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ABSTRACT

Deep Neural Networks are vulnerable to adversarial attacks, which makes adver-
sarial attacks serve as a method to evaluate the robustness of DNNs. However,
adversarial attacks have high white-box attack success rates but poor transfer-
ability, making black-box attacks impracticable in the real world. Momentum-
based attacks were proposed to accelerate optimization to improve transferabil-
ity. Nevertheless, conventional momentum-based attacks accelerate optimization
inefficiently during early iterations since the initial value of momentum is zero,
which leads to unsatisfactory transferability. Therefore, we propose Experienced
Momentum (EM), which is the pre-trained momentum. Initializing the momen-
tum to EM can help accelerate optimization during the early iterations. More-
over, the pre-update of conventional Nesterov momentum based attacks is rough,
prompting us to propose Precise Nesterov momentum (PN). PN refines the pre-
update by considering the gradient of the current data point. Finally, we inte-
grate EM with PN as Experienced Precise Nesterov momentum (EPN) to further
improve transferability. Extensive experiments against normally trained and de-
fense models demonstrate that our EPN is more effective than conventional mo-
mentum in the improvement of transferability. Specifically, the attack success
rates of our EPN-based attacks are∼11.9% and∼13.1% higher than conventional
momentum-based attacks on average against normally trained and defense mod-
els, respectively.

1 INTRODUCTION

Deep neural networks (DNNs) (Krizhevsky et al., 2012; Szegedy et al., 2015; He et al., 2016; Ioffe
& Szegedy, 2015) have been widely applied in computer vision, e.g., autonomous driving (Franchi
et al., 2022; Hao et al., 2019; Cococcioni et al., 2018), facial recognition (Chrysos et al., 2020;
Ghenescu et al., 2018), and medical image analysis (Akselrod-Ballin et al., 2016; Ding et al., 2017;
Liu et al., 2019). However, Szegedy et al. (2013) found that applying certain imperceptible perturba-
tions to images can make DNNs misclassify, and they refer to such perturbed images as adversarial
examples (AEs). Adversarial examples pose a huge threat to the security of DNNs, which attaches
extensive attention from researchers.

Adversarial attacks can be categorized into white-box attacks and black-box attacks. Typically, iter-
ative gradient-based (Kurakin et al., 2016; Madry et al., 2017) and optimization-based attacks (Car-
lini & Wagner, 2017) have high white-box but low black-box attack success rates, which means
that such two attacks are impracticable in the real world. Transferability, which means adversarial
examples crafted on the source model remain effective on other models, makes black-box attacks
feasible. Furthermore, iterative gradient-based attacks have the advantages of low computational
cost and fast generation speed, thus improving the transferability of iterative gradient-based attacks
has become a hotspot in the field of adversarial attacks.

Many methods have been proposed to improve the transferability of iterative gradient-based at-
tacks. These methods can be classified into three branches: improving optimization algorithms,
input transformations, and disrupting feature space. For example, MI-FGSM (Dong et al., 2018),
NI-FGSM (Lin et al., 2019), and VM(N)I-FGSM (Wang & He, 2021) improve gradient ascent (or
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Figure 1: Comparison of conventional Polyak momentum and experienced Polyak momentum. Ad-
versarial examples are crafted on the source model (Inception-v3) and used to attack the target model
(VGG16). Our Experienced MI-FGSM (EMI-FGSM), which integrates EM into MI-FGSM, causes
misclassification with higher loss and confidence than MI-FGSM, thus EMI-FGSM can mislead the
attention of the target model better than MI-FGSM.

descent) algorithm to escape from saddle points and poor local extrema to improve transferabil-
ity; DIM (Xie et al., 2019), TIM (Dong et al., 2019), and SIM (Lin et al., 2019) craft adversarial
examples on a set of models derived by input transformations to prevent overfitting and improve
transferability; NRDM (Naseer et al., 2018), FDA (Ganeshan et al., 2019), and FIA (Wang et al.,
2021) disrupt deep features of DNNs to craft highly transferable adversarial examples.

Those mentioned above adversarial attacks mostly adopt the momentum (Polyak, 1964; Nesterov,
1983) to accelerate optimization. However, such momentum-based adversarial attacks (e.g., M(N)I-
FGSM, VM(N)I-FGSM, and FIA) have the problem of initializing the momentum to zero, resulting
in inefficient acceleration due to momentum accumulating few gradients during the first few itera-
tions. Therefore, we propose Experienced Momentum (EM), which is the pre-trained momentum.
Before the iterations, the momentum is initialized to EM instead of zero, leading to better acceler-
ation in the first few iterations. The comparison of conventional Polyak momentum (Polyak, 1964)
and experienced Polyak momentum is shown in Fig. 1. To prevent overfitting on the source model,
we train EM on a set of models derived by Random Channels Swapping (RCS). EM and RCS are
detailed in Sec. 3.1.

Furthermore, adversarial attacks (e.g., NI-FGSM and VNI-FGSM) based on Nesterov momentum
(i.e., Nesterov Accelerated Gradient, NAG (Nesterov, 1983)) have the disadvantage that the pre-
update is rough. Specifically, during each iteration, the parameters are first pre-updated along the
momentum to obtain the pre-update point, which is an estimation of the next position. Then the pre-
update is modified by the gradient of the pre-update point. Such looking-ahead property of Nesterov
momentum makes parameters escape from saddle points and poor local extrema easier and faster,
resulting in improving transferability. However, pre-updating only along the momentum is rough,
and the estimation of the next position of the parameters is imprecise. Therefore, we propose Precise
Nesterov momentum (PN), which not only retains the looking-ahead property but also refines the
pre-update by adopting the gradient of the current data point. To improve transferability further, we
integrate EM with PN as Experienced Precise Nesterov momentum (EPN). PN and EPN are detailed
in Sec. 3.2.

Overall, we make the following contributions:

• We propose Experienced Momentum (EM), which is trained on a set of models derived
by Random Channels Swapping (RCS). Initializing the momentum to EM can accelerate
optimization effectively during the early iterations to improve transferability.

2



Under review as a conference paper at ICLR 2023

• We propose Precise Nesterov momentum (PN), which adopts the gradient of the current
data point to refine the pre-update to escape from saddle points and poor local extrema eas-
ier and faster. We also integrate EM with PN as Experienced Precise Nesterov momentum
(EPN) to improve transferability further.

• Extensive experiments on normally trained and defense models demonstrate that our EPN
is more effective than conventional momentum for improving transferability.

2 RELATED WORK

2.1 TRANSFERABLE ADVERSARIAL ATTACKS

Since adversarial examples were discovered by Szegedy et al. (2013), many methods (Goodfellow
et al., 2014; Kurakin et al., 2016; Carlini & Wagner, 2017) have been proposed to craft adversarial
examples to demonstrate the vulnerability of DNNs. We focus on the transferability of iterative
gradient-based attacks and review related works from three branches: improving optimization algo-
rithms, input transformations, and disrupting feature space.

Improving optimization algorithms. Dong et al. (2018) integrated Polyak momentum (Polyak,
1964) into I-FGSM (Kurakin et al., 2016) to accelerate gradient ascent (or descent) to improve
transferability. Inspired by the fact that Nesterov momentum (Nesterov, 1983) is superior to Polyak
momentum, Lin et al. (2019) integrated Nesterov momentum into I-FGSM to improve transferability
further. Wang & He (2021) used the gradient variance of the previous iteration to tune the current
gradient to stabilize the update direction and escape from saddle points and poor local extrema.

Input transformations. The nature of input transformations is crafting adversarial examples on a
set of derived models to prevent overfitting. Xie et al. (2019) performed random resizing and padding
with probability p to derive models. Dong et al. (2019) convolved the gradient to approximate
translating input. Lin et al. (2019) scaled the input with the scale factor 1/2i to derive a set of
models.

Disrupting feature space. Naseer et al. (2018) created maximum distortions in the feature space
to craft adversarial examples, based on the intuition that features of DNNs are highly generalizable.
Ganeshan et al. (2019) highly corrupted deep features by disrupting features at each layer of DNNs to
improve transferability. Wang et al. (2021) described feature importance with the aggregate gradient
and disrupted important object-aware features to achieve stronger transferability.

2.2 ADVERSARIAL TRAINING

Adversarial training as a common defense measure can validate transferability further. Adversarial
training increases robustness by adding adversarial examples to the training data. Goodfellow et al.
(2014) showed that adversarially trained models are more robust. However, Kurakin et al. (2016)
pointed out that adversarial training is not robust to iterative attacks. Moreover, Tramèr et al. (2017)
showed that adversarially trained models are still vulnerable to simple white-box and black-box at-
tacks. Therefore, they proposed ensemble adversarial training adding adversarial examples crafted
from other models to the training data.

3 METHODOLOGY

Given a target model f ′(x;θ′), where x is an input, and θ′ is the parameters of f ′. Let J(·, y) be a
loss function, where y is the ground-truth label of the input x. A non-targeted adversarial example
xadv satisfies f ′(x;θ′) ̸= f ′(xadv;θ′) under the constraint of ||xadv − x||p ≤ ϵ, where || · ||p
denotes the Lp norm, and p is generally 0, 1, 2,∞. In this paper, we focus on p =∞. Note that our
methods can be generalized to p = 0, 1, 2 easily. Crafting non-targeted adversarial examples can be
described as solving the following optimization problem:

argmax
xadv

J(f ′(xadv;θ′), y), s.t. ||xadv − x||p ≤ ϵ. (1)

In this paper, we focus on non-targeted attacks. Our proposed methods can be easily transformed
into targeted attacks by replacing the above objective function with −J(f ′(xadv;θ′), y∗), where y∗
denotes the target label.
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Figure 2: Illustration of training EM during each iteration.

Many gradient-based methods have been proposed to solve Eq. 1, e.g., FGSM (Goodfellow et al.,
2014), I-FGSM (Kurakin et al., 2016), and PGD (Madry et al., 2017). However, the parameters θ′

of the target model f ′ is inaccessible for black-box attacks, resulting in the inability to solve Eq. 1
directly. Therefore, the target model f ′ is usually replaced with a model f (i.e., the source model)
with accessible parameters θ, and then adversarial examples are crafted on the source model f to
attack the target model f ′. To achieve effective black-box attacks, adversarial examples crafted on
the source model f are required to have high transferability. Therefore, we propose Experienced
Momentum (EM, detailed in Sec. 3.1) and Precise Nesterov momentum (PN, detailed in Sec. 3.2)
to improve transferability. EM and PN can be naturally combined as Experienced Precise Nesterov
momentum (EPN, detailed in Sec. 3.2) to further improve transferability.

3.1 EXPERIENCED MOMENTUM

Momentum-based attacks initialize momentum to zero, resulting in inefficient acceleration during
the first few iterations. Therefore, we propose Experienced Momentum (EM), which is the pre-
trained momentum. Setting the initial momentum to EM can accelerate the optimization during the
early iterations. To prevent overfitting of EM and improve transferability further, we train EM on
a set of models derived by Random Channels Swapping (RCS). RCS derives models by randomly
swapping the channels of the input image, which is equivalent to randomly swapping the “block”
dimensions of the original model, leading to various decision boundaries of derived models. There-
fore, training EM on derived models can prevent overfitting. The specific procedure for training EM
is as follows.

First of all, we perform RCS on the input image x. Specifically, we denote the input image x
as an RGB triplet (R,G,B), and then the input image x through RCS can be denoted as S(x),
where S(x) ∈ {(R,G,B), (R,B,G), (G,R,B), (G,B,R), (B,R,G), (B,G,R)}, S(·) denotes
RCS. Secondly, S(x) is fed into the source model f to derive f(S(·), y). Thirdly, we pre-perturb
the input image x on the derived model f(S(·), y) by iterative gradient-based attacks to prevent
overfitting. As shown in Fig. 2, we accumulate gradients to training EM during each iteration. Fi-
nally, we follow the above procedure repeatedly to make the EM more generalizable. After training
EM, we set the initial value of momentum to EM to accelerate the early iterations.

3.2 PRECISE NESTEROV MOMENTUM

Nesterov momentum based Attack (e.g., NI-FGSM (Lin et al., 2019) and VNI-FGSM (Wang & He,
2021)) only pre-update along the momentum roughly, resulting in the imprecision of the pre-update
point that is the estimate of the next iterative position. Against this disadvantage, we propose Precise
Nesterov momentum (PN), which considers the gradient of the current data point in the pre-update to
make the pre-update precise. Specifically, during each iteration, the pre-update is performed along
the gradient of the current data point and momentum successively to obtain the pre-update point,
and then we use the gradient of the pre-update point to modify the pre-update. We integrate PN into
I-FGSM as PNI-FGSM. The t-th iteration of PNI-FGSM can be formalized as follows:

x̃adv
t = xadv

t + α ·

[
∇xadv

t
J(f(xadv

t ;θ), y)

||∇xadv
t

J(f(xadv
t ;θ), y)||1

+ µ · gt−1

]
, (2)
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Algorithm 1: Experienced Precise Nesterov momentum I-FGSM (EPNI-FGSM)
Input : A source model f with parameters θ and a loss function J . An original image x with

ground-truth label y.
Input : The maximum perturbation ϵ, the number of iterations T , and the decay factor µ.
Input : The epochs of pretraining epochs.
Output: An adversarial example xadv .

1 α← ϵ/T ; gexp ← 0;
2 for n← 1 to epochs do
3 x̂adv

1 ← x ;
4 for t← 1 to T do

5 x̃adv
t ← x̂adv

t + α ·
[

∇
x̂adv
t

J(f(S(x̂adv
t );θ),y)

||∇
x̂adv
t

J(f(S(x̂adv
t );θ),y)||1

+ µ · gexp

]
;

6 gexp ←
∇

x̂adv
t

J(f(S(x̂adv
t );θ),y)

||∇
x̂adv
t

J(f(S(x̂adv
t );θ),y)||1

+ µ · gexp +
∇

x̃adv
t

J(f(x̃adv
t ;θ),y)

||∇
x̃adv
t

J(f(x̃adv
t ;θ),y)||1

;

7 x̂adv
t+1 ← Clip(x,ϵ)

{
x̂adv
t + α · sign(gexp)

}
;

8 end
9 end

10 xadv
1 ← x; g0 ← gexp ;

11 for t← 1 to T do
12 Update gt and xadv

t+1 by Eq. 2, 3, 4;
13 end
14 return xadv ← xadv

T+1.

Table 1: The abbreviations used in the paper.

Abbreviation Explanation

D(T)I-MI-FGSM the combination of D(T)IM and MI-FGSM
SI-NI-FGSM the combination of SIM and NI-FGSM
D(T,S)I-EPNI-FGSM the combination of D(T,S)IM and EPNI-FGSM
VT-M(N)I-FGSM i.e., VM(N)I-FGSM
VT-EPNI-FGSM the combination of Variance Tuning (VT) (Wang & He, 2021) and EPNI-FGSM
FI-MI-FGSM i.e., FIA
FI-EPNI-FGSM the combination of Feature Importance-aware (FI) (Wang et al., 2021) and EPNI-FGSM

gt =
∇xadv

t
J(f(xadv

t ;θ), y)

||∇xadv
t

J(f(xadv
t ;θ), y)||1

+ µ · gt−1 +
∇x̃adv

t
J(f(x̃adv

t ;θ), y)

||∇x̃adv
t

J(f(x̃adv
t ;θ), y)||1

, (3)

xadv
t+1 = Clip(x,ϵ)

{
xadv
t + α · sign(gt)

}
, (4)

where gt denotes the momentum, g0 = 0, and µ denotes the decay factor.

We combine EM and PN as Experienced Precise Nesterov momentum (EPN) to further improve
transferability. The algorithm of EPNI-FGSM, which integrates EPN into I-FGSM, is summarized

in Algorithm 1. Particularly, if
∇

x̃adv
t

J(f(x̃adv
t ;θ),y)

||∇
x̃adv
t

J(f(x̃adv
t ;θ),y)||1

= 0, EPNI-FGSM degrades to Experienced

MI-FGSM (EMI-FGSM). If
∇

x̂adv
t

J(f(S(x̂adv
t );θ),y)

||∇
x̂adv
t

J(f(S(x̂adv
t );θ),y)||1

= 0, EPNI-FGSM degrades to Experienced

NI-FGSM (ENI-FGSM). If epochs = 0, EPNI-FGSM degrades to PNI-FGSM.

4 EXPERIMENTS

We conduct extensive experiments on normally trained and defense models to validate that our EPN
is more efficient than conventional momentum. We first present the experimental settings in Sec.
4.1. Then, we report the results for attacking normally trained and defense models in Sec. 4.2 and
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Table 2: The attack success rates (%) of adversarial examples crafted on source models against
normally trained target models. “*” indicates the model being white-box attacked. “Avg” means the
average attack success rate.

Models Attacks Iv1 Iv3 Iv4 IRv2 R18 R34 R50 R101 R152 V11 V13 V16 V19 D121 D169 D201 D161 Avg

Iv3

MI-FGSM 53.8 100.0* 49.6 42.5 44.0 43.4 46.4 39.5 39.9 52.1 54.4 53.9 52.1 45.2 43.3 39.5 38.5 49.3
NI-FGSM 64.3 100.0* 59.5 53.0 53.0 49.7 52.7 46.4 45.8 60.8 62.6 63.6 62.9 51.9 49.8 45.4 48.4 57.0
EPNI-FGSM (Ours) 79.7 100.0* 74.9 68.7 63.9 65.5 67.6 59.9 60.4 70.8 73.0 74.3 72.2 68.3 65.7 63.6 64.5 70.2
DI-MI-FGSM 70.8 99.9* 66.2 60.9 61.3 62.0 64.2 58.0 56.7 65.1 69.2 67.9 68.2 66.2 63.0 61.4 61.2 66.0
TI-MI-FGSM 41.8 99.7* 37.9 31.5 46.4 47.6 44.9 41.9 38.6 54.9 56.7 56.2 58.3 47.9 46.5 43.5 42.8 49.2
SI-NI-FGSM 77.4 100.0* 72.7 69.8 67.6 67.3 68.0 61.5 62.1 70.0 72.8 73.8 71.9 70.7 68.4 64.8 65.9 70.9
DI-EPNI-FGSM (Ours) 88.7 100.0* 87.3 86.0 78.5 81.3 83.4 80.2 80.5 80.4 83.8 83.8 84.2 86.1 84.9 82.9 83.4 84.4
TI-EPNI-FGSM (Ours) 70.6 100.0* 68.8 59.6 69.3 69.8 68.9 65.5 63.3 73.5 76.5 78.5 77.9 74.7 72.9 70.8 71.5 72.5
SI-EPNI-FGSM (Ours) 90.2 100.0* 87.1 85.1 80.1 81.2 81.7 76.4 78.2 80.6 83.1 84.4 82.6 86.7 83.8 80.9 81.7 83.8

VT-MI-FGSM 70.5 100.0* 69.7 64.9 61.7 63.6 65.7 60.0 58.6 65.0 69.2 68.7 66.7 65.8 63.8 65.0 62.6 67.1
VT-NI-FGSM 76.2 100.0* 76.2 70.5 65.6 68.4 71.2 65.2 64.1 70.5 73.4 73.4 73.2 71.2 71.3 69.2 68.2 72.2
VT-EPNI-FGSM (Ours) 84.8 100.0* 83.3 78.1 77.0 78.8 79.4 75.8 73.3 80.2 83.3 82.0 81.5 79.7 80.1 78.3 78.5 80.8
FI-MI-FGSM 85.8 97.1* 85.4 81.8 79.4 80.1 79.5 76.3 74.5 81.0 82.7 82.7 83.2 81.3 78.8 77.2 77.8 81.4
FI-EPNI-FGSM (Ours) 90.0 97.4* 88.0 84.8 81.0 82.4 84.3 79.6 78.5 85.5 87.0 85.9 86.3 84.0 83.5 80.5 81.7 84.7

IRv2

MI-FGSM 46.4 44.0 45.4 99.6* 40.0 39.2 41.3 33.9 32.7 49.9 53.2 51.4 50.6 38.6 35.3 35.0 32.7 45.2
NI-FGSM 49.0 45.6 48.5 100.0* 40.6 38.7 42.1 34.9 32.9 53.5 54.3 54.6 54.3 37.5 37.5 33.8 33.2 46.5
EPNI-FGSM (Ours) 68.1 65.3 68.4 100.0* 55.2 53.8 55.5 48.4 47.9 63.8 67.8 66.6 65.3 54.7 50.7 49.0 48.1 60.5
DI-MI-FGSM 63.2 62.3 65.4 98.4* 54.2 54.2 55.7 48.6 51.0 59.3 64.4 62.8 64.7 57.0 52.8 51.8 52.6 59.9
TI-MI-FGSM 41.5 44.5 42.0 97.9* 47.1 47.6 47.3 42.9 41.8 55.9 56.7 55.5 53.9 49.2 45.3 46.9 41.9 50.5
SI-NI-FGSM 74.7 81.7 75.1 99.3* 65.4 65.8 69.7 65.4 64.7 68.9 71.6 71.8 73.0 72.1 68.7 67.3 68.0 72.0
DI-EPNI-FGSM (Ours) 82.8 83.2 84.1 100.0* 70.7 72.3 74.4 67.5 71.1 74.6 79.5 78.2 79.6 75.0 73.0 69.6 70.9 76.9
TI-EPNI-FGSM (Ours) 65.1 68.2 67.6 99.9* 66.6 69.5 68.9 65.2 63.2 73.8 75.0 73.6 74.2 72.9 68.4 69.1 65.4 71.0
SI-EPNI-FGSM (Ours) 90.9 93.1 88.6 100.0* 79.1 81.3 85.5 79.6 82.9 83.2 85.5 86.0 86.1 86.3 83.6 81.5 84.6 85.8
VT-MI-FGSM 63.2 66.6 68.8 99.6* 57.8 57.8 60.7 53.6 54.9 61.7 63.5 64.4 64.0 59.8 56.4 54.2 56.1 62.5
VT-NI-FGSM 66.3 71.0 73.1 99.8* 59.3 59.3 62.3 56.9 56.9 66.8 68.2 68.2 68.1 60.9 58.0 57.2 58.5 65.3
VT-EPNI-FGSM (Ours) 81.0 82.1 83.1 100.0* 71.7 72.4 75.4 70.0 70.6 77.3 80.4 79.9 78.7 77.3 73.4 72.0 71.9 77.5
FI-MI-FGSM 76.3 76.0 76.3 89.7* 67.5 68.0 69.7 66.8 65.5 72.5 73.7 73.4 73.5 70.7 68.3 66.8 67.0 71.9
FI-EPNI-FGSM (Ours) 78.0 77.3 78.0 91.0* 69.8 69.9 72.2 68.9 67.4 73.5 74.0 74.5 73.6 71.7 69.0 66.9 67.2 73.1

R152

MI-FGSM 68.9 59.4 53.8 49.4 81.0 83.3 92.1 94.5 100.0* 72.7 74.1 72.5 72.5 86.5 83.0 82.5 84.0 77.1
NI-FGSM 75.7 64.1 58.0 51.7 86.0 87.7 94.7 96.9 100.0* 76.1 77.4 77.0 76.2 87.4 85.1 85.5 86.7 80.4
EPNI-FGSM (Ours) 91.5 85.8 79.2 74.2 94.8 96.2 98.7 99.4 100.0* 88.7 89.8 89.5 89.6 96.5 96.5 97.6 96.7 92.0
DI-MI-FGSM 85.6 82.9 75.5 72.1 91.8 93.8 96.0 96.8 100.0* 84.0 84.4 85.5 84.6 93.7 94.0 93.7 94.4 88.8
TI-MI-FGSM 57.1 51.3 50.1 41.4 70.9 75.0 80.5 84.5 100.0* 65.4 65.0 64.1 64.0 75.1 71.5 70.7 68.1 67.9
SI-NI-FGSM 85.1 77.2 71.1 66.5 89.6 92.0 95.3 97.8 100.0* 82.1 83.0 81.9 81.9 93.6 91.8 92.4 91.8 86.7
DI-EPNI-FGSM (Ours) 97.6 96.9 94.2 92.1 98.0 98.9 99.4 99.6 100.0* 94.3 94.6 94.7 95.2 99.4 99.3 99.6 99.1 97.2
TI-EPNI-FGSM (Ours) 80.3 78.2 75.7 66.8 89.3 91.4 94.0 95.5 100.0* 81.7 81.2 80.8 81.5 91.8 89.2 91.0 89.7 85.8
SI-EPNI-FGSM (Ours) 95.3 91.4 88.2 84.8 96.7 97.6 98.6 99.0 100.0* 90.3 91.2 92.2 90.5 99.0 98.2 98.1 98.2 94.7

VT-MI-FGSM 83.8 79.6 74.1 70.9 92.2 93.7 96.4 97.5 100.0* 83.6 82.8 84.4 83.8 94.2 92.4 93.1 93.6 88.0
VT-NI-FGSM 87.7 81.9 78.9 74.4 93.5 94.9 98.2 98.7 100.0* 85.3 87.2 88.2 86.9 96.1 94.9 95.1 95.7 90.4
VT-EPNI-FGSM (Ours) 95.4 92.1 89.7 86.9 97.9 98.8 99.5 99.8 100.0* 93.6 93.5 93.7 94.4 99.4 98.7 99.4 98.8 96.0
FI-MI-FGSM 93.3 88.6 88.7 85.1 95.5 96.8 97.5 98.9 99.9* 92.5 92.0 93.0 93.8 97.0 95.7 96.6 96.9 94.2
FI-EPNI-FGSM (Ours) 95.4 93.2 93.1 90.1 96.8 97.9 98.3 98.9 100.0* 94.1 94.8 95.0 95.1 97.6 97.4 97.3 97.6 96.0

V16

MI-FGSM 78.0 59.2 63.8 43.8 80.0 73.3 75.0 63.7 58.7 94.7 98.3 99.8* 99.2 77.0 69.5 65.3 64.9 74.4
NI-FGSM 78.8 61.6 68.8 47.3 82.3 76.1 78.0 67.0 60.4 96.8 99.2 99.9* 99.1 79.1 72.1 66.4 66.0 76.4
EPNI-FGSM (Ours) 93.5 82.3 87.0 68.1 91.5 90.0 90.0 82.9 77.6 99.0 100.0 100.0* 99.9 91.2 87.3 85.8 87.0 89.0
DI-MI-FGSM 88.4 75.6 77.5 59.5 87.8 83.9 86.2 73.8 69.7 98.3 98.8 100.0* 99.4 88.0 81.5 78.2 77.5 83.8
TI-MI-FGSM 60.6 51.1 48.5 33.4 71.2 65.4 60.3 53.6 48.4 88.1 92.9 99.8* 94.4 64.9 58.0 54.8 52.4 64.6
SI-NI-FGSM 89.8 77.5 80.7 62.5 89.1 84.8 85.9 77.1 73.0 98.5 99.6 100.0* 100.0 87.8 81.9 78.9 80.2 85.1
DI-EPNI-FGSM (Ours) 96.2 90.6 92.6 81.9 95.9 94.1 93.5 88.6 85.5 99.8 99.9 100.0* 100.0 95.6 93.1 93.0 91.4 93.6
TI-EPNI-FGSM (Ours) 82.5 74.6 77.4 58.1 88.4 84.2 82.7 75.9 70.4 96.8 98.2 100.0* 98.1 86.4 80.7 78.8 77.4 83.0
SI-EPNI-FGSM (Ours) 96.1 89.1 91.8 80.0 93.6 91.2 92.5 86.4 84.8 99.4 100.0 100.0* 100.0 95.6 92.6 91.0 92.2 92.7

VT-MI-FGSM 87.5 75.2 77.9 61.9 89.9 86.1 86.8 78.3 74.1 97.7 98.9 99.9* 99.4 87.8 82.2 81.3 80.6 85.0
VT-NI-FGSM 89.8 76.9 80.7 65.6 92.1 87.5 89.3 81.1 76.1 98.7 99.5 99.9* 99.4 88.7 85.4 82.5 82.9 86.8
VT-EPNI-FGSM (Ours) 95.6 88.4 92.4 81.1 96.1 94.4 94.0 90.4 88.8 99.4 99.9 99.9* 99.9 95.6 93.7 93.2 92.2 93.8
FI-MI-FGSM 95.9 89.1 93.1 79.7 95.6 94.9 93.4 90.4 87.1 99.6 99.8 100.0* 99.8 94.3 91.5 90.2 88.6 93.1
FI-EPNI-FGSM (Ours) 96.7 90.4 94.1 84.3 96.7 95.9 96.0 92.6 90.1 99.8 99.8 100.0* 99.9 96.4 94.3 93.3 93.0 94.9

Sec. 4.3, respectively. Finally, we provide ablation studies in Sec. 4.4. Table 1 introduces the
abbreviations used in the paper.

4.1 EXPERIMENTAL SETTINGS

Dataset. We follow the previous works (Dong et al., 2019; Wang et al., 2021) to use the DEV dataset
from the NIPS17 Adversarial Attacks and Defenses Competition. This dataset contains 1000 images
with size 299× 299.

Target Models. Seventeen normally trained models, i.e., GoogLeNet (Iv1) (Szegedy et al., 2015),
Inception-v3 (Iv3) (Szegedy et al., 2016), Inception-v4 (Iv4), Inception-ResNet-v2 (IRv2) (Szegedy
et al., 2017), ResNet-18 (R18), ResNet-34 (R34), ResNet-50 (R50), ResNet-101 (R101), ResNet-
152 (R152) (He et al., 2016), VGG11 (V11), VGG13 (V13), VGG16 (V16), VGG19 (V19) (Si-
monyan & Zisserman, 2014), DenseNet-121 (D121), DenseNet-169 (D169), DenseNet-201 (D201),
and DenseNet-161 (D161) (Huang et al., 2017). Ten defense models (i.e., adversarially trained
models), i.e., Adv-Inception-v3 (Iv3adv), Ens-Inception-Resnet-v2 (IRv2ens) Tramèr et al. (2017),
Adv-EfficientNet-b0 (Eb0adv) to Adv-EfficientNet-b7 (Eb7adv).

Baselines. For fair comparison of our EPN and conventional momentum, we replace conventional
momentum with our EPN in momentum-based attacks, i.e., MI-FGSM (Dong et al., 2018), NI-
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Table 3: The attack success rates (%) of adversarial examples crafted on source models against
defense models. “Avg” means the average attack success rate.

Models Attacks Iv3adv IRv2ens Eb0adv Eb1adv Eb2adv Eb3adv Eb4adv Eb5adv Eb6adv Eb7adv Avg

Iv3

MI-FGSM 25.4 11.5 29.7 26.5 28.1 18.8 16.9 17.5 14.8 15.2 20.4
NI-FGSM 25.4 11.6 34.3 31.0 31.2 22.2 18.6 18.6 16.0 16.5 22.5
EPNI-FGSM (Ours) 32.4 14.3 49.0 45.0 45.4 31.1 23.9 25.7 22.4 22.3 31.2
DI-MI-FGSM 33.0 19.3 46.6 42.9 42.4 31.3 27.4 26.7 22.9 24.4 31.7
TI-MI-FGSM 29.9 21.5 35.2 32.6 34.9 27.8 29.3 28.2 24.5 26.6 29.1
SI-NI-FGSM 37.4 23.2 50.2 46.1 46.3 33.3 30.9 29.6 27.6 25.8 35.0
DI-EPNI-FGSM (Ours) 41.5 25.2 65.0 65.5 64.7 45.5 39.1 41.6 36.7 35.6 46.0
TI-EPNI-FGSM (Ours) 54.1 41.2 60.7 58.2 57.0 46.6 46.7 45.3 43.4 44.2 49.7
SI-EPNI-FGSM (Ours) 47.4 28.4 66.3 64.7 63.1 46.7 41.8 42.1 37.9 37.3 47.6

VT-MI-FGSM 36.8 25.1 50.5 46.3 44.9 33.5 29.4 29.4 26.8 26.2 34.9
VT-NI-FGSM 39.1 26.4 54.0 50.6 49.5 36.6 31.0 32.7 30.3 28.5 37.9
VT-EPNI-FGSM (Ours) 43.1 26.5 63.2 61.8 60.6 46.9 41.1 39.7 38.2 36.8 45.8
FI-MI-FGSM 55.3 38.0 68.2 67.8 64.9 53.6 50.0 49.3 46.6 45.1 53.9
FI-EPNI-FGSM (Ours) 58.9 39.9 76.2 73.3 72.7 61.1 56.0 55.6 52.9 50.5 59.7

IRv2

MI-FGSM 27.3 15.5 25.2 22.8 24.3 17.0 13.8 14.6 12.1 13.2 18.6
NI-FGSM 25.9 14.9 24.8 23.1 23.6 17.8 14.1 14.9 12.8 13.7 18.6
EPNI-FGSM (Ours) 33.5 15.9 36.3 32.4 34.9 23.9 20.7 20.4 17.6 17.8 25.3
DI-MI-FGSM 33.1 24.7 38.1 35.8 37.9 27.1 24.6 23.2 22.0 20.8 28.7
TI-MI-FGSM 38.1 32.2 39.0 36.7 39.4 30.2 33.8 31.4 29.2 29.7 34.0
SI-NI-FGSM 37.0 33.0 50.8 48.2 46.9 35.7 32.0 28.7 26.9 27.5 36.7
DI-EPNI-FGSM (Ours) 39.4 29.7 57.4 52.4 53.4 41.0 33.6 33.3 30.2 30.6 40.1
TI-EPNI-FGSM (Ours) 58.3 52.9 60.5 58.3 56.6 49.7 50.9 47.0 48.0 46.5 52.9
SI-EPNI-FGSM (Ours) 45.6 41.5 68.9 64.3 66.8 50.2 42.6 43.5 39.7 40.1 50.3

VT-MI-FGSM 38.8 36.4 42.3 38.9 41.2 31.2 28.4 26.4 25.4 25.4 33.4
VT-NI-FGSM 40.5 34.8 44.6 41.1 43.4 33.1 28.2 26.6 25.8 26.2 34.4
VT-EPNI-FGSM (Ours) 48.2 36.6 59.5 55.3 54.1 43.0 38.8 38.0 36.9 35.3 44.6
FI-MI-FGSM 54.5 40.1 57.4 56.7 56.3 45.7 40.9 39.7 38.2 37.4 46.7
FI-EPNI-FGSM (Ours) 53.3 47.1 59.6 56.8 57.9 47.0 43.3 42.1 40.6 38.6 48.6

R152

MI-FGSM 36.5 27.8 46.6 43.6 47.3 30.9 27.3 26.5 22.0 24.8 33.3
NI-FGSM 40.1 29.4 49.8 47.3 47.8 33.2 29.1 27.7 25.2 25.4 35.5
EPNI-FGSM (Ours) 53.1 43.1 71.9 68.1 70.5 50.2 41.0 41.0 37.5 40.2 51.7
DI-MI-FGSM 57.6 51.7 72.6 68.3 71.2 54.7 47.1 44.7 44.2 44.3 55.6
TI-MI-FGSM 46.8 41.1 50.7 46.4 50.1 41.8 43.2 41.0 36.2 38.7 43.6
SI-NI-FGSM 51.7 43.4 62.8 57.3 61.2 43.4 39.3 36.0 35.4 33.8 46.4
DI-EPNI-FGSM (Ours) 78.3 73.1 91.6 89.9 90.6 75.7 67.3 64.9 62.6 64.3 75.8
TI-EPNI-FGSM (Ours) 72.2 67.4 74.7 70.1 74.2 62.9 62.7 60.7 59.3 58.3 66.3
SI-EPNI-FGSM (Ours) 67.5 59.3 79.4 78.5 81.1 61.8 53.7 51.5 48.8 50.3 63.2

VT-MI-FGSM 59.1 52.6 69.6 64.9 69.3 55.1 48.8 46.1 43.6 44.6 55.4
VT-NI-FGSM 61.6 55.5 73.6 68.2 72.1 56.1 50.6 48.7 45.5 47.9 58.0
VT-EPNI-FGSM (Ours) 72.6 71.6 86.2 85.3 88.4 74.1 66.0 64.8 62.2 65.1 73.6
FI-MI-FGSM 76.4 66.9 81.1 79.5 82.6 67.5 62.1 60.3 56.6 56.4 68.9
FI-EPNI-FGSM (Ours) 81.0 73.3 88.5 87.0 88.6 76.3 70.9 70.1 66.4 66.4 76.9

V16

MI-FGSM 33.0 20.3 48.8 41.8 41.3 25.1 21.5 21.7 19.0 21.8 29.4
NI-FGSM 33.0 22.5 49.5 43.6 44.3 27.7 22.2 22.7 18.9 20.1 30.5
EPNI-FGSM (Ours) 46.7 29.0 71.2 65.7 63.5 41.5 31.3 31.5 28.5 28.7 43.8
DI-MI-FGSM 44.9 31.6 62.4 55.9 56.9 37.5 32.0 30.9 27.8 28.1 40.8
TI-MI-FGSM 38.9 29.4 44.3 38.0 41.4 31.1 32.0 31.5 28.5 28.2 34.3
SI-NI-FGSM 50.0 33.5 61.4 56.4 54.4 36.5 29.9 30.0 27.2 26.4 40.6
DI-EPNI-FGSM (Ours) 61.2 44.7 80.3 77.9 78.2 52.2 43.5 42.6 40.2 38.8 56.0
TI-EPNI-FGSM (Ours) 61.8 49.9 68.6 65.2 63.7 49.2 50.3 47.7 47.6 46.1 55.0
SI-EPNI-FGSM (Ours) 62.8 42.6 78.6 75.4 74.3 48.1 40.6 41.9 37.9 35.5 53.8

VT-MI-FGSM 49.4 35.4 65.3 58.7 58.6 39.7 34.3 33.6 29.2 32.2 43.6
VT-NI-FGSM 49.3 37.5 67.3 60.2 60.9 40.7 35.1 34.0 29.8 32.0 44.7
VT-EPNI-FGSM (Ours) 61.4 47.6 82.9 77.8 77.8 58.9 48.8 47.0 46.5 47.0 59.6
FI-MI-FGSM 63.0 44.6 80.8 74.1 72.9 51.5 42.0 43.5 39.1 39.8 55.1
FI-EPNI-FGSM (Ours) 64.7 44.8 85.1 81.3 80.8 58.6 46.2 49.1 42.5 42.4 59.6

FGSM (Lin et al., 2019), DI-MI-FGSM (Xie et al., 2019), TI-MI-FGSM (Dong et al., 2019), SI-NI-
FGSM (Lin et al., 2019), VT-MI-FGSM (Wang & He, 2021), VT-NI-FGSM (Wang & He, 2021) and
FI-MI-FGSM (Wang et al., 2021). Then we compare the transferability of conventional momentum-
based attacks and our EPN-based attacks.

Hyperparameters. In all experiments, we follow the official default settings for hyperparameters.
Specifically, the maximum perturbation ϵ = 16, the number of iterations T = 10, the step size
α = ϵ/T = 1.6, and the decay factor µ = 1.0. For DIM (Xie et al., 2019), the probability p is set to
0.5. For TIM (Dong et al., 2019), the size of the Gaussian kernel is set to 15×15. For SIM (Lin et al.,
2019), the number of scale copies m is set to 5. For VT-MI-FGSM (Wang & He, 2021) and VT-NI-
FGSM (Wang & He, 2021), the number of sampled examples N is set to 20, and the parameter β for
the upper bound of the neighborhood is set to 1.5. For FI-MI-FGSM (Wang et al., 2021), the drop
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Figure 3: The average attack success rates (%)
of the adversarial examples crafted on source
models against normally trained models (except
the source model) and defense models for vari-
ous µ.

Figure 4: The average attack success rates (%)
of the adversarial examples crafted on source
models against normally trained models (except
the source model) and defense models for vari-
ous epochs.

probability pd is set to 0.3 when attacking normally trained models and 0.1 when attacking defense
models, the ensemble number N is set to 30 in aggregate gradient, and the intermediate layer is set
to Mixed 5b for Iv3, Conv 4a for IRv2, Conv3 3 for V16 as well as the last layer of the second block
for R152. For our EM-based attacks, epochs is set to 5.

4.2 ATTACK NORMALLY TRAINED MODELS

To validate that EPN-based attacks have higher transferability than conventional momentum-based
attacks, we choose Iv3, IRv2, R152, and V16 as the source model, respectively, and attack normally
trained target models via our EPN-based methods and baseline methods. The attack success rates
are shown in Table 2. The results show that the attack success rates of our EPN-based methods are
∼11.9% higher than baseline methods on average, In particular, our EPN-based attacks have the best
transferability against normally trained target models when the source model is R152. Specifically,
the attack success rates of EPNI-FGSM, DI-EPNI-FGSM, VT-EPNI-FGSM, and FI-EPNI-FGSM
are 92.0%, 97.2%, 96.0%, and 96.0%, respectively, on average. Therefore, the experiments demon-
strate that our EPN improves transferability more effectively than conventional momentum against
normally trained models.

4.3 ATTACK DEFENSE MODELS

To further compare the transferability, we also use defense models as the target models, and the
source models are still Iv3, IRv2, R152, and V16. We craft adversarial examples on the source
model via our EPN-based methods and baseline methods to attack defense models. The attack
success rates are shown in Table 3. The results show that the attack success rates of our EPN-
based methods are ∼13.1% higher than baseline methods on average. Adversarial examples crafted
on R152 still show the best transferability against defense models. Specifically, the attack success
rates of EPNI-FGSM, DI-EPNI-FGSM, VT-EPNI-FGSM, and FI-EPNI-FGSM are 51.7%, 75.8%,
73.6%, and 76.9%, respectively, on average. The results of experiments indicate that our EPN is still
more effective than conventional momentum against defense models.

4.4 ABLATION STUDY

We conduct ablation studies for EPNI-FGSM. We investigate the impacts of two hyperparameters
(i.e., the decay factor µ and the epochs of pretraining epochs) on the transferability of EPNI-FGSM
in Sec. 4.4.1. We further study the impacts of EM and PN on transferability in Sec. 4.4.2.

4.4.1 IMPACTS OF µ AND epochs

The source models are set to Iv3, IRv2, R152, and V16. We use EPNI-FGSM to craft adversar-
ial examples to attack normally trained models and defense models, respectively. We investigate
the impacts of µ and epochs on the transferability of EPNI-FGSM by counting the average attack
success rates against normally trained models (except the source model) and defense models.

The decay factor µ. The decay factor µ plays a vital role for momentum. If µ = 0, the momentum-
based attacks degrade to vanilla iterative gradient-based attacks. If 0 < µ < 1, the previous gradients
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Figure 5: The average attack success rates (%) of the adversarial examples crafted on source models
against normally trained models and defense models via NI-FGSM, ENI-FGSM, PNI-FGSM, and
EPNI-FGSM.

accumulated in the momentum decay exponentially. If µ = 1, the momentum simply adds up all
previous gradients. If µ > 1, the previous gradients accumulated in the momentum grow exponen-
tially. We pre-set epochs = 5 and set µ from 0.0 to 2.0 with a step size of 0.1. The average attack
success rates are shown in Fig. 3. When µ ≤ 1.0, the average attack success rates show an upward
trend, and when µ ≥ 1.0, the average attack success rates show a downward trend. Therefore, we
set µ = 1.0 for EPNI-FGSM to achieve the best transferability.

The epochs of pretraining epochs. epochs affects the amount of gradient accumulated in EM. We
pre-set µ = 1.0 and set epochs from 0 to 10 with a step size of 1. The average attack success rates
are shown in Fig. 4. As epochs increases, the average attack success rates increase and gradually
converge. Since the larger epochs, the higher the computational cost, we set epochs = 5 for EPNI-
FGSM to strike a balance between computational cost and transferability.

In summary, we set the decay factor µ = 1.0 and the epochs of pretraining epochs = 5 for EPNI-
FGSM. Similarly, such two hyperparameters of other EPN-based attacks have the same settings as
EPNI-FGSM.

4.4.2 IMPACTS OF EM AND PN

The source models are the same as in Sec 4.4.1. To investigate the impacts of EM and PN, we craft
adversarial examples on source models via ENI-FGSM (only with EM), PNI-FGSM (only with
PN), and EPNI-FGSM (with EM and PN), respectively. In addition, we also use MI-FGSM and
NI-FGSM (without EM and PN) as baselines. For ENI-FGSM, the epochs of pretraining epochs
is set to 5. For ENI-FGSM and PNI-FGSM, the decay factor µ is set to 1.0. The average attack
success rates of the adversarial examples against normally trained models and defense models are
shown in Fig. 5. The average attack success rates of ENI-FGSM are higher than MI-FGSM and NI-
FGSM, demonstrating that EM improves transferability more than conventional momentum. The
same is true for PN. Besides, the average attack success rates of EPNI-FGSM are higher than that of
ENI-FGSM and PNI-FGSM, demonstrating that the combination of EM and PN can further improve
transferability.

5 CONCLUSION

In this work, we proposed Experienced Momentum (EM) and Precise Nesterov momentum (PN)
to boost transferability. Specifically, EM is trained on a set of derived models by Random Chan-
nels Swapping (RCS), and then conventional momentum is initialized to EM, which can accel-
erate optimization to escape from saddle points and poor local extrema during early iterations to
improve transferability. Additionally, we adopted the current gradient to refine the pre-update of
conventional Nesterov momentum, called PN. Then, we naturally combined EM and PN as EPN
to improve transferability further. Extensive experiments demonstrate that EPN-based attacks have
higher transferability than conventional momentum-based attacks. However, our methods still adopt
a fixed learning rate or step size that is crucial for the optimizer. Therefore, we will explore the
impact of learning rate or step size on transferability in future work.
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