Plug-Tagger: A Pluggable Sequence Labeling Framework
with Pre-trained Language Models

Anonymous ACL submission

Abstract

Fine-tuning the pre-trained language mod-
els (PLMs) on downstream tasks is the de-
facto paradigm in NLP. Despite the superior
performance on sequence labeling, the fine-
tuning requires large-scale parameters and time-
consuming deployment for each task, which
limits its application in real-world scenarios.
To alleviate these problems, we propose a
pluggable sequence labeling framework, plug-
tagger. By switching the task-specific plugin
on the input, plug-tagger allows a frozen PLM
to perform different sequence labeling tasks
without redeployment. Specifically, the plugin
on the input are a few continuous vectors,
which manipulates the PLM without modifying
its parameters, and each task only needs to store
the lightweight vectors rather than a full copy
of PLM. To avoid redeployment, we propose
the label word mechanism, which reuses the
language model head to prevent task-specific
classifiers from modifying model structures.
Experimental results on three sequence la-
beling tasks show that the proposed method
achieves comparable performance with fine-
tuning by using 0.1% task-specific parameters.
Experiments show that our method is faster
than other lightweight methods under limited
computational resources

1 Introduction

Pre-trained language models (PLMs) (Devlin et al.,
2019; Peters et al., 2018; Radford et al., 2019),
which are trained on a huge amount of data to
learn universal language representations, have been
shown to be beneficial for improving many natural
language processing (NLP) tasks. In addition to
the performance of PLM, as the size of PLMs
grows (eg. GPT3 (Brown et al., 2020) has 175B
parameters), there has been an increasing interest
in efficiently transferring the PLM to downstream
tasks.

The past few years have witnessed the prevailing

of fine-tuning the PLM on downstream NLP tasks.

< POS OUTPUT >
< Chunking OUTPUT >
<NER OUTPUT >

< POS OUTPUT >
< Chunking OUTPUT >
< NER OUTPUT >

POS Model
Chunlking Model

% Frozen Model

NER Model

Switch models
for multiple tasks

Switch only plugins

POS Plugin |
for multiple tasks

Chunking

Figure 1: Comparison of fine-tuning (left) and pluggable
method (right). When performing different tasks, fine-
tuning needs to redeploy the model, which leads to huge
memory demand and time cost. The pluggable method
only needs to switch the lightweight plugin vectors on
input without redeploying the model.

<INPUT> <INPUT >

However, fine-tuning requires training an entirely
new model for every new task. The large-scale
parameters of the PLM make it expensive to keep
a copy of parameters for each task, and deploying
models for a large number of tasks dramatically
increases the cost of time (Sharma et al., 2018),
as shown in Figure 1. A more idealistic way to
transfer PLM is the pluggable method, which uses
the lightweight pluggable module to manipulate the
frozen model to output desired response without
redeployment.

There are two conditions for achieving plugga-
bility. One is the lightweight pluggable module,
which manipulates PLM behavior without mod-
ifying its parameters. The other is an adaptive
classifier that can perform different tasks without
modifying the model structure. Currently, there
are two types of attempts to reach this goal.
Adapter-tuning (Rebuffi et al., 2017; Houlsby et al.,
2019; Raffel et al., 2020) optimizes lightweight
modules called adapters between each layer of
PLM and only the adapters are stored for each
task. Despite the lightweight, adapter-tuning does
not satisfy the conditions for the adaptive classifier,

which inevitably leads to redeployment. Prefix-
tuning (Li and Liang, 2021; Lester et al., 2021),
which prepends several continuous vectors to the
input of each layer in the PLM, is proposed as a
pluggable method for natural language generation.
Different generation tasks can share the structure
of the language model head, thus prefix-tuning can
be adapted to different generation tasks without
redeployment. However, the different label space
makes it impossible for sequence labeling tasks
to share a classifier. As a result, it is difficult to
use existing solutions to achieve pluggability in
sequence labeling tasks.

In this paper, we propose plug-tagger, a plug-
gable sequence labeling framework. Specifically,
to solve the problem of pluggable modules, we
insert plugin vectors to the input to manipulate the
PLM without modifying its parameters. As for
the adaptive classifier, we reformulate sequence
labeling as a special language modeling task to
reuse the language model head. The PLM with
the language model head predicts the label word
at each position in the sentence, the label of each
position is determined by the label word rather
than the task-specific classifier. Label word is a
label-related word collected from vocabulary, we
take high-frequency words predicted by PLM to
serve as the label words for corresponding labels.
Benefiting from the reuse of the entire architecture
of PLMs, our method can be adapted to different
tasks without redeployment. '

The main contributions of this paper can be
summarized as follows:

* We reformulate the sequence labeling task as
a label word prediction task by reusing the
language model head of PLM.

* We proposed a pluggable sequence label-
ing framework, which leverages lightweight
pluggable modules to manipulate the model
behavior without redeployment.

» Experiments on a variety of sequence labeling
tasks demonstrate the effectiveness of our
approach. Besides, in experiments with
limited computational resources, our method
is faster than other lightweight methods.

2 Approach

In this work, we propose a lightweight and
pluggable sequence labeling framework, which
aims to make a deployed PLM perform different

"URL of codes is omitted here pending the review process.

sequence labeling tasks without redeployment. In
this section, we first introduce the key challenges
of achieving pluggability on sequence labeling.
Next, we propose an overview of our approach,
and finally, we detail the two primary components
of our approach.

2.1 Problem Statement

Given a sequence of words X = [z1,..., %4,
the goal of sequence labeling is to predict the
gold labels Y = [y1, Y2, ..., Y| With equal length.
The predictions of a sequence labeling system
can be expressed as Y = F(X;©) where @
is the parameters of the system. The traditional
system based on fine-tuning and classifier can be
decomposed into the following equations:

H = Encoder(X; ¢)

R 1
Y = argmaz(Softmax(HW + b)) W

where W € R"*L [is the size of label set, h is
the dimension of hidden state. Encoder is a PLM
without language model head, ¢ is its parameters.
Parameters of system © is decomposed into ¢, W
and b.

There are two challenges to be lightweight and
pluggable. The first challenge arises from the large-
scale ¢, standard fine-tuning requires an entire new
model for every task. That is, each task requires
a large number of task-specific parameters when
using PLM. The second one is that the dimension of
W cannot be frozen due to different label sets. For
example, NER’s label consists of entity types such
as person, location and organization, but POS’s
label consists of part of speech types like adjective,
noun and adverb. It’s challenging to map so many
different task-specific labels onto the same label
space. This prevents the model’s classification
layer from remaining frozen. Apart from this, even
if we find a way to reduce the scale of task-specific
parameters, the classifier still introduces a non-
negligible number of parameters when the number
of labels is large.

2.2 Model Overview

The architecture of the proposed model is shown
in Figure 2. We switch the lightweight plugin
vectors on the input rather than reloading large-
scale parameters of PLM to perform different
tasks. The label word mechanism replaces the
task-specific classifier to avoid the modification of
the model architecture. Under the influence of the

Label Word Selection CHK Label | NP i i VP | I NP |
Reuters v he v it v LabelMap ; ; .- !
g g 2 POSLlabel { PRP | | VBZ ! | NNP !
E g |_| [I g |_| [I Nerlabel [PER | | 0 | [o]
Label‘: ORG Label: PRP Label: NP [} } f
John v is:\/ i;‘/ CHKlabelword | <it> | | <is> E Poo<it> ‘E
z oy z 't (I o |
3 g ’HH g ’HH POS labelword | <he> | i <is> | i <Mr> |
g g [I . B [I ;
Label: PER Label: VBZ Label: VP NER label word [Sohng] [<likes>] [<apple>]
[Language Model 35 Frozen

I i i

NER Data| POS Data| Chunking Data

Pre-trained Language Model

| | I I

| NER Plugin | [<Mike>] [<likes>] [<apple>]

1
i{Chunking Pluginj
L

! POS Plugin |

Switch plugin to switch task

Figure 2: An overview of Plug-Tagger. Influenced by the task-specific plugin vectors on the input, the frozen
language model predicts the label word for each word in the sentence. The actual label is obtained by label word
mapping. The left side shows how we get the label word: the language model traverses a large amount of data. The
word that related to a particular label is selected as a label word according to its frequency predicted by language

model.

plugin vector, the model predicts the corresponding
label words of input, and the actual labels can be
obtained by label word mapping. Take NER as
an example, we feed the input "Olivia likes apple"
with the plugin of NER into the frozen language
model, the output of language model will be "John
likes apple". "John" is the label word of PER
(person) in NER, after label word mapping, we
get the NER label of the input: "PER O O".

We define the label word map as M, the
parameters of the frozen language model as @y,
and plugin vectors as ®@p. The label words
predicted by PLM can be describe as Y =
F{X,0Op}; O1,) where {X, Op} is the inputs,
and we use label word mapping to get the real
labels Y = M(Y). The following two sections
detail essential parts of the plug-tagger: plugin
vector and label word mechanism.

2.3 Plugin Vector

To solve the problem of storing and reloading
large-scale parameters for various tasks, we draw
inspiration from continuous prompts. We use
plugin vector to control the model behavior without
modifying the architecture and parameters of the
model. The plugin vector ®p consists of a few
continuous vectors and is combined with input. In
the following two subsections, we show two ways

to combine the plugin vector with the input.

2.3.1 Plugin in Embedding

The input of PLM is the text X processed by
embedding, which can be described as X =
[X1, ..., Xn| Where x; = Emb(z;). We insert the
plugin vectors ©®p = [f1,...01,] into the input X
directly, the information in © p flows through each
layer and ultimately affects the predictions. The
new input can be described as follow:

X' = [@p;x1, ..., Xn), 2
where ®p € RY x h, l, is the length of the plugin
vectors, h is the dimension of embedding, [;] means
concatenation in the first dimension.

2.3.2 Plugin in Layers

The plugin vectors in embedding are not expressive
enough, which leads to unsatisfactory performance.
To extend the influence of plugin vectors, we insert
them into inputs at each layer of the model. Given
a PLM with [transformer layers, the input of ;"
layer can be described as X =[x x{)]
where X ¢ R™*?_{ is the dimension of hidden
state and and n is the length of inputs. Transformer
(Vaswani et al., 2017) layers are structured around
the use of query-key-value (QKV) attention, which
is calculated as:

T
AH(X) = So ftma:c(Q(X\)/I%X) W (X)
QX) = WX 3)
K(X)=wx
V(X) = WYX,

where W) W,) W) e R4 and dj, is
the number of multi head. In order to avoid adding
additional layers of PLM, we combine the plugin
vector with K and V', which can be describe as:

X' = {6,609, X}
QX)[6Y; K(X)]”
Nz

(095 V(X))
“

Att(X') = Softmaz(

where 01(3), 99) e Rhxd l, is the length of
the plugin vectors and d is the dimension of
hidden state. Plugin vectors on all layers can be
represented as Op = {(91((1),9‘(,1))..., (91((1),9\(,1))}.
Thus, we extend the influence of plugin vectors to
every layer without modifying parameters of PLM.

2.4 Label Word Mechanism

To alleviate problems caused by the task-specific
classifier, we propose the label word mechanism,
which reformulates the sequence labeling to the
label word prediction.

2.4.1 Label Word Selection

Algorithm 1 represents the entire label word
selection processing. For each label ¢ € L, a
dictionary fregq. is built to counts its candidate
label words and corresponding frequency. We
the traverse training set, for each word x in the
sentence, we use the language model to get top-
k high-probability candidate words and update
dictionary freq. where c is the label of the word
x. After traversing the training set, we filter some
words that are not suitable such as the words that
frequently occur in all freq. Under the condition
that the label word of each label is not the same,
the remaining word with the highest frequency in
freq. is selected as label word of label c.

In particular, for tasks that need to use the BIO
schema, two special treatments are needed: 1) We
don’t count label word for label O. It’s hard to pick
a representative word for the others category. In
the training and inference phase, the word with

Algorithm 1 Label Word Selection

Input: Train set D = {X;,Y;}; Label set
L = {ci}l_;; Vocabulary V = {w;}!_,; Pre-
trained language model L M ; Maximum candidates
of label word k.

Output: LabelMap M

1: Initialize label map M = &;

2: forc e Ldo

3. Initialize freq. = {w; : 0}¥_y;

4: Add label word pair {c : None} to M;

5: end for

6: for (X = {z;}7,,Y ={yi}]-,) € Ddo

7 Select top-k candidate words {7;}!"
where §; € RF based on predictions of
language model LM (X);

8 for i € [1...n] do
9: Update the frequency of label ¢ = y;;
10: freg.[w] < freq.[w] + 1 forw € g;
11: end for
12: end for
13: for c € L do
14 Filter out irrelevant words in freq,;
15: while M|c] is None do
16: Select the word w in freq. with the
highest frequencys;
17: if w not used by M then
18: M]c] + w;
19: else
20: Remove w from freq,;
21: end if
22: end while
23: end for
24: return M

label O predicts itself. 2) We look for label words
respectively for B and I of the same category,
because distinguishing Bl is beneficial for tasks that
require boundary information. In the experiment
section, we will discuss the influence of the label
word mechanism on the performance in detail.

2.4.2 Training Objective

We reformulate sequence labeling to a special
language modeling task. After selecting label
words, we get the label map M to map label set
to words in vocabulary. For sequence X, the
gold label Y is reintroduced to Y = [y1, ..., Un)
where y; = M (y;). The sentence-level loss can be

described as follows:
N —~—
Loss = — Z log(P(Yi|Xj)), 5)
i=1

where N is the number of sentences. When
combined with the plugin vectors, label words
embedding and parameters of plugin vectors ®p
are the only trainable parameters. During the
inference phase, we take the prediction result
of the first subword of each word and find its
corresponding label according to the label map.

3 Experiments

In this section, we present the experimental results
to show the efficiency and pluggability of plug-
tagger. To verify whether plug-tagger could adapt
to different tasks, we conduct experiments on three
common sequence labeling tasks: NER, POS, and
chunking. As for the pluggability, we simulate
scenarios that require redeployment to verify
whether plug-tagger could ease the inconvenience
caused by redeployment.

3.1 Datasets

CoNLL 2003 shared task (CoNLL2003) (Sang
and De Meulder, 2003) is the standard benchmark
dataset that provides the annotations for NER,
POS and chunking, we evaluate on CoNLL2003
for all tasks. In addition, we select another
representative dataset for each task, including
ACE 2005 (ACE2005) % for NER, Wall Street
Journal (WSJ) (Marcus et al., 1993) for POS and
CoNLL 2000 (CoNLL2000) (Tjong Kim Sang
and Buchholz, 2000) for chunking. We use the
BIO?2 tagging scheme for NER and chunking. We
also follow the standard dataset preprocessing and
split. The CoNLL2000 does not have an officially
divided validation set, we use the test set as the
validation set. The statistics of the datasets are
summarized in Table 1.

Task Dataset #Train #Dev #Test Class
NER CoNLL 2003 204,567 51,578 46, 666 9
ACE 2005 144,405 35,461 30, 508 14
POS CoNLL 2003 204,567 51,578 46, 666 45
WSJ 912,344 131,768 129,654 46
. CoNLL 2003 204,567 51,578 46, 666 20

Chunking

CoNLL 2000 211,727 47,377 22

Table 1: Statistics of the datasets on NER, POS and
chunking. # means number of tokens in dataset.

“https://catalog.ldc.upenn.edu/LDC2006T06

3.2 Baselines

Our method is compared with recently proposed
lightweight methods and the standard fine-tuning.
FT-Full optimizes the all parameters of PLM,
which can show the standard performance of a
PLM.

FT-Classifier keeps the most PLM parameters
frozen, and only the parameters of the classifier are
optimized, which is the straightforward lightweight
method.

Prompt-Tuning (Lester et al, 202I;
Hambardzumyan et al., 2021; Liu et al., 2021)
inserts continuous vectors into the input sentence
to control the model. Follow (Lester et al., 2021),
the soft prompt are optimized directly. We combine
this method with PLM with classifier as a variation
of soft prompt.

Bitfit (Zaken et al., 2021) only optimizes the bias
term of PLM, which shows good performance with
small-to-medium training data.

Adapter-Tuning (Houlsby et al., 2019) is a
well-known lightweight which optimizes the
parameters of additional layers inserted in PLM.
Prefix-Classifier (Li and Liang, 2021) prepends
continuous vectors to each layer of PLM with a
task-specific classifier.

Plug-Tagger is our proposed method. In the
setting of 0.1% task-specific parameters, we insert
plugin to the input sequence, in the setting of
0.01% parameters, we insert plugin to the inputs of
PLM’s layers.

3.3 Experiment Details

Plug-tagger and all baselines are based on Roberta-
base (Liu et al., 2019). The parameters and
architecture of Roberta-base are reloaded directly
from HuggingFace®. The implementation of
adapter-tuning is based on Adapter-Hub*, which
combines adapter-tuning and Transformers re-
leased by (Pfeiffer et al., 2020). We control
the parameters of adapter-tuning by adjusting the
dimension of the adapter layers. AdamW optimizer
and linear scheduler are used for all datasets, as
suggested by the Hugging Face default setup. For
all baselines, we keep the epoch at 10 and batch
size at 16. The hyperparameters of our method
are detailed in appendix A. All label words are
collected from the training set. We select the best
model on the validation set to evaluate the test set.

3https://huggingface.co/
*https://github.com/Adapter-Hub/adapter-transformers

NER (F1) Chunking (F1) POS (Acc.)
Methods L S P

CoNLL2003 Ace2005 | CoNLL2003 CoNLL2000 | CoNLL2003 WSJ
FT-Full (Liu et al., 2019) X X X 91.45 89.02 91.41 97.05 95.64 97.69
FT-Classifier (Liu et al., 2019) v X X 84.27 77.37 79.94 83.13 88.97 94.94
Prompt-Tuning (Lester et al., 2021) v ox X 86.58 82.22 84.47 93.76 93.84 96.27
Bitfit (Zaken et al., 2021) v X X 89.44 81.12 88.46 93.25 92.65 97.03
Adapter-Tuning (Houlsby et al., 2019) | v/ X X 88.89 88.03 88.52 94.63 93.51 97.51
Plug-Tagger (0.01%) v vV 87.68 82.33 84.99 94.15 94.10 97.15
Plug-Tagger (0.1%) v v v 91.50 87.71 90.50 96.41 94.86 97.60

Table 2: Experimental results on the test set for all datasets. 0.01% means the task-specific parameters are 0.01% of
FT-Full. 0.1% follows the same way. L. means the method is lightweight, S means the method do not modify the
model structure, P means the method is pluggable. Bold term means the best result in the lightweight methods.

3.4 Efficiency

Tabel 2 presents the performance of all methods.
With 0.1% task-specific parameters, plug-tagger
almost outperforms all other lightweight methods
and achieves a comparable performance with fine-
tuning. Under the setting of 0.01% parameters, our
method performs worse than fine-tuning, which
can be seen as a trade off between parameters and
performance. Next, we analyze the experimental
results in detail according to the task based on the
Plug-Tagger (0.1%).

NER is the most difficult task in our experi-
ments. We find that our method performs well
on CoNLL2003, but on ACE2005, both prefix-
classifier and plug-tagger underperform the adapter.
We deduce that the adapter’s relatively complex
structure would help with difficult tasks.

Chunking’s label words are the most difficult
to find. For example, there are so many common
nouns that it’s hard to find a perfect one. How-
ever, compared with fine-tuning, we only obtain
the performance drops 1% in CoNLL2003, and
0.5% in CoNLL2000, and we outperform other
lightweights methods. The results prove that the
label word does not need to be too precise but only
needs to be related to the label.

POS has the largest number of labels. The good
performance in CoNLL2003 and WSJ proves that
the increased number of labels does not affect the
performance of the plug-tagger.

3.5 Pluggability

In the real-world scenario where an NLP system
needs to perform lots of tasks, maintaining the
PLM simultaneously for each task is prohibitively
expensive. An alternative approach is to release
resources of the old model and load the new
model when switching tasks, we call this approach

log(ms)

94

Time Cost

-\ Plug-tagger
—0— Prefix-classifier
—0— Adapter

T T T

T T T T T T T
30 60 90 120 150 180 210 240 270 300

Number of tasks

Figure 3: Time cost of preparing the model when all
tasks are completed. As the discrepancy of time cost is
too large, here we take the log value to better show the
results.

redeployment. However, redeployment brings
additional time consumption, and the larger task-
specific parameters required, the more time it takes.
pluggability means a method can perform new
tasks without redeploying model, which reduces
the cost of time.

The importance of pluggability could be justified
through the redeployment time required in different
approaches. We structured a task set by random
sampling from three sequence labeling tasks, each
sample can be treated as a new task. Non-pluggable
methods need to reload the model parameter when
encountering a new task, pluggable methods like
plug-tagger only need to prepare the plugin vectors.
Like this, through calculating the time needed in
different methods required to redeployment of all
tasks, the answer of if pluggability is more efficient
can be clarified. We conduct our experiments
on three lightweight methods: adapter, prefix-
classifier, and plug-tagger. The plug-tagger here
optimizes only the plugin vectors. Data is obtained

through random sampling from CoNLL2003. All
experiments are conducted in the same NVIDIA
GeForce RTX 1080Ti.

Experimental results are shown in Figure 3. As
the discrepancy of time cost is too large, here
we take the log value to better show the results.
We find that despite there is not much difference
between the number of parameters of adapter-
tuning (119,880) and plug-tagger (92,160), the
adapter-tuning takes 20 times longer to deploy than
the plug-tagger. We deduce there are two reasons:
1) Adapter-tuning needs to release resources of
old adapter layers before reloading the new one.
2) Adapter-tuning needs to modify the parameters
of each layer. These can also be verified in the
experimental results of prefix-classifier. The prefix-
classifier only needs to load the classifier layer
without going deep into each layer of the model,
which is twice as time-consuming as the plug-
tagger. This demonstrates the importance of the
pluggable approach in real-world scenarios.

4 Analysis

4.1 Impact of Label Word Mechanism

Task Dataset | Prefix-Classifier | Plug-Tagger
LL2 . 1.
NER CoNLL2003 90.98 91.50
ACE2005 86.86 87.68
. CoNLL2003 89.53 90.50
Chunking
CoNLL2000 95.78 96.41
NLL2003 4. 4.
POS Co 94.59 94.86
WSJ 97.44 97.60

Table 3: Performance comparison of Plug-Tagger and
Prefix-Classifier. The key difference between these two
methods is whether to use the task-specific classifier or
the language model head.

In this subsection, we discuss whether the
label word mechanism has a negative effect on
downstream tasks compared to the classifier. Table
2 shows the performance of the plug-tagger and
prefix-classifier, the key difference between these
two methods is whether to use the classifier or the
language model head. we find that the performance
of plug-tagger is is slightly better than the prefix-
classifier on all datasets. Thus, we deduce the label
word mechanism can achieve pluggability without
adversely affecting performance.

o—p 5 00— 0o ——p—o0—o—n

0.94

—0— NER (F1)
0.93 —— POS (Acc.)
—A— Chunking (F1)

o1 W
0901 A/A\A/A'—A/A\A\A—A/A

2 4 6 8 10 12 14 16 18 20
Length of plugin vectors

Metric
o
©
~

Figure 4: Performances on NER, POS and Chunking as
the length of plugin vectors varies. Metric for NER and
Chunking is F1, and for POS is accuracy.

4.2 TImpact of Plugin Length

Since the length of plugin vectors we used in
the experiment of pluggability is short, a key
problem is whether such a short plugin vector
would be expressive for downstream tasks. In this
section, we discuss the impact of plugin length.
We experimented with NER, POS, and Chunking
on CoNLL2003, all hyperparameters are the same
except the length of plugin vectors. The experiment
results are shown in Figure 4.

We find that increasing the length of the plugin
does not significantly improve the performance of
all three tasks, which indicates that a short plugin
is enough for the best performance in simple tasks.
This further reflects the advantage of the plug-
tagger. When the number of labels is large, the
parameters of the classifier may be beyond those
of the plugin vectors, bringing extra time cost to
the deployment. However, the plug-tagger does not
need the task-specific classifier, so it can complete
tasks more quickly, as mentioned in section 3.5.

4.3 Comparison of Label Word Option

Recall in section 2.4, we discuss the option of
selecting label words. We compare two ways to
select a label word for the BIO schema. One
is to select a label word for B label, and I
label respectively. When performing label Word
mapping, label words can be matched directly, so
this option is called DirectBI. The other is that
select a label word to represent both the B label
and I label. During the inference phase, adjacent
and identical label words are merged, the first label
word is considered B, and the rest are considered 1.
We called this method MergeBI.

As shown in Figure 5, we find that MergeBI
works better on the NER task of CoNLL2003

DirectBI
MergeBI
95 4

90 4

Micro F1

851

80 1

75

Chunking NER NER
CONLL2000 CONLL2003 ~ ACE2005

Chur‘\king
CoNLL2003

Figure 5: Performance comparison of two label word
options in datasets based on BIO tagging schema.

but otherwise performs worse than DirectBI on
all other datasets, especially the performance
degradation is very obvious for each dataset of
chunking. We find that there are adjacent words
of the same label in the chunking task, but
they represent two different phrases and therefore
cannot be merged. For NER, the same phenomenon
occurs in ACE2005 but is not found in CoNLL2003.
This leads to inconsistencies in the trends of the
two NER datasets. We suppose that the following
two reasons cause MergeBI to improve NER’s
performance on CoNLL2003: a) We find that there
are no adjacent similar entities in CoNLL2003. b)
Some simple labels may be better represented by
the same word. But MergeBI cannot be widely
used because there are not many suitable scenarios.
DirectBI is the more practical option since it
achieved better performance in more situations.

5 Related Work
5.1 Sequence Labeling

Sequence labeling, such as named entity recog-
nition (NER), part-of-speech (POS) tagging and
chunking, is one of the fundamental tasks of natural
language processing (Ma and Hovy, 2016). Re-
cently neural network models achieve competitive
performances (Chiu and Nichols, 2016; Dos Santos
and Zadrozny, 2014; Luo et al., 2020), and fine-
tuning the PLMs (Devlin et al., 2019; Liu et al.,
2019; Yang et al., 2020) have been shown to
achieve state-of-art results on sequence labeling
(Bell et al., 2019). The above approach treats
sequence labeling as token-level classification,
works of (Athiwaratkun et al., 2020; Yan et al.,
2021) convert sequence labeling into a generation
task, avoiding task-specific classifier by using the
Seq2Seq framework (Sutskever et al., 2014; Cho
et al., 2014; Vaswani et al., 2017; Lewis et al.,

2020). But most of them still need to modify the
model structure and can’t use native PLM, which
defeats our goals.

5.2 Pre-trained Language Model

Self-supervised representation models (Radford
et al., 2018, 2019; Yang et al., 2019; Peters et al.,
2018; Devlin et al., 2019) have shown substantial
advances in natural language understanding after
being pre-trained on large-scaled text corpora and
fine-tuned on downstream tasks. Given an NLP
task, the mainstream paradigm to use PLM is
finetuning, which stacks a linear classifier on top of
the pre-trained language model and then updates all
parameters (Zhao et al., 2020). Our method does
not rely on the task-specific classifier to perform
different task but instead predicts the label words
for all sequence labeling tasks.

5.3 Lightweight Deep Learning

Lightweight deep learning method aims to use
small trainable parameters to leverage the ability of
PLMs (Houlsby et al., 2019). Some studies argue
that redundant parameters in the model should be
deleted or masked (Zaken et al., 2021; Sanh et al.,
2020; Zhao et al., 2020; Frankle and Carbin, 2019),
while others argue that additional structures should
be added to the model (Zhang et al., 2020; Houlsby
etal., 2019; Guoet al., 2021). For example, adapter-
tuning insert some additional layer between each
layer of PLMs. Prefix-tuning (Li and Liang, 2021)
is a is a pluggable and lightweight method. It
inserts continuous vectors into the input to allow
a fixed PLM to do different generation tasks.
However, the above methods basically need to
modify the model structure or parameters, most
of them cannot be applied to realize plug-and-play
in classification tasks.

6 Conclusion

In this work, we propose plug-tagger, a pluggable
framework for sequence labeling. The proposed
framework can accomplish different tasks using
vectors inserted into the input and a fixed PLM
without modifying the model parameters and
structure. It achieves competitive performance
on the sequence labeling tasks with only a few
parameters and is faster than other lightweight
methods in real-world scenarios requiring model
redeployment.

References

Ben Athiwaratkun, Cicero Nogueira dos Santos, Jason
Krone, and Bing Xiang. 2020. Augmented natural
language for generative sequence labeling. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 375-385, Online. Association for Computa-
tional Linguistics.

Samuel Bell, Helen Yannakoudakis, and Marek Rei.
2019. Context is key: Grammatical error detection
with contextual word representations. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 103—
115, Florence, Italy. Association for Computational
Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Jason PC Chiu and Eric Nichols. 2016. Named
entity recognition with bidirectional lstm-cnns.
Transactions of the Association for Computational
Linguistics, 4:357-370.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder—decoder
for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724—
1734, Doha, Qatar. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4171-4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

Cicero Dos Santos and Bianca Zadrozny. 2014.
Learning character-level representations for part-of-
speech tagging. In International Conference on
Machine Learning, pages 1818—1826. PMLR.

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks.

Demi Guo, Alexander M. Rush, and Yoon Kim.
2021. Parameter-efficient transfer learning with diff
pruning.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. Warp: Word-level adversarial
reprogramming.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 7871-7880, Online. Association
for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics
and the 1l1th International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers), pages 45824597, Online. Association for
Computational Linguistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized bert pretraining
approach.

Ying Luo, Fengshun Xiao, and Hai Zhao. 2020.
Hierarchical contextualized representation for named
entity recognition. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34,
pages 8441-8448.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional Istm-cnns-crf.
arXiv preprint arXiv:1603.01354.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313-330.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word
representations. arXiv preprint arXiv:1802.05365.

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aishwarya
Kamath, Ivan Vuli¢, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020. Adapterhub: A
framework for adapting transformers. In Proceedings

https://doi.org/10.18653/v1/2020.emnlp-main.27
https://doi.org/10.18653/v1/2020.emnlp-main.27
https://doi.org/10.18653/v1/2020.emnlp-main.27
https://doi.org/10.18653/v1/W19-4410
https://doi.org/10.18653/v1/W19-4410
https://doi.org/10.18653/v1/W19-4410
http://arxiv.org/abs/2005.14165
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/2012.07463
http://arxiv.org/abs/2012.07463
http://arxiv.org/abs/2012.07463
http://arxiv.org/abs/2101.00121
http://arxiv.org/abs/2101.00121
http://arxiv.org/abs/2101.00121
http://arxiv.org/abs/1902.00751
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2104.08691
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7

of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2020):
Systems Demonstrations, pages 46-54, Online.
Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1-67.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters.

Erik F Sang and Fien De Meulder. 2003. Introduction
to the conll-2003 shared task: Language-independent
named entity recognition. arXiv preprint cs/0306050.

Victor Sanh, Thomas Wolf, and Alexander M Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. arXiv preprint arXiv:2005.07683.

Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen
Lai, Benson Chau, Vikas Chandra, and Hadi
Esmaeilzadeh. 2018. Bit fusion: Bit-level dynam-
ically composable architecture for accelerating deep
neural network. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture
(ISCA), pages 764-775.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc.

Erik F. Tjong Kim Sang and Sabine Buchholz.
2000. Introduction to the CoNLL-2000 shared task
chunking. In Fourth Conference on Computational
Natural Language Learning and the Second Learning
Language in Logic Workshop.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, FLukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in neural information
processing systems, pages 5998—-6008.

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng
Zhang, and Xipeng Qiu. 2021. A unified generative
framework for various NER subtasks. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5808-5822, Online.
Association for Computational Linguistics.

10

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime
Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
2020. Xlnet: Generalized autoregressive pretraining
for language understanding.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime
Carbonell, Russ R Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretraining
for language understanding. Advances in neural
information processing systems, 32.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg.
2021. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models.

Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas
Guibas, and Jitendra Malik. 2020. Side-tuning: A
baseline for network adaptation via additive side
networks.

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and
Hinrich Schiitze. 2020. Masking as an efficient
alternative to finetuning for pretrained language
models.

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1705.08045
http://arxiv.org/abs/1705.08045
http://arxiv.org/abs/1705.08045
https://doi.org/10.1109/ISCA.2018.00069
https://doi.org/10.1109/ISCA.2018.00069
https://doi.org/10.1109/ISCA.2018.00069
https://doi.org/10.1109/ISCA.2018.00069
https://doi.org/10.1109/ISCA.2018.00069
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://aclanthology.org/W00-0726
https://aclanthology.org/W00-0726
https://aclanthology.org/W00-0726
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/1912.13503
http://arxiv.org/abs/1912.13503
http://arxiv.org/abs/1912.13503
http://arxiv.org/abs/1912.13503
http://arxiv.org/abs/1912.13503
http://arxiv.org/abs/2004.12406
http://arxiv.org/abs/2004.12406
http://arxiv.org/abs/2004.12406
http://arxiv.org/abs/2004.12406
http://arxiv.org/abs/2004.12406

A Hyperparameters for Plug-Tagger

Task Dataset | learning rate | plugin length
NLL200 2e- 5
NER Co 003 e-3
ACE2005 2e-3 15
CoNLL2003 2e-3 10
Chunking | ~° ¢
CoNLL2000 2e-3 10
CoNLL2003 4e-6 1
POS | © ©
WSJ 2e-3 5

Table 4: Hyperparameters for Plug-Tagger (0.1%).

Task Dataset learning rate | plugin length
CoNLL2003 Se-3 5
NER
ACE2005 le-2 5
CoNLL2003 le-3 5
Chunking © ¢
CoNLL2000 le-2 5
CoNLL2003 le-2 5
POS | ° ¢
WSI le-3 5

Table 5: Hyperparameters for Plug-Tagger (0.01%).

In Table 4 and Table 5, we report the hyperpa-
rameters used for our method documented in the
experiment section.

11

