
Plug-Tagger: A Pluggable Sequence Labeling Framework
with Pre-trained Language Models

Anonymous ACL submission

Abstract

Fine-tuning the pre-trained language mod-001
els (PLMs) on downstream tasks is the de-002
facto paradigm in NLP. Despite the superior003
performance on sequence labeling, the fine-004
tuning requires large-scale parameters and time-005
consuming deployment for each task, which006
limits its application in real-world scenarios.007
To alleviate these problems, we propose a008
pluggable sequence labeling framework, plug-009
tagger. By switching the task-specific plugin010
on the input, plug-tagger allows a frozen PLM011
to perform different sequence labeling tasks012
without redeployment. Specifically, the plugin013
on the input are a few continuous vectors,014
which manipulates the PLM without modifying015
its parameters, and each task only needs to store016
the lightweight vectors rather than a full copy017
of PLM. To avoid redeployment, we propose018
the label word mechanism, which reuses the019
language model head to prevent task-specific020
classifiers from modifying model structures.021
Experimental results on three sequence la-022
beling tasks show that the proposed method023
achieves comparable performance with fine-024
tuning by using 0.1% task-specific parameters.025
Experiments show that our method is faster026
than other lightweight methods under limited027
computational resources028

1 Introduction029

Pre-trained language models (PLMs) (Devlin et al.,030

2019; Peters et al., 2018; Radford et al., 2019),031

which are trained on a huge amount of data to032

learn universal language representations, have been033

shown to be beneficial for improving many natural034

language processing (NLP) tasks. In addition to035

the performance of PLM, as the size of PLMs036

grows (eg. GPT3 (Brown et al., 2020) has 175B037

parameters), there has been an increasing interest038

in efficiently transferring the PLM to downstream039

tasks.040

The past few years have witnessed the prevailing041

of fine-tuning the PLM on downstream NLP tasks.042

Switch models
for multiple tasks

POS Plugin

NER Model

Chunking
Plugin

Frozen Model

< INPUT >

< NER OUTPUT >

< INPUT >

Switch only plugins
for multiple tasks

< NER OUTPUT >

NER
Plugin

Figure 1: Comparison of fine-tuning (left) and pluggable
method (right). When performing different tasks, fine-
tuning needs to redeploy the model, which leads to huge
memory demand and time cost. The pluggable method
only needs to switch the lightweight plugin vectors on
input without redeploying the model.

However, fine-tuning requires training an entirely 043

new model for every new task. The large-scale 044

parameters of the PLM make it expensive to keep 045

a copy of parameters for each task, and deploying 046

models for a large number of tasks dramatically 047

increases the cost of time (Sharma et al., 2018), 048

as shown in Figure 1. A more idealistic way to 049

transfer PLM is the pluggable method, which uses 050

the lightweight pluggable module to manipulate the 051

frozen model to output desired response without 052

redeployment. 053

There are two conditions for achieving plugga- 054

bility. One is the lightweight pluggable module, 055

which manipulates PLM behavior without mod- 056

ifying its parameters. The other is an adaptive 057

classifier that can perform different tasks without 058

modifying the model structure. Currently, there 059

are two types of attempts to reach this goal. 060

Adapter-tuning (Rebuffi et al., 2017; Houlsby et al., 061

2019; Raffel et al., 2020) optimizes lightweight 062

modules called adapters between each layer of 063

PLM and only the adapters are stored for each 064

task. Despite the lightweight, adapter-tuning does 065

not satisfy the conditions for the adaptive classifier, 066

1

which inevitably leads to redeployment. Prefix-067

tuning (Li and Liang, 2021; Lester et al., 2021),068

which prepends several continuous vectors to the069

input of each layer in the PLM, is proposed as a070

pluggable method for natural language generation.071

Different generation tasks can share the structure072

of the language model head, thus prefix-tuning can073

be adapted to different generation tasks without074

redeployment. However, the different label space075

makes it impossible for sequence labeling tasks076

to share a classifier. As a result, it is difficult to077

use existing solutions to achieve pluggability in078

sequence labeling tasks.079

In this paper, we propose plug-tagger, a plug-080

gable sequence labeling framework. Specifically,081

to solve the problem of pluggable modules, we082

insert plugin vectors to the input to manipulate the083

PLM without modifying its parameters. As for084

the adaptive classifier, we reformulate sequence085

labeling as a special language modeling task to086

reuse the language model head. The PLM with087

the language model head predicts the label word088

at each position in the sentence, the label of each089

position is determined by the label word rather090

than the task-specific classifier. Label word is a091

label-related word collected from vocabulary, we092

take high-frequency words predicted by PLM to093

serve as the label words for corresponding labels.094

Benefiting from the reuse of the entire architecture095

of PLMs, our method can be adapted to different096

tasks without redeployment.1097

The main contributions of this paper can be098

summarized as follows:099

• We reformulate the sequence labeling task as100

a label word prediction task by reusing the101

language model head of PLM.102

• We proposed a pluggable sequence label-103

ing framework, which leverages lightweight104

pluggable modules to manipulate the model105

behavior without redeployment.106

• Experiments on a variety of sequence labeling107

tasks demonstrate the effectiveness of our108

approach. Besides, in experiments with109

limited computational resources, our method110

is faster than other lightweight methods.111

2 Approach112

In this work, we propose a lightweight and113

pluggable sequence labeling framework, which114

aims to make a deployed PLM perform different115

1URL of codes is omitted here pending the review process.

sequence labeling tasks without redeployment. In 116

this section, we first introduce the key challenges 117

of achieving pluggability on sequence labeling. 118

Next, we propose an overview of our approach, 119

and finally, we detail the two primary components 120

of our approach. 121

2.1 Problem Statement 122

Given a sequence of words X = [x1, ..., xn], 123

the goal of sequence labeling is to predict the 124

gold labels Y = [y1, y2, ..., yn] with equal length. 125

The predictions of a sequence labeling system 126

can be expressed as Ŷ = F (X;Θ) where Θ 127

is the parameters of the system. The traditional 128

system based on fine-tuning and classifier can be 129

decomposed into the following equations: 130

H = Encoder(X;ϕ)

Ŷ = argmax(Softmax(HW + b))
(1) 131

where W ∈ Rh×l, l is the size of label set, h is 132

the dimension of hidden state. Encoder is a PLM 133

without language model head, ϕ is its parameters. 134

Parameters of system Θ is decomposed into ϕ, W 135

and b. 136

There are two challenges to be lightweight and 137

pluggable. The first challenge arises from the large- 138

scale ϕ, standard fine-tuning requires an entire new 139

model for every task. That is, each task requires 140

a large number of task-specific parameters when 141

using PLM. The second one is that the dimension of 142

W cannot be frozen due to different label sets. For 143

example, NER’s label consists of entity types such 144

as person, location and organization, but POS’s 145

label consists of part of speech types like adjective, 146

noun and adverb. It’s challenging to map so many 147

different task-specific labels onto the same label 148

space. This prevents the model’s classification 149

layer from remaining frozen. Apart from this, even 150

if we find a way to reduce the scale of task-specific 151

parameters, the classifier still introduces a non- 152

negligible number of parameters when the number 153

of labels is large. 154

2.2 Model Overview 155

The architecture of the proposed model is shown 156

in Figure 2. We switch the lightweight plugin 157

vectors on the input rather than reloading large- 158

scale parameters of PLM to perform different 159

tasks. The label word mechanism replaces the 160

task-specific classifier to avoid the modification of 161

the model architecture. Under the influence of the 162

2

❄Frozen
Pre-trained Language Model

NER Data
——————
———
——
————————
————

POS Data
——————
———
——
————————
————

Chunking Data
——————
———
——
————————
————

<apple><Mike> <likes>

Language Model

Label Word Selection
LabelMap

POS Plugin

NER Plugin

Label: ORG

Reuters √

…

fr
eq

ue
nc

y

Chunking Plugin

…

Label: PER

John √

fr
eq

ue
nc

y

…

Label: PRP

he √

…

fr
eq

ue
nc

y

…

Label: VBZ

is √
fr

eq
ue

nc
y

…

Label: NP

it √

…

fr
eq

ue
nc

y

…

Label: VP

is √

fr
eq

ue
nc

y

…

<it><it> <is>

<Mr><he> <is>

<apple><John> <likes>

PER O O

PRP VBZ NNP

NP VP NP

POS Label

NER Label

CHK Label

POS label word

NER label word

CHK label word

Switch plugin to switch task

Figure 2: An overview of Plug-Tagger. Influenced by the task-specific plugin vectors on the input, the frozen
language model predicts the label word for each word in the sentence. The actual label is obtained by label word
mapping. The left side shows how we get the label word: the language model traverses a large amount of data. The
word that related to a particular label is selected as a label word according to its frequency predicted by language
model.

plugin vector, the model predicts the corresponding163

label words of input, and the actual labels can be164

obtained by label word mapping. Take NER as165

an example, we feed the input "Olivia likes apple"166

with the plugin of NER into the frozen language167

model, the output of language model will be "John168

likes apple". "John" is the label word of PER169

(person) in NER, after label word mapping, we170

get the NER label of the input: "PER O O".171

We define the label word map as M , the172

parameters of the frozen language model as Θlm173

and plugin vectors as ΘP. The label words174

predicted by PLM can be describe as Ỹ =175

F ({X,ΘP};Θlm) where {X,ΘP} is the inputs,176

and we use label word mapping to get the real177

labels Ŷ = M(Ỹ). The following two sections178

detail essential parts of the plug-tagger: plugin179

vector and label word mechanism.180

2.3 Plugin Vector181

To solve the problem of storing and reloading182

large-scale parameters for various tasks, we draw183

inspiration from continuous prompts. We use184

plugin vector to control the model behavior without185

modifying the architecture and parameters of the186

model. The plugin vector ΘP consists of a few187

continuous vectors and is combined with input. In188

the following two subsections, we show two ways189

to combine the plugin vector with the input. 190

2.3.1 Plugin in Embedding 191

The input of PLM is the text X processed by 192

embedding, which can be described as X = 193

[x1, ...,xn] where xi = Emb(xi). We insert the 194

plugin vectors ΘP = [θ1, ...θlp] into the input X 195

directly, the information in ΘP flows through each 196

layer and ultimately affects the predictions. The 197

new input can be described as follow: 198

X′ = [ΘP;x1, ...,xn], (2) 199

where ΘP ∈ Rlp× h, lp is the length of the plugin 200

vectors, h is the dimension of embedding, [;] means 201

concatenation in the first dimension. 202

2.3.2 Plugin in Layers 203

The plugin vectors in embedding are not expressive 204

enough, which leads to unsatisfactory performance. 205

To extend the influence of plugin vectors, we insert 206

them into inputs at each layer of the model. Given 207

a PLM with l transformer layers, the input of jth 208

layer can be described as X(j) = [x
(j)
1 , ...,x

(j)
n] 209

where X(j) ∈ Rn×d, d is the dimension of hidden 210

state and and n is the length of inputs. Transformer 211

(Vaswani et al., 2017) layers are structured around 212

the use of query-key-value (QKV) attention, which 213

is calculated as: 214

3

Att(X) = Softmax(
Q(X)K(X)T√

dk
)V (X)

Q(X) = W(j)
q X

K(X) = W
(j)
k X

V (X) = W(j)
v X,

(3)215

where Wk
(j),Wv

(j),Wq
(j) ∈ Rd×d and dk is216

the number of multi head. In order to avoid adding217

additional layers of PLM, we combine the plugin218

vector with K and V , which can be describe as:219

X′ = {θ(j)k , θ(j)v ,X}

Att(X′) = Softmax(
Q(X)[θ

(j)
k ;K(X)]T√
dk

)[θ(j)v ;V (X)],

(4)

220

where θ
(j)
k , θ

(j)
v ∈ Rlp×d, lp is the length of221

the plugin vectors and d is the dimension of222

hidden state. Plugin vectors on all layers can be223

represented as ΘP = {(θ(1)k , θ
(1)
v)..., (θ

(l)
k , θ

(l)
v)}.224

Thus, we extend the influence of plugin vectors to225

every layer without modifying parameters of PLM.226

2.4 Label Word Mechanism227

To alleviate problems caused by the task-specific228

classifier, we propose the label word mechanism,229

which reformulates the sequence labeling to the230

label word prediction.231

2.4.1 Label Word Selection232

Algorithm 1 represents the entire label word233

selection processing. For each label c ∈ L, a234

dictionary freqc is built to counts its candidate235

label words and corresponding frequency. We236

the traverse training set, for each word x in the237

sentence, we use the language model to get top-238

k high-probability candidate words and update239

dictionary freqc where c is the label of the word240

x. After traversing the training set, we filter some241

words that are not suitable such as the words that242

frequently occur in all freq. Under the condition243

that the label word of each label is not the same,244

the remaining word with the highest frequency in245

freqc is selected as label word of label c.246

In particular, for tasks that need to use the BIO247

schema, two special treatments are needed: 1) We248

don’t count label word for label O. It’s hard to pick249

a representative word for the others category. In250

the training and inference phase, the word with251

Algorithm 1 Label Word Selection
Input: Train set D = {Xi, Yi}Ni=1; Label set

L = {ci}li=1; Vocabulary V = {wi}vi=1; Pre-
trained language model LM ; Maximum candidates
of label word k.
Output: LabelMap M

1: Initialize label map M = ∅;
2: for c ∈ L do
3: Initialize freqc = {wi : 0}vi=1;
4: Add label word pair {c : None} to M ;
5: end for
6: for (X = {xi}ni=1, Y = {yi}ni=1) ∈ D do
7: Select top-k candidate words {ỹi}ni=1

where ỹi ∈ Rk based on predictions of
language model LM(X);

8: for i ∈ [1...n] do
9: Update the frequency of label c = yi;

10: freqc[w]← freqc[w] + 1 for w ∈ ỹi;
11: end for
12: end for
13: for c ∈ L do
14: Filter out irrelevant words in freqc;
15: while M [c] is None do
16: Select the word w in freqc with the

highest frequency;
17: if w not used by M then
18: M [c]← w;
19: else
20: Remove w from freqc;
21: end if
22: end while
23: end for
24: return M

label O predicts itself. 2) We look for label words 252

respectively for B and I of the same category, 253

because distinguishing BI is beneficial for tasks that 254

require boundary information. In the experiment 255

section, we will discuss the influence of the label 256

word mechanism on the performance in detail. 257

2.4.2 Training Objective 258

We reformulate sequence labeling to a special 259

language modeling task. After selecting label 260

words, we get the label map M to map label set 261

to words in vocabulary. For sequence X, the 262

gold label Y is reintroduced to Ỹ = [ỹ1, ..., ỹn] 263

where ỹi = M(yi). The sentence-level loss can be 264

4

described as follows:265

Loss = −
N∑
i=1

log(P (Ỹi|Xi)), (5)266

where N is the number of sentences. When267

combined with the plugin vectors, label words268

embedding and parameters of plugin vectors ΘP269

are the only trainable parameters. During the270

inference phase, we take the prediction result271

of the first subword of each word and find its272

corresponding label according to the label map.273

3 Experiments274

In this section, we present the experimental results275

to show the efficiency and pluggability of plug-276

tagger. To verify whether plug-tagger could adapt277

to different tasks, we conduct experiments on three278

common sequence labeling tasks: NER, POS, and279

chunking. As for the pluggability, we simulate280

scenarios that require redeployment to verify281

whether plug-tagger could ease the inconvenience282

caused by redeployment.283

3.1 Datasets284

CoNLL 2003 shared task (CoNLL2003) (Sang285

and De Meulder, 2003) is the standard benchmark286

dataset that provides the annotations for NER,287

POS and chunking, we evaluate on CoNLL2003288

for all tasks. In addition, we select another289

representative dataset for each task, including290

ACE 2005 (ACE2005) 2 for NER, Wall Street291

Journal (WSJ) (Marcus et al., 1993) for POS and292

CoNLL 2000 (CoNLL2000) (Tjong Kim Sang293

and Buchholz, 2000) for chunking. We use the294

BIO2 tagging scheme for NER and chunking. We295

also follow the standard dataset preprocessing and296

split. The CoNLL2000 does not have an officially297

divided validation set, we use the test set as the298

validation set. The statistics of the datasets are299

summarized in Table 1.300

Task Dataset #Train #Dev #Test Class

NER
CoNLL 2003 204, 567 51, 578 46, 666 9

ACE 2005 144, 405 35, 461 30, 508 14

POS
CoNLL 2003 204, 567 51, 578 46, 666 45

WSJ 912, 344 131, 768 129, 654 46

Chunking
CoNLL 2003 204, 567 51, 578 46, 666 20

CoNLL 2000 211, 727 - 47,377 22

Table 1: Statistics of the datasets on NER, POS and
chunking. # means number of tokens in dataset.

2https://catalog.ldc.upenn.edu/LDC2006T06

3.2 Baselines 301

Our method is compared with recently proposed 302

lightweight methods and the standard fine-tuning. 303

FT-Full optimizes the all parameters of PLM, 304

which can show the standard performance of a 305

PLM. 306

FT-Classifier keeps the most PLM parameters 307

frozen, and only the parameters of the classifier are 308

optimized, which is the straightforward lightweight 309

method. 310

Prompt-Tuning (Lester et al., 2021; 311

Hambardzumyan et al., 2021; Liu et al., 2021) 312

inserts continuous vectors into the input sentence 313

to control the model. Follow (Lester et al., 2021), 314

the soft prompt are optimized directly. We combine 315

this method with PLM with classifier as a variation 316

of soft prompt. 317

Bitfit (Zaken et al., 2021) only optimizes the bias 318

term of PLM, which shows good performance with 319

small-to-medium training data. 320

Adapter-Tuning (Houlsby et al., 2019) is a 321

well-known lightweight which optimizes the 322

parameters of additional layers inserted in PLM. 323

Prefix-Classifier (Li and Liang, 2021) prepends 324

continuous vectors to each layer of PLM with a 325

task-specific classifier. 326

Plug-Tagger is our proposed method. In the 327

setting of 0.1% task-specific parameters, we insert 328

plugin to the input sequence, in the setting of 329

0.01% parameters, we insert plugin to the inputs of 330

PLM’s layers. 331

3.3 Experiment Details 332

Plug-tagger and all baselines are based on Roberta- 333

base (Liu et al., 2019). The parameters and 334

architecture of Roberta-base are reloaded directly 335

from HuggingFace3. The implementation of 336

adapter-tuning is based on Adapter-Hub4, which 337

combines adapter-tuning and Transformers re- 338

leased by (Pfeiffer et al., 2020). We control 339

the parameters of adapter-tuning by adjusting the 340

dimension of the adapter layers. AdamW optimizer 341

and linear scheduler are used for all datasets, as 342

suggested by the Hugging Face default setup. For 343

all baselines, we keep the epoch at 10 and batch 344

size at 16. The hyperparameters of our method 345

are detailed in appendix A. All label words are 346

collected from the training set. We select the best 347

model on the validation set to evaluate the test set. 348

3https://huggingface.co/
4https://github.com/Adapter-Hub/adapter-transformers

5

Methods L S P
NER (F1) Chunking (F1) POS (Acc.)

CoNLL2003 Ace2005 CoNLL2003 CoNLL2000 CoNLL2003 WSJ
FT-Full (Liu et al., 2019) × × × 91.45 89.02 91.41 97.05 95.64 97.69
FT-Classifier (Liu et al., 2019) ✓ × × 84.27 77.37 79.94 83.13 88.97 94.94
Prompt-Tuning (Lester et al., 2021) ✓ × × 86.58 82.22 84.47 93.76 93.84 96.27
Bitfit (Zaken et al., 2021) ✓ × × 89.44 81.12 88.46 93.25 92.65 97.03
Adapter-Tuning (Houlsby et al., 2019) ✓ × × 88.89 88.03 88.52 94.63 93.51 97.51
Plug-Tagger (0.01%) ✓ ✓ ✓ 87.68 82.33 84.99 94.15 94.10 97.15
Plug-Tagger (0.1%) ✓ ✓ ✓ 91.50 87.71 90.50 96.41 94.86 97.60

Table 2: Experimental results on the test set for all datasets. 0.01% means the task-specific parameters are 0.01% of
FT-Full. 0.1% follows the same way. L means the method is lightweight, S means the method do not modify the
model structure, P means the method is pluggable. Bold term means the best result in the lightweight methods.

3.4 Efficiency349

Tabel 2 presents the performance of all methods.350

With 0.1% task-specific parameters, plug-tagger351

almost outperforms all other lightweight methods352

and achieves a comparable performance with fine-353

tuning. Under the setting of 0.01% parameters, our354

method performs worse than fine-tuning, which355

can be seen as a trade off between parameters and356

performance. Next, we analyze the experimental357

results in detail according to the task based on the358

Plug-Tagger (0.1%).359

NER is the most difficult task in our experi-360

ments. We find that our method performs well361

on CoNLL2003, but on ACE2005, both prefix-362

classifier and plug-tagger underperform the adapter.363

We deduce that the adapter’s relatively complex364

structure would help with difficult tasks.365

Chunking’s label words are the most difficult366

to find. For example, there are so many common367

nouns that it’s hard to find a perfect one. How-368

ever, compared with fine-tuning, we only obtain369

the performance drops 1% in CoNLL2003, and370

0.5% in CoNLL2000, and we outperform other371

lightweights methods. The results prove that the372

label word does not need to be too precise but only373

needs to be related to the label.374

POS has the largest number of labels. The good375

performance in CoNLL2003 and WSJ proves that376

the increased number of labels does not affect the377

performance of the plug-tagger.378

3.5 Pluggability379

In the real-world scenario where an NLP system380

needs to perform lots of tasks, maintaining the381

PLM simultaneously for each task is prohibitively382

expensive. An alternative approach is to release383

resources of the old model and load the new384

model when switching tasks, we call this approach385

30 60 90 120 150 180 210 240 270 300
Number of tasks

4

5

6

7

8

9

Ti
m

e
C

os
t

log(ms)

Plug-tagger
Prefix-classifier
Adapter

Figure 3: Time cost of preparing the model when all
tasks are completed. As the discrepancy of time cost is
too large, here we take the log value to better show the
results.

redeployment. However, redeployment brings 386

additional time consumption, and the larger task- 387

specific parameters required, the more time it takes. 388

pluggability means a method can perform new 389

tasks without redeploying model, which reduces 390

the cost of time. 391

The importance of pluggability could be justified 392

through the redeployment time required in different 393

approaches. We structured a task set by random 394

sampling from three sequence labeling tasks, each 395

sample can be treated as a new task. Non-pluggable 396

methods need to reload the model parameter when 397

encountering a new task, pluggable methods like 398

plug-tagger only need to prepare the plugin vectors. 399

Like this, through calculating the time needed in 400

different methods required to redeployment of all 401

tasks, the answer of if pluggability is more efficient 402

can be clarified. We conduct our experiments 403

on three lightweight methods: adapter, prefix- 404

classifier, and plug-tagger. The plug-tagger here 405

optimizes only the plugin vectors. Data is obtained 406

6

through random sampling from CoNLL2003. All407

experiments are conducted in the same NVIDIA408

GeForce RTX 1080Ti.409

Experimental results are shown in Figure 3. As410

the discrepancy of time cost is too large, here411

we take the log value to better show the results.412

We find that despite there is not much difference413

between the number of parameters of adapter-414

tuning (119,880) and plug-tagger (92,160), the415

adapter-tuning takes 20 times longer to deploy than416

the plug-tagger. We deduce there are two reasons:417

1) Adapter-tuning needs to release resources of418

old adapter layers before reloading the new one.419

2) Adapter-tuning needs to modify the parameters420

of each layer. These can also be verified in the421

experimental results of prefix-classifier. The prefix-422

classifier only needs to load the classifier layer423

without going deep into each layer of the model,424

which is twice as time-consuming as the plug-425

tagger. This demonstrates the importance of the426

pluggable approach in real-world scenarios.427

4 Analysis428

4.1 Impact of Label Word Mechanism429

Task Dataset Prefix-Classifier Plug-Tagger

NER
CoNLL2003 90.98 91.50

ACE2005 86.86 87.68

Chunking
CoNLL2003 89.53 90.50

CoNLL2000 95.78 96.41

POS
CoNLL2003 94.59 94.86

WSJ 97.44 97.60

Table 3: Performance comparison of Plug-Tagger and
Prefix-Classifier. The key difference between these two
methods is whether to use the task-specific classifier or
the language model head.

In this subsection, we discuss whether the430

label word mechanism has a negative effect on431

downstream tasks compared to the classifier. Table432

2 shows the performance of the plug-tagger and433

prefix-classifier, the key difference between these434

two methods is whether to use the classifier or the435

language model head. we find that the performance436

of plug-tagger is is slightly better than the prefix-437

classifier on all datasets. Thus, we deduce the label438

word mechanism can achieve pluggability without439

adversely affecting performance.440

2 4 6 8 10 12 14 16 18 20
Length of plugin vectors

0.90

0.91

0.92

0.93

0.94

M
et

ric

NER (F1)
POS (Acc.)
Chunking (F1)

Figure 4: Performances on NER, POS and Chunking as
the length of plugin vectors varies. Metric for NER and
Chunking is F1, and for POS is accuracy.

4.2 Impact of Plugin Length 441

Since the length of plugin vectors we used in 442

the experiment of pluggability is short, a key 443

problem is whether such a short plugin vector 444

would be expressive for downstream tasks. In this 445

section, we discuss the impact of plugin length. 446

We experimented with NER, POS, and Chunking 447

on CoNLL2003, all hyperparameters are the same 448

except the length of plugin vectors. The experiment 449

results are shown in Figure 4. 450

We find that increasing the length of the plugin 451

does not significantly improve the performance of 452

all three tasks, which indicates that a short plugin 453

is enough for the best performance in simple tasks. 454

This further reflects the advantage of the plug- 455

tagger. When the number of labels is large, the 456

parameters of the classifier may be beyond those 457

of the plugin vectors, bringing extra time cost to 458

the deployment. However, the plug-tagger does not 459

need the task-specific classifier, so it can complete 460

tasks more quickly, as mentioned in section 3.5. 461

4.3 Comparison of Label Word Option 462

Recall in section 2.4, we discuss the option of 463

selecting label words. We compare two ways to 464

select a label word for the BIO schema. One 465

is to select a label word for B label, and I 466

label respectively. When performing label Word 467

mapping, label words can be matched directly, so 468

this option is called DirectBI. The other is that 469

select a label word to represent both the B label 470

and I label. During the inference phase, adjacent 471

and identical label words are merged, the first label 472

word is considered B, and the rest are considered I. 473

We called this method MergeBI. 474

As shown in Figure 5, we find that MergeBI 475

works better on the NER task of CoNLL2003 476

7

Chunking
CoNLL2003

Chunking
CoNLL2000

NER
CoNLL2003

NER
ACE2005

75

80

85

90

95

100
Mi

cr
o

F1

DirectBI
MergeBI

Figure 5: Performance comparison of two label word
options in datasets based on BIO tagging schema.

but otherwise performs worse than DirectBI on477

all other datasets, especially the performance478

degradation is very obvious for each dataset of479

chunking. We find that there are adjacent words480

of the same label in the chunking task, but481

they represent two different phrases and therefore482

cannot be merged. For NER, the same phenomenon483

occurs in ACE2005 but is not found in CoNLL2003.484

This leads to inconsistencies in the trends of the485

two NER datasets. We suppose that the following486

two reasons cause MergeBI to improve NER’s487

performance on CoNLL2003: a) We find that there488

are no adjacent similar entities in CoNLL2003. b)489

Some simple labels may be better represented by490

the same word. But MergeBI cannot be widely491

used because there are not many suitable scenarios.492

DirectBI is the more practical option since it493

achieved better performance in more situations.494

5 Related Work495

5.1 Sequence Labeling496

Sequence labeling, such as named entity recog-497

nition (NER), part-of-speech (POS) tagging and498

chunking, is one of the fundamental tasks of natural499

language processing (Ma and Hovy, 2016). Re-500

cently neural network models achieve competitive501

performances (Chiu and Nichols, 2016; Dos Santos502

and Zadrozny, 2014; Luo et al., 2020), and fine-503

tuning the PLMs (Devlin et al., 2019; Liu et al.,504

2019; Yang et al., 2020) have been shown to505

achieve state-of-art results on sequence labeling506

(Bell et al., 2019). The above approach treats507

sequence labeling as token-level classification,508

works of (Athiwaratkun et al., 2020; Yan et al.,509

2021) convert sequence labeling into a generation510

task, avoiding task-specific classifier by using the511

Seq2Seq framework (Sutskever et al., 2014; Cho512

et al., 2014; Vaswani et al., 2017; Lewis et al.,513

2020). But most of them still need to modify the 514

model structure and can’t use native PLM, which 515

defeats our goals. 516

5.2 Pre-trained Language Model 517

Self-supervised representation models (Radford 518

et al., 2018, 2019; Yang et al., 2019; Peters et al., 519

2018; Devlin et al., 2019) have shown substantial 520

advances in natural language understanding after 521

being pre-trained on large-scaled text corpora and 522

fine-tuned on downstream tasks. Given an NLP 523

task, the mainstream paradigm to use PLM is 524

finetuning, which stacks a linear classifier on top of 525

the pre-trained language model and then updates all 526

parameters (Zhao et al., 2020). Our method does 527

not rely on the task-specific classifier to perform 528

different task but instead predicts the label words 529

for all sequence labeling tasks. 530

5.3 Lightweight Deep Learning 531

Lightweight deep learning method aims to use 532

small trainable parameters to leverage the ability of 533

PLMs (Houlsby et al., 2019). Some studies argue 534

that redundant parameters in the model should be 535

deleted or masked (Zaken et al., 2021; Sanh et al., 536

2020; Zhao et al., 2020; Frankle and Carbin, 2019), 537

while others argue that additional structures should 538

be added to the model (Zhang et al., 2020; Houlsby 539

et al., 2019; Guo et al., 2021). For example, adapter- 540

tuning insert some additional layer between each 541

layer of PLMs. Prefix-tuning (Li and Liang, 2021) 542

is a is a pluggable and lightweight method. It 543

inserts continuous vectors into the input to allow 544

a fixed PLM to do different generation tasks. 545

However, the above methods basically need to 546

modify the model structure or parameters, most 547

of them cannot be applied to realize plug-and-play 548

in classification tasks. 549

6 Conclusion 550

In this work, we propose plug-tagger, a pluggable 551

framework for sequence labeling. The proposed 552

framework can accomplish different tasks using 553

vectors inserted into the input and a fixed PLM 554

without modifying the model parameters and 555

structure. It achieves competitive performance 556

on the sequence labeling tasks with only a few 557

parameters and is faster than other lightweight 558

methods in real-world scenarios requiring model 559

redeployment. 560

8

References561

Ben Athiwaratkun, Cicero Nogueira dos Santos, Jason562
Krone, and Bing Xiang. 2020. Augmented natural563
language for generative sequence labeling. In564
Proceedings of the 2020 Conference on Empirical565
Methods in Natural Language Processing (EMNLP),566
pages 375–385, Online. Association for Computa-567
tional Linguistics.568

Samuel Bell, Helen Yannakoudakis, and Marek Rei.569
2019. Context is key: Grammatical error detection570
with contextual word representations. In Proceedings571
of the Fourteenth Workshop on Innovative Use of NLP572
for Building Educational Applications, pages 103–573
115, Florence, Italy. Association for Computational574
Linguistics.575

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie576
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind577
Neelakantan, Pranav Shyam, Girish Sastry, Amanda578
Askell, Sandhini Agarwal, Ariel Herbert-Voss,579
Gretchen Krueger, Tom Henighan, Rewon Child,580
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,581
Clemens Winter, Christopher Hesse, Mark Chen, Eric582
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,583
Jack Clark, Christopher Berner, Sam McCandlish,584
Alec Radford, Ilya Sutskever, and Dario Amodei.585
2020. Language models are few-shot learners.586

Jason PC Chiu and Eric Nichols. 2016. Named587
entity recognition with bidirectional lstm-cnns.588
Transactions of the Association for Computational589
Linguistics, 4:357–370.590

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-591
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger592
Schwenk, and Yoshua Bengio. 2014. Learning593
phrase representations using RNN encoder–decoder594
for statistical machine translation. In Proceedings595
of the 2014 Conference on Empirical Methods in596
Natural Language Processing (EMNLP), pages 1724–597
1734, Doha, Qatar. Association for Computational598
Linguistics.599

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and600
Kristina Toutanova. 2019. BERT: Pre-training601
of deep bidirectional transformers for language602
understanding. In Proceedings of the 2019603
Conference of the North American Chapter of the604
Association for Computational Linguistics: Human605
Language Technologies, Volume 1 (Long and Short606
Papers), pages 4171–4186, Minneapolis, Minnesota.607
Association for Computational Linguistics.608

Cicero Dos Santos and Bianca Zadrozny. 2014.609
Learning character-level representations for part-of-610
speech tagging. In International Conference on611
Machine Learning, pages 1818–1826. PMLR.612

Jonathan Frankle and Michael Carbin. 2019. The lottery613
ticket hypothesis: Finding sparse, trainable neural614
networks.615

Demi Guo, Alexander M. Rush, and Yoon Kim.616
2021. Parameter-efficient transfer learning with diff617
pruning.618

Karen Hambardzumyan, Hrant Khachatrian, and 619
Jonathan May. 2021. Warp: Word-level adversarial 620
reprogramming. 621

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 622
Bruna Morrone, Quentin de Laroussilhe, Andrea 623
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 624
Parameter-efficient transfer learning for nlp. 625

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 626
The power of scale for parameter-efficient prompt 627
tuning. 628

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 629
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 630
Veselin Stoyanov, and Luke Zettlemoyer. 2020. 631
BART: Denoising sequence-to-sequence pre-training 632
for natural language generation, translation, and 633
comprehension. In Proceedings of the 58th Annual 634
Meeting of the Association for Computational 635
Linguistics, pages 7871–7880, Online. Association 636
for Computational Linguistics. 637

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 638
Optimizing continuous prompts for generation. 639
In Proceedings of the 59th Annual Meeting of 640
the Association for Computational Linguistics 641
and the 11th International Joint Conference on 642
Natural Language Processing (Volume 1: Long 643
Papers), pages 4582–4597, Online. Association for 644
Computational Linguistics. 645

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, 646
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt 647
understands, too. 648

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, 649
Mandar Joshi, Danqi Chen, Omer Levy, Mike 650
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 651
2019. Roberta: A robustly optimized bert pretraining 652
approach. 653

Ying Luo, Fengshun Xiao, and Hai Zhao. 2020. 654
Hierarchical contextualized representation for named 655
entity recognition. In Proceedings of the AAAI 656
Conference on Artificial Intelligence, volume 34, 657
pages 8441–8448. 658

Xuezhe Ma and Eduard Hovy. 2016. End-to-end 659
sequence labeling via bi-directional lstm-cnns-crf. 660
arXiv preprint arXiv:1603.01354. 661

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann 662
Marcinkiewicz. 1993. Building a large annotated cor- 663
pus of English: The Penn Treebank. Computational 664
Linguistics, 19(2):313–330. 665

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt 666
Gardner, Christopher Clark, Kenton Lee, and Luke 667
Zettlemoyer. 2018. Deep contextualized word 668
representations. arXiv preprint arXiv:1802.05365. 669

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya 670
Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun 671
Cho, and Iryna Gurevych. 2020. Adapterhub: A 672
framework for adapting transformers. In Proceedings 673

9

https://doi.org/10.18653/v1/2020.emnlp-main.27
https://doi.org/10.18653/v1/2020.emnlp-main.27
https://doi.org/10.18653/v1/2020.emnlp-main.27
https://doi.org/10.18653/v1/W19-4410
https://doi.org/10.18653/v1/W19-4410
https://doi.org/10.18653/v1/W19-4410
http://arxiv.org/abs/2005.14165
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/2012.07463
http://arxiv.org/abs/2012.07463
http://arxiv.org/abs/2012.07463
http://arxiv.org/abs/2101.00121
http://arxiv.org/abs/2101.00121
http://arxiv.org/abs/2101.00121
http://arxiv.org/abs/1902.00751
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2104.08691
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7

of the 2020 Conference on Empirical Methods674
in Natural Language Processing (EMNLP 2020):675
Systems Demonstrations, pages 46–54, Online.676
Association for Computational Linguistics.677

Alec Radford, Karthik Narasimhan, Tim Salimans,678
and Ilya Sutskever. 2018. Improving language679
understanding by generative pre-training.680

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,681
Dario Amodei, Ilya Sutskever, et al. 2019. Language682
models are unsupervised multitask learners. OpenAI683
blog, 1(8):9.684

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine685
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,686
Wei Li, and Peter J. Liu. 2020. Exploring the687
limits of transfer learning with a unified text-to-text688
transformer. Journal of Machine Learning Research,689
21(140):1–67.690

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea691
Vedaldi. 2017. Learning multiple visual domains692
with residual adapters.693

Erik F Sang and Fien De Meulder. 2003. Introduction694
to the conll-2003 shared task: Language-independent695
named entity recognition. arXiv preprint cs/0306050.696

Victor Sanh, Thomas Wolf, and Alexander M Rush.697
2020. Movement pruning: Adaptive sparsity by fine-698
tuning. arXiv preprint arXiv:2005.07683.699

Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen700
Lai, Benson Chau, Vikas Chandra, and Hadi701
Esmaeilzadeh. 2018. Bit fusion: Bit-level dynam-702
ically composable architecture for accelerating deep703
neural network. In 2018 ACM/IEEE 45th Annual704
International Symposium on Computer Architecture705
(ISCA), pages 764–775.706

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.707
Sequence to sequence learning with neural networks.708
In Advances in Neural Information Processing709
Systems, volume 27. Curran Associates, Inc.710

Erik F. Tjong Kim Sang and Sabine Buchholz.711
2000. Introduction to the CoNLL-2000 shared task712
chunking. In Fourth Conference on Computational713
Natural Language Learning and the Second Learning714
Language in Logic Workshop.715

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob716
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz717
Kaiser, and Illia Polosukhin. 2017. Attention is718
all you need. In Advances in neural information719
processing systems, pages 5998–6008.720

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng721
Zhang, and Xipeng Qiu. 2021. A unified generative722
framework for various NER subtasks. In Proceedings723
of the 59th Annual Meeting of the Association for724
Computational Linguistics and the 11th International725
Joint Conference on Natural Language Processing726
(Volume 1: Long Papers), pages 5808–5822, Online.727
Association for Computational Linguistics.728

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime 729
Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. 730
2020. Xlnet: Generalized autoregressive pretraining 731
for language understanding. 732

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime 733
Carbonell, Russ R Salakhutdinov, and Quoc V Le. 734
2019. Xlnet: Generalized autoregressive pretraining 735
for language understanding. Advances in neural 736
information processing systems, 32. 737

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. 738
2021. Bitfit: Simple parameter-efficient fine-tuning 739
for transformer-based masked language-models. 740

Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas 741
Guibas, and Jitendra Malik. 2020. Side-tuning: A 742
baseline for network adaptation via additive side 743
networks. 744

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and 745
Hinrich Schütze. 2020. Masking as an efficient 746
alternative to finetuning for pretrained language 747
models. 748

10

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1705.08045
http://arxiv.org/abs/1705.08045
http://arxiv.org/abs/1705.08045
https://doi.org/10.1109/ISCA.2018.00069
https://doi.org/10.1109/ISCA.2018.00069
https://doi.org/10.1109/ISCA.2018.00069
https://doi.org/10.1109/ISCA.2018.00069
https://doi.org/10.1109/ISCA.2018.00069
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://aclanthology.org/W00-0726
https://aclanthology.org/W00-0726
https://aclanthology.org/W00-0726
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/1912.13503
http://arxiv.org/abs/1912.13503
http://arxiv.org/abs/1912.13503
http://arxiv.org/abs/1912.13503
http://arxiv.org/abs/1912.13503
http://arxiv.org/abs/2004.12406
http://arxiv.org/abs/2004.12406
http://arxiv.org/abs/2004.12406
http://arxiv.org/abs/2004.12406
http://arxiv.org/abs/2004.12406

A Hyperparameters for Plug-Tagger749

Task Dataset learning rate plugin length

NER
CoNLL2003 2e-3 5

ACE2005 2e-3 15

Chunking
CoNLL2003 2e-3 10

CoNLL2000 2e-3 10

POS
CoNLL2003 4e-6 1

WSJ 2e-3 5

Table 4: Hyperparameters for Plug-Tagger (0.1%).

Task Dataset learning rate plugin length

NER
CoNLL2003 5e-3 5

ACE2005 1e-2 5

Chunking
CoNLL2003 1e-3 5

CoNLL2000 1e-2 5

POS
CoNLL2003 1e-2 5

WSJ 1e-3 5

Table 5: Hyperparameters for Plug-Tagger (0.01%).

In Table 4 and Table 5, we report the hyperpa-750

rameters used for our method documented in the751

experiment section.752

11

