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Abstract

This paper proposes a supervised training algorithm for learning stochastic resource1

allocation policies with generative diffusion models (GDMs). We formulate the2

allocation problem as the maximization of an ergodic utility function subject to3

ergodic Quality of Service (QoS) constraints. Given samples from a stochastic4

expert policy that yields a near-optimal solution to the constrained optimization5

problem, we train a GDM policy to imitate the expert and generate new samples6

from the optimal distribution. We achieve near-optimal performance through the7

sequential execution of the generated samples. To generalize across a family of8

network configurations, we parameterize the backward diffusion process with a9

graph neural network (GNN) architecture. We present numerical results in a case10

study of optimal power control.11

1 Introduction12

Most existing formulations and methods for optimal wireless resource allocation, whether classical13

or learning-based, seek deterministic solutions. In contrast, optimal solutions of many non-convex14

optimization problems (e.g., power control, scheduling) are inherently probabilistic, as the optimal15

solution may lie in the convex hull of multiple deterministic policies. By randomizing between16

multiple deterministic strategies, stochastic policies can achieve better performance by effectively17

convexifying the problem [1]. This phenomenon is also fundamental in multi-user information18

theory, where time sharing plays a critical role in achieving optimal performance across various19

communication channels [2–4]. In this work, we leverage diffusion models to learn generative20

solutions to stochastic network resource allocation problems.21

Generative models (GMs) have shown significant success in generating samples from complex,22

multi-modal data distributions. Among the wide class of generative models including variational23

autoencoders (VAEs) and generative adversarial networks (GANs), generative diffusion models24

(GDMs) stand out for their capability of generating high-quality and diverse samples with stable25

training [5, 6]. GDMs convert target data samples (e.g., images) to samples from an easy-to-sample26

prior (e.g., isotropic Gaussian noise) by a forward (noising) process, and then learn a backward27

(denoising) process to transform the prior distribution back to the target data distribution.28

A substantial body of the existing literature utilizes GDMs, and GMs in general, for generating29

domain-specific synthetic data and for data augmentation to enhance the machine-learning models30

in supervised and reinforcement learning tasks [7, 8]. Yet, research on the use of GMs for wireless31

network optimization, and GDMs in particular, is scant [9–13]. Concurrent works [14–19] propose32

generative model solvers for network optimization as a framework to learn solution distributions that33

concentrate the probability mass around optimal deterministic solutions. The generative process then34

converts random noise to high-quality solutions by eliminating the noise introduced in the forward35
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process. However, the problem formulation in the aforementioned studies is deterministic and ignores36

the probabilistic nature of the optimal solution.37

Our work is one of the first to imitate stochastic expert policies using GDMs. We emphasize the38

stochastic nature of certain network optimization problems where random solutions are not only39

essential for optimality but also are realized by leveraging iterative dual domain algorithms and time40

sharing. In our approach, Quality of Service (QoS) near-optimality emerges through the sequential41

execution of solutions sampled from the optimal generated distribution. Moreover, we use a graph42

neural network (GNN) architecture as the backbone for the reverse diffusion process to enable43

learning families of solutions across network topologies. GNNs excel in learning policies from44

graph-structured data [20–23] and offer stability and scalability [24, 25].45

This paper tackles imitation learning of stochastic wireless resource allocation policies. A GDM46

policy is trained to match an optimal solution distribution to a constrained optimization problem from47

which an expert policy can sample (see Section 2 and Section 3). We utilize a GNN-parametrization48

to condition the generative diffusion process directly on the network graphs (see Section 4). We49

evaluate the proposed GDM policy in a power control setup and demonstrate that the trained GDM50

policy closely matches the expert policy over a family of wireless networks (see Section 5).51

2 Optimal Wireless Resource Allocation52

We represent the channel state of a wireless (network) system with a matrix H ∈ H ⊆ RN×N53

and the allocation of corresponding resources with a vector x ∈ X ⊆ RN . Given H, the choice54

of resource allocation x determines several QoS metrics that we represent with an objective utility55

f0 : X ×H 7→ R and a constraint utility f : X ×H 7→ Rc. We define an optimal resource allocation56

x∗(H) as the argument that solves the constrained optimization problem,57

P̃(H) = f0
(
x∗(H),H

)
= maximum

x∈X
f0
(
x(H),H

)
, subject to f

(
x(H),H

)
≥ 0. (1)

In (1), we seek a resource allocation x∗(H) with the largest f0 utility among those in which the58

components of the utility f are nonnegative. This abstract formulation encompasses channel and59

power allocation [26] in wireless networks (Section 5) as well as analogous problems, in, e.g., point-60

to-point [27], MIMO [28], broadcast [29] and interference channels [30]. In most cases of interest,61

the utilities f0 and f in (1) are not convex. We introduce the convex relaxation in which optimization62

is over probability distributions of resource allocation variables and QoS is measured in expectation,63

P(H) = maximum
Dx

EDx

[
f0
(
x(H),H

) ]
, subject to EDx

[
f
(
x(H),H

) ]
≥ 0. (2)

In (2), we search over stochastic policies Dx that maximize the expected utility EDx [ f0(x(H),H)]64

while satisfying the expected constraint EDx [f
(
x(H),H)] ≥ 0 when the resource allocation x(H) is65

drawn from the distribution Dx. For future reference, we introduce D∗
x(H) = D∗

x(x
∣∣H) to denote a66

distribution that solves (2). In this distribution, the channel state H is given and resource allocations67

x are sampled. The important point here is that the performance of stochastic policies is realizable68

through time sharing if we allocate resources in a faster time scale than QoS perception. Indeed, if we69

consider independent resource allocation policies xτ (H) ∼ Dx we have that for sufficiently large T ,70

1

T

T∑
τ=1

f0
(
xτ (H),H

)
≈ EDx

[
f0
(
x(H),H

) ]
, (3)

with an analogous statement holding for the constraint utility f . Since deterministic policies are71

particular cases of stochastic policies, we know that P(H) ≥ P̃(H). In practice, it is often the case72

that P(H) ≫ P̃(H) and for this reason, the stochastic formulation in (2) is most often preferred over73

the deterministic formulation in (1), [1–3].74

Imitation Learning of Stochastic Policies. In this paper, we want to learn to imitate the stochastic75

policies that solve (2). More to the point, consider a distribution DH of channel states H. For each76

channel state realization H, recall that the solution of (2) is the probability distribution D∗
x(H) =77

D∗
x(x

∣∣H). Separate from these optimal distributions, we consider a parametric family of conditional78

distributions Dx(H;θ) = Dx(x
∣∣H;θ) in which the channel state H is given, and resource allocation79
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variables are drawn. Our goal is to find the conditional distribution D∗
x(H;θ) that minimizes the80

expectation of the conditional KL-divergences DKL

(
D∗

x(H)
∥∥ Dx(H;θ)

)
,81

D∗
x(H;θ) = argmin

Dx(H;θ)

EDH

[
DKL

(
D∗

x(H)
∥∥ Dx(H;θ)

) ]
, (4)

In (4), the distributions D∗
x(H) are given for all H. The conditional distribution Dx(H;θ) is our82

optimization variable, which we compare with D∗
x(H) through their KL divergence. KL divergences83

of different channel realizations are averaged over the channel state distribution DH, which is also84

given. The optimal distribution D∗
x(H;θ) = D∗

x(x
∣∣H;θ) minimizes the expected KL divergence85

among distributions that are representable by the parametric family Dx(H;θ).86

To solve (4), we need access to the expert conditional distributions D∗
x(H). This is impossible in87

general because algorithms that solve (2) do not solve for D∗
x(H) directly, but rather generate samples88

x(H) drawn from the optimal distribution D∗
x(H) [22]. Thus, we recast the goal of this paper as89

learning to generate samples x
∣∣H from the distribution D∗

x(H;θ) when we are given samples x(H)90

of the expert conditional distributions D∗
x(H) with channel states generated according to DH:91

Problem 1 Given samples x(H) drawn from the expert distribution D∗
x(H)DH =92

D∗
x(x

∣∣H)DH [cf. (2)], we learn to generate samples x
∣∣H drawn from the conditional93

distributions D∗
x(H;θ) = D∗

x(x
∣∣H;θ) [cf. (4)].94

A solution of Problem 1 is illustrated in Fig. 2. For a given channel state realization H, we show95

two-dimensional slices of samples of an optimal policy (in blue). As indicated by (1), these samples96

realize optimal QoS metrics for (2) if executed sequentially (Fig. 1). We train a generative diffusion97

model (Section 3) that generates samples (in orange) that are distributed close to samples of an98

optimal distribution. When executed sequentially, the learned samples realize QoS metrics close99

to optimal values (Fig. 1). Neither the optimal distribution D∗
x(H)DH = D∗

x(x
∣∣H)DH nor the100

parametric distribution D∗
x(H;θ) = D∗

x(x
∣∣H;θ) is computed.101

Learning in the Dual Domain & Policy Randomization. Most learning approaches to allocating102

resources in wireless systems contend with the deterministic policy formulation in (1), e.g., [11, 14–103

17, 21, 26, 31]. This is due in part to the use of deterministic learning parameterizations [21, 26, 31]104

but even recent contributions that propose diffusion models, mostly do so for deterministic policies105

[11, 14–18]. This is a well-known limitation that has motivated, e.g., state-augmented algorithms106

that leverage dual gradient descent dynamics to randomize policy samples [22, 23]. These algorithms107

generate trajectories of primal and dual iterates by operating on a convex hull relaxation of the108

Lagrangian for the original problem and iteratively solving a sequence of Lagrangian maximization109

subproblems. Each subproblem is an unconstrained, deterministic problem to which regular learning110

methods apply, and near-optimality and feasibility guarantees are established neither for individual111

primal iterates nor their averages, but only for the sequential execution of the generated policy iterates.112

A shortcoming of state-augmented algorithms—and iterative dual domain algorithms in general,113

regardless of whether parametrized or not—is that they incur a transient period where suboptimal114

policies are executed. Reducing the length of this transient period typically requires larger step sizes,115

which in turn introduces a trade-off with respect to solution optimality. Learning a generative model116

to sample from the stationary (optimal) policy distribution emerges as a promising approach for117

overcoming this trade-off. To the best of our knowledge, our paper is the first to demonstrate the118

imitation of stochastic policies that solve a constrained optimization problem with GDMs.119

3 Policy Generative Models120

GDMs involve a forward and a backward diffusion process. The forward process defines a Markov121

chain of diffusion steps to progressively add random noise to data. For a given H and a data sample122

x0 = x(H) drawn from the expert distribution D∗
x(H), the forward chain follows123

q(xk |x0;H) = N (xk;
√
ᾱkx0, (1− ᾱk)I), (5)

where ᾱk :=
∏k

i=1 αi, αk := 1− βk, and βk is a monotonically increasing noise schedule, e.g., a124

linear or cosine schedule. For a sufficiently large number of diffusion time steps K, (5) converts the125
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data sample x0 into a sample that is approximately isotropic Gaussian distributed, i.e., xK ≈ N (0, I).126

The reverse process of (5) can be approximated as a chain of Gaussian transitions with some fixed127

variance σ2
kI and a parametrized mean µθ,128

pθ(xk−1 |xk;H) = N
(
xk−1;µθ(xk, k;H), σ2

kI
)
. (6)

A backward diffusion process samples xK ∼ N (0, I) and iteratively runs the backward chain in129

(6) for k = K, . . . , 1. With reparametrizing (5) as xk(x0, ϵ) =
√
ᾱkx0 +

√
1− ᾱkϵ [5], sampling130

xk−1 ∼ pθ(. |xk;H) amounts to updating131

xk−1 =
1√
αk

(
xk − βk√

1− ᾱk
ϵθ(xk, k;H)

)
+ σkw, (7)

where w ∼ N (0, I), and ϵθ(xk, k;H) predicts the noise ϵ added to x0 ∼ D∗
x(H) from the noisy132

sample xk at time step k. An optimal GDM-policy parametrization θ∗ minimizes the H-expectation133

of the DDPM loss function [5] given by134

LGDM(θ) = Ex0,k,H,ϵ ω(k)
∥∥ϵθ(xk(x0, ϵ), k;H

)
− ϵ
∥∥2 . (8)

In (8), ω(k) is a time-dependent weighting function that is usually omitted for simplicity, and the135

expectation is over random time steps k ∼ Uniform([1,K]), Gaussian noise ϵ ∼ N (0, I), expert136

(data) samples x0 ∼ D∗
x(H), and conditioning networks H ∼ DH. The DDPM loss in (8) is a137

variational upper bound on the expected KL divergence loss in (4) and becomes tight for θ = θ∗.138

Thus, running (7) with optimal parametrization ϵθ∗ for a given H generates samples from the expert139

conditional distribution, i.e., x0 ∼ Dx(H;θ∗) = D∗
x(H;θ) ≈ D∗

x(H).140

4 GNN-Parametrizations for GDM Policies141

We employ GNNs for GDM parameterization, as they are well-suited for processing network data,142

such as resource allocations. Moreover, GNNs inherently take graphs as input, making them a143

natural fit for GDMs conditioned on H. GNNs process graph data through a cascade of L graph144

convolutional layers [32]. Inputs are node signals (features) and graph shift operators (GSO) while145

outputs are node embeddings. Each layer Ψ(ℓ) is a nonlinear aggregation function obtained by the146

composition of a graph convolutional filter and a pointwise nonlinearity φ (e.g., relu),147

Z(ℓ) = Ψ(ℓ)
(
Z(ℓ−1);H,Θ(ℓ)

)
= φ

[
M∑

m=0

HmZ(ℓ−1)Θ(ℓ)
m

]
. (9)

In (9), Θ(ℓ) = {Θ(ℓ)
m ∈ RFℓ−1×Fℓ}Mm=0 is a set of learnable weights, M denotes the number of hops148

and Z(ℓ−1) ∈ RN×Fℓ−1 is the input node signal to layer ℓ. The GSO, H, encodes the underlying149

connectivity of the network, which is the network state in our case. For improved and more stable150

training, we take advantage of normalization layers and residual connections. To this end, we redefine151

φ in (9) as the composition of a normalization layer followed by a pointwise nonlinearity while the152

first term in the sum, ZΘ0, inherently represents a learnable residual connection. We view xk and153

k = k1N as node signals and introduce a read-in layer Φ(0) = (Φx,Φk) that adds sinusoidal-time154

embeddings to the input node features. That is, we have155

Z(0) = Φ(0)(xk,k) = Φx(xk) +Φk(k), (10)

where Φx : RN 7→ RN×F0 is a multi-layer-perceptron (MLP) layer, and Φk : RN 7→ RN×F0 is156

a cascade of a sinusoidal time embedding and MLP layers. Finally, we add a readout MLP layer157

Φ(L) : RN×FL 7→ RN that learns to predict the noise ϵ from the output node embeddings.158

5 Case Study: Power Control in Multi-User Interference Networks159

Wireless Network & Power Control Setup. We consider the problem of power control in N -user160

interference channels. To summarize the setup briefly, all network realizations are sampled from a161

family of network configurations with N = 100 transmitter-receiver (tx-rx) pairs (also the nodes162
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in our graphs) and an average density of 12 tx-rx pairs/km2. For each network, we first drop the163

transmitters randomly in a square grid world, and each transmitter is paired with a neighboring164

receiver. Receivers treat signals coming from all but their respective transmitters as interference. We165

note that similar setups have been investigated in [22, 23] and can be referred to for more details.166

We optimize the transmit power levels x ∈ [0, Pmax]
N where Pmax = 10 mW is the maximum167

transmit power budget. The channel bandwidth and noise power spectral density (PSD) are set to168

W = 20 MHz and N0 = −174 dBm/Hz, respectively. The network state H is the matrix of long-term169

channel gains which follow a log-normal shadowing with a standard deviation of 7 plus the standard170

dual-slope path-loss model. For a given H, the short-term (instantaneous) channel gains H̃ vary171

following Rayleigh fading, and we define the instantaneous rate of receiver i given an allocation x as172

r̃i(x, H̃) = log2

(
1 +

xi · |h̃ii|2

WN0 +
∑

j ̸=i xj · |h̃ji|2

)
, (11)

where xi is the ith entry of x and h̃ji is the (j, i)th element in matrix H̃. Note that a policy Dx(H) is173

determined only by the long-term gains, whereas the instantaneous rate depends on the short-term174

channel gains. Ergodic rates are given by the joint expectation over the policy and the fading,175

r(Dx(H),H) := EDx(H), H̃|H

[
r̃
(
x, H̃

)]
. (12)

In our experiments, we draw 200 samples from the trained GDM policy for each network and evaluate176

the joint expectation over 200 time steps, with each time step spanning 10 ms. We impose a minimum177

ergodic rate requirement of fmin = 0.6 bps/Hz for all receivers by setting the utility constraints178

f(Dx(H),H) := r(Dx(H),H)−1Nfmin, whereas the utility objective is the network-wide average179

of the ergodic rates given by f0(Dx(H),H) := 1⊤
Nr(Dx(H),H)/N .180

Expert Policy & Baselines. To generate samples from an optimal solution distribution, we first train181

a GNN-parametrized model via a state-augmented primal-dual (SA) learning algorithm as in [23].182

The trained model is executed online for each given network H over a sufficiently long time window183

to generate trajectories of primal and dual iterates with near-optimality and feasibility guarantees. We184

collect the resulting primal iterates {x†
b(H)}B−1

b=0 , i.e., resource allocation vectors, in a buffer with185

capacity B = 500. During GDM policy training, expert policy samples are uniformly drawn from186

the buffer, i.e., we have D∗
x(H) = Uniform

[{
x†
0(H), . . . ,x†

B−1(H)
}]

for all H ∼ DH. While we187

parametrize the expert policy and run a state-augmented training algorithm over a training dataset of188

networks DH, one can alternatively run the dual descent without the parametrization and store the189

resource allocation iterates for each instance H ∼ DH.190

We compare the GDM and expert policies with two baseline deterministic policies: (i) Average-191

power transmission policy: For each given H, we compute the time average of the expert policy192

samples – similar to primal averaging in the optimization literature – and fix it, i.e., we set x(H) ≈193

ED∗
x(H)[x

†(H)] at all time steps. (ii) Full-power transmission policy (FP): All transmitters use all194

the transmission power available at all time steps, i.e., x(H) = Pmax1N .195

Performance of GNN-Parametrized GDM Policies. To evaluate our method, we draw a total of196

128 network realizations. Following a 5 : 1 : 2 split, we obtain training, validation, and test datasets197

of size |DH| = 80, |VH| = 16, and |TH| = 32 networks, respectively. We train the GDM policy over198

the training dataset DH and test it on TH. The expert policy solutions are obtained across all datasets199

for evaluation and benchmarking purposes. Due to limited space, we defer the implementation and200

training details of the GDM policy to Appendix A.201

Fig. 1 showcases the test performance of the GDM policy, expert policy, and the baselines over a time202

horizon of 200 time steps. We estimate the ergodic rate vector for a given network H and time step203

τ as (1/τ)
∑τ−1

s=0 r̃
(
xs, H̃

)
where xs denotes the power allocation decision at an earlier time step204

s < τ [c.f. (12)]. In the first two plots, we report the time evolution of the average ergodic rate, i.e.,205

the mean-rate objective utility, and the 5th-percentile of ergodic rates, both of which are computed206

across all |Th| × N = 32 × 100 = 3200 tx-rx pairs in the test dataset. The rightmost violin plot207

shows the histogram of ergodic rates of all receivers evaluated at two different time steps. We verify208

that the expert policy eventually satisfies almost all the constraints unlike the baselines. Although209

the GDM policy does not exhibit strict feasibility, it converges to a near-feasible and near-optimal210
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Figure 1: Comparison of the test performance of GDM policy with the expert policy (SA) and other
baselines. Leftmost and middle plots show the time evolution of the average and 5th percentile
of ergodic rates, respectively. The minimum rate requirement fmin is shown with a dashed, red
line. Rightmost plot shows the distribution of ergodic rates and constraint satisfaction percentages,
evaluated up to τ = 20 and τ = 200 time steps. We drew a solid black line at the median values
while the dashed black lines indicate the 5th and 95th percentile values.
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Figure 2: Example 2D slices of expert policy (blue) and GDM policy (orange) samples are shown for
two pairs of neighboring nodes from the test dataset. Transmit powers are normalized by Pmax.

policy in very few time steps compared to the expert policy and does not incur a long transient period.211

Moreover, both the full-power and average-power baselines are outperformed by the GDM policy in212

terms of percentile rates and constraint violations.213

In Fig. 2, example two-dimensional (2D) slices of 100-dimensional learned GDM policies are overlaid214

with expert policy samples. The GDM policy generalizes to unseen test networks drawn from TH,215

and the conditional distribution of GDM policy samples significantly resembles that of the expert216

policy. A peculiarity of optimal power control policies is that they tend to be probabilistic and involve217

multiple transmission modes. That is especially true for tx-rx pairs with less favorable channel218

conditions for which the policy randomization becomes more nuanced. In such cases, similar to219

time-sharing strategies, pairs that would otherwise generate considerable mutual interference adopt220

a policy-switching mechanism where they take turns to transmit at high power during periods of221

minimal interference (e.g., the top-left and bottom-right corners in the rightmost plot of Fig. 2). By222

alternating their transmissions, all tx-rx pairs satisfy their minimum ergodic rate requirements.223

Strong test generalization evidenced in both figures notwithstanding, the GDM policy exhibits a224

small feasibility gap compared to the expert policy in Fig. 1. We attribute this gap primarily to225

the supervised training algorithm not accounting directly for the sensitivity of the constraints and226

the aforementioned policy-switching phenomenon. The feasibility gap and overall performance of227

the GDM policies can be further improved by incorporating the QoS requirements and additional228

variance constraints directly into the training loss and/or generative process.229

6 Conclusion230

This work demonstrated that generative diffusion processes can imitate expert policies that sample231

from optimal solution distributions of stochastic network optimization problems. We employed a232

GNN to condition the generative process on a family of wireless network graphs. More broadly, we233

anticipate that our attempt at generative diffusion-based sampling of random graph signals will be of234

interest beyond resource optimization in wireless networks. We leave constraint-aware, unsupervised235

training of GDM policies across a wider range of network topologies as future research directions.236
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A Implementation & Training Details for GDM Policy320

For the GNN-parametrizations, the GSO representation of the network state H is a fully connected321

graph where nodes correspond to transmitter-receiver pairs, and the edge weights between nodes i322

and j, eij , are set to log-normalized long-term channel gains given by eij ∝ log2

(
1 +

Pmax|hij |2
WN0

)
.323

The GNN has L = 6 layers, each with Fℓ = 128 hidden features and filter size of M = 2.324

We set the number of diffusion time steps to K = 500, use a cosine noise schedule βt [33] and325

train the GDM policy to minimize the DDPM objective in (8) with a log-SNR weighting function326

ω(k) = log
(
SNR(k)

)
, where SNR(k) := α2

k/σ
2
k.327

We train the GDM policy over the training dataset DH for a maximum of 104 epochs with an ADAM328

optimizer [34], an initial learning rate of 10−2, and a learning rate schedule that follows a cosine329

decay with warm restarts. In each epoch, we iterate over the whole dataset with mini-batches of 16330

graphs and sample 250 graph signals, i.e., expert policy data x(H) ∼ D∗
x(H), for each graph in the331

batch. Every 200 epochs, we evaluate the checkpointed GDM model on the validation dataset VH332

and save the best model in terms of 5th percentile ergodic rates. We ran our experiments on a single333

NVIDIA RTX 3090 GPU with 24 GB of memory.334

We apply an affine transform [0, Pmax] 7→ [−1/2, 1/2] to map the policy space to a centered335

diffusion space. To sample from the diffusion model, we run the DDPM sampling equation (7)336

with standardized variables, invert the affine transform, and project the generated policy samples to337

the support [0, Pmax]
N . We observed negligible difference in the quality of generations when we338

swapped the DDPM sampler with other samplers, e.g., a DDIM sampler or its accelerated counterpart339

with fewer denoising time steps.340
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NeurIPS Paper Checklist341

The checklist is designed to encourage best practices for responsible machine learning research,342

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove343

the checklist: The papers not including the checklist will be desk rejected. The checklist should344

follow the references and follow the (optional) supplemental material. The checklist does NOT count345

towards the page limit.346

Please read the checklist guidelines carefully for information on how to answer these questions. For347

each question in the checklist:348

• You should answer [Yes] , [No] , or [NA] .349

• [NA] means either that the question is Not Applicable for that particular paper or the350

relevant information is Not Available.351

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).352

The checklist answers are an integral part of your paper submission. They are visible to the353

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it354

(after eventual revisions) with the final version of your paper, and its final version will be published355

with the paper.356

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.357

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a358

proper justification is given (e.g., "error bars are not reported because it would be too computationally359

expensive" or "we were unable to find the license for the dataset we used"). In general, answering360

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we361

acknowledge that the true answer is often more nuanced, so please just use your best judgment and362

write a justification to elaborate. All supporting evidence can appear either in the main paper or the363

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification364

please point to the section(s) where related material for the question can be found.365

IMPORTANT, please:366

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",367

• Keep the checklist subsection headings, questions/answers and guidelines below.368

• Do not modify the questions and only use the provided macros for your answers.369

1. Claims370

Question: Do the main claims made in the abstract and introduction accurately reflect the371

paper’s contributions and scope?372

Answer: [Yes]373

Justification: [NA]374

Guidelines:375

• The answer NA means that the abstract and introduction do not include the claims376

made in the paper.377

• The abstract and/or introduction should clearly state the claims made, including the378

contributions made in the paper and important assumptions and limitations. A No or379

NA answer to this question will not be perceived well by the reviewers.380

• The claims made should match theoretical and experimental results, and reflect how381

much the results can be expected to generalize to other settings.382

• It is fine to include aspirational goals as motivation as long as it is clear that these goals383

are not attained by the paper.384

2. Limitations385

Question: Does the paper discuss the limitations of the work performed by the authors?386

Answer: [Yes]387

Justification: [NA]388
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Guidelines:389

• The answer NA means that the paper has no limitation while the answer No means that390

the paper has limitations, but those are not discussed in the paper.391

• The authors are encouraged to create a separate "Limitations" section in their paper.392

• The paper should point out any strong assumptions and how robust the results are to393

violations of these assumptions (e.g., independence assumptions, noiseless settings,394

model well-specification, asymptotic approximations only holding locally). The authors395

should reflect on how these assumptions might be violated in practice and what the396

implications would be.397

• The authors should reflect on the scope of the claims made, e.g., if the approach was398

only tested on a few datasets or with a few runs. In general, empirical results often399

depend on implicit assumptions, which should be articulated.400

• The authors should reflect on the factors that influence the performance of the approach.401

For example, a facial recognition algorithm may perform poorly when image resolution402

is low or images are taken in low lighting. Or a speech-to-text system might not be403

used reliably to provide closed captions for online lectures because it fails to handle404

technical jargon.405

• The authors should discuss the computational efficiency of the proposed algorithms406

and how they scale with dataset size.407

• If applicable, the authors should discuss possible limitations of their approach to408

address problems of privacy and fairness.409

• While the authors might fear that complete honesty about limitations might be used by410

reviewers as grounds for rejection, a worse outcome might be that reviewers discover411

limitations that aren’t acknowledged in the paper. The authors should use their best412

judgment and recognize that individual actions in favor of transparency play an impor-413

tant role in developing norms that preserve the integrity of the community. Reviewers414

will be specifically instructed to not penalize honesty concerning limitations.415

3. Theory assumptions and proofs416

Question: For each theoretical result, does the paper provide the full set of assumptions and417

a complete (and correct) proof?418

Answer: [NA]419

Justification: [NA]420

Guidelines:421

• The answer NA means that the paper does not include theoretical results.422

• All the theorems, formulas, and proofs in the paper should be numbered and cross-423

referenced.424

• All assumptions should be clearly stated or referenced in the statement of any theorems.425

• The proofs can either appear in the main paper or the supplemental material, but if426

they appear in the supplemental material, the authors are encouraged to provide a short427

proof sketch to provide intuition.428

• Inversely, any informal proof provided in the core of the paper should be complemented429

by formal proofs provided in appendix or supplemental material.430

• Theorems and Lemmas that the proof relies upon should be properly referenced.431

4. Experimental result reproducibility432

Question: Does the paper fully disclose all the information needed to reproduce the main ex-433

perimental results of the paper to the extent that it affects the main claims and/or conclusions434

of the paper (regardless of whether the code and data are provided or not)?435

Answer: [Yes]436

Justification: [NA]437

Guidelines:438

• The answer NA means that the paper does not include experiments.439
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• If the paper includes experiments, a No answer to this question will not be perceived440

well by the reviewers: Making the paper reproducible is important, regardless of441

whether the code and data are provided or not.442

• If the contribution is a dataset and/or model, the authors should describe the steps taken443

to make their results reproducible or verifiable.444

• Depending on the contribution, reproducibility can be accomplished in various ways.445

For example, if the contribution is a novel architecture, describing the architecture fully446

might suffice, or if the contribution is a specific model and empirical evaluation, it may447

be necessary to either make it possible for others to replicate the model with the same448

dataset, or provide access to the model. In general. releasing code and data is often449

one good way to accomplish this, but reproducibility can also be provided via detailed450

instructions for how to replicate the results, access to a hosted model (e.g., in the case451

of a large language model), releasing of a model checkpoint, or other means that are452

appropriate to the research performed.453

• While NeurIPS does not require releasing code, the conference does require all submis-454

sions to provide some reasonable avenue for reproducibility, which may depend on the455

nature of the contribution. For example456

(a) If the contribution is primarily a new algorithm, the paper should make it clear how457

to reproduce that algorithm.458

(b) If the contribution is primarily a new model architecture, the paper should describe459

the architecture clearly and fully.460

(c) If the contribution is a new model (e.g., a large language model), then there should461

either be a way to access this model for reproducing the results or a way to reproduce462

the model (e.g., with an open-source dataset or instructions for how to construct463

the dataset).464

(d) We recognize that reproducibility may be tricky in some cases, in which case465

authors are welcome to describe the particular way they provide for reproducibility.466

In the case of closed-source models, it may be that access to the model is limited in467

some way (e.g., to registered users), but it should be possible for other researchers468

to have some path to reproducing or verifying the results.469

5. Open access to data and code470

Question: Does the paper provide open access to the data and code, with sufficient instruc-471

tions to faithfully reproduce the main experimental results, as described in supplemental472

material?473

Answer: [No]474

Justification: [NA]475

Guidelines:476

• The answer NA means that paper does not include experiments requiring code.477

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/478

public/guides/CodeSubmissionPolicy) for more details.479

• While we encourage the release of code and data, we understand that this might not be480

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not481

including code, unless this is central to the contribution (e.g., for a new open-source482

benchmark).483

• The instructions should contain the exact command and environment needed to run to484

reproduce the results. See the NeurIPS code and data submission guidelines (https:485

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.486

• The authors should provide instructions on data access and preparation, including how487

to access the raw data, preprocessed data, intermediate data, and generated data, etc.488

• The authors should provide scripts to reproduce all experimental results for the new489

proposed method and baselines. If only a subset of experiments are reproducible, they490

should state which ones are omitted from the script and why.491

• At submission time, to preserve anonymity, the authors should release anonymized492

versions (if applicable).493
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• Providing as much information as possible in supplemental material (appended to the494

paper) is recommended, but including URLs to data and code is permitted.495

6. Experimental setting/details496

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-497

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the498

results?499

Answer: [Yes]500

Justification: [NA]501

Guidelines:502

• The answer NA means that the paper does not include experiments.503

• The experimental setting should be presented in the core of the paper to a level of detail504

that is necessary to appreciate the results and make sense of them.505

• The full details can be provided either with the code, in appendix, or as supplemental506

material.507

7. Experiment statistical significance508

Question: Does the paper report error bars suitably and correctly defined or other appropriate509

information about the statistical significance of the experiments?510

Answer: [Yes]511

Justification: [NA]512

Guidelines:513

• The answer NA means that the paper does not include experiments.514

• The authors should answer "Yes" if the results are accompanied by error bars, confi-515

dence intervals, or statistical significance tests, at least for the experiments that support516

the main claims of the paper.517

• The factors of variability that the error bars are capturing should be clearly stated (for518

example, train/test split, initialization, random drawing of some parameter, or overall519

run with given experimental conditions).520

• The method for calculating the error bars should be explained (closed form formula,521

call to a library function, bootstrap, etc.)522

• The assumptions made should be given (e.g., Normally distributed errors).523

• It should be clear whether the error bar is the standard deviation or the standard error524

of the mean.525

• It is OK to report 1-sigma error bars, but one should state it. The authors should526

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis527

of Normality of errors is not verified.528

• For asymmetric distributions, the authors should be careful not to show in tables or529

figures symmetric error bars that would yield results that are out of range (e.g. negative530

error rates).531

• If error bars are reported in tables or plots, The authors should explain in the text how532

they were calculated and reference the corresponding figures or tables in the text.533

8. Experiments compute resources534

Question: For each experiment, does the paper provide sufficient information on the com-535

puter resources (type of compute workers, memory, time of execution) needed to reproduce536

the experiments?537

Answer: [Yes]538

Justification: [NA]539

Guidelines:540

• The answer NA means that the paper does not include experiments.541

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,542

or cloud provider, including relevant memory and storage.543
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• The paper should provide the amount of compute required for each of the individual544

experimental runs as well as estimate the total compute.545

• The paper should disclose whether the full research project required more compute546

than the experiments reported in the paper (e.g., preliminary or failed experiments that547

didn’t make it into the paper).548

9. Code of ethics549

Question: Does the research conducted in the paper conform, in every respect, with the550

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?551

Answer: [Yes]552

Justification: [NA]553

Guidelines:554

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.555

• If the authors answer No, they should explain the special circumstances that require a556

deviation from the Code of Ethics.557

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-558

eration due to laws or regulations in their jurisdiction).559

10. Broader impacts560

Question: Does the paper discuss both potential positive societal impacts and negative561

societal impacts of the work performed?562

Answer: [NA]563

Justification: [NA]564

Guidelines:565

• The answer NA means that there is no societal impact of the work performed.566

• If the authors answer NA or No, they should explain why their work has no societal567

impact or why the paper does not address societal impact.568

• Examples of negative societal impacts include potential malicious or unintended uses569

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations570

(e.g., deployment of technologies that could make decisions that unfairly impact specific571

groups), privacy considerations, and security considerations.572

• The conference expects that many papers will be foundational research and not tied573

to particular applications, let alone deployments. However, if there is a direct path to574

any negative applications, the authors should point it out. For example, it is legitimate575

to point out that an improvement in the quality of generative models could be used to576

generate deepfakes for disinformation. On the other hand, it is not needed to point out577

that a generic algorithm for optimizing neural networks could enable people to train578

models that generate Deepfakes faster.579

• The authors should consider possible harms that could arise when the technology is580

being used as intended and functioning correctly, harms that could arise when the581

technology is being used as intended but gives incorrect results, and harms following582

from (intentional or unintentional) misuse of the technology.583

• If there are negative societal impacts, the authors could also discuss possible mitigation584

strategies (e.g., gated release of models, providing defenses in addition to attacks,585

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from586

feedback over time, improving the efficiency and accessibility of ML).587

11. Safeguards588

Question: Does the paper describe safeguards that have been put in place for responsible589

release of data or models that have a high risk for misuse (e.g., pretrained language models,590

image generators, or scraped datasets)?591

Answer: [NA]592

Justification: [NA]593

Guidelines:594

• The answer NA means that the paper poses no such risks.595
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• Released models that have a high risk for misuse or dual-use should be released with596

necessary safeguards to allow for controlled use of the model, for example by requiring597

that users adhere to usage guidelines or restrictions to access the model or implementing598

safety filters.599

• Datasets that have been scraped from the Internet could pose safety risks. The authors600

should describe how they avoided releasing unsafe images.601

• We recognize that providing effective safeguards is challenging, and many papers do602

not require this, but we encourage authors to take this into account and make a best603

faith effort.604

12. Licenses for existing assets605

Question: Are the creators or original owners of assets (e.g., code, data, models), used in606

the paper, properly credited and are the license and terms of use explicitly mentioned and607

properly respected?608

Answer: [NA]609

Justification: [NA]610

Guidelines:611

• The answer NA means that the paper does not use existing assets.612

• The authors should cite the original paper that produced the code package or dataset.613

• The authors should state which version of the asset is used and, if possible, include a614

URL.615

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.616

• For scraped data from a particular source (e.g., website), the copyright and terms of617

service of that source should be provided.618

• If assets are released, the license, copyright information, and terms of use in the619

package should be provided. For popular datasets, paperswithcode.com/datasets620

has curated licenses for some datasets. Their licensing guide can help determine the621

license of a dataset.622

• For existing datasets that are re-packaged, both the original license and the license of623

the derived asset (if it has changed) should be provided.624

• If this information is not available online, the authors are encouraged to reach out to625

the asset’s creators.626

13. New assets627

Question: Are new assets introduced in the paper well documented and is the documentation628

provided alongside the assets?629

Answer: [NA]630

Justification: [NA]631

Guidelines:632

• The answer NA means that the paper does not release new assets.633

• Researchers should communicate the details of the dataset/code/model as part of their634

submissions via structured templates. This includes details about training, license,635

limitations, etc.636

• The paper should discuss whether and how consent was obtained from people whose637

asset is used.638

• At submission time, remember to anonymize your assets (if applicable). You can either639

create an anonymized URL or include an anonymized zip file.640

14. Crowdsourcing and research with human subjects641

Question: For crowdsourcing experiments and research with human subjects, does the paper642

include the full text of instructions given to participants and screenshots, if applicable, as643

well as details about compensation (if any)?644

Answer: [NA]645

Justification: [NA]646
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Guidelines:647

• The answer NA means that the paper does not involve crowdsourcing nor research with648

human subjects.649

• Including this information in the supplemental material is fine, but if the main contribu-650

tion of the paper involves human subjects, then as much detail as possible should be651

included in the main paper.652

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,653

or other labor should be paid at least the minimum wage in the country of the data654

collector.655

15. Institutional review board (IRB) approvals or equivalent for research with human656

subjects657

Question: Does the paper describe potential risks incurred by study participants, whether658

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)659

approvals (or an equivalent approval/review based on the requirements of your country or660

institution) were obtained?661

Answer: [NA]662

Justification: [NA]663

Guidelines:664

• The answer NA means that the paper does not involve crowdsourcing nor research with665

human subjects.666

• Depending on the country in which research is conducted, IRB approval (or equivalent)667

may be required for any human subjects research. If you obtained IRB approval, you668

should clearly state this in the paper.669

• We recognize that the procedures for this may vary significantly between institutions670

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the671

guidelines for their institution.672

• For initial submissions, do not include any information that would break anonymity (if673

applicable), such as the institution conducting the review.674

16. Declaration of LLM usage675

Question: Does the paper describe the usage of LLMs if it is an important, original, or676

non-standard component of the core methods in this research? Note that if the LLM is used677

only for writing, editing, or formatting purposes and does not impact the core methodology,678

scientific rigorousness, or originality of the research, declaration is not required.679

Answer: [NA]680

Justification: [NA]681

Guidelines:682

• The answer NA means that the core method development in this research does not683

involve LLMs as any important, original, or non-standard components.684

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)685

for what should or should not be described.686
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