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WeakSAM: Segment Anything Meets Weakly-supervised
Instance-level Recognition
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ABSTRACT
Weakly-supervised visual recognition using inexact supervision is
a critical yet challenging learning problem. It significantly reduces
human labeling costs and traditionally relies on multi-instance
learning and pseudo-labeling. This paper introduces WeakSAM and
solves the weakly-supervised object detection (WSOD) and seg-
mentation by utilizing the pre-learned world knowledge contained
in a vision foundation model, i.e., the Segment Anything Model
(SAM). WeakSAM addresses two critical limitations in traditional
WSOD retraining, i.e., pseudo ground truth (PGT) incompleteness
and noisy PGT instances, through adaptive PGT generation and
Region of Interest (RoI) drop regularization. It also addresses the
SAM’s shortcomings of requiring human prompts and category
unawareness in object detection and segmentation. Our results indi-
cate thatWeakSAM significantly surpasses previous state-of-the-art
methods in WSOD and WSIS benchmarks with large margins, i.e.
average improvements of 7.4% and 8.5%, respectively.

CCS CONCEPTS
• Computing methodologies→ Object detection; Image seg-
mentation.

KEYWORDS
Weakly-supervised Learning, Segment Anything Model, Object
Detection, Instance Segmentation

1 INTRODUCTION
Weakly-supervised learning (WSL) [73, 74, 91] is a crucial compo-
nent of machine learning. It is particularly valuable in tasks where
strong supervision is difficult to annotate due to the high cost of
data labeling [16, 47, 54]. Due to the massive demand for annotated
data in visual perception, WSL is essential in developing a label-
efficient recognition system. In the standard weakly-supervised
visual perception paradigm [5, 8, 51, 56, 60, 63, 64, 75–77, 85, 87],
training commences with inexact supervision, such as image-level
labels. Subsequently, the trained WSL network is employed to gen-
erate pseudo ground truth (PGT), which serves as a form of refined,
albeit still inaccurate supervision. Finally, the PGT is used as inaccu-
rate supervision to launch WSL retraining. Although the iterative
WSL process achieves significant progress, it is still limited by the
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Figure 1: Quantitative comparisons between WeakSAM and
previous SOTA methods under different tasks and bench-
marks. The scale of each axis in the radar chart is normalized
by the performance of the previous SOTA methods (marked
in parentheses), and the stride of each axis is the same.

lack of external knowledge, which restricts the performance ofWSL
and hinders it from matching fully-supervised learning (FSL).

Nowadays, foundation models are gaining increasing attention
because of their transferable pre-learned world knowledge, which
can be regarded as powerful external knowledge for WSL. As a
vision foundation model, SAM [34] achieves outstanding perfor-
mance in interactive, class-agnostic segmentation. SAM owes its
success to promptable training on a large-scale dataset. However,
there are two main drawbacks to SAM: First, SAM requires interac-
tive operations as input, which means it cannot work automatically
without human prompts. Second, SAM produces class-agnostic seg-
ments and cannot assign class labels. These drawbacks severely
restrict the application of SAM as a direct and generic visual frame-
work. As a strong complement, WSL is good at mining classification
clues through inexact supervision, which can provide automatic
prompts for SAM. Subsequently, WSL with SAM’s knowledge can
further bring class-aware perception.

This motivates us to assimilate SAM within the WSL paradigm.
TheWeakSAM framework is designed to harness transferable knowl-
edge from SAM, thereby enriching the WSL process. Simultane-
ously, it offers the capability to deliver automatic classification
clues to SAM. This bidirectional enhancement constructs a promis-
ing foundation-model-based weakly-supervised visual perception
framework. Specifically, in a weakly-supervised object detection
(WSOD) setting,WeakSAMuses classification clues as SAMprompts
to produce proposals automatically. These proposals are then used
in WSOD training for class-aware perception.

Within the scope of the WeakSAM framework, our analysis iden-
tifies two prevailing limitations in the iterative WSOD retraining

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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approach: the issue of pseudo ground truth (PGT) incompleteness
and the presence of noisy PGT instances. The former, PGT incom-
pleteness, refers to the tendency of WSOD-generated PGT to omit
some objects or categories, leading to insufficient training for these
categories. The latter, noisy PGT instances, pertain to the preva-
lent presence of noise within the PGT, which adversely impacts
the retraining process. To effectively mitigate these challenges, we
introduce two key strategies: adaptive PGT generation to address
the PGT incompleteness problem, and Region of Interest (RoI) drop
regularization to counteract the noise in PGT instances. Moreover,
WeakSAM’s capability enables the extension in the realm of weakly-
supervised instance segmentation (WSIS). In this context, SAM is
employed to further refineWeakSAM-PGT, enabling the generation
of pseudo instance segmentation labels. This approach exempli-
fies WeakSAM is promising to build a unified weakly-supervised
instance-level recognition framework.

The main contributions of this paper can be summarized as
follows:

• We propose a weakly-supervised instance-level recognition
framework (WeakSAM), which automatically prompts SAM
by classification clues for proposals. The WeakSAM propos-
als reduce the generation time by 65.5% and improve the
recall (IoU=0.9) by 22.9%, compared to Selective Search [69].

• We analyze the weaknesses in traditional WSOD retraining,
and propose adaptive PGT generation and RoI drop regular-
ization to address them, respectively. After the WeakSAM-
WSOD is complete, the proposed WeakSAM can be easily
applied to WSIS further.

• The proposed WeakSAM achieves state-of-the-art (SOTA)
results on the WSOD and WSIS benchmarks, significantly
surpassing previous SOTA methods as shown in Fig. 1.

2 RELATEDWORK
2.1 Segment Anything Model
The recent Segment Anything Model (SAM) [34] draws great at-
tention from researchers. The SAM is trained on SA-1B with over
1 billion masks, following the model-in-the-loop manner. Besides,
SAM performs superior zero-shot transfer capabilities and is ap-
plied in many visual tasks, e.g., FGVP [78] incorporates SAM to
achieve zero-shot fine-grained visual prompting, MedSAM [48]
adapts SAM into a large scale medical dataset to build a medical
foundation model, and some methods [7, 30, 62] utilize SAM to deal
with the weakly-supervised semantic segmentation problem. How-
ever, SAM is an interactive segmentation method, which heavily
relies on human prompts.

In our approach, we innovatively propose to automatically prompt
SAM using classification clues for extracting region proposals. This
method results in high-recall proposals that surpass traditional
methods like Selective Search in terms of both efficiency and effec-
tiveness. This advancement represents a significant improvement
in the domain of proposal generation within the WSOD framework.

2.2 Weakly-supervised Object Detection
Weakly-supervised object detection (WSOD) with image-level la-
bels [2, 3, 12, 17, 29, 35, 40, 45, 61, 66, 70, 71, 86] is important for
reducing the human annotation burden. The previous works, i.e.,

WSDDN [4] and OICR [65], proposed the Multiple Instance Learn-
ing and online refinement paradigms. The later works aimed to
improve the WSOD performance from different perspectives. Such
as WSOD2 [81] introduced bottom-up object evidence, PCL [64]
proposed to cluster proposals, MIST [53] utilized a self-training
algorithm, etc. Besides, some methods [26, 31, 38, 60, 64, 88] also re-
trained a fully-supervised object detection network with generated
pseudo ground truth (PGT). However, most of them used the pro-
posals generated from low-level methods, i.e., Selective Search [69],
EdgeBox [95], and MCG [50], which contain a great number of
redundant proposals and bring an optimization challenge.

Different from previous methods, our WeakSAM proposals have
fewer numbers and higher recall, which reduces the difficulty of
finding the correct proposals for WSOD methods. For the key prob-
lem of PGT incompleteness and noisy PGT instances, we propose
adaptive PGT generation and Region of Interest (RoI) drop regular-
ization to address them, respectively.

2.3 Weakly-supervised Instance Segmentation
Weakly-supervised instance segmentation (WSIS) aims to achieve
instance segmentation through weak supervision, such as box-level
supervision [11, 24, 32, 37, 39, 42, 67, 72, 83, 93], and image-level
supervision [19, 23, 25, 28, 36, 46, 49, 84, 94]. The WSIS with image-
level supervision is challenging because it lacks accurate instance
locations. Some image-level WSIS methods use class activation map
(CAM) [89] to extract coarse object locations, such as PRM [90],
IAM [94], IRNet [1], BESTIE [33], etc. Some other image-level WSIS
methods try to incorporate instance clues from extra priors, such as
Fan et al. [15], LIID [46], CIM [41], etc. However, they always need
complicated networks and lack high-quality instance segments.

Different from previous WSIS methods, the proposed WSIS ex-
tension using WeakSAM PGT and SAM’s prediction is concise and
effective. The generated pseudo instance labels can further be ap-
plied to any fully-supervised instance segmentation method.

3 METHODS
We present the WeakSAM framework as shown in Fig. 2. At first,
WeakSAM collects classification activations from a classification
ViT. Subsequently, WeakSAM automatically generates prompts
from classification activations and spatial samples. Next, WeakSAM
sends the prompts to SAM for WeakSAM proposals. Then, we
launch the weakly-supervised object detection (WSOD) pipeline,
which is enhanced byWeakSAM proposals, adaptive pseudo ground
truth (PGT) generation, and RoI drop regularization. Last, we use
the SAM-enhanced pseudo instance labels to launch the weakly-
supervised instance segmentation extension.

3.1 Classification Clues as Automatic Prompts
Previous WSOD methods face an optimization problem caused
by the redundant proposals, e.g., Selective Search [69] and Edge-
Box [95], because these proposals are only based on low-level fea-
tures. To address this problem, we propose to transfer knowledge
in the foundation model, i.e., SAM, for proposal generation. We use
classification clues to prompt SAM automatically, which also solves
the shortcoming of SAM requiring interactive prompts

Classification Activation Generation. As shown in Fig. 2, we ex-
tract classification clues from a classification ViT. Specifically, we
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Figure 2: An overview of the proposed WeakSAM framework. We first generate activation maps from a classification ViT [92].
Subsequently, we introduce classification clues and spatial points as automaticWeakSAMprompts, which address the problem of
SAM requiring interactive prompts. Next, we use theWeakSAMproposals in theWSODpipeline, in which theweakly-supervised
detector performs class-aware perception to annotate pseudo ground truth (PGT). Then, we analyze the incompleteness and
the noise problem existing in PGT and propose adaptive PGT generation, RoI drop regularization to address them, respectively.
Finally, we launch WSIS training supervised by pseudo instance labels, which requires adaptive PGT as SAM prompts. The
snowflake mark means the model is frozen.

choose the pre-trained weakly-supervised semantic segmentation
network, WeakTr [92], to provide classification clues because of
its superior localization ability. At first, we extract cross-attention
maps CA ∈ R𝐾×𝐻×𝑁×𝑁×𝐶 from the self-attention maps, where
𝐾 is the number of transformer encoding layers, 𝐻 is the number
of attention heads in each layer, 𝑁 × 𝑁 is the spatial size of the
visual tokens, and 𝐶 represents the total number of classification
categories. Then, we obtain coarse class activation map (CAM) [89],
CAM𝑐𝑜𝑎𝑟𝑠𝑒 ∈ R𝑁×𝑁×𝐶 , from the convolutional CAM head, which
takes visual tokens at the final transformer layer as input and pro-
duces coarse CAM. Last, we use coarse CAM and weighted self-
attention maps to produce fine CAM, CAM𝑓 𝑖𝑛𝑒 ∈ R𝑁×𝑁×𝐶 .

WeakSAM Prompts Generation. As shown in Fig. 2, we extract
prompts from dense sampling points and activations, which include
cross-attention maps, coarse CAM, and fine CAM. At first, the
dense sampling requires splitting the image into 𝑆 × 𝑆 patches and
taking the center points as prompts. Notably, the dense sampling
points provide spatial-aware prompts but lack explicit reference
to objects and semantics. Then, we get peak points from the cross-
attention maps as prompts. We observe that these maps do not
solely concentrate on objects from their corresponding categories
but also give attention to objects from different categories. So, we
mark these prompts as instance-aware ones. Last, we extract peak
points from coarse CAM and fine CAM as semantic-aware prompts,
which are more precise and focus on areas of foreground objects.

Specifically, we extract peak points from cross-attention maps
and CAMs, as shown in Algorithm 1. Given cross-attention maps or
CAMs as input, we first initialize the peak points list 𝑃 , peak values
list𝑉 , deleted lists 𝑃delete,𝑉delete, and max pooling operation. Next,
we reshape the input maps and ensure the last two dimensions
correspond to the original image size and the others as the first
dimension. Then, we apply max pooling on the input maps𝑀 , and
sort 𝑉 and 𝑃 in descending order based on 𝑉 . Last, we remove
points with low activation values or close to high-score points.

WeakSAM Proposals Generation. At the WeakSAM proposal gen-
eration stage, we use the three kinds of prompts to prompt SAM
automatically. We directly add semantic-aware prompts and spatial-
ware prompts to the prompt list, because they usually have clear
localization to foreground objects and spatial positions, respectively.
For the instance-aware prompts that have some redundancy, we
cluster them to filter the duplicated ones and then add them to
the prompt list. Finally, the prompt list is used to prompt SAM for
WeakSAM proposals.

3.2 WeakSAMWSOD Pipeline
To better describe the proposed weakly-supervised object detection
(WSOD) pipeline, we first present the weakly-supervised detector
training with WeakSAM proposals. Then, we identify the PGT
incompleteness problem and introduce the proposed adaptive PGT
generation to address it. Last, we analyze the noise problem existing
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Algorithm 1 Peak Points Extraction
Require: mapsM (CA or CAM), kernel size 𝑘 , activation threshold 𝜏
Ensure: peak points coordinates list 𝑃 = [𝑝0, 𝑝1, . . . , 𝑝𝑛−1 ], correspond-

ing peak values list𝑉 = [𝑣0, 𝑣1, . . . , 𝑣𝑛−1 ]
1: M = M.view(-1, 𝑁 , 𝑁 ) // reshape
2: Initialize 𝑃 ,𝑉 as empty list
3: Initialize Maxpool( ) operation with kernel size 𝑘
4: 𝑃 ,𝑉 =Maxpool(M) // get coordinates and values
5: Sort𝑉 in descending order of numerical value, and rearrange 𝑃 accord-

ingly
6: Initialize list 𝑃delete,𝑉delete to mark points for deletion
7: for each index 𝑖 from 0 to length(𝑃 ) do
8: // skip further checks for points marked for deletion
9: if 𝑝𝑖 in 𝑃delete then
10: Continue
11: end if
12: // mark activation points with low score
13: if 𝑣𝑖 < 𝜏 then
14: Append 𝑝𝑖 , 𝑣𝑖 to 𝑃delete,𝑉delete
15: Continue
16: end if
17: // mark lower-score points near the current point
18: for each index 𝑗 = 𝑖 + 1 to length(𝑃 ) do
19: if | |𝑝 𝑗 − 𝑝𝑖 | | ≤ 𝑘/2 then
20: Append 𝑝 𝑗 , 𝑣𝑗 to 𝑃delete,𝑉delete
21: end if
22: end for
23: end for
24: Remove all points in 𝑃delete and𝑉delete from 𝑃 and𝑉
25: return 𝑃 ,𝑉

in the retraining phase, and propose Region of Interest (RoI) drop
regularization to alleviate the effect of noise.

Weakly-supervised Detector Training. A primary challenge in
traditional WSOD methods is the low training efficiency, largely
attributed to the redundancy of proposals. Traditional approaches
often involve the Region of Interest pooling layer processing thou-
sands of proposals per image, which impairs both effectiveness and
efficiency. To address this issue, our WeakSAM proposals adopt
transferred knowledge from SAM and classification clues. The pro-
posed method focuses on generating a smaller quantity of proposals
while maintaining high recall, thereby enhancing the overall effi-
ciency and efficacy of the detection process in a WSOD context.
We apply the proposed WeakSAM on previous WSOD methods,
including OICR [65] and MIST [53], which receive significant im-
provements. As shown in Table 1, quantitative results show that
WeakSAM-enhanced WSOD can annotate bounding boxes for ob-
jects more precisely.

Adaptive PGTGeneration. Generating high-quality pseudo ground
truth (PGT) is the key to the WSOD paradigm. Traditional WSOD
methods often encounter the issue of PGT incompleteness. This
occurs because these methods typically select top-scoring proposals
as PGT or apply a uniform threshold to filter proposals across all
categories. Such approaches can lead to the omission of objects or
entire categories, especially when proposals in certain categories
score low. To address these problems, we propose an adaptive PGT
generation method to normalize the score distribution of proposals,
ensuring they fall within a similar range, as shown in Algorithm. 2.

For box list 𝐵 ∈ R𝑁×5 and corresponding score list 𝑆 ∈ R𝑁×1,
we first select them with a specific classification label and then
normalize the scores. The 𝑁 is the number of predicted boxes, and
the second dimension of 𝐵 is the combination of a category label
and four coordinate values. Next, we keep boxes with scores higher
than the threshold 𝜏𝑠 . Please note that the normalization enables
the threshold to work for all categories adaptively, so we would
not lose a ground truth category even if all boxes in this category
have low scores. Then, we select the boxes whose main parts are
not contained in some bigger boxes. Because the boxes that have
more 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 are often local components of some objects. Last, we
return the box list 𝐵′ as the final PGT.
Algorithm 2 Adaptive Pseudo Ground Truth Generation
Require: boxes list 𝐵 of an image, corresponding scores list 𝑆 , correspond-

ing classification labels 𝑌 , score threshold 𝜏𝑠 , overlap threshold 𝜏𝑜
Ensure: pseudo ground truth boxes 𝐵′
1: initialize 𝐵′ as empty list
2: for each 𝑦𝑖 in 𝑌 do
3: // get boxes’ indices with label 𝑦𝑖
4: 𝑖𝑑𝑥𝑖 = where (𝐵 [:, 0] == 𝑦𝑖 )
5: 𝑆𝑖 = 𝑆 [𝑖𝑑𝑥𝑖 , :]
6: 𝐵𝑖 = 𝐵 [𝑖𝑑𝑥𝑖 , :]
7: 𝑆𝑛𝑜𝑟𝑚

𝑖
= 𝑆𝑖−min(𝑆𝑖 )

max(𝑆𝑖 )−min(𝑆𝑖 ) // normalize scores
8: // keep boxes with high score
9: 𝑖𝑑𝑥𝑘𝑒𝑒𝑝 = { 𝑗 | 𝑠 𝑗 ∈ 𝑆𝑛𝑜𝑟𝑚

𝑖
, 𝑠 𝑗 > 𝜏𝑠 }

10: 𝐵𝑖 = 𝐵𝑖 [𝑖𝑑𝑥𝑘𝑒𝑒𝑝 , :]
11: 𝑆𝑛𝑜𝑟𝑚

𝑖
= 𝑆𝑛𝑜𝑟𝑚

𝑖
[𝑖𝑑𝑥𝑘𝑒𝑒𝑝 , :]

12: // select boxes with less overlap
13: for each box 𝑏 𝑗 in 𝐵𝑖 do
14: 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 = { |𝑏 𝑗∩𝑏𝑘 |

|𝑏 𝑗 | | 𝑏𝑘 ∈ 𝐵𝑖 , 𝑘 ≠ 𝑗 }
15: if all 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 < 𝜏𝑜 in 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 then
16: Append 𝑏 𝑗 to 𝐵′
17: end if
18: end for
19: end for
20: return 𝐵′

RoI Drop Regularization. A recognized issue in the retraining
phase of WSOD is noisy PGT instances. These noisy instances
result in PGT acting as the inaccurate supervision. Alleviating
this problem is critical for enhancing the performance of WSOD
retraining. To analyze this problem in depth, we first divide the
RoIs into different loss intervals. Then, we mark the RoIs whose
corresponding PGTs do not have at least 70% IoU with the ground
truth boxes as error ones. Last, we present the statistics as shown
in Fig. 3, which demonstrates that the RoIs with larger losses are in
a small amount and have a high error rate.

Intuitively, we propose a method, named RoI drop regulariza-
tion, to adaptively drop the RoIs with larger losses. Notably, the
proposed method is easy to implement and can further help the
query-based detectors to alleviate the noisy PGT problem by its vari-
ant, query drop regularization. For anchor-based FSOD methods,
e.g., Faster-RCNN [52], we first determine the thresholds 𝜏𝑐𝑙𝑠 and
𝜏𝑟𝑒𝑔 for classification loss and regression loss, respectively. Then,
we compute the drop signal 𝑑𝑖 for 𝑖−th RoI.

𝑑𝑖 =

{
1, 𝑙𝑐𝑙𝑠

𝑖
≤ 𝜏𝑐𝑙𝑠 , and 𝑙

𝑟𝑒𝑔

𝑖
≤ 𝜏𝑟𝑒𝑔

0, others , (1)
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Figure 3: The relationship between the normalized classifica-
tion loss, corresponding number of RoIs and error rate. The
results are obtained from training the Faster-RCNN using
PGT in the preliminary training stage.

where the 𝑙𝑐𝑙𝑠
𝑖

and 𝑙𝑟𝑒𝑔
𝑖

represent the classification loss and regres-
sion loss for each RoI, respectively. When the two losses of a RoI
are all below their thresholds, we set its drop signal 𝑑𝑖 as 1. Finally,
we integrate the 𝑑𝑖 into the computation of final loss L.

L =
∑︁
𝑖

𝑑𝑖𝑙
𝑐𝑙𝑠
𝑖 + 𝜆

∑︁
𝑖

𝑝∗𝑖 𝑑𝑖𝑙
𝑟𝑒𝑔

𝑖
, (2)

where 𝑝∗
𝑖
is 1 if the box is positive, and 0 if the box is negative. The

𝜆 is a balancing weight.
For query-based FSOD methods, e.g., DINO [82], since queries

can be regarded as dynamic RoIs, we apply query drop regulariza-
tion on them. Because only a few matched queries need to calculate
box loss 𝑙𝑏𝑜𝑥 and IoU loss 𝑙𝑖𝑜𝑢 , we only set a percentile threshold
based on classification loss 𝑙𝑐𝑙𝑠 . Only when the 𝑖−th query’s loss 𝑙𝑐𝑙𝑠

𝑖

is less than the loss at 𝜏% percentile, i.e., 𝑙𝑐𝑙𝑠𝜏 , will its corresponding
𝑑𝑖 be set to 1.

𝑑𝑖 =

{
1, 𝑙𝑐𝑙𝑠

𝑖
≤ 𝑙𝑐𝑙𝑠𝜏

0, others . (3)

LHungarian =
∑︁
𝑖

𝑑𝑖 [𝑙𝑐𝑙𝑠𝑖 + 𝑝∗𝑖 𝑙
𝑏𝑜𝑥
𝑖 + 𝑝∗𝑖 𝑙

𝑖𝑜𝑢
𝑖 ] . (4)

3.3 WeakSAM for WSIS
Thanks to the high-quality WeakSAM PGT, we can directly use
them to prompt SAM for precise segments as pseudo instance la-
bels. Following the practices in the WeakSAM WSOD pipeline, we
evaluate the quality of WeakSAM PGT using R-CNN-based and
query-based instance segmentation methods, respectively. Notably,
we do not introduce more techniques in the WeakSAMWSIS, be-
cause the WeakSAM pseudo instance labels are accurate enough.

4 EXPERIMENT
4.1 Experimental Setup

Datasets and Metrics. We evaluate the proposed WeakSAM on
bothweakly-supervised object detection (WSOD) andweakly-supervised

instance segmentation (WSIS) benchmarks. Notably, the same datasets
for different tasks may have different settings.

For WSOD, we use three datasets, i.e., PASCAL VOC 2007 [14],
PASCAL VOC 2012 [14], and COCO 2014 [44]. PASCAL VOC 2007
has 2501 images for training, 2510 images for evaluation, and 4592
images for testing. PASCAL VOC 2012 contains 5717 training im-
ages, 5823 validation images, and 10991 test images. COCO 2014
includes around 80,000 images for training and 40,000 images for
validation. Following previous WSODmethods, we trainWeakSAM
on 𝑡𝑟𝑎𝑖𝑛 and 𝑣𝑎𝑙 sets and evaluate WeakSAM on the 𝑡𝑒𝑠𝑡 set for
PASCAL VOC 2007 and 2012. For COCO 2014, we use the 𝑡𝑟𝑎𝑖𝑛
set for training and the 𝑣𝑎𝑙 set for evaluating. PASCAL VOC 2007
and 2012 datasets comprise 20 object categories and COCO 2014
comprises 80 ones. We report the average precision AP metrics for
these benchmarks.

For WSIS, we use two datasets, i.e., PASCAL VOC 2012, and
COCO 2017. The PASCAL VOC 2012 dataset includes 10582 images
for training, and 1449 images for evaluation, comprising 20 object
categories. The COCO 2017 dataset includes 115K training images,
5K validation images, and 20K testing images, comprising 80 object
categories. Following previous methods, we report the average
precision AP metrics with different Intersection-over-Union (IoU)
thresholds.

Implementation Details. For WeakSAM proposals generation, we
adopt theWeakTr [92] with DeiT-S [68] model for generating classi-
fication clues, the SAM [34] with ViT-H [13] model to generate pro-
posals. For WeakSAMWSOD pipeline, we use the WSOD networks,
i.e., OICR [65], and MIST [53], with the VGG-16 [20] backbone
to generate pseudo ground truth (PGT), and FSOD networks, i.e.,
Faster R-CNN [52] and DINO [82], with the ResNet-50 [22] back-
bone to retrain. As for the WeakSAM WSIS, we use SAM-ViT-H
to generate pseudo instance labels and train the R-CNN-based and
query-based methods, i.e., Mask R-CNN [21] and Mask2former [10],
respectively. All hyper-parameters in Alg. 1 and Alg. 2 are following
the default manners as Zhu et al. [92] and Sui et al. [60].

4.2 Comparisons with State-of-the-art Methods
Weakly-supervised object detection. We present the quantitative

WSOD results in Table. 1. Compared with ourWSOD baseline meth-
ods, i.e., OICR and MIST, the proposed WeakSAM achieves over
10% improvements on all metrics. The results of WeakSAM (MIST)
surpass all WSOD methods on all metrics, which demonstrate the
effectiveness of WeakSAM proposals. Compared with WSOD meth-
ods retrained by pseudo ground truth (PGT), the WeakSAM (MIST)
with Faster R-CNN retraining still outperforms the SoS-WSOD [60]
and W2N [26] on all metrics, and the WeakSAM (MIST) with DINO
retraining even has comparable performance with fully-supervised
Faster R-CNN. The retraining results demonstrate the effectiveness
of the proposed WSOD pipeline, which includes the adaptive PGT
generation and RoI drop retraining. Compared with concurrent
work, WSOVOD [43], which also incorporates SAM, our WeakSAM
(MIST) also achieves better performance.

Weakly-supervised instance segmentation. We first present the
quantitativeWSIS results of the PASCALVOC 2012 𝑣𝑎𝑙 set in Table 2.
The proposed WeakSAM with Mask R-CNN retraining achieves the
best performance, which demonstrates the WeakSAM can benefit
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Table 1: Comparisons of the WSOD performance in terms of AP metrics on three benchmarks: PASCAL VOC 2007, PASCAL
VOC 2012, and COCO 2014. The 𝑆𝑢𝑝. column denotes the type of supervision used for training including full supervision (F ),
point-level labels (P), image-level labels (I). “*” means the results rely on MCG [50] proposals. “‡” means this method use the a
heavy RN50-WS-MRRP [58] backbone (1.76 × parameters than VGG16 and 10.10 × parameters than RN50). We mark the best
WSOD results in bold.

Methods Proposal 𝑆𝑢𝑝. Retrain VOC 07 VOC 12 COCO 14
AP50 AP50 AP50:95 AP50 AP75

Fully-supervised object detection methods.
Faster R-CNN [52] RPN F – 69.9 – 21.2 41.5 –
WSOD methods with point supervision.
P2BNet [6] RPN P – 60.2 – 19.4 43.5 –
WSOD methods with image-level supervision.
C-MIDN [18] SS, MCG

I

– 52.6 50.2 9.6∗ 21.4∗ –
WSOD2 [81] SS – 53.6 47.2 10.8 22.7 –
SLV [9] SS – 53.5 49.2 – – –
CASD [27] SS – 56.8 53.6 12.8 26.4 –
IM-CFB [79] SS – 54.3 49.4 – – –
OD-WSCL [55] SS, MCG – 56.4 54.6 13.7∗ 27.7∗ 11.9∗
WSOD-CBL [80] SS – 57.4 53.5 13.6 27.6 –
WSOVOD [43] LO-WSRPN + SAM – 59.1 59.8 18.8 27.1 19.7
WSOVOD‡ LO-WSRPN + SAM – 63.4 62.1 20.5 29.1 21.4
Baseline and ours.
OICR [65] SS, MCG I – 41.2 37.9 8.0∗ 18.9∗ 7.0∗
WeakSAM (OICR) WeakSAM – 58.9+17.7 58.4+20.5 19.9+11.9 32.1+13.2 20.6+13.6
Baseline and ours.
MIST [53] SS, MCG I – 54.9 52.1 11.4∗ 24.3∗ 9.4∗
WeakSAM (MIST) WeakSAM – 67.4+12.5 66.9+14.8 22.9+11.5 35.2+10.9 24.6+15.2
WSOD methods with image-level supervision. + Retrain
W2F [88] RPN

I
Faster R-CNN 52.4 47.8 – – –

SoS-WSOD [60] RPN Faster R-CNN 64.4 61.9 16.6 32.8 15.2
W2N [26] RPN Faster R-CNN 65.4 60.8 15.9 33.3 13.4
Ours. + Retrain
WeakSAM (OICR) RPN

I
Faster R-CNN 65.7 62.9 22.3 36.5 23.0

WeakSAM (MIST) RPN Faster R-CNN 71.8 69.2 23.8 38.5 25.1
WeakSAM (OICR) – DINO 66.1 63.7 24.9 36.9 26.8
WeakSAM (MIST) – DINO 73.4 70.2 26.6 39.3 29.0

Table 2: Comparisons of the WSIS performance in terms of AP metrics on PASCAL VOC 2012. The 𝑆𝑢𝑝. column denotes the type
of supervision used for training including mask supervision (M), saliency maps (S), image-level labels (I), and SAMmodels
(A). We mark the best WSIS results in bold.

Methods Backbone 𝑆𝑢𝑝. Retrain VOC 12
AP25 AP50 AP70 AP75

Fully-supervised instance segmentation methods.
Mask R-CNN [21] ResNet-101 M – 76.7 67.9 52.5 44.9
WSIS methods with image-level supervision. + Retrain
WISE [36] ResNet-50 I Mask R-CNN 49.2 41.7 – 23.7
IRNet [1] ResNet-50 I Mask R-CNN – 46.7 23.5 –
LIID [46] ResNet-50 I + S Mask R-CNN – 48.4 – 24.9
Arun et al.[3] ResNet-50 I Mask R-CNN 59.7 50.9 30.2 28.5
WS-RCNN [49] VGG-16 I Mask R-CNN 62.2 47.3 – 19.8
BESTIE [33] HRNet-W48 I Mask R-CNN 61.2 51.0 31.9 26.6
CIM [41] ResNet-50 I Mask R-CNN 68.7 55.9 37.1 30.9
Ours.
WeakSAM ResNet-50 I + A Mask R-CNN 70.3 59.6 43.1 36.2
WeakSAM ResNet-50 I + A Mask2Former 73.4 64.4 49.7 45.3

WSIS effectively. Furthermore, the pseudo instance labels generated
byWeakSAM can also be used by the modern query-based methods,
e.g., Mask2Former [10], which achieves the best results.

We then show the quantitative WSIS results on COCO 2017 𝑣𝑎𝑙
and 𝑡𝑒𝑠𝑡 sets. On these more challenging benchmarks, WeakSAM
with Mask R-CNN retraining achieves better results than CIM [41].
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Table 3: Comparisons of the WSIS performance in terms of AP metrics on COCO 2017. The 𝑆𝑢𝑝. column denotes the type of
supervision used for training including mask supervision (M), saliency maps (S), image-level labels (I), and SAM models (A).
We mark the best WSIS results in bold.

Methods Backbone 𝑆𝑢𝑝. Retrain COCO val 2017 COCO test-dev
AP50:95 AP50 AP75 AP50:95 AP50 AP75

Fully-supervised instance segmentation methods.
Mask R-CNN [21] ResNet-50 M – 34.4 55.1 36.7 33.6 55.2 35.3

WSIS methods with image-level supervision.
WS-JDS [59] VGG-16 I – 6.1 11.7 5.5 – – –
PDSL [57] ResNet18-WS I – 6.3 13.1 5.0 – – –
Fan et al. [15] ResNet-101 I + S Mask R-CNN – – – 13.7 25.5 13.5
LIID [46] ResNet-50 I + S Mask R-CNN – – – 16.0 27.1 16.5
BESTIE [33] HRNet-W48 I Mask R-CNN 14.3 28.0 13.2 14.4 28.0 13.5
CIM [41] ResNet-50 I Mask R-CNN 17.0 29.4 17.0 17.2 29.7 17.3

Ours.
WeakSAM ResNet-50 I + A Mask R-CNN 20.6 33.9 22.0 21.0 34.5 22.2
WeakSAM ResNet-50 I + A Mask2Former 25.2 38.4 27.0 25.9 39.9 27.9

Table 4: Ablation studies for WeakSAM prompts on PASCAL VOC 2007. We evaluate the average number of proposals, recall,
and WSOD performance by MIST [53].

SS Dense Sample CAM𝑓 𝑖𝑛𝑒 CAM𝑐𝑜𝑎𝑟𝑠𝑒 Cross Attn. Num. Recall AP50IoU=0.50 IoU=0.75 IoU=0.90

! 2001 92.6 57.7 19.2 54.9

! 129 79.6 50.7 24.3 45.2
! ! 151 88.9 67.0 37.2 63.3+18.1
! ! ! 174 90.6 70.1 40.1 65.5+20.3
! ! ! ! 213 95.6 75.0 42.1 67.4+22.2

Besides, the WeakSAM with Mask2Former also presents the best
results.
Table 5: Ablation studies for adaptive PGT generation andRoI
drop regularization. We present the results on the PASCAL
VOC 2007 𝑡𝑒𝑠𝑡 set.
(a) Ablation studies for the anchor-based detector, i.e., Faster R-
CNN [52].

Top-1 PGT Adaptive PGT RoI Drop AP50

! 68.4

! 70.7+2.3
! ! 71.8+3.4

(b) Ablation studies for the query-based detector, i.e., DINO [82].

Top-1 PGT Adaptive PGT Query Drop AP50

! 71.1

! 72.8+1.7
! ! 73.4+2.3

4.3 Ablation Studies
In this section, we present the ablation studies to evaluate the
improvements brought by the proposed methods, i.e., WeakSAM
prompts, adaptive PGT generation, and RoI drop retraining.

Due to the limitation of pages, we leave more ablation studies in
the supplementarymaterial, including additional efficiency analysis,
sensitivity analysis, qualitative analysis, discussions, etc.

Table 6: Efficiency comparison between Selective Search and
our WeakSAM during the training on the PASCAL VOC 2007.
‘Num.’ is the number of proposals, ‘TProposals’ is the time
consumption for generating proposals, ‘TWSOD’ is the time
consumption for training the WSOD network, i.e., MIST [53],
and ‘MWSOD’ is the GPU memory cost for each GPU card.

Num. TProposals TWSOD MWSOD

SS [69] 2001 11.6 hrs 16 hrs 17810 MiB

Ours 213-89.4% 4 hrs-65.5% 9 hrs-43.8% 5667 MiB-68.2%

Improvements of WeakSAM Prompts. To further analyze the im-
provements brought by the proposed WeakSAM prompts, we con-
duct ablation experiments for different prompts as shown in Table 4.
Here, we use the Selective Search [69] as the baseline method and
list the proposals’ number, recall, and corresponding WSOD per-
formance. When only using the densely sampled points as SAM
prompts, the generated proposals can achieve 5.1% higher Recall
(IoU=0.90), and 9.7% lower AP50 for MIST. After adding peak CAM
points and peak cross attention points as prompts, we can achieve
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Figure 4: Visualization of the weakly-supervised object detection on the PASCAL VOC 2007 𝑡𝑒𝑠𝑡 set.
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Figure 5: Visualization of the weakly-supervised instance segmentation on the PASCAL VOC 2012 𝑣𝑎𝑙 set.

higher recall and AP50 through only 213 proposals on average. The
results demonstrate the effectiveness of WeakSAM prompts.

Improvements of WSOD Pipeline. To further analyze the improve-
ments brought by the proposed WeakSAM WSOD pipeline, we
conduct ablation experiments for adaptive PGT generation and
RoI drop regularization in Table 5. Here, we follow the common
practice to set a baseline that uses the predicted boxes with the
top-1 score as PGT and plain Faster R-CNN as the retraining net-
work. The results show that both adaptive PGT generation and
RoI drop regularization can help improve the AP50 of the detector.
Furthermore, both the RoI-based detector, Faster R-CNN [52] and
query-based detecotr, DINO [82], can benefit from the proposed
WSOD techniques.

4.4 Efficiency Comparison
To further analyze the efficiency improvement brought by our
WeakSAM, we present the efficiency comparison between Selective
Search [69] and our WeakSAM on a machine with 4 GPU cards, as
shown in Table 6. Our WeakSAM reduces the number of proposals
by 89.4%, the proposal generation time by 65.5%, the WSOD net-
work training time by 43.8%, and the GPU memory cost by 68.2%.
The results demonstrate the significant efficiency improvement
brought by the proposed WeakSAM.

4.5 Visualization Results
Fig.4 presents the object detection results using WeakSAM (MIST),
showing its capability to accurately capture entire objects without
generating excessive noisy bounding boxes. In Fig.5, the instance
segmentation results of WeakSAM Mask2Former retraining are
showcased. The results indicate effective segmentation of entire
instances with a notable reduction in overlapping segments.

5 CONCLUSION
In this paper, we introduce WeakSAM, a novel framework utiliz-
ing the Segment Anything Model (SAM) for weakly-supervised
instance-level recognition, demonstrating leading performance in
WSOD and WSIS benchmarks. Different from the original SAM,
which requires interaction and can not be aware of categories,
WeakSAM represents an innovative fusion of SAM with weakly-
supervised learning (WSL), overcoming the redundancy problem of
WSOD proposals. To further address WSOD issues such as pseudo
ground truth (PGT) incompleteness and noisy PGT instances, our
approach includes adaptive PGT generation and a Region of Interest
(RoI) drop regularization. The adaptability of WeakSAM is further
showcased through its extension to weakly-supervised instance
segmentation (WSIS). Our work aims to inspire further research
with SAM and WSL, contributing significantly to the development
of a universal framework for weakly-supervised recognition.
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