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Abstract

This paper proposes a supervised training algorithm for learning stochastic resource
allocation policies with generative diffusion models (GDMs). We formulate the
allocation problem as the maximization of an ergodic utility function subject to
ergodic Quality of Service (QoS) constraints. Given samples from a stochastic
expert policy that yields a near-optimal solution to the constrained optimization
problem, we train a GDM policy to imitate the expert and generate new samples
from the optimal distribution. We achieve near-optimal performance through the
sequential execution of the generated samples. To generalize across a family of
network configurations, we parameterize the backward diffusion process with a
graph neural network (GNN) architecture. We present numerical results in a case
study of optimal power control.

1 Introduction

Most existing formulations and methods for optimal wireless resource allocation, whether classical
or learning-based, seek deterministic solutions. In contrast, optimal solutions of many non-convex
optimization problems (e.g., power control, scheduling) are inherently probabilistic, as the optimal
solution may lie in the convex hull of multiple deterministic policies. By randomizing between
multiple deterministic strategies, stochastic policies can achieve better performance by effectively
convexifying the problem [1]. This phenomenon is also fundamental in multi-user information
theory, where time sharing plays a critical role in achieving optimal performance across various
communication channels [2–4]. In this work, we leverage diffusion models to learn generative
solutions to stochastic network resource allocation problems.

Generative models (GMs) have shown significant success in generating samples from complex,
multi-modal data distributions. Among the wide class of generative models, including variational
autoencoders (VAEs) and generative adversarial networks (GANs), generative diffusion models
(GDMs) stand out for their capability of generating high-quality and diverse samples with stable
training [5, 6]. GDMs convert target data samples (e.g., images) to samples from an easy-to-sample
prior (e.g., isotropic Gaussian noise) by a forward (noising) process, and then learn a backward
(denoising) process to transform the prior distribution back to the target data distribution.

A substantial body of the existing literature utilizes GDMs, and GMs in general, for generating
domain-specific synthetic data and for data augmentation to enhance machine-learning models in
supervised and reinforcement learning tasks [7, 8]. Yet, research on the use of GMs for wireless
network optimization, and GDMs in particular, is scant [9–13]. Concurrent works [14–19] propose
generative model solvers for network optimization as a framework to learn solution distributions
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that concentrate the probability mass around optimal deterministic solutions. The generative process
then converts random noise into high-quality solutions by eliminating the noise introduced in the
forward process. However, the problem formulation in the aforementioned studies is deterministic
and ignores the probabilistic nature of the optimal solution.

Our work is one of the first to imitate stochastic expert policies using GDMs. We emphasize the
stochastic nature of certain network optimization problems, where random solutions are not only
essential for optimality but also are realized by leveraging iterative dual domain algorithms and
time sharing. In our approach, the Quality of Service (QoS) near-optimality emerges through the
sequential execution of solutions sampled from the optimal generated distribution. Moreover, we
use a graph neural network (GNN) architecture as the backbone for the reverse diffusion process to
enable learning families of solutions across network topologies. GNNs excel in learning policies
from graph-structured data [20–23] and offer stability and scalability [24, 25].

This paper tackles imitation learning of stochastic wireless resource allocation policies. A GDM
policy is trained to match an optimal solution distribution to a constrained optimization problem from
which an expert policy can sample (see Section 2 and Section 3). We utilize a GNN-parametrization
to condition the generative diffusion process directly on the network graphs (see Section 4). We
evaluate the proposed GDM policy in a power control setup and demonstrate that the trained GDM
policy closely matches the expert policy over a family of wireless networks (see Section 5).

2 Optimal Wireless Resource Allocation

We represent the channel state of a wireless network system with a matrix H ∈ H ⊆ RN×N and
the allocation of corresponding resources with a vector x ∈ X ⊆ RN . Given H, the choice of
resource allocation x determines several QoS metrics that we represent with an objective utility
f0 : X ×H 7→ R and a constraint utility f : X ×H 7→ Rc. We define an optimal resource allocation
x∗(H) as the argument that solves the constrained optimization problem,

P̃(H) = f0
(
x∗(H),H

)
= maximum

x∈X
f0
(
x(H),H

)
, subject to f

(
x(H),H

)
≥ 0. (1)

In (1), we seek a resource allocation x∗(H) with the largest f0 utility among those in which the
components of the utility f are nonnegative. This abstract formulation encompasses channel and
power allocation [26] in wireless networks (Section 5) as well as analogous problems, in, e.g., point-
to-point [27], MIMO [28], broadcast [29], and interference channels [30]. In most cases of interest,
the utilities f0 and f in (1) are not convex. We introduce the convex relaxation in which optimization
is over probability distributions of resource allocation variables, and QoS is measured in expectation,

P(H) = maximum
Dx

EDx

[
f0
(
x(H),H

) ]
, subject to EDx

[
f
(
x(H),H

) ]
≥ 0. (2)

In (2), we search over stochastic policies Dx that maximize the expected utility EDx [ f0(x(H),H)]
while satisfying the expected constraint EDx [f

(
x(H),H)] ≥ 0 when the resource allocation x(H) is

drawn from the distribution Dx. For future reference, we introduce D∗
x(H) = D∗

x(x
∣∣H) to denote a

distribution that solves (2). In this distribution, the channel state H is given, and resource allocations
x are sampled. The important point here is that the performance of stochastic policies is realizable
through time sharing if we allocate resources at a faster time scale than QoS perception. Indeed, if we
consider independent resource allocation policies xτ (H) ∼ Dx, we have that for sufficiently large T ,

1

T

T∑
τ=1

f0
(
xτ (H),H

)
≈ EDx

[
f0
(
x(H),H

) ]
, (3)

with an analogous statement holding for the constraint utility f . Since deterministic policies are
particular cases of stochastic policies, we know that P(H) ≥ P̃(H). In practice, it is often the case
that P(H) ≫ P̃(H), and for this reason, the stochastic formulation in (2) is most often preferred over
the deterministic formulation in (1), [1–3].

Imitation Learning of Stochastic Policies. In this paper, we set out to learn to imitate the stochastic
policies that solve (2). More to the point, consider a distribution DH of channel states H. For each
channel state realization H, recall that the solution of (2) is the probability distribution D∗

x(H) =
D∗

x(x
∣∣H). Separate from these optimal distributions, we consider a parametric family of conditional
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distributions Dx(H;θ) = Dx(x
∣∣H;θ) in which the channel state H is given, and resource allocation

variables are drawn. Our goal is to find the conditional distribution D∗
x(H;θ) that minimizes the

expectation of the conditional KL-divergences DKL

(
D∗

x(H)
∥∥ Dx(H;θ)

)
,

D∗
x(H;θ) = argmin

Dx(H;θ)

EDH

[
DKL

(
D∗

x(H)
∥∥ Dx(H;θ)

) ]
, (4)

In (4), the distributions D∗
x(H) are given for all H. The conditional distribution Dx(H;θ) is our

optimization variable, which we compare with D∗
x(H) through their KL divergence. KL divergences

of different channel realizations are averaged over the channel state distribution DH, which is also
given. The optimal distribution D∗

x(H;θ) = D∗
x(x

∣∣H;θ) minimizes the expected KL divergence
among distributions that are representable by the parametric family Dx(H;θ).

To solve (4), we need access to the expert conditional distributions D∗
x(H). This is impossible in

general because algorithms that solve (2) do not solve for D∗
x(H) directly, but rather generate samples

x(H) drawn from the optimal distribution D∗
x(H) [22]. Thus, we recast the goal of this paper as

learning to generate samples x
∣∣H from the distribution D∗

x(H;θ) when we are given samples x(H)
of the expert conditional distributions D∗

x(H) with channel states generated according to DH:

Problem 1 Given samples x(H) drawn from the expert distribution D∗
x(H)DH =

D∗
x(x

∣∣H)DH [cf. (2)], we learn to generate samples x
∣∣H drawn from the conditional

distributions D∗
x(H;θ) = D∗

x(x
∣∣H;θ) [cf. (4)].

A solution to Problem 1 is illustrated in Fig. 2. For a given channel state realization H, we show
two-dimensional slices of samples of an optimal policy (in blue). As indicated by (1), these samples
achieve optimal QoS metrics for (2) if executed sequentially (Fig. 1). We train a generative diffusion
model (Section 3) that generates samples (in orange) that are distributed close to samples of an
optimal distribution. When executed sequentially, the learned samples realize QoS metrics close
to optimal values (Fig. 1). Neither the optimal distribution D∗

x(H)DH = D∗
x(x

∣∣H)DH nor the
parametric distribution D∗

x(H;θ) = D∗
x(x

∣∣H;θ) is computed.

Learning in the Dual Domain & Policy Randomization. Most learning approaches to allocating
resources in wireless systems contend with the deterministic policy formulation in (1), e.g., [11, 14–
17, 21, 26, 31]. This is due in part to the use of deterministic learning parameterizations [21, 26, 31],
but even recent contributions that propose diffusion models, mostly do so for deterministic policies
[11, 14–18]. This is a well-known limitation that has motivated, e.g., state-augmented algorithms
that leverage dual gradient descent dynamics to randomize policy samples [22, 23]. These algorithms
generate trajectories of primal and dual iterates by operating on a convex hull relaxation of the
Lagrangian for the original problem and iteratively solving a sequence of Lagrangian maximization
subproblems. Each subproblem is an unconstrained, deterministic problem to which regular learning
methods apply, and near-optimality and feasibility guarantees are established neither for individual
primal iterates nor their averages, but only for the sequential execution of the generated policy iterates.

A shortcoming of state-augmented algorithms—and iterative dual domain algorithms in general,
regardless of whether parametrized or not—is that they incur a transient period during which subopti-
mal policies are executed. Reducing the length of this transient period typically requires larger step
sizes, which in turn, introduces a trade-off with respect to solution optimality. Learning a generative
model to sample from the stationary (optimal) policy distribution emerges as a promising approach
for overcoming this trade-off. To the best of our knowledge, our paper is the first to demonstrate the
imitation of stochastic policies that solve a constrained optimization problem with GDMs.

3 Policy Generative Models

GDMs involve a forward and a backward diffusion process. The forward process defines a Markov
chain of diffusion steps to progressively add random noise to data. For a given H and a data sample
x0 = x(H) drawn from the expert distribution D∗

x(H), the forward chain follows

q(xk |x0;H) = N (xk;
√
ᾱkx0, (1− ᾱk)I), (5)
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where ᾱk :=
∏k

i=1 αi, αk := 1− βk, and βk is a monotonically increasing noise schedule, e.g., a
linear or cosine schedule. For a sufficiently large number of diffusion time steps K, (5) converts the
data sample x0 into a sample that is approximately isotropic Gaussian distributed, i.e., xK ≈ N (0, I).
The reverse process of (5) can be approximated as a chain of Gaussian transitions with some fixed
variance σ2

kI and a parametrized mean µθ,

pθ(xk−1 |xk;H) = N
(
xk−1;µθ(xk, k;H), σ2

kI
)
. (6)

A backward diffusion process samples xK ∼ N (0, I) and iteratively runs the backward chain in
(6) for k = K, . . . , 1. With reparametrizing (5) as xk(x0, ϵ) =

√
ᾱkx0 +

√
1− ᾱkϵ [5], sampling

xk−1 ∼ pθ(. |xk;H) amounts to updating

xk−1 =
1√
αk

(
xk − βk√

1− ᾱk
ϵθ(xk, k;H)

)
+ σkw, (7)

where w ∼ N (0, I), and ϵθ(xk, k;H) predicts the noise ϵ added to x0 ∼ D∗
x(H) from the noisy

sample xk at time step k. An optimal GDM-policy parametrization θ∗ minimizes the H-expectation
of the DDPM loss function [5] given by

LGDM(θ) = Ex0,k,H,ϵ ω(k)
∥∥ϵθ(xk(x0, ϵ), k;H

)
− ϵ
∥∥2 . (8)

In (8), ω(k) is a time-dependent weighting function that is usually omitted for simplicity, and the
expectation is over random time steps k ∼ Uniform([1,K]), Gaussian noise ϵ ∼ N (0, I), expert
(data) samples x0 ∼ D∗

x(H), and conditioning networks H ∼ DH. The DDPM loss in (8) is a
variational upper bound on the expected KL divergence loss in (4) and becomes tight for θ = θ∗.
Thus, running (7) with optimal parametrization ϵθ∗ for a given H generates samples from the expert
conditional distribution, i.e., x0 ∼ Dx(H;θ∗) = D∗

x(H;θ) ≈ D∗
x(H).

4 GNN-Parametrizations for GDM Policies

We employ GNNs for GDM parameterization, as they are well-suited for processing network data,
such as resource allocations. Moreover, GNNs inherently take graphs as input, making them a
natural fit for GDMs conditioned on H. GNNs process graph data through a cascade of L graph
convolutional layers [32]. Inputs are node signals (features) and graph shift operators (GSO) while
outputs are node embeddings. Each layer Ψ(ℓ) is a nonlinear aggregation function obtained by the
composition of a graph convolutional filter and a pointwise nonlinearity φ (e.g., relu),

Z(ℓ) = Ψ(ℓ)
(
Z(ℓ−1);H,Θ(ℓ)

)
= φ

[
M∑

m=0

HmZ(ℓ−1)Θ(ℓ)
m

]
. (9)

In (9), Θ(ℓ) = {Θ(ℓ)
m ∈ RFℓ−1×Fℓ}Mm=0 is a set of learnable weights, M denotes the number of hops

and Z(ℓ−1) ∈ RN×Fℓ−1 is the input node signal to layer ℓ. The GSO, H, encodes the underlying
connectivity of the network, which is the network state in our case. For improved and more stable
training, we take advantage of normalization layers and residual connections. To this end, we redefine
φ in (9) as the composition of a normalization layer followed by a pointwise nonlinearity while the
first term in the sum, ZΘ0, inherently represents a learnable residual connection. We view xk and
k = k1N as node signals and introduce a read-in layer Φ(0) = (Φx,Φk) that adds sinusoidal-time
embeddings to the input node features. That is, we have

Z(0) = Φ(0)(xk,k) = Φx(xk) +Φk(k), (10)

where Φx : RN 7→ RN×F0 is a multi-layer-perceptron (MLP) layer, and Φk : RN 7→ RN×F0 is
a cascade of a sinusoidal time embedding and MLP layers. Finally, we add a readout MLP layer
Φ(L) : RN×FL 7→ RN that learns to predict the noise ϵ from the output node embeddings.

5 Case Study: Power Control in Multi-User Interference Networks

Wireless Network & Power Control Setup. We consider the problem of power control in N -user
interference channels. To summarize the setup briefly, all network realizations are sampled from a
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family of network configurations with N = 100 transmitter-receiver (tx-rx) pairs (also the nodes
in our graphs) and an average density of 12 tx-rx pairs/km2. For each network, we first drop the
transmitters randomly in a square grid world, and each transmitter is paired with a neighboring
receiver. Receivers treat signals coming from all but their respective transmitters as interference. We
note that similar setups have been investigated in [22, 23] and can be referred to for more details.

We optimize the transmit power levels x ∈ [0, Pmax]
N where Pmax = 10 mW is the maximum

transmit power budget. The channel bandwidth and noise power spectral density (PSD) are set to
W = 20 MHz and N0 = −174 dBm/Hz, respectively. The network state H is the matrix of long-term
channel gains which follow a log-normal shadowing with a standard deviation of 7 plus the standard
dual-slope path-loss model. For a given H, the short-term (instantaneous) channel gains H̃ vary
following Rayleigh fading, and we define the instantaneous rate of receiver i given an allocation x as

r̃i(x, H̃) = log2

(
1 +

xi · |h̃ii|2

WN0 +
∑

j ̸=i xj · |h̃ji|2

)
, (11)

where xi is the ith entry of x and h̃ji is the (j, i)th element in matrix H̃. Note that a policy Dx(H) is
determined only by the long-term gains, whereas the instantaneous rate depends on the short-term
channel gains. Ergodic rates are given by the joint expectation over the policy and the fading,

r(Dx(H),H) := EDx(H), H̃|H

[
r̃
(
x, H̃

)]
. (12)

In our experiments, we draw 200 samples from the trained GDM policy for each network and evaluate
the joint expectation over 200 time steps, with each time step spanning 10 ms. We impose a minimum
ergodic rate requirement of fmin = 0.6 bps/Hz for all receivers by setting the utility constraints
f(Dx(H),H) := r(Dx(H),H)−1Nfmin, whereas the utility objective is the network-wide average
of the ergodic rates given by f0(Dx(H),H) := 1⊤

Nr(Dx(H),H)/N .

Expert Policy & Baselines. To generate samples from an optimal solution distribution, we first train
a GNN-parametrized model via a state-augmented primal-dual (SA) learning algorithm as in [23].
The trained model is executed online for each given network H over a sufficiently long time window
to generate trajectories of primal and dual iterates with near-optimality and feasibility guarantees. We
collect the resulting primal iterates {x†

b(H)}B−1
b=0 , i.e., resource allocation vectors, in a buffer with

capacity B = 500. During GDM policy training, expert policy samples are uniformly drawn from
the buffer, i.e., we have D∗

x(H) = Uniform
[{
x†
0(H), . . . ,x†

B−1(H)
}]

for all H ∼ DH. While we
parametrize the expert policy and run a state-augmented training algorithm over a training dataset of
networks DH, one can alternatively run the dual descent without the parametrization and store the
resource allocation iterates for each instance H ∼ DH.

We compare the GDM and expert policies with two baseline deterministic policies: (i) Average-
power transmission policy: For each given H, we compute the time average of the expert policy
samples – similar to primal averaging in the optimization literature – and fix it, i.e., we set x(H) ≈
ED∗

x(H)[x
†(H)] at all time steps. (ii) Full-power transmission policy (FP): All transmitters use all

the transmission power available at all time steps, i.e., x(H) = Pmax1N .

Performance of GNN-Parametrized GDM Policies. To evaluate our method, we draw a total of
128 network realizations. Following a 5 : 1 : 2 split, we obtain training, validation, and test datasets
of size |DH| = 80, |VH| = 16, and |TH| = 32 networks, respectively. We train the GDM policy over
the training dataset DH and test it on TH. The expert policy solutions are obtained across all datasets
for evaluation and benchmarking purposes. Due to limited space, we defer the implementation and
training details of the GDM policy to Appendix A.

Fig. 1 showcases the test performance of the GDM policy, expert policy, and the baselines over a time
horizon of 200 time steps. We estimate the ergodic rate vector for a given network H and time step
τ as (1/τ)

∑τ−1
s=0 r̃

(
xs, H̃

)
where xs denotes the power allocation decision at an earlier time step

s < τ [c.f. (12)]. In the first two plots, we report the time evolution of the average ergodic rate, i.e.,
the mean-rate objective utility, and the 5th-percentile of ergodic rates, both of which are computed
across all |Th| × N = 32 × 100 = 3200 tx-rx pairs in the test dataset. The rightmost violin plot
shows the histogram of ergodic rates of all receivers evaluated at two different time steps. We verify
that the expert policy eventually satisfies almost all the constraints unlike the baselines. Although
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Figure 1: Comparison of the test performance of GDM policy with the expert policy (SA) and other
baselines. Leftmost and middle plots show the time evolution of the average and 5th percentile
of ergodic rates, respectively. The minimum rate requirement fmin is shown with a dashed, red
line. Rightmost plot shows the distribution of ergodic rates and constraint satisfaction percentages,
evaluated up to τ = 20 and τ = 200 time steps. We drew a solid black line at the median values
while the dashed black lines indicate the 5th and 95th percentile values.
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Figure 2: Example 2D slices of expert policy (blue) and GDM policy (orange) samples are shown for
two pairs of neighboring nodes from the test dataset. Transmit powers are normalized by Pmax.

the GDM policy does not exhibit strict feasibility, it converges to a near-feasible and near-optimal
policy in very few time steps compared to the expert policy and does not incur a long transient period.
Moreover, both the full-power and average-power baselines are outperformed by the GDM policy in
terms of percentile rates and constraint violations.

In Fig. 2, example two-dimensional (2D) slices of 100-dimensional learned GDM policies are overlaid
with expert policy samples. The GDM policy generalizes to unseen test networks drawn from TH,
and the conditional distribution of GDM policy samples significantly resembles that of the expert
policy. A peculiarity of optimal power control policies is that they tend to be probabilistic and involve
multiple transmission modes. That is especially true for tx-rx pairs with less favorable channel
conditions for which the policy randomization becomes more nuanced. In such cases, similar to
time-sharing strategies, pairs that would otherwise generate considerable mutual interference adopt
a policy-switching mechanism where they take turns to transmit at high power during periods of
minimal interference (e.g., the top-left and bottom-right corners in the rightmost plot of Fig. 2). By
alternating their transmissions, all tx-rx pairs satisfy their minimum ergodic rate requirements.

Strong test generalization evidenced in both figures notwithstanding, the GDM policy exhibits a
small feasibility gap compared to the expert policy in Fig. 1. We attribute this gap primarily to
the supervised training algorithm not accounting directly for the sensitivity of the constraints and
the aforementioned policy-switching phenomenon. The feasibility gap and overall performance of
the GDM policies can be further improved by incorporating the QoS requirements and additional
variance constraints directly into the training loss and/or generative process.

6 Conclusion

This work demonstrated that generative diffusion processes can imitate expert policies that sample
from optimal solution distributions of stochastic network optimization problems. We employed a
GNN to condition the generative process on a family of wireless network graphs. More broadly, we
anticipate that our attempt at generative diffusion-based sampling of random graph signals will be of
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interest beyond resource optimization in wireless networks. We leave constraint-aware, unsupervised
training of GDM policies across a wider range of network topologies as future research directions.

References
[1] M. Neely, Stochastic network optimization with application to communication and queueing

systems. Morgan & Claypool, 2010.

[2] R. Gallager, “A perspective on multiaccess channels,” IEEE Transactions on Information Theory,
vol. 31, no. 2, pp. 124–142, 1985.

[3] I. Sason, “On achievable rate regions for the Gaussian interference channel,” IEEE Transactions
on Information Theory, vol. 50, no. 6, pp. 1345–1356, 2004.

[4] Q. He, D. Yuan, and A. Ephremides, “Optimal scheduling for emptying a wireless network:
Solution characterization, applications, including deadline constraints,” IEEE Transactions on
Information Theory, vol. 66, no. 3, pp. 1882–1892, 2020.

[5] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural
Information Processing Systems, vol. 33, pp. 6840–6851, 2020.

[6] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image
synthesis with latent diffusion models,” in Proceedings of CVPR, pp. 10684–10695, June 2022.

[7] A. Kasgari, W. Saad, M. Mozaffari, and H. V. Poor, “Experienced deep reinforcement learn-
ing with generative adversarial networks (GANs) for model-free ultra reliable low latency
communication,” IEEE Transactions on Communications, vol. 69, no. 2, pp. 884–899, 2020.

[8] W. Njima, A. Bazzi, and M. Chafii, “DNN-based indoor localization under limited dataset using
GANs and semi-supervised learning,” IEEE Access, vol. 10, pp. 69896–69909, 2022.

[9] E. M. Diallo, “Generative model for joint resource management in multi-cell multi-carrier
NOMA networks,” 5 2024.

[10] Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang, “GAN-powered deep distributional reinforce-
ment learning for resource management in network slicing,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 2, pp. 334–349, 2019.

[11] H. Du, R. Zhang, Y. Liu, J. Wang, Y. Lin, Z. Li, D. Niyato, J. Kang, Z. Xiong, S. Cui, B. Ai,
H. Zhou, and D. I. Kim, “Enhancing Deep Reinforcement Learning: A Tutorial on Generative
Diffusion Models in Network Optimization,” IEEE Communications Surveys and Tutorials,
2024.

[12] S. Nouri, M. K. Motalleb, and V. Shah-Mansouri, “Diffusion-RL for scalable resource allocation
for 6G networks,” 2025.

[13] F. You, H. Du, X. Hou, Y. Ren, and K. Huang, “DRESS: Diffusion reasoning-based reward
shaping scheme for intelligent networks,” 2025.

[14] R. Liang, B. Yang, Z. Yu, B. Guo, X. Cao, M. Debbah, H. V. Poor, and C. Yuen, “DiffSG: A
Generative Solver for Network Optimization with Diffusion Model,” 8 2024.

[15] R. Liang, B. Yang, P. Chen, X. Li, Y. Xue, Z. Yu, X. Cao, Y. Zhang, M. Debbah, H. V. Poor, and
C. Yuen, “Diffusion models as network optimizers: Explorations and analysis,” IEEE Internet
of Things Journal, pp. 1–1, 2025.

[16] A. B. Darabi and S. Coleri, “Diffusion model based resource allocation strategy in ultra-reliable
wireless networked control systems,” IEEE Communications Letters, 2024.

[17] X. Lu, Z. Feng, J. Sun, J. Lou, C. Wu, W. Bao, and J. Li, “Generative diffusion model-based
energy management in networked energy systems,” in ICASSP, pp. 1–5, 2025.

[18] Y. Xue, R. Liang, B. Yang, X. Cao, Z. Yu, M. Debbah, and C. Yuen, “Joint task offloading and
resource allocation in low-altitude MEC via graph attention diffusion,” 2025.

7



[19] X. Wang, L. Feng, J. Wang, H. Du, C. Zhao, W. Li, Z. Xiong, D. Niyato, and P. Zhang,
“Graph diffusion-based AeBS deployment and resource allocation for RSMA-enabled URLLC
low-altitude economy networks,” 2025.

[20] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “Graph neural networks for scalable radio resource
management: Architecture design and theoretical analysis,” IEEE Journal on Selected Areas in
Communications, vol. 39, no. 1, pp. 101–115, 2020.

[21] Z. Wang, M. Eisen, and A. Ribeiro, “Learning decentralized wireless resource allocations with
graph neural networks,” IEEE Transactions on Signal Processing, vol. 70, pp. 1850–1863, 2022.

[22] N. NaderiAlizadeh, M. Eisen, and A. Ribeiro, “State-augmented learnable algorithms for
resource management in wireless networks,” IEEE Transactions on Signal Processing, 2022.

[23] Y. B. Uslu, N. NaderiAlizadeh, M. Eisen, and A. Ribeiro, “Fast state-augmented learning for
wireless resource allocation with dual variable regression,” 2025.

[24] L. Ruiz, F. Gama, and A. Ribeiro, “Graph neural networks: Architectures, stability, and
transferability,” Proceedings of the IEEE, vol. 109, no. 5, pp. 660–682, 2021.

[25] L. Testa, C. Battiloro, S. Sardellitti, and S. Barbarossa, “Stability of graph convolutional
neural networks through the lens of small perturbation analysis,” in ICASSP 2024-2024 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6865–6869,
IEEE, 2024.

[26] F. Liang, C. Shen, W. Yu, and F. Wu, “Towards optimal power control via ensembling deep
neural networks,” IEEE Transactions on Communications, vol. 68, no. 3, pp. 1760–1776, 2019.

[27] W. Yu, “Sum-capacity computation for the Gaussian vector broadcast channel via dual decom-
position,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 754–759, 2006.

[28] X. Lin, R. W. Heath, and J. G. Andrews, “The interplay between massive MIMO and underlaid
D2D networking,” IEEE Transactions on Wireless Communications, vol. 14, no. 6, pp. 3337–
3351, 2015.

[29] D. Tse, “Optimal power allocation over parallel Gaussian broadcast channels,” in Proc. of IEEE
International Symposium on Information Theory, p. 27, 1997.

[30] K. Chaitanya A, U. Mukherji, and V. Sharma, “Power allocation for interference channels,” in
2013 National Conference on Communications (NCC), pp. 1–5, 2013.

[31] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, “Learning to optimize:
Training deep neural networks for wireless resource management,” in IEEE 18th SPAWC,
pp. 1–6, 2017.

[32] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional neural network architectures
for signals supported on graphs,” IEEE Transactions on Signal Processing, vol. 67, no. 4,
pp. 1034–1049, 2018.

[33] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in Pro-
ceedings of the 38th International Conference on Machine Learning (M. Meila and T. Zhang,
eds.), vol. 139 of Proceedings of Machine Learning Research, pp. 8162–8171, PMLR, 18–24
Jul 2021.

[34] D. P. Kingma and J. Ba, “ADAM: A method for stochastic optimization,” 2014.

8



A Implementation & Training Details for GDM Policy

For the GNN-parametrizations, the GSO representation of the network state H is a fully connected
graph where nodes correspond to transmitter-receiver pairs, and the edge weights between nodes i
and j, eij , are set to log-normalized long-term channel gains given by eij ∝ log2

(
1 +

Pmax|hij |2
WN0

)
.

The GNN has L = 6 layers, each with Fℓ = 128 hidden features and filter size of M = 2. We
set the number of diffusion time steps to K = 500, use a cosine noise schedule βk [33] and
train the GDM policy to minimize the DDPM objective in (8) with a log-SNR weighting function
ω(k) = log

(
SNR(k)

)
, where SNR(k) := α2

k/σ
2
k.

We train the GDM policy over the training dataset DH for a maximum of 104 epochs with an ADAM
optimizer [34], an initial learning rate of 10−2, and a learning rate schedule that follows a cosine
decay with warm restarts. In each epoch, we iterate over the whole dataset with mini-batches of 16
graphs and sample 250 graph signals, i.e., expert policy data x(H) ∼ D∗

x(H), for each graph in the
batch. Every 200 epochs, we evaluate the checkpointed GDM model on the validation dataset VH

and save the best model in terms of 5th percentile ergodic rates. We ran our experiments on a single
NVIDIA RTX 3090 GPU with 24 GB of memory.

We apply an affine transform [0, Pmax] 7→ [−1/2, 1/2] to map the policy space to a centered
diffusion space. To sample from the diffusion model, we run the DDPM sampling equation (7)
with standardized variables, invert the affine transform, and project the generated policy samples to
the support [0, Pmax]

N . We observed negligible difference in the quality of generations when we
swapped the DDPM sampler with other samplers, e.g., a DDIM sampler or its accelerated counterpart
with fewer denoising time steps.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [NA]

10



Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: [NA]

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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