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Abstract

In an effort to further advance semi-supervised generative and classification tasks,
we propose a simple yet effective training strategy called dual pseudo training
(DPT), built upon strong semi-supervised learners and diffusion models. DPT
operates in three stages: training a classifier on partially labeled data to predict
pseudo-labels; training a conditional generative model using these pseudo-labels
to generate pseudo images; and retraining the classifier with a mix of real and
pseudo images. Empirically, DPT consistently achieves SOTA performance of
semi-supervised generation and classification across various settings. In particular,
with one or two labels per class, DPT achieves a Fréchet Inception Distance
(FID) score of 3.08 or 2.52 on ImageNet 256× 256. Besides, DPT outperforms
competitive semi-supervised baselines substantially on ImageNet classification
tasks, achieving top-1 accuracies of 59.0 (+2.8), 69.5 (+3.0), and 74.4 (+2.0) with
one, two, or five labels per class, respectively. Notably, our results demonstrate that
diffusion can generate realistic images with only a few labels (e.g., < 0.1%) and
generative augmentation remains viable for semi-supervised classification. Our
code is available at https://github.com/ML-GSAI/DPT.

1 Introduction

Diffusion probabilistic models [1, 2, 3, 4, 5, 6, 7] have achieved excellent performance in image
generation. However, empirical evidence has shown that labeled data is indispensable for training
such models [8, 4]. Indeed, lacking labeled data leads to much lower performance of the generative
model. For instance, the representative work (i.e., ADM) [4] achieves an FID of 10.94 on fully
labeled ImageNet 256× 256, while an FID of 26.21 without labels.

To improve the performance of diffusion models without utilizing labeled data, prior work [8, 9]
initially conducts clustering and subsequently trains diffusion models conditioned on the cluster
indices. Although these methods can, in some instances, exhibit superior performance over supervised
models on low-resolution data, such phenomena have not yet been observed on high-resolution data
(e.g., on ImageNet 256× 256, an FID of 5.19, compared to an FID of 3.31 achieved by supervised
models, see Appendix C). Besides, cluster indices may not always align with ground truth labels,
making it hard to control semantics in samples. Compared to unsupervised methods, semi-supervised
generative models [10, 11, 12] often perform much better and provide the same way to control the

∗Equal contribution.
†Correspondence to Chongxuan Li.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/ML-GSAI/DPT


Figure 1: Selected samples from DPT. Top row: 512× 512 samples from DPT trained with five (<
0.4%) labels per class. Bottom rows: 256× 256 samples from DPT trained with one (< 0.1%) label
per class (Left: “Ostrich”; Mid: “King penguin”; Right: “Indigo bunting”).

semantics of samples as the supervised ones by using a small number of labels. However, to our
knowledge, although it is attractive, little work in the literature has investigated semi-supervised
diffusion models. This leads us to a key question: can diffusion models generate high-fidelity images
with controllable semantics given only a few (e.g., < 0.1%) labels?

On the other hand, while it is natural to use images sampled from generative models for semi-
supervised classification [10, 11], discriminative methods [13, 14, 15] dominant the area recently. In
particular, self-supervised based learners [16, 17, 18] have demonstrated state-of-the-art performance
on ImageNet. However, generative models have rarely been considered for semi-supervised classi-
fication recently. Therefore another key question arises: can generative augmentation be a useful
approach for such strong semi-supervised classifiers, with the aid of advanced diffusion models?

To answer the above two key and pressing questions, we propose a simple but effective training
strategy called dual pseudo training (DPT), built upon strong diffusion models and semi-supervised
classifiers. DPT is three-staged (see Fig. 3). First, a classifier is trained on partially labeled data and
used to predict pseudo-labels for all data. Second, a conditional generative model is trained on all
data with pseudo-labels and used to generate pseudo images given labels. Finally, the classifier is
trained on real data augmented by pseudo images with labels. Intuitively, in DPT, the two opposite
conditional models (i.e. diffusion model and classifier) provide complementary learning signals to
each other and benefit mutually (see a detailed discussion in Appendix E).

We evaluate the effectiveness of DPT through diverse experiments on multi-scale and multi-resolution
benchmarks, including CIFAR-10 [19] and ImageNet [20] at resolutions of 128×128, 256×256, and
512× 512. Quantitatively, DPT obtains SOTA semi-supervised generation results on two common
metrics, including FID [21] and IS [22], in all settings. In particular, in the highly appealing task, i.e.
ImageNet 256×256 generation, DPT with one (i.e., < 0.1%) labels per class achieves an FID of 3.08,
outperforming strong supervised diffusion models including IDDPM [23], CDM [24], ADM [4] and
LDM [25] (see Fig. 2 (a)). It is worth noting that the comparison with previous models here is meant
to illustrate that DPT maintains good performance even with minimal labels, rather than directly
comparing it to these previous models (direct comparison is unfair as different diffusion models were
used). Furthermore, DPT with two (i.e., < 0.2%) labels per class is comparable to supervised baseline
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(a) DPT vs. supervised diffusion models. (b) DPT vs. semi-supervised classifiers.

Figure 2: Generation and classification results of DPT on ImageNet with few labels. (a) DPT
with < 0.1% labels outperforms strong supervised diffusion models [4, 24, 25]. (b) DPT substantially
improves SOTA semi-supervised learners [17].

U-ViT [5] (FID 2.52 vs. 2.29). Moreover, on ImageNet 128× 128 generation, DPT with one (i.e.,
< 0.1 %) labels per class outperforms SOTA semi-supervised generative models S3GAN [12] with
20% labels (FID 4.59 vs. 7.7). Qualitatively, DPT can generate realistic, diverse, and semantically
correct images with very few labels, as shown in Fig 1. We also explore why classifiers can benefit
generative models through class-level visualization and analysis in Appendix H.

As for semi-supervised classification, DPT achieves state-of-the-art (SOTA) performance in various
settings, including ImageNet with one, two, five labels per class and 1% labels. On the smaller
dataset, namely CIFAR-10, DPT with four labels per class achieves the second-best error rate of
4.68±0.17%. Besides, on ImageNet classification benchmarks with one, two, five labels per class and
1% labels, DPT outperforms competitive semi-supervised baselines [17, 16], achieving state-of-the-
art top-1 accuracy of 59.0 (+2.8), 69.5 (+3.0), 74.4 (+2.0) and 80.2 (+0.8) respectively (see Fig. 2
(b)). Similarly to generation tasks, we also investigate why generative models can benefit classifiers
via class-level visualization and analysis in Appendix I.

In summary, our novelty and key contributions are as follows:

• We present Dual Pseudo Training (DPT), a straightforward yet effective strategy designed to
advance the frontiers of semi-supervised diffusion models and classifiers.

• We achieve SOTA semi-supervised generation performance on CIFAR-10 and ImageNet datasets
across various settings. Moreover, we demonstrate that diffusion models with a few labels (e.g.,
< 0.1%) can generate realistic, diverse, and semantically accurate images, as depicted in Fig 1.

• We achieve SOTA semi-supervised classification performance on ImageNet datasets across various
settings and the second-best results on CIFAR-10. Besides, we demonstrate that aided by diffusion
models, generative augmentation remains a viable approach for semi-supervised classification.

• We explore why diffusion models and semi-supervised learners benefit mutually with few labels
via class-level visualization and analysis, as showcased in Appendix H and Appendix I.

2 Settings and Preliminaries

We present settings and preliminaries on two representative self-supervised based learners for semi-
supervised learning [17] [16] in Sec. 2.1 and conditional diffusion probabilistic models [2, 5, 26] in
Sec. 2.2, respectively. We consider image generation and classification in semi-supervised learning,
where the training set consists of N labeled images S = {(xl

i, y
l
i)}Ni=1 and M unlabeled images

D = {xu
i }Mi=1. We assume N ≪ M . For convenience, we denote the set of all real images as

X = {xu
i }Mi=1 ∪ {xl

i}Ni=1, and the set of all possible classes as Y .

3



Conditional Generative ModelClassifier Classifier

Partially Labeled Real Images All Real Images with Pseudo Labels 

Pseudo Labels for All Real Images Pseudo Images with Uniform Labels

Real Data Augmented by Pseudo Ones

"bird" "panda"

Training

Predicting

"bird" "panda"

1 2 3

Sampling

"bird" "panda"

"bird" "panda"

Figure 3: An overview of DPT. First, a (semi-supervised) classifier is trained on partially labeled
data and used to predict pseudo-labels for all data. Second, a conditional generative model is trained
on all data with pseudo-labels and used to generate pseudo images given random labels. Finally, the
classifier is trained or fine-tuned on real data augmented by pseudo images with labels.

2.1 Semi-Supervised Classifier

Masked Siamese Networks (MSN) [17] employ a ViT-based [27] anchor encoder fθ(·) and a target
encoder fθ̄(·), where θ̄ is the exponential moving average (EMA) [28] of parameters θ. For a real
image xi ∈ X , 1 ≤ i ≤ M + N , MSN obtains H + 1 random augmented images, denoted as
xi,h, 1 ≤ h ≤ H + 1. MSN then applies either a random mask or a focal mask to the first H
augmented images and obtain mask(xi,h), 1 ≤ h ≤ H . MSN optimizes θ and a learnable matrix of
prototypes q by the following objective function:

1

H(M +N)

M+N∑
i=1

H∑
h=1

CE(pi,h,pi,H+1)− λH(p̄), (1)

where CE and H are cross entropy and entropy respectively, pi,h = softmax((fθ(mask(xi,h)) · q/τ)
, p̄ is the mean of pi,h, pi,H+1 = softmax(fθ̄(xi,H+1) ·q/τ ′), τ ,τ ′ and λ are hyper-parameters, and
· denotes cosine similarity. MSN is an efficient semi-supervised approach by extracting features for
all labeled images in S and training a linear classifier on top of the features using L2-regularized
logistic regression. When a self-supervised pre-trained model is available, MSN demonstrates high
efficiency in training a semi-supervised classifier on a single CPU core.

Semi-ViT [16] is three-staged. First, it trains a ViT-based encoder fθ(·) on all images in X via
self-supervised methods such as MAE [29]. Second, fθ(·) is merely fine-tuned on S in a supervised
manner. Let θ̄ be the EMA of θ, and xu,s

i and xu,w
i denote the strong and weak augmentated versions

of xu
i respectively. Finally, Semi-ViT optimizes a weighted sum of two cross-entropy losses:

L = Ll + µLu =
1

N

N∑
j=1

CE(fθ(xl
j), vec(ylj)) +

µ

M

M∑
i=1

I[fθ̄(x
u,w
i )ŷi

≥ τ ]CE(fθ(x
u,s
i ), vec(ŷi)),

(2)

where fθ̄(x)y is the logit of fθ̄(x) indexed by y, ŷi = argmaxy fθ̄(x
u,w
i )y is the pseudo-label,

vec(·) returns the one-hot representation, and τ and µ are hyper-parameters.

4



2.2 Conditional Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Model (DDPM) [2] gradually adds noise ϵ ∼ N (0, I) to data x0

from time t = 0 to t = T in the forward process, and progressively removes noise to recover data
starting at xT ∼ N (0, I) in the reverse process. It trains a predictor ϵθ to predict the noise ϵ by the
following objective:

L = Et,x0,ϵ[||ϵθ(xt, c, t)− ϵ||22], (3)

where c indicates conditions such as classes and texts.

Classifier-Free Guidance (CFG) [26] leverages a conditional noise predictor ϵθ(xt, c, t) and an
unconditional noise predictor ϵθ(xt, t) in inference to improve sample quality and enhance semantics.
Formally, CFG iterates the following equation starting at xT :

xt−1 =
1

√
αt

(xt −
βt√
1− ᾱt

ϵ̃t) + σ2
t z, (4)

where ϵ̃t = (1 + ω)ϵθ(xt, c, t) − ωϵθ(xt, t), ω is the guidance strength, z ∼ N (0, I), and αt, βt,
ᾱt and σt are constants w.r.t. the time t.

U-ViT [5] is a ViT-based backbone for diffusion probabilistic models, which achieves excellent
performance in conditional sampling on large-scale datasets.

3 Method

we propose a three-stage strategy called dual pseudo training (DPT) to advance semi-supervised
generation and classification tasks, illustrated in Fig. 3 and detailed as follows.

3.1 First Stage: Train Classifier

DPT trains a semi-supervised classifier on partially labeled data S ∪ D, predicts a pseudo-label
ŷ of any image x ∈ X by the classifier, and constructs a dataset consisting of all images with
pseudo-labels, i.e. S1 = {(x, ŷ)|x ∈ X}3. Notably, here we treat the classifier as a black box without
modifying the training strategy or any hyperparameter. Therefore, any well-trained classifier can be
adopted in DPT in a plug-and-play manner. Indeed, we use recent advances in self-supervised based
learners for semi-supervised learning, i.e. MSN [17], and Semi-ViT [16]. These two classifiers both
provide the generative model with accurate, low-noise labels of high quality.

3.2 Second Stage: Classifier Benefits Generative Model

DPT trains a conditional generative model on all real images with pseudo-labels S1, samples K
pseudo images for any class label y after training, and constructs a dataset consisting of pseudo
images with uniform labels4. We denote the dataset as S2 = ∪y∈Y{(x̂i,y, y)}Ki=1, where x̂i,y is the
i-th pseudo image for class y. Similarly to the classifier, DPT also treats the conditional generative
model as a black box. Inspired by the impressive image generation results of diffusion probabilistic
models, we take a U-ViT-based [5] denoise diffusion probabilistic model [2] with classifier-free
guidance [26] as the conditional generative model. Everything remains the same as the original work
(see Sec. 2.2) except that the set of all real images with pseudo-labels S1 is used for training.

We emphasize that S1 obtained by the first stage is necessary. In fact, S is of small size (e.g., one label
per class) and not sufficient to train conditional diffusion models. Besides, it is unclear how to leverage
unlabeled data to train such models. Built upon efficient and strong semi-supervised approaches [17,
16], S1 provides useful learning signals (with relatively small noise) to train conditional diffusion
models. We present quantitative and qualitative empirical evidence in Fig. 2 (a) and Fig. 1 respectively
to affirmatively answer the first key question, namely, diffusion models with a few labels (e.g.,
< 0.1%) can generate realistic and semantically accurate images.

3For simplicity, we also use pseudo-labels instead of the ground truth for real labeled data, which are rare
and have a small zero-one training loss, making no significant difference.

4The prior distribution of y can be estimated on S.
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3.3 Third Stage: Generative Model Benefits Classifier

MSN based DPT. We train the classifier employed in the first stage on real data augmented by S2

to boost classification performance. For simplicity and efficiency, we freeze the models pre-trained
by Eq. (1) in the first stage and replace S with S ∪ S2 to train a linear probe in MSN [17]. DPT
substantially boosts the classification performance as presented in Fig. 2 (b).

Semi-ViT based DPT. We freeze the models, which are pre-trained in a self-supervised manner
in the first stage of Semi-ViT, and replace S with S ∪ S2 to train a classifier in the third stage of
Semi-ViT. We argue that pseudo images can be used in different stages of Semi-ViT and can both
boost the classification performance. (see Appendix F.2).

Both consistent improvements provide a positive answer to the second key question, namely, gener-
ative augmentation remains a useful approach for semi-supervised classification. Besides, we can
leverage the classifier in the third stage to refine the pseudo-labels and train the generative model
with one more stage. Although we observe an improvement empirically (see results in Appendix F.3),
we focus on the three-stage strategy in the main paper for simplicity and efficiency.

4 Related Work

Semi-Supervised Classification and Generation. The two tasks are often studied indepen-
dently. For semi-supervised classification, classical work includes generative approaches based
on VAE [10, 30, 31] and GAN [32, 22, 33, 34, 35, 36], and discriminative approaches with confi-
dence regularization [37, 38, 39, 40], consistency regularization [41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 13, 14, 51, 52] and other approaches [53, 54, 55, 56]. Recently, large-scale self-supervised based
approaches [18, 28, 57, 17, 16] have made remarkable progress in semi-supervised learning. Besides,
semi-supervised conditional image generation is challenging because generative modeling is more
complex than prediction. In addition, it is highly nontrivial to design proper regularization when the
input label is missing. Existing work is based on VAE [10] or GAN [11, 12], which are limited to
low-resolution data (i.e., ≤ 128 × 128) and require 10% labels or so to achieve comparable results to
supervised baselines.

In comparison, DPT handles both classification and generation tasks in extreme settings with very
few labels (e.g., one label per class, < 0.1% labels). Built upon recent advances in semi-supervised
learners and diffusion models, DPT substantially improves the state-of-the-art results in both tasks.

Pseudo Data and Labels. We mention additional empirical work on generating pseudo data for
supervised learning [58], adversarial robust learning [59, 60], contrastive representation learning [61]
and zero-shot learning [62, 63]. Regarding theory, in the context of supervised classification, Zheng
et al. [64] have mentioned that when the training dataset size is small, generative data augmentation
can improve the learning guarantee at a constant level. This finding can be extended to semi-supervised
classification, which is left as future work.

Besides, prior work [65, 66, 67, 8] uses cluster index or instance index as pseudo-labels to improve
unsupervised generation results, which are not directly comparable to DPT. With additional few
labels, DPT can generate images of much higher quality and directly control the semantics of images
with class labels.

Diffusion Models. Recently, diffusion probabilistic models [32, 2, 3, 6] achieve remarkable progress
in image generation [4, 25, 24, 8, 26, 7], text-to-image generation [68, 69, 70, 25, 71], 3D scene
generation [72], image-editing [73, 74, 75], molecular design [76, 77], and semi-supervised medical
science [78, 79]. There are learning-free methods [80, 81, 82, 83, 84] and learning-based ones [85, 86]
to speed up the sampling process of diffusion models. In particular, we adopt third-order DPM-
solver [84], which is a recent learning-free method, for fast sampling. As for the architecture, most
diffusion models rely on variants of the U-Net architecture introduced in score-based models [87]
while recent work [5] proposes a promising vision transformer for diffusion models, as employed in
DPT.

To the best of our knowledge, there has been little research on semi-supervised conditional diffusion
models and diffusion-based semi-supervised classification, which are the focus of this paper.
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5 Experiment

We present the main experimental settings in Sec. 5.1. For more details, please refer to Appendix C.
To evaluate the performance of DPT, we compare it with state-of-the-art conditional diffusion models
and semi-supervised learners in Sec. 5.2 and Sec. 5.3 respectively. We also visualize and analyze the
interaction between the stages to explain the excellent performance of DPT (see Appendix I, H).

5.1 Experimental Settings

Dataset. We evaluate DPT on the ImageNet [20] dataset, which consists of 1,281,167 training and
50,000 validation images. In the first and third stages, we use the same pre-processing protocol for
real images as the baselines [17, 16]. For instance, in MSN, the real data are resized to 256× 256
and then center-cropped to 224 × 224. In the second stage, real images are center-cropped to the
target resolution following [5]. In the third stage, we consider pseudo images at resolution 256× 256
and center-crop them to 224 × 224. For semi-supervised classification, we consider the challenging
settings with one, two, five labels per class and 1% labels. The labeled and unlabeled data split is the
same as that of corresponding methods [17, 16]. We also evaluate DPT on CIFAR-10 (see detailed
experiments in Appendix A).

Baselines. For semi-supervised classification, we consider state-of-the-art semi-supervised ap-
proaches [17, 16] in the setting of low-shot (e.g., one, two, five labels per class and 1% labels) as
baselines. For conditional generation, we consider the state-of-the-art diffusion models with a U-ViT
architecture [5] as the baseline.

Model Architectures and Hyperparameters. For a fair comparison, we use the exact same
architectures and hyperparameters as the baselines [17, 16, 5]. In particular, for MSN based DPT,
we use a ViT B/4 (or a ViT L/7) model [17] for classification and a U-ViT-Large (or a U-ViT-Huge)
model [5] for conditional generation. As for Semi-ViT based DPT, we use a ViT-Huge model [16]
for classification and a U-ViT-Huge model [5] for conditional generation. More details are provided
in Appendix C for reference.

Evaluation metrics. We use the top-1 accuracy on the validation set to evaluate classification
performance. For a comprehensive evaluation of generation performance, we first consider the
Fréchet inception distance (FID) [21], sFID [88], Inception Score (IS) [22], precision, and recall [89]
on 50K generated samples. We calculate all generation metrics based on the implementation of
ADM [4]. We also add the metric FIDCLIP, which operates similarly to FID but substitutes the
Inception-V3 feature spaces with CLIP features, to eliminate confusion that FID can be artificially
reduced by aligning the histograms of Top-N classifications without the actual improvement of image
quality [90].

Implementation. DPT is easy to understand and implement. In particular, it only requires several
lines of code based on the implementation of the classifier and conditional diffusion model. We
provide the pseudocode of DPT in the style of PyTorch in Appendix B.

The choice of K and CFG. We conduct detailed ablation experiments on the number of augmented
pseudo images per class (i.e., K) and the classifier-free guidance scale (i.e., CFG) in Appendix G and
find that the optimal K value is 128 and the optimal CFG values for different ImageNet resolutions
are 0.8 for 128× 128, 0.4 for 256× 256, and 0.7 for 512× 512.

The choice of resolution and number of labels. We were primarily driven by the task of ImageNet
256×256 generation to systematically compare with a large family of baselines. In this context,
we conducted detailed experiments, including settings with one, two, five labels per class, and 1%
labels. We find that the performance of DPT with five labels per class is comparable to the supervised
baseline, leading us to use this setting as the default in our other tasks such as ImageNet 128×128
and ImageNet 512×512 generation.

5.2 Image Generation with Few Labels

We show that diffusion models with a few labels can generate realistic and semantically accurate
images. In particular, DPT achieves better results than semi-supervised methods on ImageNet
128×128 and comparable results to supervised methods on both ImageNet 256×256 and 512×512.
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Table 1: Image generation results on ImageNet 128× 128. † labels the results taken from the
corresponding references and ⋆ labels baseline achieved by us. We bold the best result under the
corresponding setting. With < 0.1% labels, DPT outperforms strong semi-supervised generative
models S3GAN [12].

Method Model Label fraction FID-50K ↓ IS ↑
(# labels/class)

U-ViT-Huge(supervised baseline)⋆ Diff. 100% 4.53 219.8

S3GAN [12]† GAN 5% 10.4 59.6
S3GAN [12]† GAN 10% 8.0 78.7
S3GAN [12]† GAN 20% 7.7 83.1
DPT (ours, with U-ViT-Huge and MSN) Diff. < 0.1%(1) 4.59 153.6
DPT (ours, with U-ViT-Huge and MSN) Diff. < 0.4%(5) 4.58 210.9

Table 2: Image generation results on ImageNet 256× 256. † labels the results taken from the
corresponding references and ⋆ labels baselines achieved by us. DPT and the corresponding baselines
employ the same model architectures [5]. With < 0.4% labels, DPT outperforms strong conditional
generative models with full labels, including CDM [24], ADM [4] and LDM [25]. We bold the best
result achieved with full labels and underline the best result achieved with few labels. For a fair
comparison, we also list the parameters of the diffusion model, including its auxiliary components.

Method Model Label fraction FID ↓ FIDCLIP ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑ # Params
(# labels/class)

IC-GAN [67]† GAN 0% 15.6 - 59.0 - - - -

BigGAN-deep [91]† GAN 100% 6.95 - 7.36 171.4 0.87 0.28 -
StyleGAN-XL [92]† GAN 100% 2.30 - 4.02 265.12 0.78 0.53 -

IDDPM [23]† Diff. 100% 12.26 - 5.42 - 0.70 0.62 550M
CDM [24]† Diff. 100% 4.88 - - 158.71 - - -
ADM [4]† Diff. 100% 3.94 - 6.14 215.84 0.83 0.53 673M
LDM-4-G [25]† Diff. 100% 3.60 - - 247.67 0.87 0.48 455M
DiT-XL/2-G [7] † Diff. 100% 2.27 - 4.60 278.24 0.83 0.57 675M
U-ViT-Large [5]† Diff. 100% 3.40 - 6.63 219.94 0.83 0.52 371M

With U-ViT-Large
Supervised baseline⋆ Diff. 100% 3.31 2.39 6.68 221.61 0.83 0.53 371M
Unsupervised baseline⋆ Diff. 0% 27.99 5.40 7.03 33.86 0.60 0.62 371M
DPT (ours, with MSN) Diff. < 0.1%(1) 4.34 2.57 6.68 162.96 0.80 0.53 371M
DPT (ours, with MSN) Diff. < 0.2%(2) 3.44 2.37 6.58 199.74 0.82 0.53 371M
DPT (ours, with MSN) Diff. < 0.4%(5) 3.37 2.35 6.71 217.53 0.83 0.52 371M
DPT (ours, with MSN) Diff. 1%(≈ 12) 3.35 2.34 6.66 223.09 0.83 0.52 371M

With U-ViT-Huge
Supervised baseline† Diff. 100% 2.29 1.75 5.68 263.88 0.82 0.57 585M
DPT (ours, with MSN) Diff. < 0.1%(1) 3.08 1.84 5.56 201.68 0.80 0.58 585M
DPT (ours, with MSN) Diff. < 0.2%(2) 2.52 1.81 5.49 230.34 0.81 0.57 585M
DPT (ours, with MSN) Diff. < 0.4%(5) 2.50 1.82 5.54 243.10 0.83 0.55 585M
DPT (ours, with Semi-ViT) Diff. 1%(≈ 12) 2.42 1.77 5.48 259.93 0.82 0.56 585M

We evaluate semi-supervised generation performance of DPT on ImageNet 128× 128, as shown in
Tab. 1. In particular, DPT with only < 0.1% labels outperforms the SOTA semi-supervised generative
model S3GAN [12] with 20% labels (FID 4.59 vs. 7.7), suggesting DPT has superior label efficiency.

In Tab. 2, we compare DPT with state-of-the-art generative models on ImageNet 256× 256. We
construct highly competitive baselines based on diffusion models with U-ViT-Large [5]. According
to Tab. 2, our supervised and unsupervised baselines achieve an FID of 3.31 and 27.99, respectively.
Leveraging the pseudo-labels predicted by the strong semi-supervised learner [17], DPT with few
labels improves the unconditional baseline significantly and is even comparable to the supervised
baseline under all metrics. In particular, with only two labels per class, DPT improves the FID
of the unsupervised baseline by 24.55 and is comparable to the supervised baseline with a gap of
0.13. Moreover, we also construct more competitive baselines based on U-ViT-Huge to advance
DPT. With one (i.e., < 0.1%) label per class, our more powerful DPT achieves an FID of 3.08,
outperforming strong supervised diffusion models including IDDPM [23], CDM [24], ADM [4]
and LDM [25]. Additionally, with 1% labels, DPT achieves an FID of 2.42, comparable to the
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Table 3: Image generation results on ImageNet 512× 512. † labels the results taken from the
corresponding references. We bold the best result under the corresponding setting.

Method Model Label fraction FID-50K ↓ IS ↑
(# labels/class)

BigGAN-deep [91]† GAN 100% 8.43 177.90
StyleGAN-XL [92]† GAN 100% 2.41 267.75

ADM [4]† Diff. 100% 3.85 221.72
DiT-XL/2-G [7]† Diff. 100% 3.04 240.82
U-ViT-Huge (supervised baseline)† Diff. 100% 4.05 263.79

DPT (ours, with U-ViT-Huge and MSN) Diff. < 0.4%(5) 4.05 252.08

Table 4: Top-1 accuracy on the ImageNet validation set with few labels. † labels the results taken
from corresponding references, ‡ labels the results taken from Assran et al. [17] and ⋆ labels the
baselines reproduced by us. DPT and the corresponding baseline employ exactly the same classifier
architectures. With one, two, five labels per class and 1% labels, DPT improves the state-of-the-art
semi-supervised learner [17, 16] consistently and substantially. We bold the best result under the
corresponding setting and underline the second-best result.

Method Architecture Top-1 accuracy ↑ given # labels per class (label fraction)
1(< 0.1%) 2(< 0.2%) 5(< 0.5%) ≈ 12(1%)

EMAN [57]† ResNet-50 - - - 63.0
PAWS [51]† ResNet-50 - - - 66.5
BYOL [28]† ResNet-200 - - - 71.2
SimCLRv2 [18]† ResNet-152 - - - 76.6

Semi-ViT [16]† ViT-Huge - - - 80.0
iBOT [93]‡ ViT-B/16 46.1 ± 0.3 56.2 ± 0.7 64.7 ± 0.3 -
DINO [94]‡ ViT-B/8 45.8 ± 0.5 55.9 ± 0.6 64.6 ± 0.2 -
MAE [29]‡ ViT-H/14 11.6 ± 0.4 18.6 ± 0.2 32.8 ± 0.2 -
MSN [17]† ViT-B/4 54.3 ± 0.4 64.6 ± 0.7 72.4 ± 0.3 75.7
MSN [17]† ViT-L/7 57.1 ± 0.6 66.4 ± 0.6 72.1 ± 0.2 75.1

MSN (baseline)⋆ ViT-B/4 52.9 64.9 72.4 -
DPT (ours) ViT-B/4 58.6 69.5 74.4 -

MSN (baseline)⋆ ViT-L/7 56.2 66.5 72.0 -
DPT (ours) ViT-L/7 58.9 69.2 73.4 -

Semi-ViT (baseline)⋆ ViT-Huge - - - 79.4
DPT (ours) ViT-Huge - - - 80.2

state-of-the-art supervised diffusion model [7]. Lastly, DPT with few labels performs comparably
to the fully supervised baseline under the FIDCLIP metric, which suggests that DPT can generate
high-quality samples and does not achieve a lower FID solely due to better Top-N alignment.

We also conduct an experiment on higher resolution (i.e., 512× 512) in Tab. 3, with five (i.e., <
0.4%) labels, DPT achieves an FID of 4.05, which is the same as that of the supervised baseline.
The above quantitative results demonstrate that DPT can achieve excellent generation performance
and label efficiency at diverse resolutions. Qualitatively, as presented in Fig. 1, DPT can generate
realistic, diverse, and semantically correct images even with a single label, which agrees with the
quantitative results in Tab. 2 and Tab. 3. We provide more samples and failure cases in Appendix F.1
and a detailed class-wise analysis to show how classification helps generation in Appendix H.

Besides, Tab. 5 in Appendix A compares DPT with state-of-the-art generative models on CIFAR-10.
DPT achieves competitive performance using only 0.08% labels with EDM [6], which relies on full
labels (FID 1.81 vs. 1.79). This result demonstrates the generalizability of DPT on different datasets.
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5.3 Image Classification with Few Labels

We demonstrate that generative augmentation remains a useful approach for semi-supervised clas-
sification aided by diffusion models. In particular, DPT achieves state-of-the-art semi-supervised
classification performance on ImageNet datasets across various settings and the second-best results
on CIFAR-10.

Tab. 4 compares DPT with state-of-the-art semi-supervised classifiers on the ImageNet validation set
with few labels. Specifically, DPT outperforms strong semi-supervised baselines [17, 16] consistently
and substantially with one, two, five labels per class and 1% labels and achieves state-of-the-art top-1
accuracies of 59.0, 69.5, 74.4 and 80.2, respectively. In particular, with two labels per class, DPT
leverages the pseudo images generated by the diffusion model and improves MSN with ViT-B/4
by an accuracy of 4.6%. Besides, we compare the performance of DPT with that of SOTA fully
supervised models (as shown in Tab. 12 in Appendix F.2) and find that DPT performs comparably to
Inception-v4 [95], using only 1% labels.

Moreover, Tab. 6 in Appendix A compares DPT with state-of-the-art semi-supervised classifiers on
CIFAR-10. DPT with four labels per class achieves the second-best error rate of 4.68±0.17%.

6 Conclusions

This paper presents a simple yet effective training strategy called DPT for conditional image gen-
eration and classification in semi-supervised learning. Empirically, we demonstrate that DPT can
achieve SOTA semi-supervised generation and classification performance on ImageNet datasets
across various settings. DPT probably inspires future work in diffusion models and semi-supervised
learning.

Limitation. One limitation of DPT is directly using the pseudo images to improve the performance of
DPT for its simplicity and effectiveness while we could use pre-trained models like CLIP to filter out
noisy image-label pairs that images do not semantically align well with the label. Another limitation
pertains to the direct use of pseudo labels. Given our use of classifier-free guidance, we have the
flexibility to assign low-confidence pseudo labels to the null token with a high probability, which aids
in filtering out noisy pseudo labels.

Social impact. We believe that DPT can benefit real-world applications with few labels (e.g., medical
analysis). However, the proposed semi-supervised diffusion models may aggravate social issues such
as “DeepFakes”. The problem can be relieved by automatic detection with machine learning, which
is an active research area.
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