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Abstract

Practical implementations of Gaussian smoothing algorithms have received a great deal of
attention in the last 60 years. However, almost all work focuses on estimating complete time
series (“fixed-interval smoothing”, O(K) memory) through variations of the Rauch-Tung—
Striebel smoother, rarely on estimating the initial states (“fixed-point smoothing”, O(1)
memory). Since fixed-point smoothing is a crucial component of algorithms for dynamical
systems with unknown initial conditions, we close this gap by introducing a new formulation
of a Gaussian fixed-point smoother. In contrast to prior approaches, our perspective admits a
numerically robust Cholesky-based form (without downdates) and avoids state augmentation,
which would needlessly inflate the state-space model and reduce the numerical practicality
of any fixed-point smoother code. The experiments demonstrate how a JAX implementation
of our algorithm matches the runtime of the fastest methods and the robustness of the most
robust techniques while existing implementations must always sacrifice one for the other.

Code: hitps://qgithub.com/pnkraemer/code-numerically-robust-fizedpoint-smoother

1 Introduction

Linear Gaussian state-space models and Bayesian filtering and smoothing enjoy numerous applications in
areas like tracking, navigation, or control (Grewal and Andrews, 2014; Sirkkd and Svensson, 2023). They
also serve as the computational backbone of contemporary machine learning methods that revolve around
time-series, streaming data, or sequence modelling; for example, message passing, Gaussian processes, and
probabilistic numerics (Grewal and Andrews, 2014; Sarkka and Solin, 2019; Murphy, 2023; Hennig et al.,
2022). Filtering and smoothing have also been used for constructing and training neural networks (Singhal
and Wu, 1988; Gu and Dao, 2023; Chang et al., 2023) or continual learning (Sliwa et al., 2024). All of these
applications require fast and robust algorithms for state-space models; we propose a new one in this paper.

Recent developments in Bayesian smoothing focus on subjects like linearisation (e.g. Garcia-Ferndndez
et al., 2016), temporal parallelisation (e.g. Sarkkd and Garcia-Fernandez, 2020), or numerically robust
implementations (e.g. Yaghoobi et al., 2022). However, they all exclusively focus on fixed-interval smoothing,
which targets the full time-series p(zo.x | y1.x) in O(K) memory, never on fixed-point smoothing, which only
yields the initial value p(zo | y1.x) but does so in O(1) memory. Even though fixed-point smoothing is a crucial
component of, for example, estimating past locations of a spacecraft (Meditch, 1969), it has yet to receive
much attention in the literature on state estimation in dynamical systems. The experiments in Section 4
demonstrate fixed-point smoothing applications in probabilistic numerics and in a tracking problem. We
anticipate that probabilistic numerical solvers for differential equations will especially benefit from improving
the practicality of fixed-point smoothers. The reason is that these algorithms closely connect to filtering and
smoothing algorithms (Schober et al., 2019), especially the numerically robust kind (Kriamer and Hennig,
2024), and that unknown initial conditions are typical for parameter estimation problems in differential
equations and scientific machine learning (Rackauckas et al., 2020). Section 4.2 revisits probabilistic numerics
as a prime application for fixed-point smoothing.
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Contributions  We introduce an implementation of numerically robust fixed-point smoothing. Our approach
avoids the typical construction of fixed-point smoothers via state-augmentation (Biswas and Mahalanabis,
1972; Smith and Roberts, 1982), which increases the dimension of the state-space model and thus makes
estimation needlessly expensive. And unlike previous work on fixed-point smoothing (Meditch, 1967a; Sarkka
and Hartikainen, 2010; Rauch, 1963; Meditch, 1967b; 1976; Meditch and Hostetter, 1973; Nishimura, 1969),
our perspective is not tied to any particular parametrisation of Gaussian variables. Instead, our proposed
algorithm enjoys numerical robustness and compatibility with data streams, while maintaining minimal
complexity. There exist tools for each of those desiderata, but our algorithm is the first to deliver them all at
once. We demonstrate the algorithm’s efficiency and robustness on a sequence of test problems, including a
probabilistic numerical method for boundary value problems (Kriamer and Hennig, 2021), and show how to
use fixed-point smoothing for parameter estimation in Gaussian state-space models.

Notation Enumerated sets are abbreviated with subscripts, for example xo.x = {zo,...,2x} and
y1.x = {y1, ..., YK }. For sequential conditioning of Gaussian variables (like in the Kalman filter equations),
we indicate the most recently visited data points with subscripts in the parameter vectors, for example,
(e | yre—1) = N(mpjp—1, Crjp—1) or N(mg x,Ckix) = p(xx | y1:x). I is the identity matrix with n
rows and columns. All covariance matrices shall be symmetric and positive semidefinite. Like existing work
on numerically robust state-space model algorithms (e.g. Grewal and Andrews, 2014; Kramer, 2024), we
define the generalised Cholesky factor Ly of a covariance matrix ¥ as any matrix that satisfies ¥ = Ly (Lx) .
This definition includes the “true” Cholesky factor if X is positive definite but applies to semidefinite 3;
for instance, the zero-matrix is the generalised Cholesky factor of the zero-matrix (which does not admit a
Cholesky decomposition). There are numerous ways of parametrising multivariate Gaussian distributions, but
we exclusively focus on two kinds. Like Yaghoobi et al. (2022), we distinguish:

e Covariance-based parametrisations: Parametrise multivariate Gaussian distributions with means and
covariance matrices. Covariance-based parametrisations are the standard approach.

e Cholesky-based parametrisations: Parametrise multivariate Gaussian distributions with means and
generalised Cholesky factors of covariance matrices instead of covariance matrices. Manipulating
Gaussian variables in Cholesky-based parametrisations replaces the addition and subtraction of
covariance matrices with QR decompositions, which improves the numerical robustness at the cost of
a slightly increased runtime; it leads to methods like the square-root Kalman filter (Bennett, 1965).

Other forms, such as the information or canonical form of a multivariate Gaussian distribution (Murphy,
2022), are not directly relevant to this work.

2 Problem statement: Fixed-point smoothing

2.1 Background on filtering and smoothing

Linear Gaussian state-space models This work only discusses linear, discrete state-space models with
additive Gaussian noise because such models are the starting point for Bayesian filtering and smoothing.
Nonlinear extensions are future work. For integers d and D, let Ay, ..., Ax € RP*P and H,, ..., Hx € R¥*P
be linear operators and Cy)q, B1, ..., Bk € RPXP and Ry, ..., Rg € R¥*? be covariance matrices. Introduce
a vector mq|g € RP. Assume that observations y.xc are available according to the state-space model (and
potentially as a data stream)

zo =10, wp=Aprp—1+by, yp=Hyzp+re, k=1, K, (1)
with pairwise independent Gaussian random variables
9~N(m0|0,00|0), bk NN(O,Bk), Tk NN(O,Rk), ki: 1,...,K. (2)

In order to simplify the notation, Equations 1 and 2 assume that the Gaussian variables by.x and 71.x
have a zero mean and that there is no observation of the initial state zo = 6. The experiments in Section 4
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Table 1: FEstimation in Gaussian state-space models. Other estimation tasks exist, for example, fixed-lag
smoothing. However, this article focuses on fixed-point smoothing and its relationship with filtering and
fixed-interval smoothing. “RTS smoother”: “Rauch-Tung—Striebel smoother”.

Task Target

Filtering (e.g. Kalman filter) Real-time updates {p(z | y1.x) },
Fixed-interval smoothing (e.g. RTS smoother) Full time series p(zo.x | y1:x)
Fixed-point smoothing Initial state p(xo | y1.x)

demonstrate successful fixed-point smoothing even when violating those two assumptions. Estimating z1.x
from observations y.x is a standard setup for filtering and smoothing (Sérkki and Svensson, 2023).

Kalman filtering Different estimators target different conditional distributions (Table 1). For example, the
Kalman filter (Kalman, 1960) computes {p(z) | y1.x)}He, by initialising p(xo | y1.0) = p(z0) and alternating

Prediction: p(zp—1 | y1.6—1) — p(Tk | Y1:6—1) k=1,..,K (3a)
Update: p(xg | yr:e—1) — p(xk | y1:1) k=1,.. K. (3b)

Since all operations are linear and all distributions Gaussian, the recursions are available in closed form.
Detailed iterations are in Appendix A. An essential extension of the Kalman filter is the square-root Kalman
filter (Bennett, 1965; Andrews, 1968) (see also Grewal and Andrews (2014)), which yields the identical
distributions as the Kalman filter but manipulates Cholesky factors of covariance matrices instead of covariance
matrices. The advantage of the Cholesky-based implementation of the Kalman filter over the covariance-based
version is that covariance matrices are guaranteed to remain symmetric and positive semidefinite, whereas
accumulated round-off errors can make the covariance-based Kalman filter break down. In this work, we
introduce Cholesky-based implementations for fixed-point smoothing, among other things. Both the Kalman
filter and its Cholesky-based extension cost O(K D?) runtime and O(D?) memory, assuming D > d (otherwise,
exchange D for d). The Cholesky-based filter is slightly more expensive because it uses QR decompositions
instead of matrix multiplication; Appendix A contrasts Cholesky-based and covariance-based Kalman filtering.

Fixed-interval smoothing  While the filter computes the terminal state p(xx | y1.x), the fized-interval
smoother targets the entire trajectory p(zo.x | y1.x). For linear Gaussian state-space models, fixed-interval
smoothing is implemented by the (fixed-interval) Rauch-Tung—Striebel smoother (Rauch et al., 1965): Relying
on independent noise in Equation 2, the Rauch—Tung—Striebel smoother factorises the conditional distribution
backwards in time according to (interpret 1.0 = () for notational brevity),

K

p@ox | y1:x) = plex | yrx) [ [ plee-1 | 2x yre—1)- (4)
k=1

The first term, p(xx | y1.x), is the filtering distribution at the final state and usually computed with a Kalman
filter. The remaining terms, p(zx—1 | Zk, Y1.x—1), can be assembled with the prediction step in the filtering pass
(Equation 3a), which preserves the Kalman filter’s O(K D?) runtime complexity but increases the memory
consumption from O(D?) to O(K D?). Like the Kalman filter, the Rauch-Tung-Striebel smoother allows
covariance- and Cholesky-based parametrisations (Park and Kailath, 1995) in roughly the same complexity.
In practice, Cholesky-based arithmetic costs slightly more than covariance-based arithmetic but enjoys an
increase in numerical robustness. Appendix B contrasts both implementations.

Towards fixed-point smoothing Finally, we turn to the fized-point smoothing problem: computing the
conditional distribution of the initial state p(zg | y1.x) conditioned on all observations (Figure 1). The
central difficulty for fixed-point smoothing is that we ask for O(K) algorithms even though all observations
y1.x are in the “future” of xg, which lacks an immediate sequential formulation. That said, one algorithm
for sequentially solving the fixed-point smoothing problem involves Rauch—Tung—Striebel smoothing: The
fixed-point smoothing problem could be solved by assembling p(zo.x | ¥1.x) with the Rauch-Tung—Striebel
smoother, which yields a parametrisation of p(xg | y1.x) in closed form. Unfortunately, this solution is not
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Figure 1: Fixed-point (left) versus fixed-interval smoothing problem (right) as factor graphs. The shaded
variables are observed. “Qol”: “Quantity of interest”.

very efficient: the Rauch—Tung—Striebel smoother stores parametrisations of all conditional distributions
{p(zx—1 | Tk, y1.6-1) }5_,, which is problematic for long time-series because it consumes O(K D?) memory. In
contrast, state-of-the-art fixed-point smoothers require only O(D?) memory.

2.2 Existing approaches to fixed-point smoothing

The state of the art in fixed-point smoothing does not use fixed-interval smoothers to compute p(zg | 21.x)-
There are two more efficient approaches: Either we solve the fixed-point smoothing problem by computing
the solution to a specific high-dimensional filtering problem (Biswas and Mahalanabis, 1972, “fixed-point
smoothing via state-augmented filtering” below), or we derive recursions for how p(zg | y1.x) evolves with
k=1,.., K (Meditch, 1967b;a; 1969, “fixed-point recursions” below). Both solutions have advantages and
disadvantages. We discuss both before explaining how our algorithm fixes their shortcomings.

Fixed-point smoothing via state-augmented filtering Fixed-point smoothing can be implemented with a
Kalman filter, more precisely, by running a filter on the state-space model (Biswas and Mahalanabis, 1972)

A O P Th_1 Ip B - -
(mo) N (0 ID> ( Zo ) + ( 0 ) b, Yk = (Hk 0) <x0) +re, k=1,.,.K (5)

with initial condition

T
(-l 6 ) () G D ) o

To mojo) " \Cojo Cojo mojo) " \Lcy, 0) \Lcy, O
The covariance of the initial condition is rank-deficient. However, the generalised Cholesky factor remains

well-defined according to Equation 6. The difference between the state-space models in Equation 5 and
Equation 1 is that Equation 5 tracks the augmented state (zy, o) instead of . As a result, the Kalman filter
applied to Equations 5 and 6 yields parametrisations of the conditional distributions {p(ask, xo | ylzk)}szl in
O(K (2D)?) runtime and O((2D)?) memory. The factor “2D” stems from doubling the state-space dimension.
The initial condition p(xg | y1.x) emerges from the augmented state p(zx, zo | y1.x) in closed form. Relying
on the Kalman filter formulation inherits all computational benefits of Kalman filters, most importantly,
the Kalman filter’s Cholesky-based form with its attractive numerical robustness. Nonetheless, doubling
of the state-space dimension is unfortunate because it increases the runtime roughly by factor 8 (because
(2D)? = 8D?) and the memory by factor 4 (because (2D)? = 4D?). However, as long as one commits to
covariance-based arithmetic, this increase can be avoided:

Fixed-point recursions  Suppose we temporarily ignore Cholesky-based forms and commit to covariance-
based parametrisations of Gaussian distributions. In that case, we can improve the efficiency of the fixed-point
smoother. It turns out that during the forward pass, the mean and covariance of p(zo | y1.x) follow a
recursion that can be run parallel to the Kalman filter pass (Meditch, 1969; Sarkkd and Hartikainen, 2010;
Meditch, 1967b). Sérkkd and Hartikainen (2010) explain how to implement this recursion: start by initialising
mgjo and Cp|p according to Equation 1 and set Gojo = I. Then, iterate from (mq—1, Cojr—1,Gojr—1) to
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Table 2: Existing approaches to the fixed-point smoothing problem. The “fixed-point recursion” represents
Meditch (1969; 1967b) through Equation 7. “O(1) memory” stands in contrast to the O(K) memory of a
fixed-interval smoother, and the “low-dimensional state” refers to avoiding state-augmentation, which affects
both runtime and memory because it doubles the dimension of the state-space model.

Method O(1) memory Low-dimensional state Cholesky-based
Via Rauch—Tung—Striebel smoothing X v v
Via filtering with augmented state v X v
Fixed-point recursion (Equation 7) v v X
This work (Algorithms 1 to 3) v v v

(Mo, Cojks Gojr) using the recursion (Sarkka and Hartikainen, 2010; Sarkka, 2013)

Gojk = Gojk—1Gr—1|k (7a)
Mo = Mojk—1 + Goe (M)l — Mij—1) (7b)
Coie = Copp—1 + Gor(Crpe — Crep—1)(Gopr) - (7c)

Next to (mg|x—1, Cojk—1, Gojk—1), these formulas only depend on the output of the prediction step as well as
the smoothing gains Gj,_1) (smoothing gains: Appendix B). For k£ = 1, the fixed-point gain intentionally
equals the smoothing gain, which Equation 7 expresses by initialising Gjo = I. The recursion in Equation 7
can be implemented to run simultaneously with the forward filtering pass. Unfortunately, even though
this implementation avoids doubling the size of the state-space model and enjoys O(D?) memory and
O(K D?) runtime, a Cholesky-based formulation has been unknown (until now). Thus, Equation 7 cannot
be applied to problems where numerical robustness is critical, like the probabilistic numerical simulation of
differential equations (Kramer, 2024). The main contribution of this paper is to generalise Equation 7 to
enable Cholesky-based parametrisations:

Contribution. Compute the solution of the fized-point smoothing problem p(xo | y1.rc) in O(KD?) runtime,
O(D?) memory, using any parametrisation of Gaussian variables, and without state augmentation; Table 2.

3 The method: Numerically robust fixed-point smoothing

Our approach to numerically robust fixed-point smoothing involves two steps: First, we derive a recursion for
the conditional distribution p(z¢ | 2, y1.x) instead of one for the joint distribution p(xg, zx | y1.1), k =1, ..., K.
Second, we implement the recursion in Cholesky-based parametrisations without losing closed-form, constant-
memory updates. As a byproduct of this derivation, other parametrisations of Gaussian distributions (like
the information form) become possible, too. However, we focus on Cholesky-based implementations for their
numerical robustness and leave other choices to future work.

3.1 A new recursion for fixed-point smoothing

A derivation of a new fixed-point smoothing recursion follows. Similar to the state-augmented filtering
perspective, the target distribution p(zg | y1.x) can be written as the marginal of the augmented state

p(o | y1:x) = / p(o0, zx | y) dec. (8)

Computing p(xg | y1.x) becomes a byproduct of computing p(xo, x | y1.x), and the latter admits a sequential
formulation. This perspective was essential to implementing fixed-point smoothing with state-augmented
filtering. The augmented state factorises into the conditional

p(ro, vk | y1:x) = P(20 | Tr, Y1:6)P(TK | Y1:K)- (9)
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Since p(xk | y1.x) is already computed in the forward pass, it suffices to derive a recursion for the fixed-point
conditional p(zg | 2k, y1.x). The backward factorisation of the smoothing distribution in Equation 4 implies

K
p(zo | T, V1K) = / Hp(fﬂkq | 25, y1:6—1) dT1:0—1. (10)
k=1

Marginalising over all intermediate states x1.x_1 like in Equation 10 turns a Rauch—Tung—Striebel smoother
into a fixed-point smoother. An O(K) runtime implementation now emerges from observing how the integral
in Equation 10 rearranges to a nested sequence of single-variable integrals,

K
p(zo | Tx, y1:K) = / [P |2 yrn-1) dorge (11a)
k=1

= / (/ [/p(a:o | z1)p(ay | xz,y1;1)d$1} p(x2 | st,ylzz)dM) wodzg (11b)
= / (/p(xo | 22, y1)p(2 | m3,y1:2)dx2) wdrg (11c)

This rearranging of the integrals is essential to the derivation because it implies a forward-in-time recursion:
Algorithm 1 (Fixed-point smoother). To compute the solution to the fized-point smoothing problem, assemble
p(zx | y1.x) with a Kalman filter and evaluate p(xo | T, y1.x) as follows. (To simplify the index-related
notation in this algorithm, read y1._1 = y1.0 = 0.)

1. Initialise p(xo | 2o, y1:-1) = N (Gojoo + pojo, Pojo) with Gojo = Ip, pojo = 0, and Pyjg = 0.

2. For k=1,.., K, iterate from k —1 to k,

p(zo | T, Y1:6—1) = /p(wo | r—1, Y1k—2)P(Th—1 | T, Y1:6—1) dTp—1. (12)
The conditionals p(xg—1 | Zk,y1:k—1) are from the Rauch—Tung—Striebel smoother (Equation 4).

3. Marginalise p(xo | y1.5¢) from p(xk | y1.5) and p(zo | Tk, y1.x—1) via Equation 8.

Equation 12 turns a Rauch—-Tung-Striebel smoother into a fixed-point smoother: The recursion requires
access to p(Tx—1 | Tk, y1.x.—1) computed by the forward-pass of the Rauch-Tung—Striebel smoother. Therefore,
Equation 12 runs concurrently to the forward filtering pass.

3.2 Cholesky-based implementation

The missing link for Algorithm 1 is the merging of two affinely related conditionals in Equation 12. Since
both conditionals in Equation 12 are affine and Gaussian, their combination p(xo | T, y1.k—1) is Gaussian
and available in closed form for all k = 1, ..., K. Its parametrisation depends on the parametrisation of each
input distribution. For covariance- and Cholesky-based arithmetic, it looks as follows:

Algorithm 2 (Covariance-based implementation of Equation 12). Recall the initialisation of Algorithm 1
and the convention y1.—1 = y1.0 = 0. For any k =1, ..., K, if the fixed-point and smoothing conditionals (see
Equation 4 & Appendiz B for the latter) are parametrised by

p(xo | 2r—1,Y1:6—2) = N(Gojp—176-1 + Pojk—1, Pojr—1) (13a)

p(@r—1 | zr, y1-1) = N(Gr_1x®k + Pr—1jks Pe—1]k); (13b)

Jor given G;|; € RDP*D. pijj € RP, and Py € RPXD “then, the next fized-point conditional is
p(@o | 21, Y1:k—1) =N (Goper + pojks Pojr)s (14a)

GOUC = GO\szlefl\ky ( )

Pojk = Gojk—1Pk—1|k T Pojk—15 (14c)

Popi = Gopp—1Pe—115(Gog—1) " + Pojr—1- (14d)

Implementing this operation costs O(D3) floating-point operations.
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Algorithm 3 (Cholesky-based implementation of Equation 12). For any k =1,..., K (againyi._1 = y1.0 = 0),
if the previous fized-point conditional and smoothing transition (see Equation 4 & Appendiz B) are

p(xo | 2r—1,y1:—2) = N(Gojp—1Zr—1 + Pojk—1, LPOM.,l(LPOM.,l)T) (15a)
p(xr—1 | Tk y1—1) = N(Gr_1pxk +pk—1|k7LP,C,W(LP,C,W)T), (15b)

for given G;|; € RDP*D. pijj € RP, and Lp,, € RP*D “then, the next fized-point conditional is

p(xo | T, y1:-1) =N (Gow + Pojks Lpy, (Ley,) ), (16a)
Gojk = Gojk—1Gr—1ks (16b)

Pojk = Gok—1Pk—1|k + Pojk—1, (16¢)

Lp,, =%R", (16d)

where R is the upper triangular matrix returned by the QR-decomposition

_ (LPk—l k)T(G |k— )T
QR = ( ([l’Po\k71;JT 1 ) (17)

Implementing this operation costs O(D?) floating-point operations.

Algorithm 2 follows from the rules for manipulating affinely related Gaussian distributions (e.g. Sarkké,
2013, Appendix A.1). Algorithm 3 is indeed the Cholesky-based version of Algorithm 2: The expression in
Equation 16d is the generalised Cholesky factor of the expression in Equation 14d because

T
LPk—l\k(LPk—l\k)T = mTDTQ% = (Golk—lLPk,—uk LPO\k—l) (( ) ) = Pk—1|k (18)

holds. The combination of Algorithms 1 and 3 is a novel, Cholesky-based implementation of a fixed-point
smoother. Similarly, the combination of Algorithms 1 and 2 is a novel, covariance-based implementation
of a fixed-point smoother. With a small modification to Algorithm 1, combining Algorithm 2 with the
covariance-based formulas in Algorithm 1 recovers Equation 7:

Proposition 1. If the combination of Algorithms 1 and 2 computes the marginals

D0 | yuw) = / p(20 | s yron1)p(en | yrn) di (19)

at every k= 1,..., K instead of only at the final time-step, the recursion reduces to Equation 7.
Proof. Induction; Appendix C. O

Computational complexity Both Algorithms 2 and 3 cost O(D?) floating-point operations per step. The
kth iteration in Algorithm 1 needs access to the same quantities as the kth iteration of the forward pass of
a Rauch—-Tung-Striebel smoother, which can be implemented in O(D?) memory. Unlike the Rauch-Tung—
Striebel smoother, Algorithm 1 does not store intermediate results, which is why it consumes O(D?) memory
in total (instead of O(KD?)). Both Algorithm 2 and Equation 7 require three matrix-matrix- and one
matrix-vector multiplication per step, so they are equally efficient (Algorithm 2 uses fewer matrix additions.
However, the addition of matrices is fast). Therefore, it will be no loss of significance that we always implement
covariance-based fixed-point smoothing via Algorithm 1 instead of Equation 7 in our experiments.
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Covariance-based Cholesky-based
Via filter Known Known
Via Rauch—-Tung—Striebel Known Known
Fixed-point recursion Known, but see Prop. 1 Our contribution Experiment II: Robustness

Experiment I: Efficiency

Figure 2: Outline of the memory-, runtime-, and robustness-related demonstrations.

4 Experiments

The experiments serve two purposes. To start with, they investigate whether the proposed Cholesky-based
implementation (Algorithm 3) of the fixed-point smoother recursion (Algorithm 1) holds its promises about
memory, runtime, and numerical robustness. According to the theory in Section 3, we should observe:

e Memory: Slightly lower memory demands than a state-augmented Kalman filter; drastically lower
memory demands than a Rauch—Tung—Striebel smoother.

e Wall-time: Faster than a state-augmented, Cholesky-based Kalman filter; roughly as fast as a
Rauch—Tung—Striebel smoother.

o Numerical robustness: Combining Algorithm 1 with Cholesky-based parametrisations (Algorithm 3)
is significantly more robust than combining it with covariance-based parametrisations (Algorithm 2);
comparable to a Cholesky-based implementation of a Kalman filter.

These three phenomena will be studied in two experiments, one for runtime/memory and one for numerical
robustness (outline: Figure 2). The problem set for these two experiments includes a toy problem for the
former and an application in probabilistic numerics for the latter. Afterwards, a case study in tracking shows
how to use the fixed-point smoother for estimating the initial parameter in a state-space model.

Hardware and code All experiments run on the CPU of a consumer-grade laptop and finish within a few
minutes. Our JAX implementation (Bradbury et al., 2018) of Kalman filters, Rauch—Tung—Striebel smoothers,
and fixed-point smoothers is at

https://github.com/pnkraemer/code-numerically-robust-fizedpoint-smoother

We implement the existing fixed-point smoother recursions in Equation 7 by combining Algorithm 1 with
covariance-based parametrisations; recall Proposition 1.

4.1 Experiment |: How efficient is the fixed-point recursion?

Motivation Sections 2.2 and 3 mention three approaches to fixed-point smoothing: a detour via Rauch—
Tung—Striebel smoothing, state-augmented Kalman filtering, and our recursion in Algorithm 1. In theory,
Algorithm 1 should be the most efficient: it does not inflate the state-space model like a state-augmented
Kalman filter does and requires O(1) instead of O(K) memory, unlike the Rauch-Tung-Striebel smoother.
This first experiment demonstrates that these effects are visible in practice.

Problem setup In this first example, we only measure the execution time and memory requirement of three
approaches to fixed-point smoothing. Both memory and runtime depend only on the size of a state-space
model and not on the difficulty of the estimation task. Therefore, we consider a state-space model where all
system matrices and vectors are populated with random values.

Implementation  We choose K = 1,000, vary d, set the size of the hidden state to D = 2d, and use
Cholesky-based arithmetic for all estimators. We take Equation 1 and introduce a nonzero bias in all noises
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Table 3: Runtime in seconds (wall-time, best of three runs). Lower is better. The column-wise lowest are bold
& shaded. Randomly populated model. K = 1,000 steps. All methods use Cholesky-based parametrisations.

d=2 d=5 d=10 d=20 d =50 d =100
Via Rauch-Tung-Striebel 5.8 x107% 1.8 x1072 6.5x1072 45x107' 29x10° 1.2x10*
Via filter 50x 102 21x107% 80x1072 71x107' 4.6x10° 1.6x 10!
Algorithm 1 6.4x107% 18x10%2 64x10 2% 44x10' 29x10° 1.2x10*

Table 4: Memory in bytes (we use 32-bit arithmetic). Lower is better. The column-wise lowest entries are bold
and shaded. Randomly populated model. K = 1,000 steps. All methods use Cholesky-based parametrisations.

d=2 d=5 d=10 d=20 d =50 d =100
Via Rauch-Tung-Striebel 2.2 x 10° 1.2x10° 49x10° 1.9x10" 1.2x10%® 4.8x10®
Via filter 2.8 x10° 1.6x10° 6.5x10®° 25x10* 1.6x10° 6.4 x10°
Algorithm 1 22x10%° 1.2x10® 49x10®° 1.9x10* 1.2x10° 4.8x10°

in Equation 2. Then, we randomly populate all system matrices in the state-space model with independent
samples from N(0,1/k?). Afterwards, we sample y;.x from this state-space model to generate toy data. A
K-dependent covariance controls that the samples y;.x remain finite in 32-bit floating-point arithmetic.
However, the precise values of the model and data do not matter for this experiment — only their size does.
Finally, we vary d and measure the runtime and memory requirements of each of the three methods. To
measure runtime, we use wall time in seconds. We display the best of three runs instead of the average
because all codes are deterministic (no data-dependence, no randomness), thus the main driver for runtime
differences is background machine noise. Selecting the best of three runs minimises this noise as much as
possible. To measure memory consumption, we count the number of floating-point values the estimators carry
from step to step, multiply this by 32 (because we use 32-bit arithmetic), and translate bits into bytes.

Evaluation  The runtime results are in Table 3 and the memory results in Table 4. The runtime data
shows that except for d = 2, the Rauch—Tung—Striebel smoother and Algorithm 1 are faster than the
state-augmented filter. Algorithm 1 is marginally faster than the Rauch—Tung—Striebel smoother code, even
though it computes strictly more at every iteration. However, the Rauch-Tung—Striebel smoother executes two
loops, one forwards and one backwards, whereas Algorithm 1 only executes a forward loop. This discrepancy
might lead to the performance improvement from Rauch—Tung—Striebel smoothing to Algorithm 1. The
memory data shows that the Rauch—Tung—Striebel smoothing solution and the Algorithm 1 have identical
memory requirements per step. Both consume less storage than the state-augmented filter (per step). As
expected, the Rauch—Tung—Striebel smoother requires exactly K-times the memory of Algorithm 1, which
would be infeasible for long time series over high-dimensional states. In general, this experiment underlines
the claimed efficiency of our new fixed-point smoother recursion in a Cholesky-based parametrisation. The
following experiment will answer the question of whether Cholesky-based arithmetic is necessary.

4.2 Experiment II: How much more robust is the Cholesky-based code?

Motivation Cholesky-based implementations replace matrix addition and matrix multiplication with QR
decompositions. They are more expensive than covariance-based implementations because the decomposition
is more expensive than matrix multiplication. However, there are numerous situations where the gains in
numerical robustness are worth the increase in runtime. One example is the probabilistic numerical simulation
of differential equations, which use integrated Wiener processes (Schober et al., 2014; 2019) with high order
and small time-steps. For these applications, Cholesky-based implementations are the only feasible approach
(Kramer and Hennig, 2024). This second experiment shows that Algorithm 1 unlocks fixed-point smoothing
for probabilistic numerical simulation through Algorithm 3.
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Problem setup We solve a boundary value problem based on an ordinary differential equation.
More specifically, we solve the 15th in the collection of test problems
by Mazzia and Cash (2015) (Figure 3),

1073, ;?u(t) =tu(t), wu(-1)=u(l)=1. (20)

Output u
o
T

We follow the procedure for solving boundary value problems with a
probabilistic numerical method by Kramer and Hennig (2021) for the ~1r
most part. However, we skip the iterated Kalman smoother because the
differential equation is linear and skip mesh refinement and expectation
maximisation to keep this demonstration simple. The focus lies on
numerical robustness. We choose a twice-integrated Wiener process prior Figure 3: 15&.1 Boundary value
and discretise it on K equispaced points in [—1,1], which yields the problem (Mazzia and Cash, 2015).
latent transitions (let At :=1/k)

1 1 1

-1 0 1
Input ¢

2 (AD)°  (Ap*  (Ap)?

1 Ar @ 20, 8. 3.
Ar,=10 1 At |, Bp= (Ag) (A;) (A20 , k=1, K. (21)

0 0 1 (A7 (A? Ay

3 2

The dynamics are constant because the grid points are evenly spaced. The means of the process noise are
zero, like in Equation 2. The hidden state

Ty = <U(tk)7 %U(tk)’ jtgu(tk)) , k=1 K (22)

tracks the differential equation solution u and its derivatives, including %u, which means that the residual

10’3%1& —tu(t) is a linear function of x. We introduce the model for the constraints (8 shall be the nonzero
mean of the observation noise rj in Equations 1 and 2)

H, = (—tk 0 10_3) s Br =0, R =0, k=1..,K—1, (23&)
He=(1 0 0), By = —1, Ry = 0. (23b)

Note how the constraint at the final time-point encodes the right-hand side boundary condition, not the
differential equation. We choose the initial mean mg|o = (1,0, 0) and initial covariance Cyjo = diag(0,1,1)
to represent the left-hand side boundary condition. Estimating xo.x from yi.x = 0 solves the boundary
value problem ((Krdmer and Hennig, 2021); Figure 3 displays the mean of the fixed-interval smoothing
solution). Krdmer and Hennig (2021) explain how estimating the initial condition p(z¢ | y1.x) is important
for parameter estimation problems. In other words, fixed-point smoothers are relevant for boundary value
problem simulation. We are the first to use them for this task.

Implementation For this demonstration, we consider the Cholesky-based implementation of the Kalman
filter as the gold standard for numerical robustness because it has been used successfully in numerous similar
problems (Krdmer and Hennig, 2024; Bosch et al., 2021; Kramer and Hennig, 2021; Kramer, 2024). The
Cholesky-based, state-augmented Kalman filter provides a reference solution of the fixed-point equations. We
run Cholesky-based (Algorithm 3) and covariance-based code (Algorithm 2) for the fixed-point smoother
recursions (Algorithm 1) and measure how much the estimated initial means deviate from the Kalman-filter
reference in terms of the absolute root-mean-square error. In infinite precision, the results would be identical.
In finite precision, all deviations should be due to a loss of stability. We vary K to investigate how the
step-size At affects the results, with the intuition that smaller steps lead to worse conditioning in By and
that this effect makes the estimation task more difficult (Krdmer and Hennig, 2024).

Evaluation The results are in Table 5. They indicate how the Cholesky-based code is significantly more
robust than the covariance-based code. The covariance-based implementation delivers only three meaningful
digits for K = 10 points, diverges for more grid points, and breaks for K > 500. In contrast, the Cholesky-
based code delivers meaningful approximations across all grids. This consistency underlines how much more
robust our Cholesky-based code is and how it unlocks fixed-point smoothing for probabilistic numerics.
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Table 5: Deviation from the Cholesky-based, state-augmented Kalman filter on the boundary value problem.
Lower is better and close to machine-precision desirable. The column-wise lowest values are bold and coloured.
“K”: number of grid points. Double precision (64-bit arithmetic).

*_based: K =10 K =20 K =50 K =100 K =200 K =500 K =1,000

Covariance  2.9x 1073  3.4x 107! 1.1 x 10° 1.0 x 10! 2.1 x 10* NaN NaN
Cholesky 20x107° 50x107® 42x1077 79x10% 13x107 61x10% 3.4x10°8

4.3 Case study: Estimating parameters of a state-space model

Movitation The previous two experiments have emphasized the practicality of our proposed method. We
conclude by applying fixed-point smoothing to parameter estimation in a tracking model. This study aims to
emulate applications of fixed-point smoothing in navigation tasks (Meditch, 1969) in a setup that is easy
to reproduce. However, the demonstration also links to the previous boundary value problem experiment
through expectation maximisation (Kramer and Hennig, 2021).

Problem setup  The task is to estimate the mean parameter of an unknown initial condition in a car
tracking example. Define the Wiener velocity model on K = 10 equispaced points (At = 1/10),

3 2
(I, At-I (B, B, 3 P
A= (0 I > b= <(A§’2.12 arp, ) MmO Re=0 R )

All biases are zero, by, = 0, ry, = 0. Textbooks on Bayesian filtering and smoothing (Sarkka, 2013; Sarkka and
Svensson, 2023) use this Wiener velocity model to estimate the trajectory of a car. We populate m and Lo
with samples from a standard normal distribution and sample an initial condition

o — (01 02 91 02) ~ J\/(m0|0, LCom (LCO‘U)T). (25)
We sample artificial observations yi.r. From here on, the initial mean mq|q will be treated as unknown.

Implementation We combine fixed-point smoothing with expectation maximisation (Dempster et al., 1977)
to calibrate mg|o using the data y;.x. The expectation maximisation update for the initial mean in a linear
Gaussian state-space model is Mmuew = Mo g (Sdrkkd and Svensson, 2023), and this update repeats until
convergence. Here, mgx is the mean of p(zo | y1.x). We implement the fixed-point smoother recursion in
Cholesky-based arithmetic and run expectation maximisation for three iterations. We initialise the mean
guess by sampling all entries independently from a centred normal distribution with a variance of 100. We
track the data’s marginal likelihood (“evidence”), computing it online during the forward filtering pass.

Evaluation  The results are in Figure 4. They show how the combination of expectation maximisation with
fixed-point smoothing recovers the initial mean already after three iterations. The evidence increases at every
iteration, but that is normal for expectation maximisation (Wu, 1983). In conclusion, fixed-point smoothing
is a viable parameter estimation technique in a state-space model.

5 Discussion

Limitations and future work  Our new approach to fixed-point smoothing strictly generalises existing
techniques, but inherits some of their limitations: Even though the new recursion in Algorithm 1 is independent
of the type of state-space model, implementing the fixed-point smoother in closed form assumes a linear
Gaussian setup. Future work should explore robust fixed-point smoothing in nonlinear state-space models,
for example, through posterior linearisation (Garcia-Fernandez et al., 2016). Like all Gaussian smoothing
algorithms, our methods have cubic complexity in the state-space dimension because of the matrix-matrix
arithmetic or QR decompositions, respectively. Finally, other parametrisations of Gaussian variables could be
used with Algorithm 1 instead of covariance or Cholesky-based parametrisations (Algorithms 2 and 3); for
example, the information form or ensembles (Murphy, 2022; Houtekamer and Mitchell, 2005). Combining
these alternatives with numerically robust fixed-point smoothing could be interesting avenues for future work.
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i=1 Evidence: -17.92 =2 Evidence: 0.11 =3 Evidence: 0.13
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Figure 4: Initial distributions p(61, 602 | y1.x) of the car tracking model after running the fixed-point smoother
(recall x := (1,05, 01,05)). Left to right: After three iterations, the combination of expectation maximisation
with the fixed-point smoother finds the correct initial mean 6 = (1, 02) of the state-space model. Top: First
coordinate p(6; | y1.x ). Bottom: second coordinate p(6s | y1.x). “PDF”: “Probability density function”.

Conclusion This paper presented a new recursion for fixed-point smoothing in Gaussian state-space models:
Algorithm 1. It has lower memory consumption than existing approaches because it avoids state-augmentation
and foregoes storing all intermediate results of a Rauch—Tung—Striebel smoother. It also allows arbitrary
parametrisations of Gaussian distributions, and we use this perspective to derive a Cholesky-based form of
fixed-point smoothers. As a result, our method matches the speed of the fastest and the robustness of the
most robust methods, as has been demonstrated in three simulations of varying difficulty. Through these
successes, our contribution hopefully revives fixed-point smoothing as part of the literature on Gaussian filters
and smoothers. We anticipate notable performance improvements for algorithms at the interface of smoothing
and dynamical systems due to the newfound ability to reliably use non-standard smoothing algorithms.
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A Kalman filter recursions

The Kalman filter (Kalman, 1960) computes p(zx | y1.x) by initialising p(zq | y1.0) = p(z0) and alternating

Prediction: p(xr—1 | Y1:6-1) — p(@k | Y1.6-1) k=1,...K (26a)
Update: p(zk | y1:e—1) — p(zk | Yy1:8) k=1,.., K. (26Db)

Since all operations are linear and all distributions are Gaussian, the recursions are available in closed form.
Their parametrisation depends on the parametrisation of Gaussian variables as follows.
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A.1 Covariance-based parametrisation

Let k=1, ..., K. The prediction step computes the predicted distribution p(zx | y1.k-1) = N(mk|k_1, Crir—1)
from the previous filtering distribution p(zx—1 | y1:6—1) = N (mMi—1k—1, Ch—1jk—1) by

Mik—1 = Apmg_1jk-1, Crk—1 = AkCh_1h—1(Ax) " + By. (27)

The update step takes the predicted distribution, forms the joint distribution
P, yk | Y1—1) =k | 2)p(@k | y1:e—1) = N (Hizr, Ri) N (mgji—1, Crjp—1) (28)

and computes the update as p(xx | y1:x) = N (M k, Crji),

Skik—1 = Hrgmpp—1, (29a)
Sie—1 = HpCrjr—1(Hy) " + Ry, (29b)
Z = Crpp—1 (Hi) " (Skjp—1) ™", (29¢)
Ml = Mijk—1 + Zr(Yk — Skjk—1); (29d)
Ciit = Chjp—1 — ZuSkp—1(Z1) " (29e)

Tterating these two steps from k =1, ..., K yields p(zx | y1.x)-

A.2 Cholesky-based parametrisation

The Cholesky-based parametrisation predicts the mean like the covariance-based parametrisation. The
covariance prediction is replaced by the QR decomposition

_ (Lck—l k71)T(Ak)T
= ( (lLBk)T ) (30)

followed by setting L¢y ,_, = MR' (Krdmer and Hennig, 2024; Grewal and Andrews, 2014). The logic mirrors
that in Algorithm 3. The update step in Cholesky-based arithmetic amounts to a QR-~decomposition of
(Gibson and Ninness, 2005)

R R B (LRk>T 0 )
Q ( O mg) B ((Lckkl)T(Hk)T (Lck|)€,1>—r (31)
followed by setting
Loy =R, Zi=((%1)""R2)", Lc,, = Rs)". (32)

Then, use Zj, to evaluate my;, and iterate k — k& + 1. If p(yx | y1.6—1) is needed, evalaute sj;,—; like in the
covariance-based implementation. Choosing the QR decomposition by Gibson and Ninness (2005) avoids
implementing Gaussian updates via Cholesky downdates (e.g. Yaghoobi et al., 2022), which are sometimes
numerically unstable (Seeger, 2004). We refer to Kramer (2024, Chapter 4) for why the above assignments
yield the correct distributions.

B Rauch-Tung-Striebel smoother recursions
The Rauch—Tung-Striebel smoother proceeds similarly to the Kalman filter.

B.1 Covariance-based parametrisation

The prediction step in the smoother involves computing p(zx | y1.x—1) like in the filter. It further evaluates

p(er—1 | or,y10-1) = N(Gr_1p®k + Pr—1jk> Pe—1]k); (33a)
Gr-1je = Cr—1jk—1(A) T (Crp—r) ™ (33b)
Ph—1jk = Mp—1jk—1 — Gro1jxMkjk—1 (33¢c)
Peoijk = Pr1jj—1 — Gro1)6Crp1 s (Gro1jp) - (33d)

This conditional distribution is stored after every step. The rest of the step proceeds like in the Kalman filter.
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B.2 Cholesky-based parametrisation

The Cholesky-based parametrisation computes the same conditional distribution as the covariance-based
parametrisation but replaces matrix multiplication and matrix addition with another QR decomposition;
specifically, the QR decomposition (Gibson and Ninness, 2005)

R R (L))" 0
= . 34
B ( 0 %) ((Lck_llk_N(Ak)T (Lo yu)T (39
This QR decomposition is followed by setting
Lck’\k—l = (ml)Tv Gk—1|k = ((ml)ilfﬁQ)T, LP,%M,Q, = (%3)T. (35)

This step computes the Cholesky factors of Cyx—1 and P._y)x, as well as the smoothing gain G_y; in a
single sweep. It replaces the prediction step of the Cholesky-based Kalman filter. Compute my,—1 and py_q)x
like in the covariance-based parametrisation. Store these quantities and proceed with the update step of the
Cholesky-based Kalman filter. Again, refer to Kramer (2024, Chapter 4) for why these assignments yield the
correct distributions.

C Proof of Proposition 1

Recall the notation from Algorithm 2, most importantly, Gojo = I, pojo = 0, and Py = 0. Algorithm 1
computes the transition

(o | Zr, y1:e—1) = N(Goppr + pojis Pojk)- (36)

A forward pass with a Kalman filter gives

p(@k | Y1) = N (mpr, Crepre)- (37)
Then, due to the rules of manipulating Gaussian distributions,
p(xo | Y1) = N(Goprmui + pojis GoCrie(Gopr) " + Poje) (38)

follows. To show that this matches the result of Equation 7, it suffices to show

Pojk = Mojk—1 — GojkMi k-1 (39a)
Poi. = Cojr—1 — GopCrip—1(Gop) (39b)

because the remaining terms already coincide. We use induction to show Equation 39.
Initialisation For k = 1, we get
Popn = Go|opo|1 =+ Pojo = Poj1 = Mojo — G0|1m1\o, (40)

which shows Equation 39a (compare the smoothing recursion in Appendix B for the last step), as well as

Pojr = GojoPoj1Gojo + Fojo = Pon (41)
which gives Equation 39b.
Step Now, let Equation 39 hold for some k. Then, (abbreviate “RTSS”: “Rauch-Tung-Striebel smoother”)
Pojk+1 = Go|kPr|k+1 + Polk (Algorithm 2)
= Go\kpk|k+1 + Mo|g—1 — Go\kmk\kfl (Equation 39a holds for k)
= Gopk (M — Grjkr1Mbt11k) + Mojk—1 — GolpMjk—1 (Expand py|p41 as in RTSS)
= Gojemk — GokGrk+1Mus1)k + Mojk—1 — GojpMek—1 (Resolve parentheses)
= mojk—1 — Gok(Mrjk—1 — M) — Gojk1 Mk |k+1 (GojkGrlk+1 = Gojk+1)
= Mok — Gojk+1Mkt 1k (Equation 7)
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Equation 39a is complete. Similarly,

Popet1 = GopePajir1(Gope) " + Popi (Algorithm 2)
= GO\kPk\k+1(Go|k)T + Cojp—1 — Go‘ka‘k_l(Gmk)T (Equation 39b holds for k)

= Gok(Crpk — Grp1Crp1 16 (Grpier1) N (Gow) T + Cope—1 — GopeCrjr—1(Gop)
(Expand Pyjj41 as in RTSS)

= GoCris(Gok) " = Gok1Crrar(Gojpa) T + Coe—1 — GoCrir—1(Gopr) "
(Expand parentheses, GojxGrjr+1 = Gojr+1)

= Cojk—1 = Gopk(Crjp—1 = Ckip) (Gopr) " = Gojrg1Crprn(Goppgr) | (Rearrange)
= Coi = Gope1 Crorr i (Goperr) (Equation 7)

the covariance recursion must hold. Equation 39 holds for all £ > 1, and the statement is complete.
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