0.048 0.934±0.028 0.915±0.031 0.796±0.047 0.930±0.028 0.833±0.066 0.804±0.070

Average width of 90% CI

PB 0.216±0.014 0.339±0.033 0.205±0.020 0.382±0.035 0.587±0.080 0.442±0.050 0.431±0.032 0.308±0.016

Ens 0.069±0.007 0.109±0.006 0.049±0.003 0.120±0.012 0.173±0.018 0.138±0.012 0.164±0.010 0.087±0.005

NTKGP 0.117±0.004 0.133±0.002 0.110±0.003 0.173±0.005 0.176±0.010 0.186±0.009 0.199±0.011 0.140±0.005

BS 0.199±0.012 0.339±0.015 0.176±0.013 0.402±0.021 0.615±0.061 0.502±0.029 0.488±0.024 0.323±0.020

IPB 0.168±0.007 0.338±0.012 0.208±0.016 0.768±0.046 1.043±0.126 0.785±0.074 0.459±0.021 0.268±0.009

Table 10: Interventional density estimation experiment: additional results for quality of uncertainty
estimates, when n = 1000. Reported are the estimate and 95% CI for the mean of each test metric.
For CDF L2, boldface indicates the best result (p < 0.05 in a Wilcoxon signed-rank test).

Method chain-na chain-nonlin diamond-na diamond-nonlin triangle-na triangle-nonlin y-na y-nonlin

CDF L2

PB 0.006±0.001 0.001±0.000 0.017±0.001 0.041±0.005 0.029±0.002 0.010±0.002 0.004±0.000 0.002±0.001

Ens 0.004±0.000 0.001±0.000 0.016±0.001 0.043±0.005 0.026±0.002 0.011±0.002 0.003±0.000 0.002±0.000

NTKGP 0.014±0.000 0.001±0.000 0.027±0.001 0.047±0.004 0.035±0.002 0.016±0.001 0.007±0.000 0.004±0.000

BS 0.005±0.001 0.001±0.000 0.017±0.001 0.043±0.006 0.027±0.002 0.011±0.001 0.004±0.000 0.002±0.000

IPB 0.004±0.001 0.001±0.000 0.014±0.001 0.031±0.005 0.027±0.002 0.008±0.002 0.003±0.000 0.002±0.000

Average coverage of 90% CI

PB 0.870±0.064 0.901±0.054 0.908±0.041 0.746±0.051 0.701±0.052 0.878±0.037 0.958±0.027 0.947±0.032

Ens 0.633±0.085 0.712±0.089 0.522±0.055 0.347±0.061 0.331±0.045 0.408±0.044 0.716±0.062 0.679±0.073

NTKGP 0.654±0.108 0.709±0.086 0.539±0.056 0.254±0.038 0.159±0.020 0.377±0.022 0.683±0.072 0.687±0.072

BS 0.963±0.021 0.989±0.008 0.848±0.049 0.662±0.070 0.624±0.056 0.758±0.044 0.935±0.032 0.937±0.029

IPB 0.927±0.029 0.884±0.042 0.927±0.029 0.838±0.050 0.670±0.048 0.891±0.029 0.876±0.050 0.890±0.044

Average width of 90% CI

PB 0.090±0.002 0.182±0.005 0.082±0.003 0.217±0.014 0.600±0.041 0.263±0.016 0.265±0.006 0.152±0.004

Ens 0.045±0.001 0.097±0.001 0.032±0.001 0.069±0.002 0.139±0.006 0.073±0.004 0.144±0.003 0.069±0.001

NTKGP 0.060±0.001 0.104±0.001 0.050±0.000 0.081±0.002 0.128±0.004 0.091±0.001 0.150±0.003 0.085±0.001

BS 0.082±0.002 0.159±0.002 0.067±0.001 0.173±0.006 0.434±0.023 0.175±0.004 0.220±0.004 0.126±0.002

IPB 0.072±0.001 0.153±0.002 0.063±0.001 0.230±0.010 0.450±0.021 0.235±0.005 0.219±0.005 0.117±0.002
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