
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOPOGAUSSIAN: INFERRING INTERNAL TOPOLOGY
STRUCTURES FROM VISUAL CLUES

Anonymous authors
Paper under double-blind review

ABSTRACT

We present TopoGaussian,1 a holistic, particle-based pipeline for inferring the in-
terior structure of an opaque object from easily accessible photos and videos as
input. Traditional mesh-based approaches require tedious and error-prone mesh
filling and fixing process, while typically output rough boundary surface. Our
pipeline combines Gaussian Splatting with a novel, versatile particle-based differ-
entiable simulator that simultaneously accommodates constitutive model, actua-
tor, and collision, without interference with mesh. Based on the gradients from
this simulator, we provide flexible choice of topology representation for optimiza-
tion, including particle, neural implicit surface, and quadratic surface. The resul-
tant pipeline takes easily accessible photos and videos as input and outputs the
topology that matches the physical characteristics of the input. We demonstrate
the efficacy of our pipeline on a synthetic dataset and four real-world tasks with
3D-printed prototypes. Compared with existing mesh-based method, our pipeline
is 5.26x faster on average with improved shape quality. These results highlight
the potential of our pipeline in 3D vision, soft robotics, and manufacturing appli-
cations.

1 INTRODUCTION

The idea of seeing through the surfaces of an opaque object is an intriguing concept contemplated
by scientists, engineers, and science-fiction writers. The capability of inferring the internal topolog-
ical structure of an object from its surface information unlocks many creative applications, e.g., 3D
model design and industrial manufacturing. Traditional approaches from scientific or engineering
disciplines either require intrusive probing sensors or operate on expensive computed tomography
(CT) or magnetic resonance imaging (MRI) equipment, underscoring the challenge of this prob-
lem. Recent developments in 3D vision provide powerful tools for reconstructing 3D scenes with
easily accessible, non-intrusive visual input only, e.g., NeRF (Wang et al., 2021) or Gaussian Splat-
ting (Kerbl et al., 2023) with photos or videos as input. However, these methods only provide
visually plausible surface information of objects with no or hallucinated interior topology structure.

This paper focuses on tackling the following problem: Given the motion (images or videos) of the
object, find one interior topological design that can explain this motion physically. We develop a
holistic pipeline for inferring the interior topology of an opaque object in order to recover its major
physical characteristics with easily accessible visual input (photos and videos) only. Our pipeline,
TopoGaussian, begins with collecting multi-view images and uses Gaussian splatting to obtain a
point cloud encoding the object’s exterior surface shape and appearance (Kerbl et al., 2023). Next,
we construct a volumetric point cloud by filling interior points (Xie et al., 2023), and we use a
topology representation to attach the physical parameters to each point. Here we provide three
options to encode the topology structure. One option depicts the boundary directly based on a
topology parameter of each particle, and map this parameter to its physical attribute, inspired by
standard topology optimization methods on voxels (Sigmund, 2001a) and particles (Li et al., 2021);
the other two options leverages an parametric boundary surface based on neural network (Park et al.,
2019) and quadrics (Hafner et al., 2024) respectively to represent the topology structure, and assign
physical attributes based on this boundary. To accommodate the particle representation, we develop
a novel, versatile particle-based differentiable simulator with simultaneous support for rigid and

1https://topo-gaussian.github.io/TopoGaussian/
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soft objects with different topology structure. Finally, we compare the simulation results and the
object’s dynamic motion in a video and optimize the loss defined on the difference between them.
With access to the simulation gradient, we run gradient-based methods to optimize the parameters
in topology representation and obtain an interior topology structure that leads to similar motions
established in the input video. Our pipeline presents a mesh-free representation for flexible and
expressive modeling, simulation, and optimization of opaque objects gracefully unified in a holistic
framework of particles only. This avoids tedious and error-prone mesh fixing and filling, and outputs
a more smooth and 3D-print-friendly result which can be used in manufacturing. While traditional,
intrusive methods can output an accurate structure that we cannot match, they require expensive and
complex equipment. Our non-intrusive pipeline only uses easily accessible images and videos as
input with low cost, exhibiting potential in the applications that focus on general outside behaviours
(like generative models).

We design several synthetic tasks and four real-world tasks to demonstrate the efficacy of our
pipeline. We present a synthetic dataset and perform benchmark experiments comparing our method
with two strong mesh-based baselines PGSR (Chen et al., 2024) and Gaussian Surfels (Dai et al.,
2024), based on the processing time and reconstruction quality (3D printability). Our method is
5.26x faster and 4.81x faster than PGSR in two different settings, respectively, and 1.28x faster than
Gaussian Surfels, where Gaussian Surfels fails to output visually correct result in two examples.
Meanwhile, our method exhibits significantly higher quality of reconstructed topology structure
than the baselines, with 2.33x, 2.5x and 2.55x respectively. Then we 3D print one example to verify
the feasibility in real manufacturing. Moreover, we extend our method to more synthetic validations,
four real world validations, and several ablation studies, which show the ability of our pipeline to
handle input under various conditions.

In summary, this work makes the following contributions:

• We develop a novel, non-intrusive pipeline for reconstructing motion with a physically correct
internal topology structure of solid objects from visual inputs only, i.e., multi-view images and
videos of motion.

• We present a particle-based differentiable simulation compatible with three flexible topology rep-
resentations including particle, neural implicit surface, and quadratic surface. Together with Gaus-
sian splatting, our simulation and optimization methods lead to a completely meshless pipeline.

• We demonstrate the quality and efficiency of our pipeline quantitatively against two strong base-
lines, and we further validate the generalizability of our method on a wide range of synthetic and
real-world scenarios with diverse yet complex physics.

2 RELATED WORK

3D Scene Reconstruction Reconstructing 3D scenes from visual inputs is a fundamental problem
extensively studied in computer vision for decades. Recent representative methods for this prob-
lem include NeRF (Wang et al., 2021) and Gaussian Splatting (Kerbl et al., 2023). NeRF bases
its scene geometry representation on implicit surfaces learnable from multi-view images. Several
improvements are conducted in its speed, quality, and applicability in dynamic and deformable ob-
jects (Barron et al., 2021; Deng et al., 2022; Pumarola et al., 2021a; Martin-Brualla et al., 2021).
Gaussian Splatting (Kerbl et al., 2023) is optimization-based and built upon a point-cloud represen-
tation, and follow-up studies have proposed various improvements in its efficiency and reconstruc-
tion quality (Chen et al., 2023; Matsuki et al., 2023; Tang et al., 2023; Wu et al., 2023; Yi et al.,
2023). In particular, Xie et al. (2023) showcases novel synthesis of motions from editing a dynamic
model recovered from Gaussian Splatting, and Guo et al. (2024) reconstructs physically compati-
ble objects using a quasi-static simulation. However, these works primarily focus on reconstructing
visually plausible surface information of an object without inferring a dynamically plausible volu-
metric structure.

Differentiable Simulation Differentiable simulation extends traditional simulation with gradients
and revives gradient-based optimization in graphics, learning, and robotics applications (Yu et al.,
2023; Werling et al., 2021; Xu et al., 2021; Lin et al., 2021; Qiao et al., 2021; Li et al., 2022). Pre-
vious studies have developed differentiable simulators for various physical systems including rigid
objects (Geilinger et al., 2020; Wang et al., 2019), deformable solids (Liu et al., 2023; Gjoka et al.,

2
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Figure 1: Pipeline overview (Sec. 3). Our pipeline takes as input multi-view photos of an opaque
object and its video of motion. We run Gaussian splatting on the multi-view images to obtain a point
cloud characterizing its surface geometry and appearance. Next, we refine and fill in internal points
to obtain a volumetric point cloud and use our topology representation (with three flexible choices)
to attach physical parameters on it. We then simulate the volumetric point cloud with our particle-
based differentiable simulator, which compares its simulated motion with that in a reference image
or video and backpropagates the gradient of the motion difference to the topology representation.
Finally, we perform the optimization algorithm based on the gradient from the simulator and obtain
the resulting structure that matches the input motion.

2022), cloths (Yu et al., 2023), and fluids (Li et al., 2024). Many of these differentiable simulators
are mesh- or finite-element-based due to their benefits in handling irregular shapes with an explicit
sharp boundary representation. However, these methods require high-quality mesh discretization,
which can be computationally expensive to obtain. In contrast to these works, we focus on a purely
particle-based differentiable simulator supporting shapes with different topology structures in ac-
commodation with Gaussian splatting representation. This avoids tedious mesh fixing and filling by
native support for a particle-only pipeline.

Topology Optimization Topology optimization is an optimization-based structure design tech-
nique originating from structural and mechanical engineering (Sigmund, 2001a; Eschenauer & Ol-
hoff, 2001; Wu et al., 2021; Deaton & Grandhi, 2014). Traditional topology optimization techniques
consider a density-field representation of a structural geometry on a regular grid and optimizes in-
dependent decision variables at each voxel for optimal structural or mechanical performance, e.g.,
minimum compliance (Sigmund, 2001a; Yang & Chen, 1996; Liu et al., 2018). Previous studies
have also explored the idea with different geometric representations, e.g., level sets (Wang et al.,
2003) and particles (Li et al., 2021). Recent years, neural implicit surface method has been pro-
posed (Zehnder et al., 2021), which encodes the shape with a deep neural network (Park et al.,
2019). Moreover, for rigid bodies, Hafner et al. (2024) has proved that quadratic surfaces are suf-
ficient for topology optimization problems that only involve rigid physical characteristics. Existing
topology optimization works primarily focus on applications in engineering disciplines, e.g., struc-
tural and mechanical analysis, aeronautics, and architecture (Jensen & Sigmund, 2011; Zhu et al.,
2016; Dühring et al., 2008), while our pipeline extends topology optimization technique to the ap-
plications in 3D computer vision and robotics.

3 METHOD OVERVIEW

The overarching goal of our pipeline is to find the internal topology structure of an opaque object
to match its physically simulated motion with its dynamic motion from a reference input. Our
pipeline contains four steps: volumetric shape generation (Sec. 4), which takes as input multi-view
photos of a possibly hollowed opaque object and generates a densely sampled volumetric point
cloud; topology representation (Sec. 5), which encodes the topology structure with flexible topology
representations and attaches a physical parameter (e.g. density or Young’s modulus) to each point

3
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in the point cloud; simulation (Sec. 6), which evaluates the dynamic motion of the point cloud for a
given interior topology design configured by each point’s physical parameter; optimization (Sec. 7),
which runs gradient-based optimization to adjust the parameters in the topology representation based
on the loss of the simulated motion and the reference motion, and output a shape that replicates the
dynamic motion of the object in a reference video. Fig. 1 gives an overview of the pipeline.

4 VOLUMETRIC SHAPE GENERATION

We begin by collecting multi-view photos of the object and running Gaussian Splatting due to its
efficient and high-quality reconstruction of 3D objects from images. The output point cloud from
Gaussian Splatting gives visually and geometrically plausible surface information about the object
based on particles. This point-cloud representation of surface information serves as a basis towards
the optimization of interior topology structure. Following PhysGaussian (Xie et al., 2023), we refine
and fill in points to the output point cloud from Gaussian Splatting, leading to a clean and densely
sampled volumetric point cloud {(Xi, Vi)}Ni=1 where N denotes the number of points, Xi their 3D
locations, and Vi the volume associated with Xi. The point cloud can be viewed as a particle-based
discretization of the solid object.

5 TOPOLOGY REPRESENTATION

Now we have a volumetric point-cloud, and we need to represent different interior topology within
it, including pneumatic hollows and bone-muscle structures. Based on the point-cloud and previous
work (Li et al., 2021; Park et al., 2019; Hafner et al., 2024), we provide two topology representations,
point-based and surface-based, explained in Sec. 5.1 and Sec. 5.2 respectively.

5.1 POINT REPRESENTATION

For an internal topology structure, we use an indicator function r(x) to define. For example, in a
pneumatic actuator, we use r(x) = 1 to indicate the hollow part and r(x) = 0 to indicate the solid
part. Then we discretize this indicator function to the point-cloud by assigning a value to each point
that controls the nearby area of this point. While strict binary variable is discrete and not compatible
with gradient-based optimizer (Sigmund, 2001b), we consider assigning a decision variable to each
point and using a sigmoid function to map it to the binary variable. Then the topology structure is
represented by this decision variable.

5.2 SURFACE REPRESENTATION

Point representation exhibits highly flexible topology representation, but it is hard to encode specific
geometric prior information into it. Based on this, our pipeline further provides two topology repre-
sentations based on a parametric surface. We use a signed distance function (SDF) s(x) to encode
the boundary surface of the object, where x is any position inside the object, and s(x) outputs the
signed distance from this position to the boundary surface. Then the surface is the zero level set
(s(x) = 0) of the SDF (Osher et al., 2004). Similarly, we discretize the SDF to the point-cloud,
and use a sigmoid function to map the signed distance to a binary indicator function. We provide
two concrete SDF representations to parameterize the surface: neural networks (Park et al., 2019)
and quadrics (Hafner et al., 2024). In particular, quadrics are proved to be sufficient for topology
optimization on specific rigid-body dynamic tasks (Hafner et al., 2024) with only 10 parameters.

6 SIMULATION

With the volumetric point-cloud containing physical parameters, the next step in our pipeline in-
volves simulating the dynamic motion which we can draw a comparison with the input motion and
perform optimization. Our work focuses on rigid and soft solid objects, both of which have ma-
ture simulation solutions based on (finite-element) mesh representations Sifakis & Barbic (2012a);
Sin et al. (2013); Lee et al. (2018). However, as we pointed out, obtaining high-quality mesh is
non-trivial, requiring error-prone and tedious efforts, while the output from Gaussian Splatting is

4
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Figure 2: Six rigid experiments (Sec. 8.2). For each experiment, left: initial balancing position of
the object with fully solid topology structure; middle: final balancing position of the object with the
result from our pipeline; right: optimization target.

point-cloud. Therefore, our pipeline proposes to consider a fully particle-based simulator instead
and aims to build a completely mesh-free pipeline. We note that previous works like PhysGaus-
sian (Xie et al., 2023) have discussed a similar motivation behind a fully particle-based pipeline, but
we are faced with extra technical challenges from representing the internal geometric structure in the
particle system. We discuss the detail of our simulator in the following parts: constitutive models,
actuation model, collision model, time integration and differentiability.

6.1 CONSTITUTIVE MODELS

Rigid Bodies The dynamic motion of rigid bodies is governed by the Newton-Euler equa-
tion (Lanczos, 2012; Liu & Jain, 2012) on six DoFs. Specifically, the governing equation requires
access to the mass m, the center of mass c, and the moment of inertia I . From the indicator function
r(x) defined before, we can calculate the mass of the particle near i from mi = ρVir(xi). Then the
dynamic properties can be computed from {(xi,mi)} in a straightforward manner. For example,
the mass m =

∑
i mi, and the center of mass c can be computed as

c =

∑
i mixi

m
. (1)

Similarly, the moment of inertia can be computed from

I =
∑
i

−mi[xi − c][xi − c], (2)

where [·] maps a vector to its cross-product (skew-symmetric) matrix.

Soft Bodies We consider simulating a soft body made of hyperelastic materials. The critical step
is to estimate the deformation gradient Fi, a 3 × 3 tensor characterizing the local deformation
around each Xi. Here, we follow the standard practice in particle-based simulation for deformable
solids (Müller et al., 2005; 2022) to construct Fi. More concretely, given a deformed point cloud
{xi} during simulation, we estimate for any point xi its Fi with the method in Becker et al. (2009):

Fi = I +

∑
j

Vj(R
⊤
i (xj − xi)− (Xj −Xi))∇W (Xi −Xj)

T

, (3)

where j loops over particles in a neighborhood of Xi, and R⊤
i is a rotation transformation based on

the relative poses of these neighboring particles (Becker et al., 2009). With the definition of Fi at
hand, we can calculate the energy density Ψ and stress tensor P based on the Saint Venant–Kirchhoff
model (Sifakis & Barbic, 2012b).

5
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Table 1: Reconstruction quality. The lower the better. The optimal results are bolded.

Method frog swim-ring cow kangaroo pear tumbler
Ours 0.306 0.242 0.300 0.388 0.245 0.305
PGSR (voxel size=0.05) 0.745 0.464 0.410 0.841 1.078 0.953
PGSR (voxel size=0.2) 0.781 0.894 0.801 0.480 1.027 0.755
Gaussian Surfels 0.851 0.882 Fail 0.976 1.148 0.963

Figure 3: Comparison on optimization loss (left) and preprocessing time (right). “Fail” on the top
of the bar means that the method fails to output visually correct result in the example.

6.2 ACTUATION MODEL

In order to extend the applications of the previous soft-body model and design soft bodies which can
perform active motion, we adopt the actuation model in soft robotics. In particular, the pneumatic
chamber embedded in the soft body is typically characterized by a customized chamber shape design
invisible from the soft body’s exterior surface. We assume that the air pressure force induced by the
pneumatic actuator is the conservative force from the volume energy (Luo et al., 2022):

Ea({xi}) =
∫
Ω{xi}

pdv, (4)

where p denotes the air pressure. Note that the integral domain is the volumetric region of the
deformed shape. With Fi at hand, we can approximate Ep as

Ea ≈
∑
i

pvi =
∑
i

p|Fi|Vi, (5)

where |Fi| represents the determinant of Fi. Therefore, to support pneumatically actuated soft-body
simulation, we use the conservative force derived from Ea as the actuation force.

6.3 COLLISION MODEL

We follow the existing study on penalty-based collision simulation (Andrews et al., 2022) to build
our collision model, leveraging the advantage of the penalty-based method that it properly balances
accuracy, speed, and differentiability. More concretely, we add for each particle of the soft body a
penalty energy density

Epi =
1

2
k (min{δ − di, 0})2 (6)

to discourage it from penetrating the obstacles. In Eqn. (6), k is the penalty stiffness, δ is a small
translation parameter to avoid penetration, and di is the signed distance between particle i and the
obstacle (e.g. ground). Then, the contact force is also the conservative force derived from the penalty
energy.

6.4 TIME INTEGRATION

With the total energy and force of the whole system, we can perform time integration to solve the
motion. For rigid bodies, based on the Newton-Euler equations (Lanczos, 2012; Liu & Jain, 2012),
we perform RK2 integration. For soft bodies, we use Leapfrog integration for non-actuation cases

6
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Figure 4: Comparison between our method and mesh baselines (Sec. 8.1). Red part represents solid
part and blue part represents hollow part. Top row: our method; bottom three rows: mesh baselines.

and implicit Euler integration with incremental potential (Martin et al., 2011) in actuation cases. The
details of incremental potential can be found in Appendix Sec. A.2.

6.5 GRADIENT COMPUTATION

We apply the chain rule and the standard adjoint equation (Du et al., 2021; Geilinger et al., 2020;
Hahn et al., 2019; McNamara et al., 2004) to equip the proposed particle-based simulator with gradi-
ent information. Detailed derivations of the gradients in rigid-body and deformable-body simulators
can be found in previous works, e.g., ChainQueen (Hu et al., 2019) and DiffPd (Du et al., 2021)
for deformable bodies, Huang et al. (2024) for pneumatic actuators, and Andrews et al. (2022) for
collision models.

7 OPTIMIZATION

The final step of our pipeline is the optimization based on the L2 loss from the difference between
the simulation motion from the previous section and the input reference motion. (See Fig. 1.) We
extract certain motion characteristics (e.g. vibration frequency, balancing pose) and define the loss
based on the characteristics. The optimization variable is the parameters in the topology represen-
tation (Sec. 5). We use gradient-based optimizer (L-BFGS-B and Adam), reading the loss from the
differentiable simulator (Sec. 6.5).

8 RESULTS

8.1 EXPERIMENT SETUP

Task Description We comprehensively evaluate our method on diverse tasks, including nineteen
rigid bodies and two soft bodies with static and dynamic settings and their extension to four real
world experiments. Each task takes multi-view images and the motion video of the object as input.
Our goal is to find an interior topology structure whose simulated motion matches the reference
motion, characterized by static/dynamic features like balancing position or frequency. Fig. 2 and
Fig. 5 exhibit several examples of these tasks.

Baselines Our main task is to build a particle-based pipeline to find the physically plausible in-
ternal topology structure, which is a new task with few baselines. Recent PhysGaussian (Xie et al.,
2023) does not consider the optimization of internal topology structure. Therefore, we build the

7
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Figure 5: One soft body expereiment (Sec. 8.2). Left part: Top row: frames from simulated motion
of a fully soft initial guess; middle row: simulated motion of our optimized result; bottom row:
target motion. The red rectangles mark the major different parts. Right part: slice of the optimized
topology structure with red representing soft part and blue representing hard part.

baseline based on two current mesh-based Gaussian Splatting SOTA PGSR (Chen et al., 2024) and
Gaussian Surfels (Dai et al., 2024). We replace the topology representation with the output triangle
surface mesh from the model, and chain it into the rest of our pipeline. By comparing the efficacy
of mesh- and particle-based methods, we show the advantages of insisting on a fully particle-base
method.

Metrics We don’t compare the output shape with the shape set in generating the target motion due
to two reasons. One reason is that we only consider image/video input, and especially in rigid tasks,
this comparison is ill-defined since multiple solutions can share the same motion, which means that
this metric fails to measure the performance of the method. The other reason is that in practical
applications, this ground truth topology structure can not be easily acquired, requiring expensive
equipment like CT/MRI. Instead, we use the following three metrics to test the performances:

• Optimization Loss: The L2 loss between simulation motion and reference motion (Sec. 7).
• Time: Volumetric shape generation time from reading multi-view images input to simulation start

(Sec. 4 and Sec. 5).
• Smoothness: The Laplacian of surface normal. This is motivated by manufacturing applications

(e.g., 3D printing) which favor smooth surface.

8.2 MAIN RESULTS

Rigid Body Rigid bodies with different shapes are hung by a string at a given position, and our
goal is to optimize the topology structure of their internal cavities to remain horizontal. As this
is a static equilibrium example, we first extract the center of mass c of the hawk from a shape
parameter configuration s. We stress that varying s changes the interior shape, which adjusts the
weight distribution of the hawk and, therefore, affects the center of mass. We define the loss as the
distance between c and the hanging position. Fig. 2 shows six examples and visualizes the initial,
optimized, and target pose of the rigid bodies. The full results can be found in Appendix Sec. C.2.

Fig. 3 exhibits the optimization loss and volumetric shape generation time of our method and each
baseline on the six experiments, and the full figure can be found in Appendix Sec. C.2. It can
be observed that all these methods exhibit similar and sufficiently small final loss, meaning that
they all simulate a motion close to reference. On the other hand, for volumetric shape generation
time, our method is 5.26 times faster than PGSR (voxel size=0.05), 4.81 times faster than PGSR
(voxel size=0.2), and 1.28 times faster than Gaussian Surfels on average. This result shows that our
pipeline is more efficient owing to leveraging the flexibility of particles, thus avoiding expensive
mesh processing.

8
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Figure 6: Wobbly doll (Sec. 8.3). Left: a photo of the wobbly doll. Middle: frames from a video
recording of the harmonic oscillation of the doll (top), simulated motion with an interior design
optimized from our pipeline (middle), simulated motion of a solid doll (bottom). Right: a cross-
section visualization of the optimized interior geometry from our pipeline, where black represents
solid part and grey represents hollow part.

Left: optimized result; right:
fully solid initial guess. Red
line: target pose; green line:
actual pose.

For the quality of reconstruction, we try neural implicit surface and
quadrics topology representations in our methods, and find that there
is no obvious quality difference between two representations, which
is corresponding to the conclusions in Hafner et al. (2024). Tab. 1
lists the quality index of our method and the baselines on the six ex-
amples, and Fig. 4 visualizes these results (complete data and visu-
alization results in Appendix Sec. C.2). More concretely, the quality
of our method is 2.33 times better than PGSR (voxel size=0.05), 2.50
times better than PGSR (voxel size=0.2), and 2.55 times better than
Gaussian Surfels on average. Furthermore we observe that in the
cow task, Gaussian Surfels fails to output a visually correct result.
This showcases the advantages of the our particle-based pipeline,
which does not require an expensive and error-prone high quality mesh division. Based on the
smooth geometry from our pipeline, we 3D print the pear example to exhibit our application in
manufacturing. Moreover, we perform several ablation studies shown in Appendix Sec. C.4.

Soft Body We also extend our synthetic dataset to soft bodies with two experiments with point
topology representation. Here we introduce one of them and the other can be found in Appendix
Sec. C.2. The experiment is a soft pear bouncing on the ground, with a hard part inserted into it.
Different topology structures of this hard part lead to different bouncing behaviors, while our goal
is to optimize this structure to reproduce the target video. The loss is defined as the distance of the
motion of several pivot points on the pear to the target.

Fig. 5 visualizes the result of the experiment. The fully soft initial guess output a motion deviating
large from the target, while our optimized result can closely reproducing the target motion.

8.3 REAL-WORLD VALIDATIONS

Finally, we validate our pipeline on four real-world experiments. These experiments include rigid
and soft bodies with static and dynamic settings. One rigid and one soft body examples are shown
here, and the rest can be found in Appendix Sec. C.3

Wobbly Doll The task involves inferring the interior structure of a wobbly doll, a classic rigid-
body toy with oscillating motions (Fig. 6 left and top middle). The interior of a wobbly doll is
typically non-empty. The goal is to infer one possible interior structure of a wobbly doll from a
video recording of its harmonic oscillations (Fig. 6 top middle).
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Figure 7: Pneumatic finger (Sec. 8.3). Left: a photo of the pneumatically actuated soft finger.
Middle left: the bending finger with maximal air pressure. Middle: bending finger simulated with
an optimized design. Middle right: the finger simulated with an initial guess of the chamber location;
Right: the optimized chamber location where the black is solid part and the grey is chamber.

We define an objective function that penalizes the discrepancy of the oscillation period between
the reference video and the simulated motion. We extract the period of oscillation as well as the
maximal tilting angle θ by OpenCV. Then, we compare these reference values with the simulated
value from the physical parameters and compute the loss.

Fig. 6 (right) shows our optimized interior structure of the doll, where most of the mass is clustered
to one side of the bottom. The simulated motion of this optimized design (Fig. 6 middle) closely
matches the maximal tilting angle and the period the recorded video (4.0Hz. See Fig. 6 top middle).
In contrast, an initial guess of a fully solid doll leads to a substantially different oscillation period
(2.4Hz. See Fig. 6).

Pneumatic Finger This experiment is inspired by a classic application in soft robotics, which
showcases the ability of our pipeline in processing soft bodies with pneumatic actuators. The task is
to infer the chamber design in an opaque, pneumatically actuated soft finger, a widely used model
in soft robotics (Fig. 7 left). This task is substantially more challenging than previous ones as it
involves deformable bodies and air pressure in a pneumatic chamber. Given a video recording of the
bending motion of the soft finger with increasing air pressure, our goal is to deduce the inflatable
chamber design to reproduce the final bending angle (Fig. 7 middle left). We extract reference angle
from input by OpenCV, and compare it with our simulated value. Fig. 7 middle right shows that there
is no obvious bending with initial guess, and a visually correct bending with our final result. The
result indicate that we need to add a small chamber in the middle bottom part, which is reasonable
to achieve the target bending.

9 CONCLUSIONS AND LIMITATIONS

We present a holistic pipeline for optimizing the interior topology structure of opaque objects from
visual inputs. Our pipeline consists of Gaussian Splatting, topology optimizer with flexible repre-
sentation choices, and a novel differentiable point-cloud simulator. Our whole pipeline is built upon
a gracefully unified particle-based representation free from error-prone mesh extraction and process-
ing in modeling, simulation, and optimization. We validate our pipeline on a diverse set of tasks,
covering rigid bodies, soft bodies, collision and actuation with various static and dynamic scenes.
Through the comparison with mesh-based methods, we show that our particle-based method has the
advantages of higher speed and smoother output. Our pipeline enables promising applications in
reverse engineering tasks in 3D vision and soft robotics.

Our work has several limitations. First, our pipeline currently focuses on a single object with two
types of material. Second, Dynamic NeRF (Pumarola et al., 2021b) and 4D Gaussian (Wu et al.,
2024) also performs 3D scene reconstruction and we do not compare with them. The main reason is
that these works only consider the surface information without guarantee of a physically plausible
output, meaning that they may not be able to handle the manufacturing applications like 3D printing.
Despite of this, it would still be interesting to compare our approach with them. Third, current
optimization, especially for neural implicit surface and soft bodies, still costs certain time and is
only offline. It would be promising to accelerate them to real time and supports interactive demos.
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A DETAILS OF ALGORITHMS

A.1 SOFT BODY DYNAMICS

Discretization We start from the discretization and interpolation of functions on the object space.
For any function f(x) on the object, we records its value on each particle fi. Then for any position
x, the function value can be interpolated as

⟨f(x)⟩ =
∑
i

f(xi)W (x− xi, h)
mi

ρi
(7)

where W (r, h) is the kernel function used to smooth the interpolation. h is the interpolation range
parameter and usually set to 1 to 2 times the average distance between particles. There are many
forms of the kernel function, while we use the version based on spline functions Monaghan &
Lattanzio (1985), with the following form

W (r, h) =
1

πh3


1− 3

2q
2 + 3

4q
3 if 0 ≤ q < 1

1
4 (2− q)3 if 1 ≤ q < 2

0 otherwise
(8)

where q = |r|/h. mi is the mass of particle i, and ρi is the density near particle i, which can be
computed from

ρi =
∑
j

mjW (x0
ij , h) (9)

where x0
ij is the undeformed displacement from particle j to i.
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Geometry When the soft body deforms, we can write the deformation map between the deformed
position x and undeformed position x0 in x0 7→ x = x0+u, while the Jacobian of the deformation
map can be writen in J = I +∇uT . Note that ∇uT can be decomposed into a scaling part and a
rotation part, while only the scaling part is effective for mechanical computations. Thus, we need to
extract the rotation matrix Ri for each particle based on its initial neighborhood. Define

Apqi =
∑
i

miW (x0
ij , h)

(
(xj − xi)(x

0
j − x0

i )
T
)

(10)

Then Ri can be computed from the polar decomposition of Apqi, and

∇ui =
∑
j

mj

ρj
uji∇W

(
x0
ji, h

)T
(11)

where
uji = R−1

i (xj − xi)−
(
x0
j − x0

i

)
(12)

Mechanics Then we can use either non-linear Green-Saint-Venant strain tensor

ϵ =
1

2

(
JTJ − I

)
(13)

or the linear Cauchy-Green strain tensor

ϵ =
1

2

(
J + JT

)
− I (14)

to calculate the stress energy of the object. Based on Saint Venant–Kirchhoff model, the stress
energy can be written as

E =
∑
i

mi

ρi

(
µϵ : ϵ+

λ

2
(tr(ϵ))2

)
(15)

where µ and λ are the Lame parameters of the material. Then the stress force on each particle can
be computed from the gradients of stress energy with respect to the position of each particle.

A.2 TIME INTEGRATION

We will briefly explain the math details of the implicit time integration based on incremental poten-
tial in this section. Implicit time integration requires us to solve the following two equations

vk+1 = vk +M−1f(xk+1)∆t (16)

xk+1 = xk + vk+1∆t (17)
where xk and xk+1 is the position at time step k and k+ 1, vk and vk+1 is the velocity at time step
k and k + 1, f is the total force, ∆t is the size of time step, and M is the mass matrix. Notice that
f is usually in a complex form, meaning that there is usually no analytical solution to this equation.
To numerically solve it, we write f(x) = −∇E(x) + fext, splitting it into internal and external
part. Then we have

∇E(xk+1) +
1

∆t2
M

(
xk+1 −

(
xk +∆tvk +∆t2M−1fext

))
= 0 (18)

If we rewrite this into

∇
(
E(xk+1) +

1

2∆t2
tr
(
(xk+1 − yk)

TM(xk+1 − yk)
))

= 0 (19)

where yk = xk + ∆tvk + ∆t2M−1fext. Notice that this can be converted into an optimization
problem, and then we can use Newton optimizer to solve xk+1.

A.3 VOLUMETRIC REPRESENTATION

We will more information in this section to explain the neural implicit network and quadratic surface
representations in our pipeline.
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Table 2: Simulation parameters. N/A means that the experiment does not involve this parameter.

Experiment Time step (s) Density (kg/m3) Young’s modulus (Pa) Poisson’s ratio
Rigid 5e-3 1e3 N/A N/A
Soft 5e-4 1e3 1.5e5 (softer); 3e7 (stiffer) 0.4
Rigid (real) 5e-3 5e3 N/A N/A
Soft (real) 5e-4 5e3 1e7 0.49

Neural Implicit Network The neural network reads the position in the Euclidean space as input,
and output the SDF value of this position by encoding the internal topology into the network. More
concretely, we can write it as

SDF (x) = fθ(x) (20)

, where θ is the parameter representing the internal topology.

Quadratic Surface Based on the conclusion from (Hafner et al., 2024), we can use a quadratic
function to parametrize the internal topology of a rigid body if the problem only involves the rigid
dynamic characteristics of the object. Therefore, the SDF can be written as

SDF (x) = xTAx+ bTx+ c (21)

Considering the symmetry, there will be only 10 degrees of freedom in 3D cases, which can signifi-
cantly simply the problem.

B DETAILS OF EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

We implemented the core steps in our pipeline in C++ and Python. We parallelized the differentiable
simulator with both CUDA on GPUs and OpenMP on CPUs, combining with Nvidia Warp. We used
Open3D for point cloud processing and OpenCV for reference video processing, and PyTorch for the
implementation of neural implicit surface. We evaluated our pipeline on the tasks below on a server
with an AMD EPYC 9754 128-Core CPU, 12× DDR5 4800 16GB (384GB in total) RAM, and 1 ×
NVIDIA RTX 4090 24G GPU. We used Open3D to perform point cloud processing, OpenCV for
video processing, and L-BFGS-B and Adam for optimization.

B.2 HYPER-PARAMETERS

Neural Implicit Surface We implement this neural network with eight fully connected layers,
each of which is applied with dropouts. All internal layers have size 512 × 512, and are connected
with ReLU non-linearities. The network is trained with weight-normalization upon the gradients
from the differentiable simulator. We train for 10000 epochs with learning rate 3e-6.

Simulation The basic simulation parameters are listed in Tab. 2, while the actuation pressure of
the soft hand is set to be 5e5 Pa.

C ADDITIONAL RESULTS OF EXPERIMENTS

C.1 FULL GALLERY OF SYNTHETIC DATASET

We visualize a full gallery of our synthetic dataset in Fig. 8. In addition to the complex geometries,
we also attach heterogeneous textures on the shapes to (1) match the case in real world and (2)
alleviate the ambiguity for multi-view reconstruction.
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Figure 8: Full gallery of our dataset. We create a diverse set of different geometries with complex
textures to evaluate our method.

C.2 FULL RESULT OF THE COMPARISON WITH BASELINES

We compare our method against three strong baselines on our proposed extensive dataset (Sec. 8.2).
Fig. 9 shows the complete optimization loss of our method and the baselines, where we observe that
all these methods give similar and sufficiently small loss except for the failure cases. Fig. 11 shows
the volumetric density difference between the optimized result and ground truth, Fig. 12 shows the
difference of the result on some unseen test sets, and Fig. 13 shows the difference of center of mass.
In these three figures, we all observe that our method achieve the most accurate result. Fig. 10 shows
the complete volumetric generation time, where we can observe that our methods is faster than the
baselines in all examples. Tab. 3 lists the complete reconstruction quality, where our method beats
all baselines except the toy-1 example.

We visualize the simulation and optimization result in Fig. 14, Fig. 15, and Fig. 16. Note that in
Fig. 14 and Fig. 15 we visualize the difference of optimized physical parameters, and our results
are more uniform and natural than all baselines. In Fig. 16, we show respectively the initial state,
final state, and the physical distribution of the rigid bodies, and we plot an additional vertical line
to help with interpretation. With our optimization of the internal structure, an originally unstable
object stands steadily with reasonable alignment to the vertical line.

C.3 ADDITIONAL REAL-WORLD EXAMPLES

Hawk A balanced hawk (Fig. 17) is a toy with a meticulously designed hollowed structure inside
so as to balance itself with support at its beak only (Fig. 17 left). Similar to the rigid experiments
in synthetic examples, the loss is defined as the distance between c and the support center (the bird
beak location).

Fig. 17 summarizes the results of our pipeline on this task. We begin with an initial guess of a
solid hawk stuffed with homogeneous materials, which easily falls off from its support location
(Fig. 17 top middle). After optimization, our pipeline deduces a hollowed design (Fig. 17 right) that
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Figure 9: Full data of the optimization loss of our method and the baselines, where “fail” on the top
means that the method fails to output visually correct result.

Figure 10: Full data of the volumetric shape generation time of our method and the baselines, where
“fail” on the top means that the method fails to output visually correct result.
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Figure 11: Full data of the density difference of our method and the baselines, where “fail” on the
top means that the method fails to output visually correct result.

Figure 12: Full data of the test set loss of our method and the baselines, where “fail” on the top
means that the method fails to output visually correct result.
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Figure 13: Full data of the center of mass (CoM) loss of our method and the baselines, where “fail”
on the top means that the method fails to output visually correct result.

Table 3: Reconstruction quality. Lower numbers indicate better performance. The optimal results
are bolded.

Dataset id frog fish-1 swim-ring cow toy-1 toy-2 fandisk

Ours 0.306 0.358 0.242 0.300 0.294 0.274 0.335
PGSR (voxel size=0.05) 0.745 0.998 0.464 0.410 0.263 0.761 0.904
PGSR (voxel size=0.2) 0.781 0.907 0.894 0.801 0.595 0.845 0.878
Gaussian Surfels 0.851 Fail 0.882 Fail 0.552 0.939 0.865

Datset id hippo toy-3 bird kangaroo stone pear pig

Ours 0.663 0.285 0.268 0.388 0.290 0.245 0.343
PGSR (voxel size=0.05) 0.910 0.478 0.846 0.841 0.907 1.078 0.891
PGSR (voxel size=0.2) 0.869 0.720 0.850 0.480 0.904 1.027 0.867
Gaussian Surfels 0.939 0.459 0.906 0.976 0.890 1.148 0.939

Dataset id spot teapot tumbler fish-2 rabbit

Ours 0.347 0.264 0.305 0.352 0.298
PGSR (voxel size=0.05) 0.822 0.822 0.953 0.605 0.930
PGSR (voxel size=0.2) 0.901 0.841 0.755 0.889 0.903
Gaussian Surfels 0.724 0.850 0.963 0.472 0.940
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Figure 14: Full result (part 1) of the comparison of slices between our methods and baselines
(Sec. 8.1)
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Figure 15: Full result (part 2) of the comparison of slices between our methods and baselines
(Sec. 8.1)
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Figure 16: Full result (part 2) of the simulation of initial and final poses of the objects (Sec. 8.1)
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Figure 17: Hawk (Sec. 8.3). Left: a real-world photo of the balanced hawk resting on a bottle at its
beak; Top middle: the falling-off motion from simulating the hawk point cloud with homogeneously
stuffed materials; Bottom middle: the balanced motion from simulating the same hawk point cloud
with optimized hollowed structure; Right: the optimized structure with black and gray particles
indicating the solid and empty region, respectively. Note that the boundary particles are fixed as solid
during optimization and removed from this figure for better visualization of the interior structure.

Figure 18: Qiqi (Sec. 8.3). Left: a photo of qiqi showing a tilting angle. The blue arrow indicates the
up direction of qiqi. Middle: the pose changes of qiqi when increasing its capacity from empty to
maximal; Middle: simulated pose changes of a qiqi with the same exterior from Gaussian splatting
and an interior structure optimized from our pipeline; Bottom: simulated motion of a qiqi with an
initial guess of uniformed hollowed interior. Right: the optimized interior structure by our pipeline.

successfully reproduces a convincing balanced hawk, verified by simulating its dynamic motion and
observing negligible derivation or no tendency of falling off (Fig. 17 bottom middle).

Qiqi (Tilting Vessel) Qiqi is a tilting vessel originating from ancient China (Fig. 18 left). It has a
carefully crafted interior shape that exhibits representative poses at three different states: it tilts by
a specific angle when empty; the tilting angle gradually decreases to zero when the vessel becomes
half full; the vessel overturns (upside down) when reaching its maximal capacity. Fig. 18 top middle
demonstrates this behavior of qiqi with representative frames from a video recording of filling water
into qiqi. The blue arrow in the figure indicates its up direction. Note how the up direction is
eventually upside down when qiqi reaches its capacity. Our goal is to infer an interior geometry of
qiqi that reproduces all three representative poses.

We assign one objective for each representative pose of qiqi. The objective consists of two terms
characterizing the preferred height and tilting angle from the center of mass. Note that for a given
shape parameter s, the three poses compute three centers of mass based on considering the union
of the shell characterized by s and its stuffed interior at three specified height. This initial guess (a
shell with uniform thickness) leads to a design resilient to changing tilting angles (Fig. 18 bottom
middle), which shows that an interior geometry that can exhibit desired behaviors is not designed
trivially.

Fig. 18 right reports our optimized interior shape of qiqi. The result clearly shows that an asymmetric
design is necessary and expected due to the initial nonzero tilting angle when the vessel is empty.
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Figure 19: The density of points. Black points represent solid part and grey points represent hollow
part. From left to right, the density of points are 12226, 20480, 29160, 40000, 69120 respectively.
We can observe that the quality of the result does not decrease much when the density of points
decreases.

Figure 20: Ablation study on the material and size. Black points represent solid part and grey points
represent hollow part. The first graph is the original setting. The second graph is doubling the scale
of the hawk. The third graph is doubling the material density of the hawk. We can observe that
with the same relative shape and relative physical parameters, the output does not change with its
absolute value.

We simulate our inferred design with an increasing capacity and observe similar pose changes to the
video recording (Fig. 18 middle), confirming the efficacy of our optimization pipeline.

C.4 ABLATION STUDIES

The density of points In order to investigate the impact of the density of points to our method,
we thoroughly sample five different initialization: 12226, 20480, 29160, 40000, and 69120, and
we show the result of this ablation study in Fig. 19. In spite of minor variances on the top of the
wobble doll, the general quality of distribution decreases marginally, indicating the efficiency and
the robustness of our method in terms of the number of initial points.

The material property and object size To study how the choice of the size and the material of
3D object impacts the result of optimization, we design an ablation study by doubling the initial size
and the material density of the hawk respectively. We show the results in Fig. 20, where the left
figure is the original result, the middle the doubled size, and the right the doubled material density.
As shown in the figure, the optimization results look very similar to each other, indicating that our
method is not sensitive to the choice of material and the overall scale.

The type of simulation To show the extensibility of our method to more types of physical phe-
nomena, we combine the rigid-body physical simulation with the proposed collision handling and
apply our method on it. As shown in Fig. 21, we drop the rigid ball on the floor and record the
ground-truth trajectory as shown on the top row. After the optimization of interior structure, the
output motion trajectory matches the visual observation. We want to highlight that in the original
video the rigid ball was rotating, which is quite hard for traditional methods to capture. Our method,
however, reconstructs the behavior nicely as indicated by the textural rotation.
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Figure 21: Rigid-body simulation with collision. The top left part demonstrates the appearance of the
ball. The four pictures in top right part is four frames from the input video (ground truth). The four
pictures in middle right part is the corresponding frames of the final solution, and the four pictures
in bottom right part is that of the initial guess. The bottom left part is the internal structure, where
black points represent solid part and grey points represents hollow part.

Figure 22: Synthetic wobbly doll. The experiment with the same setting of the real world wobbly
doll but performed on the synthetic one in our dataset. Besides, we change its lighting and view
point. Black points represent solid part and grey points represent hollow part. The first graph is
bright lighting with front view, and the second graph is its solution. The third graph is dark lighting
with front view, and the fourth graph is its solution. The fifth graph is bright lighting with side view,
and the sixth graph is its solution. We can observe that the output of our pipeline does not change
with the lighting and camera position.

The lighting condition and camera pose In addition to the real-world wobbly doll, we create a
simulated wobbly doll in our synthetic environment as well for better reproducibility. We vary the
lighting condition and the camera pose in order to test the robustness of our method as shown in
Fig. 22. We did three experiments: (left) the normal light with front pose, (mid) the dark light with
front pose, and (right) the normal light with side pose. We also attach the corresponding internal
solution on the side. As indicated by the solutions, our method is robust in terms of varying lighting
conditions and camera poses. We also argue that changing camera pose is equivalent to transforming
the local frame of the dynamics, and our method is insensitive to both the changes.
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Figure 23: Experiments which supports continuously varying material. The two experiments share
similar setting with the previous wobble doll and horse experiment, while the main difference is we
allow a continuously varying material. The first and third figures are two typical input images, while
the second and fourth figures are the optimized result. The color indicates the density of each point,
where red means higher density (solid) and blue means lower density (hollow).

Figure 24: Experiments using multi-video for optimization. The two experiments share similar
setting with the previous wobble doll and horse experiment, while we leverage multi-video opti-
mization, with videos of difference view points, light conditions, vibration amplitudes, etc. From
left to right, the first figure represents the rendered object, the second represents the ground truth,
the third represents the single-video result, the fourth represents the multi-video result.

Figure 25: Full data of the PGSR of rendered result with respect to the ground truth, where “fail” on
the top means that the method fails to output visually correct result.
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Figure 26: One example of the comparison in the unseen test set. The left figure represents the
ground truth and the right figure represents our simulated result.
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