
Feature Programming for Multivariate Time Series Prediction

Alex Reneau * 1 Jerry Yao-Chieh Hu * 1 Ammar Gilani 1 Han Liu 1 2

Abstract
We introduce the concept of programmable fea-
ture engineering for time series modeling and pro-
pose a feature programming framework. This
framework generates large amounts of predictive
features for noisy multivariate time series while
allowing users to incorporate their inductive bias
with minimal effort. The key motivation of our
framework is to view any multivariate time se-
ries as a cumulative sum of fine-grained trajectory
increments, with each increment governed by a
novel spin-gas dynamical Ising model. This fine-
grained perspective motivates the development
of a parsimonious set of operators that summa-
rize multivariate time series in an abstract fash-
ion, serving as the foundation for large-scale au-
tomated feature engineering. Numerically, we
validate the efficacy of our method on several syn-
thetic and real-world noisy time series datasets.

1. Introduction
We investigate the problem of automated time series feature
engineering for prediction tasks in the regression setting. A
programmable feature engineering framework is proposed,
named feature programming, for multivariate time series
modeling. Our framework facilitates the automatic gen-
eration of large amounts of meaningful features from raw
data. Simultaneously, it enables the incorporation of domain
knowledge through the use of feature templates, which are

*Equal contribution 1Department of Computer Science,
University of Northwestern, Evanston, USA 2Department
of Statistics and Data Science, University of Northwest-
ern, Evanston, USA. Correspondence to: Alex Reneau
<alexreneau@u.northwestern.edu>, Jerry Yao-
Chieh Hu <jhu@u.northwestern.edu>, Ammar Gilani
<ammargilani2024@u.northwestern.edu>, Han Liu
<hanliu@northwestern.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Code is available at GitHub; the most updated version is
available on arXiv with a full list of authors, including Chenwei
Xu and Weijian Li. We kindly request that citations refer to the
arXiv version: https://arxiv.org/abs/2306.06252.

customizable lists of both raw and hand-crafted features
provided by users.

Our key motivation comes from a novel dynamical Ising-like
model, the spin-gas Glauber dynamics, originated from a
newly debuted gas-like interaction that includes momentum
and acceleration information. By using spin-gas Glauber
dynamics as the fundamental model for time series gener-
ating processes at the smallest time scale, we explore the
potential of treating time series as the path-sum of infinites-
imal increments generated by a series of Markovian coin
tosses following the spin-gas Glauber dynamics. From such
a fine-grained perspective, a set of operators is motivated for
extracting informative features in an abstract fashion. We
introduce the idea of the feature programming framework
as a three-step pipeline for feature generation (Figure 1):

1. Design a customized three-level feature template, which,
at each level (list), includes both raw features from the
data and user-specified (discretionary) features.

2. Implement a programmable operation module consist-
ing of pre-specified operations by the user based on the
proposed operator combinations.

3. Generate a large number of predictive features auto-
matically by feeding the feature template into the pro-
grammable module, following a user-specified hierar-
chical feature generation rule encoded in the operation
module.

For more comprehensive details, see Section 4, and for
concrete case studies, please see Appendix E.2.

Contributions. Our contribution is three-fold.

• Methodologically, we present a novel dynamical Ising-
style model for time series data generation. This model
motivates a parsimonious set of operators for mining valu-
able features from time series data. Building on this,
we introduce a feature programming framework, which
enables the systematic generation of a large number of fea-
tures by leveraging the motivated operators and a model-
based hierarchical feature generation rule. Additionally,
this framework provides the flexibility for users to in-
corporate discretionary inductive biases through feature
templates.

• Theoretically, to the best of our knowledge, our frame-
work is the first automated feature generation method for

1

mailto:alexreneau@u.northwestern.edu
mailto:jhu@u.northwestern.edu
mailto:ammargilani2024@u.northwestern.edu
mailto:hanliu@northwestern.edu
https://github.com/SirAlex900/FeatureProgramming
https://arxiv.org/abs/2306.06252
https://arxiv.org/abs/2306.06252

Feature Programming for Multivariate Time Series Prediction

Feature Template

Extended Features

0th0th Basic Features
0th0th Discretionary Features

1st1st Basic Features
1st1st Discretionary Features

2nd2nd Basic Features
2nd2nd Discretionary Features

Pre-Programed Operation Module

Shift Diff.Window …

Shift Diff.Window …

Shift Diff.Window …

Figure 1. Feature Programming Pipeline. Left: Customizable Feature Template. Mid: Pre-Programmed Operation Module. Right:
Generated Extended Features. Customization involves user-specific feature templates, operation modules, and user-designed feature flows
(arrows). Solid arrows represent programmed flow within each order level, while dashed arrows indicate order-by-order feature generation
flow between levels. See Appendix E.2 for practical examples illustrating the customization procedures.

time series equipped with a solid theoretical foundation.
We show that appropriate selection of the interaction term
in the spin-gas Glauber dynamics facilitates the deriva-
tion of a multivariate dynamical model from univariate
exponential family distributions, thus enabling efficient
learning and inference. The conditions for such a con-
struction and its unique determination are also identified.

• Empirically, the superiority of the generated features is
demonstrated through extensive experiments on multi-
variate time series prediction tasks. These experiments
involve various advanced models, practical scenarios, cus-
tomization examples, and ablation studies, showcasing
our method’s adaptability, flexibility, and robust feature
generation. Specifically, in our most challenging multi-
horizon tasks (predicting 20 future values using a length-
20 sequence, see Table 5), our features significantly im-
prove prediction accuracy (on average in 88+% R2 and
27+% in Pearson correlation) across all models.

Related Works. Time series modeling has been regarded
as one of the most difficult problems in machine learning
for the past few decades given its temporal ordering nature
and noise-sensitivity from sequential structure (Masini et al.,
2023; Fawaz et al., 2019; Ozaki, 2012). It is well-known
that features play a major role in time series ML prediction
problems (Meisenbacher et al., 2022; Cerqueira et al., 2021;
Christ et al., 2016). While there is rich literature on data
augmentation (Wen et al., 2020; Iwana & Uchida, 2021) and
architectures (Tealab, 2018; Balkin & Ord, 2000; Sezer et al.,
2020), little has been done toward handling features for time
series modeling and most methods prefer an end-to-end fea-
ture selection (Barandas et al., 2020; Christ et al., 2016; Sun
et al., 2015; Längkvist et al., 2014; Chandrashekar & Sahin,
2014) or hand-crafted (pre-defined) feature design (Zhou
et al., 2021; Gu et al., 2020; Christ et al., 2018; Muralidhar
et al., 2018; Kakushadze, 2016; Christ et al., 2016) without
fundamental principles.

For each application domain, abovementioned approaches

are popular and intuitive, however, they suffer from two
potential issues: (i) being too purpose-specific and not trans-
ferable from one domain to another (Zhuang et al., 2020;
Weiss et al., 2016; Glorot et al., 2011; Pan et al., 2010; Pan
& Yang, 2009); (ii) quite some representation effort is spent
on recovering the “noise” part of time series data (Wen
et al., 2020; Iwana & Uchida, 2021; Chepurko et al.; Raissi
et al., 2019). To this end, our framework represents the
first theoretically grounded automated feature engineering
method for time series, characterized by its completeness
and model-based fundamental principles.

Organization. In Section 2, we lay out the problem setting
and preliminaries. In Section 3, we introduce the motivating
physics model. In Section 4 we present the proposed feature
programming framework. In Section 5, the construction of
the motivating model from univariate exponential family
distributions is discussed. In Section 6, experimental studies
are conducted. In Section 7, concluding discussions are
provided. More related works are discussed in Appendix A.

2. Problem Setting and Background
In this section, we first layout the problem setup of multi-
variate time series prediction and then introduce the idea we
build upon: Glauber dynamics.

2.1. Multivariate Time Series Prediction Problem

Consider a multivariate time series dataset D (of size |D|)
with each multivariate time series being made up of N
correlated univariate time series,

D :
{
((Xt−T+1, . . . ,Xt),Yt+1)µ

}|D|

µ=1
.

YT+1 is the one-step-ahead target, and Xt =

(x1,t, . . . , xN,t)
T ∈ RN×d and Yt =

(
y1,t, . . . , yM,t

)T ∈
RM×d′

are the input features and targets for each variate at
each time step, respectively.

2

Feature Programming for Multivariate Time Series Prediction

We investigate the problem of multivariate time series pre-
diction in discrete-time in regression setting. Our goal is to
predict the one-step-ahead target value, Yt+1, using a pre-
diction model, f , that is trained on the dataset D. The
input to the model is a sequence of past T time steps,
(Xt−T+1, . . . ,Xt), and the output is the predicted next step
Ŷt+1 := f(Xt−T+1, . . . ,Xt) for general sequence-to-one
forecasting tasks. Throughout this work, for a given time
step t, we use xi,t ∈ Rd to represent a set of covariates
(features for ML models) at time step t, indexed by i ∈ [N];
we consider only scalar output for each variate and match
the number of variates by setting d′ = 1 and M = N .

In this work, instead of investigating the effectiveness of
autoregressive and cross-sectional architectures, we focus
on capturing these important time series characteristics by
resorting to the quality of features. With any given architec-
ture, we aim to improve the feature quality by engineering
them to be more informative. Namely, for each variate, in
addition to using the basic (raw) features xi,t as the input, we
can include engineered (extended) features xi,t ∈ Rd that
summarize all information from the basic features, across
both time (autoregressive) and series (correlations), for the
model training.

2.2. Dynamical Ising Model: Glauber Dynamics

Glauber dynamics (Nguyen et al., 2017; Glauber, 1963),
also known as the dynamical Ising model, a well-studied re-
versible Markov chain defined for any Markov random field
originated from statistical mechanics. It has been applied to
a variety of problems, including lattice models in condensed
matter physics (Goldenfeld, 1992), spin glasses (Janssen,
1976), neural networks (Mezard & Montanari, 2009; Hinton
et al., 1986), and traffic (Pan et al., 2023). It has also been
extended to non-equilibrium systems (Swendsen & Wang,
1987) and used with mean-field theory to study complex
systems (Montanari & Sen, 2022; Kadanoff, 2000).

To describe such a dynamical Ising model, we shall start
with Ising model. We consider an Ising model of N spins
as an exponential family model for binary N -spin data up
to quadratic sufficient statistic taking the Boltzmann form

P (σ) =
1

Z
exp

−β

 ∑
eij∈E

Jijσiσj +
∑
vi∈V

hiσi

 ,

(2.1)

where σ := {σ1, · · · , σN} ∈ {±1}N is the configuration
of N binary random variables (spins) σi ∈ {±1} assigned
to the Ising graph G = (V, E) , β ≥ 0 is the inverse tem-
perature, and Z :=

∑
σ e−βE(σ) is the partition function

ensuring the normalization of P (σ). The symmetric N×N
strength matrix J ∈ RN×N , with zeros on the diagonal, and
the external field vector h ∈ RN encode the graphical struc-

ture of the Ising model. For simplicity, we set the inverse
temperature β = 1 throughout this paper.

The dynamics appears as we start treating (2.1) as a dy-
namical process and considering the time ordering of the
configurations, namely with time index σt. For the purpose
of this work, we introduce only the discrete-time version of
Glauber dynamics. This implies that for each time step t,
the process begins at a potentially random initial configu-
ration, σt. Subsequently, we assign new values to all spins
independently (for each spin) for the next step in accordance
with the stochastic updating rule:

P (σi,t+1|σt) =
exp{σi,t+1γi,t}

2 cosh γi,t
, (2.2)

where γi,t :=
∑

j Jijσj + hi is the ith effective local field
at time step t. Notably, γi,t is computed only for the ith
spin, and the parameters of the Ising model, (J, h), are time-
independent. In this work, we consider a Glauber dynamics
with temporal update satisfying the following evolutionary
independent assumption.

Assumption 2.1 (Evolutionary Independence). We assume
the spin updates are independent events on same time slice,
or equivalently, P (σt+δt|σt) =

∏N
i=1 P (σi,t+δt|σt).

3. Spin-Gas Glauber Dynamics
In this section, we present the spin-gas Glauber dynamics as
the motivating model for feature programming by incorpo-
rating momentum and acceleration effects into the standard
Glauber dynamics to make the spin values gas-like in the
effective local field. We shall see that this modified Glauber
dynamics can naturally serve as a foundational model for
multivariate time series from a fine-grained perspective. For
the ease of presentation, we reduce the feature dimension to
d = 1 by representing each covariate xt as a scalar xt ∈ R,
and therefore Xt = (x1,t, . . . , xN,t)

T ∈ RN . Yet, the set-
ting of d = 1 is primarily for illustrative purposes. In fact,
as we shall see in Section 4, our methodology is general
enough to handle d ≥ 1.

Fine-Graining in Time. Consider a multivariate time series
consisting of two endpoints Xt and Xt+∆t, separated by
a time interval of ∆t. We divide this time interval into L
segments by introducing a sufficiently large L, i.e., ∆t :=
Lδt. The multivariate time series path difference ∆Xt :=
Xt+∆t−Xt is therefore the sum of L consecutive increments
for each univariate series. We then treat each increment as a
binary outcome coin toss with σ = {±1} for each univariate
series (or σ = {±1}N for multivariate.) Consequently, a
random process of L consecutive coin tosses generates the
path difference ∆X, and it gives the endpoint value as:

Xt+∆t := Xt +∆Xt = Xt + c

L∑
l=1

σt+lδt, (3.1)

3

Feature Programming for Multivariate Time Series Prediction

where c is a rescaling factor ensuring ∆Xt is bounded.

Furthermore, we assume that each coin toss with bi-
nary random variables is sampled from the conditional
σt+lδt ∼ P (σt+lδt|σt+(l−1)δt), governed by the follow-
ing irreversible1 N -spin modified Glauber dynamics. This
results in a fundamental model for time series generation
from the fine-grained perspective.

Spin-Gas Glauber Dynamics. We express the coin toss-
ing process as a dynamical Ising-like system, whose time
evolution is a Markov process, and hence each coin toss
σt+δt (the infinitesimal increment after a δt time interval
conditioned on current time t) is governed by

P (σi,t+δt|σt) =
exp{σi,t+δtΓi,t}

2 coshΓi,t
, (3.2)

where2 σi,t+δt = {±1}, and Γi,t is a novel effective local
field associated to the i’th spin at time t defined as follows.
Let pt := c δσt

δt = c(σt−σt−δt)
δt and at := c δ

δt

(
δσt

δt

)
=

pt−pt−δt

δt be the discrete counterparts of momentum and
accelaration on node i. We have

Γi,t :=
∑
j

Jij(t)σj,t + hi(t) + gi (pt,at) , (3.3)

with a newly debuted gas-like interaction term g including
the effects of momentum pt and acceleration at. Intuitively,
Γi,t summarizes the structural contributions from all other
series with the first two terms in (3.3) similar to the tra-
ditional Glauber dynamics. In addition, with the newly
introduced g, it includes contributions from momentum
and acceleration of the series itself and all other series at
t, hence gas-like. We emphasis that, the newly introduced
dynamical Ising model (3.2) is the fine-grained model for
the δt-infinitesimal change of multivariate time series (with
stepwise change σt), and serves as the fundamental dynam-
ical model of the time series generation.

Reverting to Continuous Time through Coarse-Graining.
To tailor our model to handle generic time series, we must
revert (3.2) back to a continuous timeframe. This involves a
process known as coarse-graining, where we perform path-
sum of σt from δt to Lδt according to (3.1). Following this,
we take the continuous time limit and identify the endpoint
value of the trajectory, which is the cumulative sum of the
random process over time starting from Xt. This approach
bears similarities to the path-integral representation utilized
for diffusion processes in physics, as elaborated in (Graham,

1By irreversible, we consider an out-of-equilibrium Glauber
dynamics by generalizing (J, h) to be time-dependent, see
(Nguyen et al., 2017; Vázquez et al., 2017) and reference therein.

2Although the binary random variables of standard Ising model
leads to discrete increments, this model of coin toss can also be
used to model continuous time series by rescaling σi,t+δt. That
is, with a sufficiently large L, by taking c ≪ 1, the time series Xt

becomes approximately continuous as ∆X becomes continuous.

1977; Wissel, 1979).

Interestingly, when each coin toss follows the Markov spin-
gas Glauber dynamics (3.2), it is possible to calculate the
conditional path probability, given an initial condition Xt.
This is achieved by first decomposing the joint distribution
P (σt, . . .σt+Lδt) as

P (σt, . . .σt+Lδt) =

L∏
l=1

P (σt+lδt|σt+(l−1)δt), (3.4)

and then summing out all intermediate variables ranging
from σt+δt to σt+(L−1)δt such that3

P (Xt+∆t|Xt) = P (σt+Lδt|σt) (3.5)

=

L∏
l=2

∑
{σt+(l−1)δt}

P (σt+lδt|σt+(l−1)δt) · P (σt+δt|σt)

=

∫ L∏
l=2

dσt+(l−1)δt P (σt+lδt|σt+(l−1)δt) · P (σt+δt|σt)

∝
∫ L∏

l′=2

dσt+(l′−1)δt exp

{
L∑

l=1

(
N∑
i=1

Γi,t+(l−1)δtσi,t+lδt

)}
.

To match the common notation used in physics, in the third
line we abuse the notation by writing the summations over
configurations as integrals, for more notational details see
(Graham, 1977). Denoting D [στ] :=

∏L
l′=2 dσt+(l′−1)δt,

the last line of (3.5) can be understood as a well-defined
discrete path integral

P (Xt+∆t|Xt) ∝
∫

D [στ] exp

{
L∑

l=1

L
(
σt+(l−1)δt,σt+lδt

)}
,

with Lagrangian

L
(
σt+(l−1)δt,σt+lδt

)
:=

N∑
i=1

Γi,t+(l−1)δt · σi,t+lδt − ln
(
eΓi,t + e−Γi,t + 1

)
,

up to a constant coefficient (Graham, 1977)4. Here,
exp

{∑L
l=1 L

(
σt+(l−1)δt,σt+lδt

)}
is a functional (the ex-

ponentiated action functional) on the space of all (discrete)
paths (denoted as [στ] := [σt,σt+δt, . . . ,σt+Lδt]), i.e., dis-
crete functions that represent these paths. Moreover, D [στ]
is a measure of integration/summation over all possible

3Recall that, since the each coin toss is Markovian, the joint
distribution P (σt, ...,σt+Lδt) can be recursively expanded as∏L

l=1 P (σt+lδt|σt+(l−1)δt).
4Note that, it is a common practice to term L as “Lagarngian”

here since it ties the path integral formulation with the principle of
least action in classical mechanics (Feynman et al., 2010). More
precisely, the Lagrangian L, when integrated or summed over a
time period, provides us with a quantity called “action”. This
action makes an appearance in the exponent of (3.5). As we shall
see next, this action takes a central role in the path integral formula,
as the path taken by a system between two configurations is the
one for which the action is minimized.

4

Feature Programming for Multivariate Time Series Prediction

paths [στ] connecting Xt and Xt+∆t in that space. Impor-
tantly, the space of functions under consideration is defined
by the details of the Lagrangian L.

When extending to continuous time limit, we reduce the time
interval δt → 0 and all infinitesimal increment size cσt → 0
(by setting c → 0), and assume the multivariate Xτ for τ ∈
[t, t+∆] is a Markovian stochastic process with continuous
sample paths. The multivariate time series endpoint value
(position) Xt+∆t and time t + ∆t of the system can be
therefore expressed as (with the starting position Xt and
time t): Xt+c

∑L
l=1 σt+lδt → Xt+∆Xt, and t+Lδt → t+

∆t, where ∆Xt and ∆t are now continuous. The difference
momentum δXt

δt and acceleration δ
δt

(
δXt

δt

)
hence become

their derivative counterparts by taking large L limit (with
proper scaled σi,t+δt): pt := ∂Xt

∂t and at := ∂
∂t

(
∂Xt

∂t

)
.

Consequently, in continuous time limit, we obtain the formal
expression of the continuous analog of conditional (3.5):

P (Xt+∆t|Xt) ∝
∫ Xt+∆t

Xt

D[Xτ] exp{−S ([Xτ])}, (3.6)

up to a normalization constant; where D[Xτ] is the inte-
gration measure in functional space of all possible paths
[Xτ] between Xt and Xt+∆t, S ([Xτ]) :=

∫ t+∆t

t
dτ L(τ)

is the action functional. Both D[Xτ] and S ([Xτ]) are ex-
plicitly determined by details of the spin-gas Glauber dy-
namics via Lagrangian L(τ). It is worthy to note that,
only (3.5) is suitable for direct calculations, whereas (3.6)
is purely formal with more subtle use cases. This is be-
cause S ([Xτ]) cannot be trivially derived from the Riemann
sum

∑
l L

(
σt+lδt,σt+(l−1)δt

)
, see (Graham, 1977; Lau &

Lubensky, 2007; Weber & Frey, 2017) for detailed construc-
tions and examples.

As a motivating model, (3.5) and the formal expression
(3.6) provide strong intuition for time series feature ex-
traction and modeling from the data-driven perspective:
the coarse-grained model P (Xt+∆t|Xt) is characterized by
building blocks {σt+lδt}Ll=1, {E

[
σt+lδt|σt+(l−1)δt

]
}Ll=1,

and {pt+lδt,at+lδt}Ll=1 for the following reasons. Firstly,
an expression like (3.6) naturally suggests the most proba-
ble path between two endpoints is given by the the vari-
ation δ

[∫ t+∆t

t
dτ L(τ)

]
, while, in practice, L(τ) is es-

timated from data and conditionally dependent step by
step on the most recent realization according to (3.5).
Therefore, data from finer timeframe(s), {σt+lδt}Ll=1 and,
their smoothed conditional expectations (conditional mean),
{E

[
σt+lδt|σt+(l−1)δt

]
}Ll=1, are required to take into ac-

count both the fluctuations and the denoised most probable
path in the modeling process. Moreover, the derivative data
{pt+lδt,at+lδt}Ll=1 from the finer timeframe(s) is also re-
quired by the definition of L. We emphasize the building
block {pt+lδt,at+lδt}Ll=1 is not merely a straight readout
from L. Instead, as we shall see later in Section 5, it is
complemented by our theoretical insights (Theorem 5.1).

We conclude this section by summarizing several advantages
of modeling multivariate time series in the fine-grained
perspective with the proposed dynamical Ising-like model:
(i) it accommodates both autoregressive and cross-sectional
interactions; (ii) its strong physics intuition leads to the
important characteristics for feature extraction; (iii) as we
shall see in Section 5, by carefully selecting the form of
g, it has the ability to model a wide range of distributions
and has closed-form multivariate densities, which enables
efficient inference and learning with statistical guarantees.

4. Methodology
The feature programming framework comprises three cru-
cial components (see Figure 1):

• A set of programmable operators (Difference, Window,
Shift) that form the basis for generating features;

• A feature template that enables users to select the funda-
mental features they want to employ;

• A semi-automated order-by-order feature generation rule
encoded in the operation module, that automatically cre-
ates extended features within each level and between lev-
els, adhering to an upgrade rule.

Consequently, a feature program (which produces a set of
extended features) consists of a user-specific feature tem-
plate and a pre-programmed operation module. We discuss
each part in the following.

4.1. The Difference, Window and Shift Operators

Inspired by the spin-gas Glauber dynamics, we propose
three abstract operators for extracting features from time
series data and discuss their operational specifics here.

Difference Operator. Motivated by {pt+lδt,at+lδt}Ll=1,
we propose the difference operator that incorporates both
continuous and finite differences and performs series-wise
subtraction between any two series. Operationally, we de-
fine the difference operator, Difference[series1, series2],
as the generalized derivative operation that performs first
smoothing then subtracting two input series (basic features),
and generates curvature-like features resembling the mo-
mentum and acceleration in physics. With the difference
operator, we characterize features (both basic and extended)
into three hierarchical classes based on their order of deriva-
tive: 0th-, 1st-, and 2nd- order features, which correspond
to the generalized notion of position, momentum, and accel-
eration of the input raw features xi,t, respectively.

Window Operator. Motivated by both {σt+lδt}Ll=1 and
{E

[
σt+lδt|σt+(l−1)δt

]
}Ll=1, we propose the window op-

erator which summarizes the information in a fixed look-
back size, denoted as ∆t, from multiple resolutions us-
ing denoised summary statistics such as maximum, min-
imum, and mean. Operationally, the window operator,

5

Feature Programming for Multivariate Time Series Prediction

Window[series, lookback size], is defined as a function
that takes an input series and a lookback size, for each
resolution, and subsequently outputs a series of summary
statistics for the given lookback window. By applying the
window operator with different lookback sizes, one can de-
rive informative features from the time-rescaling property
of the input series (Tallec & Ollivier, 2018).

Shift Operator. Lastly, we propose the shift operator that
can create new series with arbitrary time differences from
any existing series to complement the other operators. The
shift operator, defined as Shift[series, ∆τ], allows for the
input series to be shifted by any desired time difference, ∆τ ,
in order to incorporate more auto-correlated information.

4.2. Order-Upgrade Rule

Equipped with the aforementioned difference operator, we
can generate higher-order features by applying it to lower-
order features. Then, the window and shift operators can
be used to create summary-features from these higher-order
features. For example, we can create 1-st order series by
applying the difference operator to two 0-th order series,
and 2-nd order series by applying the difference operator
to two 1-st order series. Additionally, applying the window
and shift operators on these higher-order series can create
summary-features without changing the order of the series.

4.3. Feature Template: Injecting Hand-Crafted Features

The feature template is a crucial component of the feature
programming framework and serves as the starting point
for the feature generation process. It consists of three basic
series lists, one for each order of features (0th, 1st, 2nd) as
demonstrated by the green boxes in Figure 1. These lists
are initialized as a combination of a set of basic features
derived from the raw data and a discretionary design list
of hand-crafted features. As the feature generation process
progresses, these lists are updated with features from the
previous order, as indicated by the dashed arrows in Fig-
ure 1. This design allows for a high degree of flexibility
and customization, as the basic series lists can be fully dis-
cretionary, completely default, or a combination of the two.
Moreover, the basic series lists are fed into pre-programmed
operators to generate extended features (the solid arrows in
Figure 1), making the setup of the basic series lists at each
order a critical step in the feature generation process.

4.4. Automate Order-by-Order Feature Generation

With the feature template and programmable operators, we
generate extended features through a semi-automated pro-
cess by controlling the flow into the operation module. Start-
ing with the basic series lists specified in the feature tem-
plate, we feed each list into an operation module that con-
tains the pre-programmed operators. This process is per-

formed order-by-order, where each basic series list of an
order is operated on by the corresponding operations of that
order in the module. This results in a hierarchical feature
generation that generates extended features automatically
within each level and between levels, following the upgrade
rule. Through the combinatorial manipulation of opera-
tors in the module and computation flow (represented by the
arrows), our feature programming framework enables the au-
tomated and programmable generation of extended features
from basic ones. For specific examples of custom feature
programs that illustrate the customization steps needed in
real-world applications, please refer to Appendix E.2.

5. Theoretical Analysis
In this section, we show that, the node-conditional (3.2)
uniquely specifies a joint distribution P (σt,σt+δt) under
identified sufficient conditions. This theoretical analysis
further complements our physics intuitions for feature ex-
traction in Section 3.

5.1. Dynamical Ising via a Temporal Joint Graph

Here, we formulate the joint distribution of the coin toss
process, i.e. the path probability P (σt+δt,σt) between
consecutive time steps t and t + δt, given by (3.2) as a
graphical model factored according to a temporal joint graph
Gt,t+δt described below.

Let Gt,t+δt = (Vt,Vt+δt, E) be the undirected temporal
joint graph constituted by two subgraphs of equal cardinality,
i.e. |Vt| = |Vt+δt|. The configuration of this model, Gt,t+δt,
is given as

X = (σt,σt+δt)

=
(
{σi,t}Ni=1, {σi,t+δt}Ni=1

)
=

(
{σq}2Nq=1

)
, (5.1)

where σt and σt+δt are binary random vectors of length
N . It it important to clarify that, we use two types of node
indices interchangeably in this and subsequent sections: σi,τ

(where τ = t or t+δt) and σq . We use the appropriate index
depending on whether we are examining the sub-graph Gτ

or the joint graph Gt,t+δt.

We write the temporal joint model Gt,t+δt to be a graphical
model up to pairwise sufficient statistics and extend the suf-
ficient statistics to include extra 1st- and 2nd- order deriva-
tives with respect to time (at t). By Assumption 2.1, we have
Et+δt = ∅ from pairwise Markov property. Moreover, we
have Et ̸= ∅ and Et,t+δt ̸= ∅. For simplicity, we adopt short-
hand notation Φ̃(σq) (later ϕ̃(σq)) for derivative-extended
sufficient statistics throughout this paper. Furthermore, we
require that, for all Gt,t+δt, the time derivatives are always
evaluated at t, not t + δt. Explicitly, the univariate and
quadratic sufficient statistics are

Φ̃ (σq) = Φ (σq) , q ∈ Vt+δt, (5.2)

6

Feature Programming for Multivariate Time Series Prediction

and

Φ̃ (σq, σq′) (5.3)

=


Φ
(
σq, σq′ ,

δσq

δt ,
δσq′

δt , δ
δt

(
δσq

δt

)
, δ
δt

(
δσq′

δt

))
, q, q′ ∈ Vt,

Φ
(
σq, σq′ ,

δσq

δt ,
δ
δt

(
δσq

δt

))
, q ∈ Vt, q

′ ∈ Vt+δt,

Φ (σq, σq′) , q, q′ ∈ Vt+δt.

Higher-order sufficient statistics can be easily generalized.
Consequently, the pairwise graphical model based on the
graph Gt,t+δt over X takes the form

P (σt,σt+δt) ∝ exp
{
wΦ̃(σt,σt+δt)

}
(5.4)

∝ exp

∑
q∈V

wqΦ̃(σq) +
∑

(q,q′)∈E

wqq′Φ̃(σq, xq′)

.

In the following, we aim to construct this joint distribution
from its node-conditionals where the node-conditionals are
specified by a univariate exponential family.

Following (Yang et al., 2015), we assume the node-
conditional distributions of this graphical model Gt,t+δt

P (σq|X) (5.5)

= exp
{
Ψq

(
XV\q

)
ϕ̃(σq) +B(σq)−D

(
XV\q

)}
,

follow a univariate exponential family for all q ∈ V , where
ϕ̃(σq) is the derivative-extended univariate sufficient statis-
tics function for random variable σq. Note that, (5.5) in-
cludes both σq ∈ Vt and σq ∈ Vt+δt cases, where (3.2)
only corresponds to the latter. For completeness, we further
assume that, for nodes q ∈ Vt (or equivalently {i, t} ∈ Vt),
the node-conditional follows the standard Glauber dynamics
(2.2) with the effective local field Γq,t (or equivalently Γi,t):

P (σq|X) = P
(
σi,t|X\{i,t}

)
=

σq · Γi,t

2 coshΓi,t

, (5.6)

∀q /∈ Vt+δt. Here, Γi,t :=
∑

p∈V\{i,t}
J{i,t},p(t)σp,t +

hi(t) with J(t) ∈ R2N×2N being zero-padded J ∈ RN×N

and h ∈ RN , where (J, h) are the parameters of an Ising
model factored according to subgraph Gt.

Next, we provide the theorem for the existence of a unique
joint distribution whose node-conditionals are specified by
the Spin-Gas Glauber dynamics (3.2) and (5.6).

Theorem 5.1 (Joint Distribution of Spin-Gas Glauber Dy-
namics (3.2)). Suppose the joint graph Gt,t+δt consists of
cliques at most size k. The augmented Glauber dynamics
(3.2), with gas-like interaction g, uniquely determines a joint
distribution that factors according to Gt,t+δt, if and only if,
I: the node-conditionals are given by

P (σq|X) :=


σq·Γq,t

2 cosh Γq,t
, ∀q ∈ Vt+δt,

σq·Γq,t

2 cosh Γq,t
, ∀q ∈ Vt,

(5.7)

where Γq,t is given by (3.2) and Γq,t is given by (5.6).

II: for i ∈ Vt, gi takes the form

gi

(
δσt

δt
,
δ

δt

(
δσt

δt

))
:=

∑
j∈Vt

G
(1)
ij (t)

δσj,t

δt
+

∑
j∈Vt

G
(2)
ij (t)

δ

δt

(
δσj,t

δt

)
+

∑
m,n∈Vt

G
(1)
imn(t)

δσm,t

δt

δσn,t

δt
(5.8)

+
∑

m,n∈Vt

G
(2)
imn(t)

δ

δt

(
δσm,t

δt

)
δ

δt

(
δσn,t

δt

)
+ · · · ,

which is up to (k − 1)-th order product with coupling
constants {G} for 1st- and 2nd-order time derivatives
and their cross terms. For i ∈ Vt+δt, gi = 0.

Proof. A detailed proof is shown in the Appendix C.1.

Here, we state the theorem in the general form where Gt,t+δt

consists up to k-cliques, and then, by setting k = 2, it
reduces to pairwise joint distribution (5.4) of our interest.
Corollary 5.1. The corresponding joint distribution in The-
orem 5.1 is in the form

P (X) =

exp

{∑
q∈V

w̃qϕ̃(σq) +
∑
q∈V

∑
p∈N (q)

w̃qpϕ̃(σq)ϕ̃(σp) + · · ·

+
∑
q∈V

∑
p1,··· ,pk∈N (q)

w̃q,p1,··· ,pk ϕ̃(σq)

k∏
j=2

ϕ̃(σpk)−A({w̃})
}
,

with derivative-extended sufficient statistics ϕ̃(σq) :=(
σσq ,

δσσq

δt , δ
δt

(
δσσq

δt

))
being a 3-vector for q ∈ Vt,

ϕ̃(σq) = σq being a zero-padded 3-vector, for q ∈ Vt+δt

and {w̃} being contants 1-1 corresponding to {G}.
Corollary 5.2. For k = 2, we have pairwise model

P (X) =

exp

∑
q∈V

hq(t)σq +
∑
q∈V

∑
p∈N (q)

w̃qpϕ̃(σq)ϕ̃(σp)−A({w̃})

,

where, for q ∈ Vt, 1
2

∑
p∈N (q) w̃qpϕ̃(σp) =∑

p∈N (q) Jqp(t)σp,t +
∑

p∈N (q) G
(1)
qp (t)

δσp,t

δt +∑
p∈N (q) G

(2)
qp (t)

δ
δt

(
δσp,t

δt

)
and, for q ∈ Vt+δt,∑

p∈N (q) w̃pϕ̃(σp) =
∑

p∈N (q) Jqp(t)σp,t.

Proof. Corollary 5.1 and Corollary 5.2 are direct conse-
quences of Theorem 5.1.

Following are two conclusions of our theoretical study that
provide practical guidance for our methodology.

7

Feature Programming for Multivariate Time Series Prediction

Table 1. Comparison of Basic and Extended Feature Accuracy.

Metric Dataset MLP CNN LSTM

Basic Extended Basic Extended Basic Extended

R2 Score %

Synthetic 97.71 ± 0.00 99.18 ± 0.00 97.72 ± 0.00 99.16 ± 0.00 97.71 ± 0.03 99.01 ± 0.04

Taxi 73.21 ± 0.00 77.50 ± 0.01 73.17 ± 0.00 79.02 ± 0.06 73.19 ± 0.01 76.62 ± 0.04

Electricity 97.47 ± 0.00 98.97 ± 0.00 97.47 ± 0.00 99.09 ± 0.01 94.83 ± 0.00 95.43 ± 0.00

Traffic 75.04 ± 0.00 87.41 ± 0.00 75.04 ± 0.00 86.45 ± 0.01 74.66 ± 0.00 83.12 ± 0.00

Pearson
Correlation %

Synthetic 98.86 ± 0.00 99.60 ± 0.00 98.86 ± 0.00 99.62 ± 0.00 98.86 ± 0.01 99.56 ± 0.01

Taxi 85.59 ± 0.00 88.76 ± 0.00 85.57 ± 0.00 88.95 ± 0.03 85.58 ± 0.01 88.46 ± 0.00

Electricity 98.73 ± 0.00 99.49 ± 0.00 98.73 ± 0.00 99.54 ± 0.00 98.04 ± 0.00 97.70 ± 0.00

Traffic 86.64 ± 0.00 93.51 ± 0.00 86.64 ± 0.00 93.02 ± 0.00 86.42 ± 0.00 91.40 ± 0.00

(i) Although Theorem 5.1 does not delve into the analysis
of statistical estimation for such a model, it does offer
methodological guidance that mirrors the neighborhood-
estimation5 approach used for pairwise graphical models
in (Yang et al., 2015). This suggests that the ground-
truth random process can be uniquely represented by
derivative-extended sufficient statistics. This insight is
crucial for feature engineering, especially in cases where
the target model is unknown.

(ii) In the same vein, Corollary 5.2, in conjunction with
(Yang et al., 2015), proposes an amenable form of g to
enhance learning and inference. This aligns with our
physics intuitions from Section 3, which regard {p,a}
as fundamental characteristics for feature extraction.

6. Experimental Studies
In this section, we demonstrate the validity of our feature
generation method by testing it on a synthetic dataset and
three real-world datasets, with three distinct neural network
architectures (MLP, CNN, LSTM) representing three as-
pects of deep learning architecture design. To evaluate the
generated features, we use a predictive model, F , that only
takes in univariate xi,t as input and predicts the one-step-
ahead target yi,t+1, i.e. F (xi,t) = ŷi,t+1, ∀i, t. By doing
this, the model does not consider the correlations between
univariate series or the autocorrelation beyond a single time
step. This means that the advantages of using autoregressive
and graphical (cross-sectional or convolutional) architec-
tures are limited. To effectively capture important time
series characteristics, we need input features that can sum-
marize all information from the basic/raw features across
both time (autoregressive) and univariates (correlations) for
model training. Additional experiments including more
deep learning models for both one-step-ahead and multi-
horizon prediction tasks can be found in Appendix E.

5Estimate the neighborhood of each node separately, and then
stitch then together to form the global graph estimation.

6.1. Experimental Setup

Data. The data utilized in our experiments consists of a
synthetic dataset constructed to adhere to the assumptions of
our method, as well as an electricity dataset, a traffic dataset,
and a taxi dataset. Each of these datasets is partitioned
in an 80/20 ratio to derive our training data (known as in-
sample data) and testing data (referred to as out-of-sample
data). Further details regarding the datasets can be found in
Appendix D.1.

Feature Programming. We set the feature template to de-
fault6 (without additional hand-crafted features). We set the
order-to-order generation rule to pass all extended features
from the preceding order along with the basic series list
of the current order to the programmed module. For each
dataset, we generate the 0th order, 1st order, and 2nd order
features. These features are then combined and treated as
extended features. We trained three deep learning models,
MLP, CNN, and LSTM, using input features consisting of
(i) only the basic features; and (ii) a concatenation of basic
features and extended features.

Benchmark and Evaluation Metrics. We train each of the
models described above using (i) as the benchmark. Namely,
we compare the performance of models trained on the basic
features vs. models trained on both the basic and extended
features. For our evaluation metrics, we use out-of-sample
R2-score and Pearson correlation between the predicted
and true value (one-step-ahead). For each dataset and all
models, we repeat the multivariate time series prediction
task 10 times with basic and extended features. We defer
implementation details to Appendix D.3.

6.2. Evaluation of Accuracy

In Table 1, our results demonstrate that the proposed meth-
ods can improve model accuracy significantly with high

6It is important to notice that one major advantage of our fea-
ture programming framework is that it is hyperparameter-free. The
generated features are solely controlled by user-designed feature
program (feature template and operation module).

8

Feature Programming for Multivariate Time Series Prediction

quality features. Comparing across all datasets (except for
electricity-LSTM), models that were trained incorporating
both basic and extended features consistently outperformed
those trained solely on basic features. The introduction
of extended features led to an augmentation in both the R2

Score and the Pearson correlation. The magnitude of this im-
provement ranged between 1.3% and 5.85%, depending on
the specific dataset and model utilized. Notably, even with
the most challenging dataset (the taxi dataset), the inclusion
of extended features facilitated an improvement of approxi-
mately 4.3/5.9/3.4% in the R2 score for MLP/CNN/LSTM,
and around 2.3/3.4/3.0% in the Pearson correlations for
MLP/CNN/LSTM. The results are summarized in Table 1.

6.3. Computational Time Comparison

As seen in Table 2, the feature programming framework
demonstrates high efficiency. The computational time of
feature generation is negligible compared to the time spent
on training the downstream models, even when considering
the MLP model, which is the simplest and fastest-to-train
prediction model in our experiments.

Table 2. Computational Time Comparison for Feature Generation
and Model Training. This table presents the computational time
required for generating extended features based on the default
setting described in Section 6.1, alongside the time required for
downstream model training. We report the computational time
of simplest (and fastest) model in our experiments, i.e. MLP.
The feature programming framework demonstrates high efficiency,
with the feature generation time being negligible in comparison to
the time spent on training the downstream models.

Taxi Electric Traffic MLP-Synthetic MLP-Taxi MLP-Electric MLP-Traffic

Time (s) 24.34 82.71 218.23 4272.36 5461.75 16833.59 23883.94

6.4. Additional Experiments

Further experiments on the quality of extended features
using a variety of common time series prediction models
and ablation studies can be found in Appendix E, including

• Appendix E.1: Six commonly-used time series forecast-
ing models (Transformer (Vaswani et al., 2017), XGBM
(Chen et al., 2015), LightGBM (Ke et al., 2017), TFT
(Lim et al., 2021), TCN (Chen et al., 2020), NBEATS
(Oreshkin et al., 2019)), with an emphasis on standard one-
step-ahead predictions. In addition, we also incorporate
multi-horizon prediction task experiments to showcase
practical applicability.

• Appendix E.2: Ablation studies that utilize three illustra-
tive examples to demonstrate the customization process
that may be necessary in real-world scenarios. These
examples illustrate how to adjust the feature program to
resemble known hand-crafted features, corresponding to
practical situations where we have some understanding
of the types of features that might be particularly useful

for a specific task, domain, or application. This approach
allows for a clear understanding of how to customize the
feature program and how the operators influence the gener-
ated features. We evaluate feature quality using the same
metrics across different feature programming settings.

Through our experiments, the performance enhancements
provided by our extended features are illustrated. In par-
ticular, in the multi-horizon prediction tasks (Table 5), our
results show that when predicting the next 20 values us-
ing a sequence of length 20 (arguably the most challenging
task when relying solely on basic features), the features
generated by our approach have exhibited substantial im-
provements (on average 88+% in R2 and 27+% in Pearson
correlation metrics) in prediction accuracy across all models.
These experiments showcase the adaptability, flexibility, and
feature generation capabilities of our method.

7. Conclusion
We propose a programmable automated feature engineer-
ing approach for multivariate time series modeling, called
feature programming, inspired by a novel Ising-like dynam-
ical model. Theoretically, our model-based approach draws
practical guidance from constructing multivariate graphical
models using univariate exponential family, aligning with
insights from the physics model. Empirically, the generated
features effectively improve noisy multivariate time series
prediction in various settings. Yet, there is a noticeable limi-
tation: the flexibility of our method comes with the trade-off
of not including any feature selection or pruning mechanism
beyond user-specific programs. For future investigations, we
plan to integrate feature selection mechanisms into feature
programming and explore the joint temporal graph in the
context of graphical diffusion (Kondor & Lafferty, 2002).

Acknowledgments
We would like to acknowledge the contributions of Chenwei
Xu and Weijian Li for the additional experiments section
(Appendix E) during the review and rebuttal periods. Due
to conference restrictions, their authorship is not recognized
in this version. Hence, for accurate authorship and citation,
we kindly direct the readers to the arXiv version.

JH would like to thank to Donglin Yang and Andrew Chen
for enlightening discussions, and Jiayi Wang for invaluable
support in facilitating experimental deployments. The au-
thors would like to thank the anonymous reviewers and pro-
gram chairs for constructive comments. JH is partially sup-
ported by the Walter P. Murphy Fellowship. HL is partially
supported by NIH R01LM1372201, NSF CAREER1841569
and a NSF TRIPODS1740735. The content is solely the re-
sponsibility of the authors and does not necessarily represent
the official views of the funding agencies.

9

https://arxiv.org/abs/2306.06252

Feature Programming for Multivariate Time Series Prediction

References
Balkin, S. D. and Ord, J. K. Automatic neural network

modeling for univariate time series. International Journal
of Forecasting, 16(4):509–515, 2000.

Barandas, M., Folgado, D., Fernandes, L., Santos, S., Abreu,
M., Bota, P., Liu, H., Schultz, T., and Gamboa, H. Tsfel:
Time series feature extraction library. SoftwareX, 11:
100456, 2020.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE transac-
tions on pattern analysis and machine intelligence, 35(8):
1798–1828, 2013.

Besag, J. Spatial interaction and the statistical analysis of
lattice systems. Journal of the Royal Statistical Society:
Series B (Methodological), 36(2):192–225, 1974.

Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D.,
and Erhan, D. Domain separation networks. Advances in
neural information processing systems, 29, 2016.

Cerqueira, V., Moniz, N., and Soares, C. Vest: Automatic
feature engineering for forecasting. Machine Learning,
pp. 1–23, 2021.

Chandrashekar, G. and Sahin, F. A survey on feature selec-
tion methods. Computers & Electrical Engineering, 40
(1):16–28, 2014.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y.,
Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T., et al.
Xgboost: extreme gradient boosting. R package version
0.4-2, 1(4):1–4, 2015.

Chen, Y., Kang, Y., Chen, Y., and Wang, Z. Probabilistic
forecasting with temporal convolutional neural network.
Neurocomputing, 399:491–501, 2020.

Chepurko, N., Marcus, R., Zgraggen, E., Fernandez, R. C.,
Kraska, T., and Karger, D. Arda: Automatic relational
data augmentation for machine learning. Proceedings of
the VLDB Endowment, 13(9).

Christ, M., Kempa-Liehr, A. W., and Feindt, M. Distributed
and parallel time series feature extraction for industrial
big data applications. arXiv preprint arXiv:1610.07717,
2016.

Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr, A. W.
Time series feature extraction on basis of scalable hypoth-
esis tests (tsfresh–a python package). Neurocomputing,
307:72–77, 2018.

Clifford, P. Markov random fields in statistics. Disorder in
physical systems: A volume in honour of John M. Ham-
mersley, pp. 19–32, 1990.

De Brabandere, A., Op De Beéck, T., Hendrickx, K., Meert,
W., and Davis, J. Tsfuse: Automated feature construction
for multiple time series data. Machine Learning, pp. 1–56,
2022.

Doersch, C., Gupta, A., and Efros, A. A. Unsupervised
visual representation learning by context prediction. In
Proceedings of the International Conference on Computer
Vision, pp. 1422–1430, 2015.

Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., and
Muller, P.-A. Deep learning for time series classification:
a review. Data mining and knowledge discovery, 33(4):
917–963, 2019.

Feynman, R. P., Hibbs, A. R., and Styer, D. F. Quantum
mechanics and path integrals. Courier Corporation, 2010.

Glauber, R. J. Time-dependent statistics of the ising model.
Journal of mathematical physics, 4(2):294–307, 1963.

Glorot, X., Bordes, A., and Bengio, Y. Domain adaptation
for large-scale sentiment classification: A deep learning
approach. In Proceedings of the 28th international con-
ference on machine learning (ICML-11), pp. 513–520,
2011.

Goldenfeld, N. Lectures on phase transitions and the renor-
malization group. Reading, MA: Addison-Wesley, 1992.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Graham, R. Path integral formulation of general diffusion
processes. Zeitschrift für Physik B Condensed Matter, 26
(3):281–290, 1977.

Gu, S., Kelly, B., and Xiu, D. Empirical asset pricing via
machine learning. The Review of Financial Studies, 33
(5):2223–2273, 2020.

Guyon, I. and Elisseeff, A. An introduction to variable and
feature selection. Journal of machine learning research,
3(Mar):1157–1182, 2003.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r.,
Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath,
T. N., et al. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine, 29(6):82–97,
2012.

Hinton, G. E., Sejnowski, T. J., et al. Learning and relearn-
ing in boltzmann machines. Parallel distributed process-
ing: Explorations in the microstructure of cognition, 1
(282-317):2, 1986.

10

Feature Programming for Multivariate Time Series Prediction

Iwana, B. K. and Uchida, S. An empirical survey of data
augmentation for time series classification with neural
networks. Plos one, 16(7):e0254841, 2021.

Janssen, H. On a lagrangean for classical field dynamics and
renormalization group calculations of dynamical critical
properties. Zeitschrift für Physik B Condensed Matter, 23
(2):377–380, 1976.

Jiang, Y., Luo, Q., Wei, Y., Abualigah, L., and Zhou, Y.
An efficient binary gradient-based optimizer for feature
selection. Math. Biosci. Eng, 18(4):3813–3854, 2021.

Kadanoff, L. P. Statistical physics: Statics, dynamics and
renormalization. World Scientific, 2000.

Kakushadze, Z. 101 formulaic alphas. Wilmott, 2016(84):
72–81, 2016.

Kaul, A., Maheshwary, S., and Pudi, V. Au-
tolearn—automated feature generation and selection. In
2017 IEEE International Conference on data mining
(ICDM), pp. 217–226. IEEE, 2017.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma,
W., Ye, Q., and Liu, T.-Y. Lightgbm: A highly efficient
gradient boosting decision tree. Advances in neural infor-
mation processing systems, 30, 2017.

Khurana, U., Turaga, D., Samulowitz, H., and Parthasrathy,
S. Cognito: Automated feature engineering for super-
vised learning. In 2016 IEEE 16th International Confer-
ence on Data Mining Workshops (ICDMW), pp. 1304–
1307. IEEE, 2016.

Kondor, R. I. and Lafferty, J. Diffusion kernels on graphs
and other discrete structures. In Proceedings of the 19th
international conference on machine learning, volume
2002, pp. 315–322, 2002.

Längkvist, M., Karlsson, L., and Loutfi, A. A review of
unsupervised feature learning and deep learning for time-
series modeling. Pattern Recognition Letters, 42:11–24,
2014.

Lau, A. W. and Lubensky, T. C. State-dependent diffu-
sion: Thermodynamic consistency and its path integral
formulation. Physical Review E, 76(1):011123, 2007.

Le, Q. V. and Mikolov, T. Distributed representations of
sentences and documents. In International Conference
on Machine Learning, pp. 1188–1196, 2014.

Lim, B., Arık, S. Ö., Loeff, N., and Pfister, T. Temporal
fusion transformers for interpretable multi-horizon time
series forecasting. International Journal of Forecasting,
37(4):1748–1764, 2021.

Masini, R. P., Medeiros, M. C., and Mendes, E. F. Machine
learning advances for time series forecasting. Journal of
economic surveys, 37(1):76–111, 2023.

Meisenbacher, S., Turowski, M., Phipps, K., Rätz, M.,
Müller, D., Hagenmeyer, V., and Mikut, R. Review of
automated time series forecasting pipelines. Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge
Discovery, 12(6):e1475, 2022.

Mezard, M. and Montanari, A. Information, physics, and
computation. Oxford University Press, 2009.

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink,
D., Francon, O., Raju, B., Shahrzad, H., Navruzyan, A.,
Duffy, N., et al. Evolving deep neural networks. In
Artificial intelligence in the age of neural networks and
brain computing, pp. 293–312. Elsevier, 2019.

Montanari, A. and Sen, S. A short tutorial on mean-field
spin glass techniques for non-physicists. arXiv preprint
arXiv:2204.02909, 2022.

Muralidhar, N., Islam, M. R., Marwah, M., Karpatne, A.,
and Ramakrishnan, N. Incorporating prior domain knowl-
edge into deep neural networks. In 2018 IEEE interna-
tional conference on big data (big data), pp. 36–45. IEEE,
2018.

Ng, N., Cho, K., and Ghassemi, M. Ssmba: Self-supervised
manifold based data augmentation for improving out-of-
domain robustness. arXiv preprint arXiv:2009.10195,
2020.

Nguyen, H. C., Zecchina, R., and Berg, J. Inverse statistical
problems: from the inverse ising problem to data science.
Advances in Physics, 66(3):197–261, 2017.

Oreshkin, B. N., Carpov, D., Chapados, N., and Bengio, Y.
N-beats: Neural basis expansion analysis for interpretable
time series forecasting. arXiv preprint arXiv:1905.10437,
2019.

Ozaki, T. Time series modeling of neuroscience data. CRC
press, 2012.

Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):
1345–1359, 2009.

Pan, S. J., Ni, X., Sun, J.-T., Yang, Q., and Chen, Z. Cross-
domain sentiment classification via spectral feature align-
ment. In Proceedings of the 19th international conference
on World wide web, pp. 751–760, 2010.

Pan, Z., Sharma, A., Hu, J. Y.-C., Liu, Z., Li, A., Liu,
H., Huang, M., and Geng, T. T. Ising-traffic: Using
ising machine learning to predict traffic congestion under

11

Feature Programming for Multivariate Time Series Prediction

uncertainty. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2023.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, 2019.

Sezer, O. B., Gudelek, M. U., and Ozbayoglu, A. M. Fi-
nancial time series forecasting with deep learning: A
systematic literature review: 2005–2019. Applied Soft
Computing, 90:106181, 2020.

Sun, Y., Li, J., Liu, J., Chow, C., Sun, B., and Wang, R.
Using causal discovery for feature selection in multivari-
ate numerical time series. Machine Learning, 101(1):
377–395, 2015.

Swendsen, R. and Wang, J. Nonuniversal critical dynamics
in monte carlo simulations. Physical Review Letters, 58
(2):86–88, 1987.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. In Proceedings of the International Conference
on Computer Vision, pp. 2818–2826, 2016.

Tallec, C. and Ollivier, Y. Can recurrent neural networks
warp time? arXiv preprint arXiv:1804.11188, 2018.

Tealab, A. Time series forecasting using artificial neural
networks methodologies: A systematic review. Future
Computing and Informatics Journal, 3(2):334–340, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vázquez, E. D., Del Ferraro, G., and Ricci-Tersenghi, F. A
simple analytical description of the non-stationary dynam-
ics in ising spin systems. Journal of Statistical Mechanics:
Theory and Experiment, 2017(3):033303, 2017.

Weber, M. F. and Frey, E. Master equations and the theory of
stochastic path integrals. Reports on Progress in Physics,
80(4):046601, 2017.

Weiss, K., Khoshgoftaar, T. M., and Wang, D. A survey of
transfer learning. Journal of Big data, 3(1):1–40, 2016.

Wen, Q., Sun, L., Yang, F., Song, X., Gao, J., Wang, X., and
Xu, H. Time series data augmentation for deep learning:
A survey. arXiv preprint arXiv:2002.12478, 2020.

Wissel, C. Manifolds of equivalent path integral solutions
of the fokker-planck equation. Zeitschrift für Physik B
Condensed Matter, 35(2):185–191, 1979.

Yang, E., Ravikumar, P., Allen, G. I., and Liu, Z. Graphical
models via univariate exponential family distributions.
The Journal of Machine Learning Research, 16(1):3813–
3847, 2015.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How trans-
ferable are features in deep neural networks? Interna-
tional Conference on Machine Learning, pp. 3320–3328,
2014.

Zhou, Z., Ma, L., and Liu, H. Trade the event: Corpo-
rate events detection for news-based event-driven trading.
arXiv preprint arXiv:2105.12825, 2021.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong,
H., and He, Q. A comprehensive survey on transfer
learning. Proceedings of the IEEE, 109(1):43–76, 2020.

12

Feature Programming for Multivariate Time Series Prediction

Appendix
A More Related Works

B Theoretical Background: Constructing Multivariate Graphical Models from Univariate Exponential Family

C Proof of Main Text

D Experimental Details of Main Text

E Additional Experiments

A. More Related Works
Feature engineering is the process of constructing and selecting features for use in machine learning models. Compared to
data augmentation (Ng et al., 2020; Goodfellow et al., 2014; Doersch et al., 2015; Szegedy et al., 2016), which improves the
generalization performance of the model by synthesizing data that is more similar to the test distribution (Bousmalis et al.,
2016), feature engineering is an important step in the modeling process focusing on extracting relevant and informative
features from the raw data that can be used to train a model, as the quality of the features can have a significant impact on the
performance of the model. Recent developments in feature engineering for machine learning include the use of automated
techniques for feature selection and construction (Kaul et al., 2017; Khurana et al., 2016; Guyon & Elisseeff, 2003), the use
of deep learning techniques for feature learning (Bengio et al., 2013; Le & Mikolov, 2014; Hinton et al., 2012), and the use
of transfer learning techniques to adapt pre-trained feature representations to new tasks (Pan & Yang, 2009; Yosinski et al.,
2014).

Among all these developments, automated feature engineering, the use of algorithms and computational tools to automatically
construct and select features for use in machine learning models (including the use of genetic algorithms (Miikkulainen et al.,
2019) to evolve effective feature sets, the use of gradient-based optimization (Jiang et al., 2021) to search for optimal feature
combinations, and the use of deep learning techniques (Bengio et al., 2013; Le & Mikolov, 2014) for feature learning), is
the primary interest of this paper — as it allows for the handling of large and complex datasets, the discovery of complex
feature interactions, and the rapid testing and comparison of different feature sets.

On the other hand, the field of automated feature engineering for time series modeling has also witnessed growing interest
in recent times. These methods usually function by extracting a significant number of predefined features from the data,
followed by selecting a subset of the most pertinent ones, including univariate (Christ et al., 2018), multivariate time series
(De Brabandere et al., 2022) and many others mentioned in Section 1.

However, existing approaches may face limitations due to the issues highlighted in Section 1, such as the majority of
features being either too domain-specific or not easily generated based on a fundamental principle. As a complement to
these methods, our proposed programmable time series feature engineering framework provide a united perspective from a
dynamical physics model, the spin-gas Glauber dynamics. To the best of our knowledge, our framework represents the first
theoretically grounded automated feature engineering method for time series, characterized by its comprehensiveness and
physics-motivated fundamental principles. Contrary to hand-crafted methods that typically rely on ad-hoc dictionaries and
may struggle to transfer between different contexts, feature programming provides significant flexibility and adaptability
across various tasks, domains, or applications through appropriate customization.

B. Theoretical Background:
Constructing Multivariate Graphical Models from Univariate Exponential Family
Here, we introduce multivariate graphical model construction using univariate exponential family distributions (Yang et al.,
2015), which is used in Section 5 to pinpoint conditions enhancing the modeling capability of our proposed physics model
in capturing complex time series.

Suppose X = (x1, . . . , xN) is a random vector of length N , with each random variable xi taking values in some set X.
Let G = {V, E} be an undirected graph over the set of nodes V := [N] corresponding to N variables {xi}Ni=1. Let C be
the set of cliques (fully-connected subgraphs) of G, and {Φc(Xc)}c∈C be the set of clique-wise sufficient statistics with
Xc denoting the variables within C. Any distribution over X within the graphical model family represented by G has the

13

Feature Programming for Multivariate Time Series Prediction

exponential family form

P (X) ∝ exp

{∑
c∈C

wcΦc(Xc)

}
, (B.1)

where {wc}c∈C are the weights over {Φc}c∈C . For G being only up to pairwise cliques and X being binary, (B.1) reduces to
the Ising model family P (X) ∝ exp

{∑
i∈V wiΦ(xi) +

∑
(j,k)∈E wjkΦ(xj , xk)

}
.

Following (Yang et al., 2015), the graphical model (B.1) over multivariate X can be constructed from a particular choice of
univaraite exponential family for each random variable xi under conditions identified by Lemma B.1 & B.2 below.

Definition B.1 (Univariate Exponential Family). A univariate exponential family is a family of distributions for random
variable x,

P (x) = exp{wϕ(x) +B(xi)−D(x)}, (B.2)

with w, ϕ(xi), B(xi), D(w) being the canonical exponential family parameter, univariate sufficient statistics, base measure
and log-partition function, respectively. The choice of w and ϕ(xi) may vary depending on the particular distribution within
the exponential family.

Denoting N (i) the set of neighbors of node i according to G, we construct the node-conditionals based on above univariate
exponential family distribution (B.2) by considering a potential function consisting of a linear combination of up to k-th
order products of univariate sufficient statistics {ϕ(xj)}j∈N (i) and ϕ(xi) :

P
(
xi|XV\i

)
= exp

{
Ψi

(
XV\i

)
· ϕ(xi) +B(xi)−D

(
XV\i

)}
, (B.3)

where B(xi) is specified by the univariate exponential family (B.2), D
(
XV\i

)
:= D

(
Ψi

(
XV\i

))
denotes the conditional

log-partition function, and the canonical parameter Ψi

(
XV\i

)
of the univariate sufficient statistics function ϕ(xi) is given

by the following tensor-factorized form

Ψi

(
XV\i

)
= wi +

∑
α2∈N (i)

wiα2
ϕ(xα2

) +
∑

α2,α3∈N (i)

wiα2α3
ϕ(xα2

)ϕ(xα3
) + · · ·+

∑
α2,...,αk∈N (i)

wiα2...αk

k∏
j=2

ϕ(xαj
).

(B.4)

Remark B.1. We remark that (B.4) linearly expands the canonical parameter Ψi

(
XV\i

)
in terms of products of univaraite

sufficient statistics of conditional variables {xαl
}l∈V\i up to (k − 1)-th order; and the node-conditional (B.3) is a univariate

exponential family.

By Hammersley-Clifford theorem (Clifford, 1990) and tenor factorization (Yang et al., 2015; Besag, 1974), (B.3) can be
shown to determine the joint distribution P (X) uniquely:

Lemma B.1 (Proposition 1 of (Yang et al., 2015)). Given a graph G. Suppose X = (x1, . . . , xN) is a random vector of size
N and its node-conditionals for each node is specified by a univariate exponential family (B.3) that factors according to G.
Then its joint distribution sits inside the graphical model family, presented by G, of the form

P (X) = exp

{∑
i∈V

wiϕ(xi) +
∑
i∈V

∑
j∈N (i)

wijϕ(xi)ϕ(xj) + · · ·+
∑
i∈V

· · ·
∑

αk∈N (i)

wiα2...αk
ϕ(xi)

k∏
l=2

ϕ(αl)

+
∑
i∈V

B(xi)−A({w})

}
, (B.5)

where A({w}) is the log-partition function of the joint distribution.

Lemma B.1 states that, if the node-conditional distributions are defined as a univariate exponential family given in B.3, a
unique graphical model (joint) distribution is specified by B.5. Interestingly, it can be also shown that, (B.3) and (B.5) are
the most general form for pairwise graphical model by construction (Yang et al., 2015).

Reversely, we have the following lemma.

14

Feature Programming for Multivariate Time Series Prediction

Lemma B.2 (Theorem 2 of (Yang et al., 2015)). Suppose X = (x1, . . . , xN) is a random vector of size N , whose
node-conditionals are governed by the exponential family

P
(
xi|XV\i

)
= exp

{
Θ
(
XV\i

)
ϕ(xi) +B(xi)−D

(
XV\i

)}
, (B.6)

with canonical parameter function Θ
(
XV\i

)
, if the corresponding joint distribution P (X) is a graphical model that factors

according to some graph G with clique-size at most k, then the conditionals (B.6) have the tensor-factorized form given by
(B.3) (i.e. Θ

(
XV\i

)
= Ψ

(
XV\i

)
) , and P (X) takes the form of (B.5).

Lemma B.1 and Lemma B.2 together specify the sufficient conditions for node-conditionals and joint distribution with
respect to G being given by (B.6) and (B.5), respectively: (i) node-conditionals are in a univariate exponential family, and
(ii) the joint distribution is a graphical model factored according to G with clique-size at most k. This construction allows for
several advantages, including the capability to model a wide variety of distributions, and closed-form multivariate densities
that enable efficient inference and learning with statistical guarantees, see (Yang et al., 2015) for details.

C. Proof of Main Text
Our primary objective in the theory section is to demonstrate that the spin-gas Glauber dynamics introduced in (3.2) (or
(5.7) for completeness) can be specified by a univariate exponential family and can be seen as the node-conditional of a
multivariate graphical model G, which exhibits desirable properties according to (Yang et al., 2015).

We sketch the three conceptual steps here.

• Step 1: We demonstrate that the node-conditional (5.7) is indeed specified by a univariate exponential family, and we
identify the sufficient statistics and canonical parameters.

• Step 2: We show that the identified canonical parameters of (5.7) (and thus the spin-gas Glauber dynamics (3.2)) take
on a tensor-factorized form if the effective local field g is in the form of (5.8).

• Step 3: Finally, by applying Lemma B.1 and Lemma B.2 with the tensor-factorized canonical parameters, we complete
the proof, illustrating that our model inherits advantageous properties from (Yang et al., 2015) under the identified
conditions (5.8).

C.1. Proof of Theorem 5.1

Proof. Recall G = (Vt,Vt+δt, E), and X = (σt,σt+δt). We first consider the node-conditionals given by the augmented
Glauber dynamics, i.e. node-conditionals for nodes q ∈ Vt+δt. Starting from expressing the augmented Glauber dynamics
(3.2) into node-conditional form with canonical parameter Θ

(
X\(i,t+δt)

)
, by assumption 2.1 (and consequently Et+δt = ∅,

Et ̸= ∅ and Et,t+δt ̸= ∅), we have (3.2) taking node-conditional form

P (σi,t+δt|σt) = P (σi,t+δt|σt+δt\i,σt), (C.1)

and therefore
exp{σi,t+δtΓi,t}

2 coshΓi,t
= exp

{(
ln

1

2
· Γi,t

)
σi,t+δt − ln

[
1

2

(
eΓi,t + e−Γi,t + 1

)]}
= exp

{
Θ
(
X\(i,t+δt)

)
ϕ̃ (σi,t+δt) +B (σi,t+δt)−D (σt)

}
,

where the last line takes the form of (B.6). Here, the i index specifies a node in Vt+δt, and the conditional potential
function can be decomposed into two parts: canonical parameter Θ

(
X\(i,t+δt)

)
= ln 1

2 · Γi,t and sufficient statistics
ϕ̃ (σt+δt) = σi,t+δt.

From Θ(X\(i,t+δt)) = ln 1
2 · Γi,t and ϕ̃(σi,t+δt) = σi,t+δt, we first observe that

Θ(X\(i,t+δt)) = Θ(Xt+δt\i,σt) = Θi(σt), (C.2)

where, we emphasize that, Θi(σt) denotes the canonical parameter of the node-conditional of the i-th node in Vt+δt, and is
a function of σt due to the definition of Γi,t.

15

Feature Programming for Multivariate Time Series Prediction

For the sake of simplicity, we abuse notation by absorbing the ln 1
2 factor into Γi,t, and write

Θi(σt) = Γi,t =
∑
j∈Vt

Jij(t)σj,t + hi(t) + gi

(
δσt

δt
,
δ

δt

(
δσt

δt

))
, (C.3)

with gi(·) satisfying (5.8).

Recall the fact that the univariate sufficient statistics functions {ϕ̃(σαl
)}αl∈N (i) are now functions of 0th-, 1st- and 2nd-order

time derivatives, we expand the Ψi

(
X\(i,t+δt)

)
using its definition

Ψi (Xt) = wi +
∑

α2∈N (i)

w̃iα2 ϕ̃(σα2) +
∑

α2,α3∈N (i)

w̃iα2α3 ϕ̃(σα2)ϕ̃(σα3)

+ · · ·+
∑

α2,...,αk∈N (i)

w̃iα2...αk

k∏
j=2

ϕ̃(σαj
). (C.4)

We immediately read out wi = hi(t), and univariate sufficient statistics for node αl ∈ N (i) ⊆ Vt:

ϕ̃(σαl
) := σ̃T

αl
=

(
σαl

,
δσαl

δt
,
δ

δt

(
δσαl

δt

))T

, (C.5)

with dimension of w̃ being extended along each index (except i) by a factor of 3, such that, for instance,∑
α2∈N (i)

w̃iα2
ϕ̃(σα2

) =
∑

α2∈N (i)

[
wiα2

σα2
+ w′

iα2

δσα2

δt
+ w′′

iα2

δ

δt

(
δσα2

δt

)]

=
∑
j∈Vt

Jij(t)σj,t +
∑
j∈Vt

G
(1)
ij (t)

δσj,t

δt
+

∑
j∈Vt

G
(2)
ij (t)

δ

δt

(
δσj,t

δt

)
. (C.6)

Higher-order product terms can be identified accordingly. Therefore, we arrive the fact that the canonical parameter Θi(σt)
with gi(·) given by (5.8) is indeed in a tensor-factorized form Ψi(σt). Moreover, the coefficients {w̃} can all be identified
with couplings {G}. We can therefore write down the extended sufficient statistics as a (3N + 1N)-dimensional vector

ϕ̃(X) =
({

σi,t,
δσi,t

δt
,
δ

δt

(
δσi,t

δt

)}N

i=1︸ ︷︷ ︸
3N

, {σi,t+δt}Ni=1︸ ︷︷ ︸
N

)T

and compactify the notation with index αl := (i, t) ∈ Vt and βl := (i, t+ δt) ∈ Vt+δt,

ϕ̃(X) =
(
{σ̃αl

}Nl=1, {σβl
}Nl=1

)T
, (C.7)

where, ϕ̃(σαl
) = σ̃αl

:=
(
σαl

,
δσαl

δt , δ
δt

(
δσαl

δt

))
for αl ∈ Vt, and ϕ̃(σαl

) = σβl
βl ∈ Vt+δt, are zero-padded vectors.

Consequently, we can determine the canonical parameter Θi,t:

Ψi (Xt) = Ψi

(
Xt+δt\i,σt

)
= Γi,t (σt) (C.8)

=
∑
j∈Vt

Jij(t)σj,t + hi(t) + gi

(
δσt

δt
,
δ

δt

(
δσt

δt

))

= wi +
∑

α2∈N (i)

wiα2
ϕ̃(σα2

) +
∑

α2,α3∈N (i)

wiα2α3
ϕ̃(σα2

)ϕ̃(σα3
) + · · · +

∑
α2,...,αk∈N (i)

wiα2...αk

k∏
j=2

ϕ̃(σαj
),

where αl ∈ N (i) ⊆ Vt and univariate functions {ϕ̃(σαl
)}αl∈N (i) are functions of 0th-, 1st- and 2nd-order time derivatives.

Finally, we observe that, since the node-conditionals of nodes q /∈ Vt+δt follow the standard Glauber dynamics and Gt,t+δt

consists cliques of at most size k, the node-conditionals given by (5.7) and (5.6) satisfy the conditions of Lemma B.2
and hence (5.7) indulges the tensor-factorized form (5.8). Therefore, we complete the proof by applying Lemma B.1 and
determining joint distribution P (X) of Gt,t+δt uniquely.

16

Feature Programming for Multivariate Time Series Prediction

D. Experimental Details of Main Text
D.1. Datasets

We exploit four supervised regression datasets to test the proposed framework.

• Synthetic Dataset: To validate our method, we employ a synthetic dataset designed to align with the method’s
underlying assumptions. We derive this dataset from the Taxi Dataset, replacing the original input features with a
mixture of zero-order, first-order, and second-order features, essentially omitting the basic features. For the output
values, we opt for a randomly selected subset of zero-order features, such as volatility or exponential smoothing,
derived from the foundational basic features, forecasting one step ahead for all input series.

• Taxi Dataset: We use the TLC Trip Record Dataset, which has the number of taxi rides for 1000 locations in the form
of 30 minute time intervals. We use the current 30-minute interval to forecast the next 30-minute interval.

• Electricity Dataset: We use the UCI Electricity Load Diagrams Dataset, which has the electricity consumption of 370
customers in the form of hourly time intervals. We use the current hour to forecast the next hour.

• Traffic Dataset: We use the UCI PEM-SF Traffic Dataset holds the occupancy rate of 440 San Francisco Bay Area
highways in the form of hourly time intervals. We use the current hour to forecast the next hour.

Extended Features. Let N be the number variate in the multivariate time series, K be the number of extended features
and T be the sequence length. We use the default setting of the feature program to generate K = 45 features from each
dataset (which has one feature for each variate). Namely, the data formats of the basic and extended features are (N, 1, T)
and (N,K, T), respectively.

To generate the extended features, we utilize all of the fundamental operators on the output of the previous order at each
order’s feature calculation. For the 0th order features, we applied smoothing using the window operator with lookback size
of [7, 25]. For the 1st order features, we applied the window, difference, and shift operators with lookback size of [7, 25].
For the 2nd order features, we applied the window, difference, and shift operators with lookback size of [7, 25]. Our final
extended features set is composed of the basic features and the all of the generated features at each order.

Noisiness. To see the noisiness of each dataset, we compute the Temporal Signal-to-Noise Ratio (TSNR) for all datasets.
Table 3. Assessment of Dataset Noisiness using Temporal Signal-to-Noise Ratio (TSNR) for each Dataset. The taxi dataset emerges as the
noisiest, and our experimental findings highlight the increased significance of extended features in handling such noisy datasets.

Synthetic Taxi Electric Traffic

TSNR 1.60 1.27 2.98 1.32

D.2. Hyperparameter Search

Hyperparameter optimization is conducted via random search for 100 iterations.

• learning rate: 0.01, 0.001, 0.0001, 0.00001

• batch size: 64, 128, 256, 512, feature dim

• hidden size: 64, 128, 512, 1024, 2048

• num epochs: we use early stopping.

D.3. Implementation Details

For each experimental setting, we set the batch size to equal the number of variables for the corresponding dataset.

• Architectural Details: For the MLP model, the architecture is composed of 3 layers, with a hidden size of 512, and
ReLU activation function. For the CNN model, the architecture is composed of 1 fully connected layer with hidden
size of 512 and ReLU activation function, and 2 convolutional layers with kernel size of 3. For the LSTM model, the
architecture is composed of 2 hidden layers and a hidden size of 512.

17

Feature Programming for Multivariate Time Series Prediction

• Training Details: We use an Adam optimizer with learning rate lr = 10−5 for training. The coefficients of Adam
optimizer, betas, are set to (0.9, 0.999).

• Platforms: The GPUs and CPUs used to conduct experiments are NVIDIA GEFORCE RTX 2080 Ti and INTEL
XEON SILVER 4214 @ 2.20GHz.

E. Additional Experiments
To complement the experiments presented in Section 6, we carry out further investigations that include more advanced
models, practical scenarios, illustrative examples of customizing the feature program, and ablation studies to demonstrate
the impact of operators on the generated features.

E.1. Evaluating Feature Programming Across Diverse Deep Learning Models

We conduct further experiments using a variety of widely-used time series forecasting models, with an emphasis on standard
one-step-ahead predictions. In addition, we also incorporate multi-horizon prediction task experiments to address practical
scenarios.

Models.

• XGBoost (Chen et al., 2015)

• LightGBM (Ke et al., 2017)

• Transformer (Vaswani et al., 2017)

• Temporal Fusion Transformer (TFT) (Lim et al., 2021)

• Temporal Convolution Network (TCN) (Chen et al., 2020)

• N-BEATS (Oreshkin et al., 2019)

We utilize the DART 7 package to implement XGBoost, LightGBM, Transformer, TFT, TCN, and N-BEATS.

Data. We employ the easiest dataset and the most challenging dataset identified in Section 6 and specified in Appendix D.1
— the synthetic and taxi datasets.

Experiment Settings. For each of the datasets, we do an 80/20 train/test split to get our training data (in-sample) and
testing data (out-of-sample). For all experiments, we conduct 5 runs and report the average performance. For the models,
we stick to the common default configurations used in literature so as for a fair comparison.

Problem Setting: One-Step-Ahead Prediction with Extended Features. We conduct one-step-ahead predictions using
above models and assess their performance by comparing results obtained with and without the inclusion of extended
features. We examine the standard one-step-ahead time series regression problem with a lookback size of T = 20, which
corresponds to a sequence length of 20. As illustrated in Table 4, our extended features yield consistent performance
enhancements in prediction tasks when used as model inputs for a range of machine learning (XGBoost and LightGBM)
and deep neural network time series prediction models (Transformer, TCN, TFT and N-BEATS).

Multi-Horizon Prediction with Extended Features. We further investigate multi-horizon prediction tasks with horizon
sizes of 1, 2, 3, 5, 10 and 20, utilizing a lookback size of T = 20. The models applied for multi-horizon prediction include
Transformer, TFT, TCN8, N-BEATS. These experiments are conducted using the synthetic dataset, and reported in Table 5.
The results showcase the effectiveness of the generated features in various multi-horizon prediction settings. Particularly,
when forecasting the next 20 values using a sequence of length 20 (arguably the toughest task when only relying on basic

7https://unit8co.github.io/darts/
8The current version of DART package requires that the output length is strictly smaller than the input length. As a result, we are

unable to report the 20-step horizon results for TCN. Instead, we have included the results for a 19-step horizon and labeled them with ∗

in Table 5.

18

https://unit8co.github.io/darts/

Feature Programming for Multivariate Time Series Prediction

Table 4. Performance Comparison of Common Time Series Models with and without Extended Features on Synthetic and Taxi Datasets.
The table demonstrates the performance enhancements consistently achieved in one-step-ahead prediction tasks using a lookback size of
T = 20 when extended features are utilized as inputs for various machine learning (XGBoost and LightGBM) and deep neural network
time series prediction models (Transformer, TCN, TFT and N-BEATS).

Metric Dataset XGBoost LightGBM Transformer TCN TFT N-BEATS

Basic Extended Basic Extended Basic Extended Basic Extended Basic Extended Basic Extended

R2 Score % Synthetic 99.12 99.34 98.92 99.34 96.46 96.86 98.87 99.37 96.21 97.60 99.26 99.41
Taxi 77.34 78.15 77.05 81.01 72.64 73.70 75.36 77.70 54.58 61.31 76.82 79.94

Pearson
Correlation %

Synthetic 99.56 99.67 99.46 99.67 99.11 99.08 99.44 99.69 98.41 99.19 97.63 99.73
Taxi 87.96 88.42 87.80 88.97 85.54 86.83 86.87 88.26 76.65 79.65 87.84 89.61

features), the features generated by our method have demonstrated significant improvements in prediction performance
across all models, suggesting that the extended features possess a greater amount of autoregressive information compared to
basic features.

Table 5. Evaluation of Feature Quality for Multi-Horizon Prediction using Synthetic Dataset. This table presents the performance of the
Transformer, TFT, TCN and N-BEATS models on multi-horizon prediction tasks with horizon sizes of 1, 2, 3, 5, 10 and 20, benchmarked
on the synthetic dataset. The results showcase the effectiveness of the generated features in various multi-horizon prediction settings.
Particularly, when predicting a full-length sequence (using a sequence of length 20 to predict the next 20 values), our generated features
have demonstrated considerable prediction improvements across all models, suggesting that the extended features possess a greater
amount of autoregressive information compared to basic features.

Model Metric 1-Step Horizon 2-Step Horizon 3-Step Horizon 5-Step Horizon 10-Step Horizon 20-Step Horizon

Basic Extended Basic Extended Basic Extended Basic Extended Basic Extended Basic Extended

Transformer R2 Score % 96.46 96.86 94.47 96.58 94.07 96.92 91.03 92.78 73.11 81.17 54.46 73.33
Pearson Correlation % 99.11 99.08 98.02 98.63 97.11 98.48 95.42 96.40 85.76 90.41 74.31 86.20

TFT R2 Score % 96.21 97.60 95.81 96.86 93.99 95.11 84.76 92.29 60.87 78.60 35.35 64.91
Pearson Correlation % 98.41 99.19 97.92 98.57 97.30 98.02 93.39 96.11 81.14 88.75 66.13 80.85

TCN R2 Score % 98.87 99.37 96.03 97.98 92.41 95.75 79.91 88.32 41.91 66.18 17.18∗ 52.50∗

Pearson Correlation % 99.44 99.69 98.02 99.01 96.20 97.86 89.51 94.11 65.51 81.41 46.08∗ 73.19∗

N-BEATS R2 Score % 99.26 99.41 98.39 98.87 97.26 98.00 93.17 95.69 78.09 86.97 57.06 74.65
Pearson Correlation % 97.63 99.73 99.20 99.44 98.62 99.07 96.62 97.84 88.90 93.28 75.80 86.44

Simple Models Using Extended Features Achieve Comparable Performance to SOTA Models. As demonstrated
in Table 4 and Table 5, utilizing extended features as inputs for simple models (e.g. Transformer) allows them to reach
performance levels comparable to state-of-the-art models (TCN, TFT, N-BEATS) that rely solely on raw features.

E.2. Customizing Feature Programs: Three Examples of Customized Feature Programs

Our framework forms the crux of customizable feature engineering for multivariate time series. It’s highly adaptable and
doesn’t depend on the model’s structure. The production of extended features depends solely on the custom design of the
pre-programmed operation module and the feature template. This proves especially advantageous when deep learning
models struggle to extract specific features or when users wish to ensure that a certain aspect of the data is considered by
the model. In this section, we present three illustrative examples to showcase the customization procedure that may be
required in real-world scenarios. These examples show how to tailor the feature program to resemble known hand-crafted
features. This corresponds to common practical scenarios where we have some insights into the types of features that might
be particularly informative for the specific task, domain, or application at hand. For demonstration purposes, we adopt a
simplified setting that employs straightforward and commonly known hand-crafted features (Momentum MoM, Bias Bias
and Absolute Energy AbsEnergy) as the targets features for resembling.

Momentum MoM[t,∆τ]. As mentioned in (Gu et al., 2020), one of the simplest common hand-crafted feature for time
series is the momentum feature, which refers to the rate of change in a time series over a specified period. It is a measure
of the series recent performance, which is often used to identify trending time series that are expected to continue their
movements in the same direction.

19

Feature Programming for Multivariate Time Series Prediction

Let ∆τ be the lookback size of the momentum feature. The momentum feature is defined as:

MoM[t,∆τ] =
xt − xt−∆τ

xt−∆τ
. (E.1)

It calculates the percentage change in the time series values over the past ∆τ time steps. A positive momentum value
indicates that the time series value has increased during that period, while a negative value means the value has decreased.

To resemble MoM[t,∆τ] with the feature programming framework, we set the feature template and operation module as
follows:

1. Set feature template:

(a) Set both 0th basic feature , and 2nd basic feature to be empty.
(b) Incorporate ratio feature , defined as ratio[a, b] := a/b, into 1st basic feature .

2. Pre-program the operation module:

• 0th order:
(a) Perform Shift[xt,∆τ] and obtain {xt−∆τ}.

(b) Perform Difference[xt, xt−∆τ] and obtain 1st-order series {xt − xt−∆τ}.
• 1th order:

(a) Pass a = {xt−∆τ} and b = {xt − xt−∆τ} as 1st basic feature (where ratio[a, b] is in.)
(b) The output from 1st basic feature gives the resembled MoM[t,∆τ].

It is important to note that the computational trajectory presented here specifically focuses on the output feature that
resembles MoM[t,∆τ]. The final set of extended features may include other distinct extended features.

BIAS Bias [t,∆τ]. The second example we considered is the bias feature, which indicated the current trend of the time
series and the potential reversals. Let SMA[t,∆τ] :=

∑t
i=t−∆τ+1 xi/∆τ be the sample moving average of lookback size

∆τ . The bias feature is defined as

Bias [t,∆τ] :=
xt − SMA[t,∆τ]

SMA[t,∆τ]
. (E.2)

To resemble Bias [t,∆τ,], we set the feature template and operation module as follows:

1. Set feature template:

(a) Incorporate SMA feature , defined as SMA[t,∆τ], into 0th basic feature .
(b) Incorporate ratio feature into 1st basic feature .
(c) Set 2nd basic feature to be empty.

2. Pre-program the operation module:

• 0th order:
(a) Perform Difference[xt, SMA[t,∆τ]] and obtain 1st-order series {xt − SMA[t,∆τ]}.

• 1th order:
(a) Pass a = {xt, SMA[t,∆τ]} and b = {SMA[t,∆τ]} as 1st basic feature (where ratio[a, b] is in.)
(b) The output from 1st basic feature gives the resembled Bais[t,∆τ].

Absolute Energy AbsEnergy[t,∆τ]. Following (Christ et al., 2018), the third example we considered is the absolute
energy feature which is often used in signal processing, particularly for identifying the energy content of a signal, and it can
also be useful in time series analysis for understanding the overall strength or magnitude of the data. The absolute energy
feature is defined as

AbsEnergy[t,∆τ] :=

t∑
i=t−∆τ+1

x2
i . (E.3)

To resemble AbsEnergy[t,∆τ], we set the feature template and operation module as follows:

20

Feature Programming for Multivariate Time Series Prediction

1. Set feature template:

(a) Incorporate square feature , square[a] := a2, into 0th basic feature .

(b) Incorporate sum feature , sum[at,∆τ] :=
∑t

i=t−∆τ+1 ai, into 1st basic feature .

(c) Set 2nd basic feature to be empty.

2. Pre-program the operation module:

• 0th order:
(a) Do nothing.

• 1th order:
(a) Pass a = {x2

t} (from 0th basic feature) as 1st basic feature (where sum[at,∆τ] is in.)
(b) The output from 1st basic feature gives the resembled AbsEnergy[t,∆τ].

Evaluating the Resemblance of Hand-Crafted Features. From the results above, by construction, we can achieve an
exact resemblance of the given hand-crafted features by appropriately customizing the feature program. Following the
same procedure, more complex features can also be programmed and resembled. Generally, to evaluate the quality of the
resembled features, we follow the feature generation flow (path in the computational graph) and identify the specific feature
output that resembles the target hand-crafted features. In our case, we have MoM[t,∆τ], Bais[t,∆τ], and AbsEnergy[t,∆τ]
all perfectly resembled, with both R2 and Pearson correlation equal to 1 when comparing the resembled features to the
hand-crafted features. For the comparison baselines, we use MoM from (Gu et al., 2020), Bias from the PandasTA 9

package, and AbsEnergy from (Christ et al., 2018).

We would like to stress that achieving such exact resemblance is not generally applicable in practice (as it requires prior
knowledge of the features to use), but the customization process for the feature program is indeed general. It is always
possible to program desired (hand-crafted) features as long as they can be represented as programmable functions.

9https://github.com/twopirllc/pandas-ta

21

https://github.com/twopirllc/pandas-ta

