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Abstract

Achieving transferability of targeted attacks is reputed to be remarkably difficult.
The current state of the art has resorted to resource-intensive solutions that necessi-
tate training model(s) for each target class with additional data. In our investigation,
we find, however, that simple transferable attacks which require neither model
training nor additional data can achieve surprisingly strong targeted transferability.
This insight has been overlooked until now, mainly because the widespread practice
of attacking with only few iterations has largely limited the attack convergence
to optimal targeted transferability. In particular, we, for the first time, identify
that a very simple logit loss can largely surpass the commonly adopted cross-
entropy loss, and yield even better results than the resource-intensive state of the art.
Our analysis spans a variety of transfer scenarios, especially including three new,
realistic scenarios: an ensemble transfer scenario with little model similarity, a
worse-case scenario with low-ranked target classes, and also a real-world attack on
the Google Cloud Vision API. Results in these new transfer scenarios demonstrate
that the commonly adopted, easy scenarios cannot fully reveal the actual strength
of different attacks and may cause misleading comparative results. We also show
the usefulness of the simple logit loss for generating targeted universal adver-
sarial perturbations in a data-free manner. Overall, the aim of our analysis is to
inspire a more meaningful evaluation on targeted transferability. Code is available
at https://github.com/ZhengyuZhao/Targeted-Tansfer.

1 Introduction

Deep neural networks have achieved remarkable performance in various machine learning tasks,
but are known to be vulnerable to adversarial attacks [1]. A key property of adversarial attacks that
makes them critical in realistic, black-box scenarios is their transferability [2, 3]. Current work on
adversarial transferability has achieved great success for non-targeted attacks [4–12], while several
initial attempts [3, 4, 13] at targeted transferability have shown its extreme difficulty. Targeted
transferability is known to be much more challenging and worth exploring since it can raise more
critical concerns by fooling models into predicting a chosen, highly dangerous target class.

However, so far state-of-the-art results can only be secured by resource-intensive transferable
attacks [14–16]. Specifically, the FDA approach [14, 15] is based on modeling layer-wise feature
distributions by training target-class-specific auxiliary classifiers on large-scale labeled data, and then
optimizing adversarial perturbations using these auxiliary classifiers from across the deep feature
space. The TTP approach [16] is based on training target-class-specific Generative Adversarial
Networks (GANs) through global and local distribution matching, and then using the trained generator
to directly generate perturbations on any given input image.

In this paper, we take a second, thorough look at current research on targeted transferability. Our
main contribution is the finding that simple transferable attacks [4, 6, 8] that require neither model

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/ZhengyuZhao/Targeted-Tansfer


training nor additional data can actually achieve surprisingly strong targeted transferability. We argue
that this insight has been overlooked mainly because current research has unreasonably restricted the
attack convergence by only using a small number of iterations (see detailed discussion in Section 3).
Another key contribution of our work is, for the first time, demonstrating the general superiority of a
very simple logit loss, which even outperforms the resource-intensive state of the art.

In order to validate the general effectiveness of simple transferable attacks, in Section 4.1, we con-
duct extensive experiments in a wide range of transfer scenarios. We test the commonly adopted
single-model and ensemble transfer scenarios, but also introduce three new scenarios that are more
challenging and realistic: an ensemble transfer scenario with little model similarity, a worse-case
scenario with low-ranked target classes, and also a real-world attack on the Google Cloud Vision API.
Experimental results in these new scenarios suggest that evaluation in only the commonly adopted,
easy scenarios cannot reveal the actual strength of different attacks, and may cause misleading
comparative results. Additional experiments in Section 4.2 have shown the better performance of the
simple transferable attacks than the state-of-the-art resource-intensive approaches. Finally, in Sec-
tion 4.3, inspired by the observation that the generated perturbations themselves reflect specific target
semantics, we use the simple Logit attack to generate targeted Universal Adversarial Perturbations
(UAPs) in a data-free manner. In contrast, recent advances in targeted UAPs [16–19] have inevitably
relied on large-scale optimization over additional data.

Overall, we hope our analysis of the weakness of commonly adopted attack settings and transfer
scenarios will inspire a more meaningful evaluation on targeted transferability.

2 Related Work

In this section, we review existing simple transferable attacks (Section 2.1), and also recent resource-
intensive transferable attacks (Section 2.2). Finally, we discuss related work on generating universal
adversarial perturbations.

2.1 Simple Transferable Attacks

We refer to transferable attacks that require neither model training nor additional data, but only use
iterative optimization on a single (original) image as simple transferable attacks. Simple transferable
attacks have been extensively studied in the non-targeted case [4–12], and also attempted in the
targeted case [3, 4, 20]. These attacks are commonly built up on the well-known Iterative-Fast
Gradient Sign Method (I-FGSM) [21, 22], which can be formulated as:

x′0 = x, x′i+1 = x′i − α · sign(∇xJ(x
′
i, yt)), (1)

where x′i denotes the perturbed image in the i-th iteration, and yt is the target class label. In order to
ensure the imperceptibility, the added perturbations are restricted with respect to some Lp distance,
i.e., satisfying ‖x′ − x‖p ≤ ε. Current transferable attack methods have commonly adopted the L∞
distance, but can also be easily adapted to the L2 distance based on an L2 normalization [23].

For the loss function J(·, ·), most simple transferable attacks have adopted the Cross-Entropy (CE)
loss. However, the CE loss has been recently shown to be insufficient in the targeted case due to its
decreasing gradient problem [20]. To address this problem, the authors in [20] have proposed the
Po+Trip loss, in which the Poincaré distance was used to adapt the gradients’ magnitude:

LPo = d(u,v) = arccosh(1 + δ(u,v)),

δ(u,v) =
2 · ‖u− v‖22

(1− ‖u‖22)(1− ‖v‖22)
, u =

l(x′)

‖l(x′)‖
, v = max{v − ξ, 0},

(2)

where u is the normalized logit vector and v is the one-hot vector with respect to the target class.
ξ = 10−5 is a small constant to ensure numerical stability. The following triplet loss is also integrated
for pushing the image away from the original class while pulling it into the target class:

LTrip = [D(l(x′), yt)−D(l(x′), yo) + γ]+, D(l(x′), y) = 1− ‖l(x
′) · y‖1

‖l(x′)‖2‖y‖2
. (3)

The overall loss function is then formulated as LPo+Trip = LPo + λLTrip. Note that in the original
work, Po+Trip was evaluated in the commonly adopted, easy ensemble transfer scenario, which only
involves models with similar architectures.

2



In addition to devising new loss functions, there are other transfer methods [4, 6, 8, 9] developed
based on the assumption that preventing the attack optimization from overfitting to the specific source
model can improve transferability. Such transfer methods can be easily plugged into different attacks
without modifications, in contrast to the above methods that need to apply new attack loss functions.
In this paper, we consider three [4, 6, 8] of such transfer methods that have been widely used in the
literature, as described in the following text.

Momentum Iterative-FGSM (MI-FGSM) [4] integrates a momentum term, which accumulates
previous gradients in order to achieve more stable update directions. It can be expressed as:

gi+1 = µ · gi +
∇xJ(x

′
i, yt)

‖∇xJ(x′i, yt)‖1
, x′i+1 = x′i − α · sign(gi), (4)

where gi is the accumulated gradients at the i-th iteration, and µ is a decay factor. Another similar
technique that instead uses the Nesterov accelerated gradient was explored in [9].

Translation Invariant-FGSM (TI-FGSM) [6] randomly translates the input image during attack
optimization in order to prevent the attack from overfitting to the specific source model. This approach
is inspired by the data augmentation techniques used for preventing overfitting in normal model
training. Instead of calculating gradients for multiple translated images separately, the authors
have proposed an approximate solution to accelerate the implementation. It is achieved by directly
computing locally smoothed gradients on the original image via convolution with a kernel:

x′i+1 = x′i − α · sign(W ∗ ∇xJ(x
′
i, yt)), (5)

where W is the convolution kernel used for smoothing. TI-FGSM was originally designed for
boosting transferability with adversarially-trained models as target models and has been recently
shown that a smaller kernel size should be used when transferring to normally-trained models [12].

Diverse Input-FGSM (DI-FGSM) [8] follows a similar idea to TI-FGSM, but applies random
resizing and padding for data augmentation. Another important difference is that DI-FGSM ran-
domizes augmentation parameters over iterations rather than fixing them as in TI-FGSM. The attack
optimization of DI-FGSM can be formulated as:

x′i+1 = x′i − α · sign(∇xJ(T (x
′
i, p), yt)), (6)

where the stochastic transformation T (x′i, p) is implemented with probability p at each iteration.
In Section 4.1, we demonstrate that simple transfer attacks with these three transfer methods can
actually achieve surprisingly strong targeted transferability in a wide range of transfer scenarios.

2.2 Resource-Intensive Transferable Attacks

Due to the broad consensus that achieving targeted transferability is extremely difficult, recent
researchers have resorted to resource-intensive approaches that require training target-class-specific
models on large-scale additional data. Specifically, the Feature Distribution Attack (FDA) [14]
follows the same attack pipeline as the above simple transferable attacks, but requires auxiliary
classifiers that have been trained on additional labeled data as part of the source model. Each auxiliary
classifier is a small, binary, one-versus-all classifier trained for a specific target class at a specific layer.
That is to say, the number of auxiliary classifiers is the number of layers that are probed multiplied by
the number of target classes that are required to model [14]. The attack loss function of FDA can be
formulated as:

LFDA = J(Fl(x
′), yt)− η

‖Fl(x
′)−Fl(x)‖2
‖Fl(x)‖2

, (7)

where each auxiliary classifiers Fl(·) can model the probability that a feature map at layer l is from a
specific target class yt. FDA(N)+xent [15] extends FDA by aggregating features from L layers and
also incorporating the cross-entropy loss H(·, ·) of the original network F(·). The loss function of
FDA(N)+xent can be expressed as:

LFDA(N)+xent =
∑
l∈L

λl(LFDA + γH(F(x′), yt)), where
∑
l∈L

λl = 1. (8)

Very recently, TTP [16] has achieved state-of-the-art targeted transferability by directly generating
perturbations using target-class-specific GANs that have been trained via matching the distributions of
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perturbations and a specific target class both globally and locally. Specifically, the global distribution
matching is achieved by minimizing the Kullback Leibler (KL) divergence, and the local distribution
matching is by enforcing the neighbourhood similarity. In order to further boost the performance,
data augmentation techniques, such as image rotation, crop resize, horizontal flip, color jittering and
gray-scale transformation, have been applied during model training. We refer the readers to [16] for
more technical details of TTP.

These two transferable attacks, FDA(N)+xent and TTP, are resource intensive due to the use of large-
scale model training and additional data. However, in Section 4.2, we show that simple transferable
attacks, which require neither model training nor additional data, can actually achieve even better
performance than them.

2.3 Universal Adversarial Perturbations

Previous research has shown the existence of Universal Adversarial Perturbations (UAPs), i.e., a
single image perturbation vector that fools a classifier on multiple images [24]. UAPs have been
extensively studied for non-targeted attacks [24–28], but also explored in the more challenging,
targeted case [17–19]. Although recent studies have shown comparable performance of using
reconstructed class impressions [25] or proxy datasets [18] to original training data, large-scale
optimization over image data is still necessary for most existing methods. Differently, a data-free
approach [26] has been proposed for non-targeted UAPs by iteratively optimizing randomly-initialized
perturbations with an objective of disrupting the intermediate features of the model at multiple layers.
However, this approach cannot be applied to targeted UAPs because targeted perturbations aim at
a specific direction but not random disruption as in the non-targeted case. To bridge this gap, in
Section 4.3, we demonstrate how the simple Logit attack can be used to generate targeted UAPs in a
data-free manner.

3 New Insights into Simple Transferable Attacks

In this section, we revisit simple transferable targeted attacks, and provide new insights into them.
Specifically, we demonstrate that simple transferable attacks that are based on existing transfer
methods (TI-, MI-, and DI-FGSM) need more iterations to converge, and attacking with a simple
logit loss can yield much better results than the commonly adopted Cross-Entropy (CE) loss.

3.1 Existing Transfer Methods with More Iterations Yield Good Results

Existing attempts have concluded that using simple transferable attacks to achieve targeted trans-
ferability is extremely difficult [3, 4, 13–15]. However, these attempts have been limited to the MI
transfer method. Here, we tested all the three transfer methods. As can be seen form Figure 1,
integrating all the three transfer methods leads to the best performance. In particular, we find that
using only DI can actually yield substantial targeted transferability, while using only TI or MI makes
little difference to the original poor targeted transferability. The fact that DI outperforms TI may be
explained by the fact that DI randomizes the image augmentation parameters over iterations rather
than fixing them as in TI. In this way, the gradients towards the target class become more generic and
so avoid overfitting to the white-box source model. MI is essentially different from DI and TI because
it can only stabilize update directions but not serve to achieve more accurate gradient directions
towards a specific (target) class.

As we have pointed out in Section 1, common practice of generating transferable targeted pertur-
bations [13–15, 20] has limited the attack optimization to few iterations (typically ≤ 20). This is
somewhat understandable given that extensive research on non-targeted transferability has done the
same. However, as can be seen from Figure 1, targeted attacks actually require much more iterations
to converge to optimal transferability, in contrast to the fast convergence of non-targeted attacks. This
implies that evaluating the targeted transferability under only few iterations is problematic. On the
one hand, comparing different optimization processes that have not converged is not meaningful and
may cause misleading comparisons (see evidence in Section 4.1). This observation is consistent with
the evaluation suggestion in [29] that restricting the number of iterations without verifying the attack
convergence is one of the common pitfalls in evaluating adversarial robustness. Several advanced
defenses have been defeated by simply increasing the number of iterations [30]. On the other hand,
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Figure 1: Transfer success rates of simple
transferable attacks using CE or logit loss
in the non-targeted and targeted scenarios.
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Figure 2: White-box (wb) and black-box (bb) attack
performance in terms of the predicted confidence (left,
higher is better) and ranking (right, lower is better) of
the target class.

considering the realistic threat model, it is not meaningful to artificially restrict the computational
power of a practical attack (e.g., to fewer than several thousand attack iterations) [31].

3.2 A Simple yet Strong Logit Attack

Existing simple transferable attacks have commonly adopted the Cross-Entropy (CE) loss. However,
as pointed out in [20], during the attack optimization, the CE loss will cause the gradient to decrease
and tend to vanish as the number of iterations is increased. To address this problem, the Po+Trip
loss [20] takes a very aggressive strategy by arbitrarily reversing the decrease of the gradient, i.e.,
gradually increasing the magnitude of the gradients over iterations. However, we argue that this
operation has led to too large step size, and as a result cause the attack optimization to overshoot
the minima. Our results in Section 4.1 support this argument by showing that Po+Trip even yielded
worse results than CE in the ensemble transfer scenario with diverse model architectures, since the
loss surface is relatively non-smooth.

Here, for the loss function, we eliminate the final softmax function used in the CE loss and just
backpropagate the gradients from the logit output:

LLogit = −lt(x′), (9)

where lt(·) denotes the logit output with respect to the target class. Although the idea of attacking
logits is not new, its superior performance in targeted transferability has not been recognized so far.
We also find that using the well-known logit-based loss, C&W [32], yields consistently worse results
(see detailed comparisons in Appendix A). Another logit loss that is similar to the C&W loss has also
been adopted by [18], but in the task of generating UAPs with large-scale data.

Below, we show that this logit loss leads to stronger gradients than the CE loss. As can be observed
from Equation 10, the gradient of the CE loss with respect to the target logit input, zt, will mono-
tonically decrease as the probability of the target class, pt, increases during attack optimization. In
addition, due to the use of the softmax function, pt will quickly reach 1, and as a result the gradient
tends to vanish. This phenomenon makes the attack hard to improve even with more iterations applied.
Differently, as shown by Equation 11, the gradient of the logit loss equals a constant. In this way,
the attack can keep improving as the number of iterations is increased. In Appendix B, we provide
further comparisons on the trends of loss/gradient magnitude and the target logit value over iterations,
which show that the logit loss leads to better results than both CE and Po+Trip.

LCE = −1 · log(pt) = − log(
ezt∑
ezj

) = −zt + log(
∑

ezj ),

∂LCE

∂zt
= −1 + ∂ log(

∑
ezj )

∂ezt
· ∂e

zt

∂zt
= −1 + ezt∑

ezj
= −1 + pt.

(10)

LLogit = −zt,
∂LLogit

∂zt
= −1. (11)
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Table 1: Targeted transfer success rates (%) in the single-model transfer scenario. We consider
three attacks with different loss functions: cross-entropy (CE), Poincaré distance with Triplet loss
(Po+Trip) [20], and the logit loss. Results with 20/100/300 iterations are reported.

Attack Source Model: Res50 Source Model: Dense121
→Dense121 →VGG16 →Inc-v3 →Res50 →VGG16 →Inc-v3

CE 26.9/39.4/42.6 17.3/27.3/30.4 2.4/3.8/4.1 13.1/17.3/19.4 7.7/10.8/10.9 1.9/3.3/3.5
Po+Trip 26.7/53.0/54.7 18.8/34.2/34.4 2.9/6.0/5.9 10.1/14.7/14.7 6.7/8.3/7.7 2.1/3.0/2.7
Logit 29.3/63.3/72.5 24.0/55.7/62.7 3.0/7.2/9.4 17.2/39.7/43.7 13.5/35.3/38.7 2.7/6.9/7.6

Attack Source Model: VGG16 Source Model: Inc-v3
→Res50 →Dense121 →Inc-v3 →Res50 →Dense121 →VGG16

CE 0.7/0.4/0.6 0.5/0.3/0.1 0/0.1/0 0.6/2.1/2.4 0.8/2.5/2.9 0.7/1.6/2.0
Po+Trip 0.6/0.8/0.5 0.6/0.6/0.7 0.2/0.1/0.1 0.6/2.0/2.5 0.8/3.1/3.3 0.5/2.1/2.0
Logit 3.3/8.7/11.2 3.6/11.7/13.2 0.2/0.7/0.9 0.8/1.6/2.9 1.2/2.8/5.3 0.7/2.2/3.7

4 Experimental Evidence on Simple Transferable Attacks

In this section, we provide experimental evidence to show the general effectiveness of simple
transferable attacks. Firstly, in Section 4.1, we evaluate the simple transferable attacks in a variety of
transfer scenarios, including single-model transfer, ensemble transfer (easy and challenging scenarios),
a worse-case scenario with low-ranked target classes, and a real-world attack on the Google Cloud
Vision API. Then, in Section 4.2, we compare the simple transferable attacks with two state-of-the-art
resource-intensive transferable attacks, FDA(N)+xent [15] and TTP [16]. Finally, in Section 4.3, we
apply the Logit attack to achieving targeted UAPs in a data-free manner.

Following recent work [14–16, 20], we focus on targeted transferability of ImageNet-like images,
which is known to be much more difficult than other data sets (e.g, MNIST and CIFAR-10) with
smaller-size images and fewer classes. Specifically, we used the 1000 images from the development set
of the ImageNet-Compatible Dataset1, which was introduced along with the NIPS 2017 Competition
on Adversarial Attacks and Defenses. All these images are associated with 1000 ImageNet class
labels and cropped to 299×299 before use. Our experiments were run on an NVIDIA Tesla P100
GPU with 12GB of memory.

4.1 Simple Transferable Attacks in Various Transfer Scenarios

We tested three different attack losses: CE, Po+Trip [20] and Logit. All attacks used TI, MI, and DI
with optimal hyperparameters provided in their original work. Specifically, ‖W ‖1 = 5 was used for
‘TI’ as suggested by [12]. For each image, we used the target label that was officially specified in the
dataset. If not mentioned specifically, all attacks were run with 300 iterations to ensure convergence.
When being executed with a batch size of 20, the optimization process took about three seconds
per image. A moderate step size of 2 was used for all attacks, and the results were shown to be
not sensitive to the setting of step size (see evidence in Appendix C). We considered four diverse
classifier architectures: ResNet [33], DenseNet [34], VGGNet [35], and Inception [36]. Following
the common practice, the perturbations were restricted by L∞ norm with ε = 16.

Single-model transfer. Table 1 reports the targeted transferability when transferring between each
pair of different model architectures. As can be seen, the logit loss outperformed CE and Po+Trip
by a large margin in almost all cases. When comparing different model architectures, we can find
that the attacks achieved lower performance when transferring from the VGGNet16 or Inception-v3
than from ResNet50 or DenseNet121. This is consistent with the observations in [14, 15] and may be
explained by the fact that skip connections in ResNet50 and DenseNet121 boosts transferability [37].
Another finding is that when using Inception-v3 as the target model, the transfer success rates were
always low. This might be explained by the heavily engineered nature of the Inception architecture,
i.e., the Inception architecture has multiple-size convolution and two auxiliary classifiers.

1https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.
1.0/examples/nips17_adversarial_competition/dataset.
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Table 2: Targeted transfer success rates (%) in the commonly adopted, easy ensemble transfer
scenario, where the hold-out target model (denoted by ‘-’) and the ensemble models share similar
architectures. Results with 20/100 iterations are reported.

Attack -Inc-v3 -Inc-v4 -IncRes-v2 -Res50 -Res101 -Res152 Average

CE 48.8/85.3 47.2/83.3 47.5/83.9 50.9/89.8 58.5/93.2 56.7/90.7 51.6/87.7
Po+Trip 59.3/84.4 55.0/82.4 51.4/80.8 56.9/85.0 60.5/87.9 57.6/85.7 56.8/84.4
Logit 56.4/85.5 52.9/85.8 54.4/85.1 57.5/90.0 64.4/91.4 61.3/90.8 57.8/88.1
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Figure 3: Targeted transfer success rates (%) in our challenging ensemble transfer scenario, where
each hold-out target model shares no similar architecture with the source models used for ensemble.

Ensemble transfer in both easy and challenging scenarios. A common approach to further boost-
ing transferability is to generate perturbations on an ensemble of white-box source models. Following
the common practice, we simply assigned equal weights to all the source models. We first look at
the commonly adopted ensemble transfer scenario [4, 6, 20, 38] in which each hold-out target model
shares a similar architecture with some of the white-box ensemble models. As can be seen from
Table 2, the transfer success rates of all three attacks have got saturated when given enough iterations
to converge. As a result, this transfer scenario could not fully reveal the actual strength of different
attacks. We can also observe that Po+Trip performed better than the CE loss only when the attack
optimization is unreasonably restricted to 20 iterations, but became even worse with enough iterations.
This finding suggests that evaluating different attacks under only few iterations may cause misleading
comparative results.

We next considered a more challenging transfer scenario with no architectural overlap between the
source ensemble models and the target model, in order to fully reveal the potential of different attacks.
This scenario is also more realistic since it is hard for an attacker to know the specific architecture
of a real-world target mode. Figure 3 shows that in this scenario, the Logit largely outperformed
CE and Po+Trip. In addition, the results of both CE and Logit were substantially improved over
the single-model transfer results reported in Table 1. However, Po+Trip performed even worst in
some cases maybe because its use of arbitrarily increasing the gradient magnitude has caused the
optimization to overshoot the minima in this ensemble transfer scenario where the loss surface
is relatively non-smooth due to the model diversity. Note that as in the single transfer scenario,
transferring to Inception-v3 is still the most difficult.

Table 3: Targeted transfer success rates (%) when vary-
ing the target from the high-ranked class to low.

Attack 2nd 10th 200th 500th 800th 1000th

CE 89.9 76.7 49.7 43.1 37.0 25.1
Po+Trip 82.6 77.6 58.4 53.6 49.1 38.2
Logit 83.8 81.3 75.0 71.0 65.1 52.8

A worse-case transfer scenario with low-
ranked target classes. In conventional
security studies, a comprehensive evalu-
ation commonly involves a range of at-
tack scenarios with varied difficulty. Ex-
isting work on white-box adversarial at-
tacks [32, 21, 23, 38] has also looked at
different cases with varied difficulty regard-
ing the ranking position of the target class
in the prediction list of the original image.
Specifically, in the best case, the targeted success is basically equal to non-targeted success, i.e., an
attack is regarded to be successful as long as it can succeed on any arbitrary target other than the
original class. In the average case, the target class is randomly specified, while in the worst case, the
target is specified as the lowest-ranked/least-likely class.
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Figure 4: Successful targeted adversarial images on Google
Cloud Vision generated by the Logit attack with ensemble
transfer. More examples can be found in Appendix D.

Table 4: Non-targeted and targeted
transfer success rates (%) of different
attacks on Google Cloud Vision.

CE Po+Trip Logit

Targeted 7 8 18
Non-targeted 51 44 51

However, to the best of our knowledge, current evaluation of transfer-based attacks has been limited
to the best and average cases. To address this limitation, we consider a worse-case transfer scenario
by varying the target from the highest-ranked class gradually to the lowest one. As can be seen
from Table 3, there exists a non-negligible correlation between the ranking position of the target
class and the targeted transferability. More specifically, it becomes increasingly difficult as the target
moves down the prediction list. We can also observe that the results with higher-ranked targets
might not reveal the actual strength of different attacks as in the more realistic, worse cases with
lower-ranked targets. In particular, only looking the best case with the highest-ranked target may lead
to a misleading conclusion that CE leads to the most effective attack. This finding suggests that a
more meaningful evaluation on targeted transferability should further increase difficulty beyond the
current best and average cases.

Transfer-based attacks on Google Cloud Vision. Most existing work on fooling real-world com-
puter vision systems has been focused on the query-based attacks, where a large number of queries
are required [39–41]. Although several recent studies have also explored real-world transfer-based
attacks, they were limited to face recognition and the non-targeted attacks [42–44]. In contrast, we
applied the simple transferable attacks in the more challenging, targeted case on a more generally-
used image recognition system, the Google Cloud Vision API. Specifically, we used the targeted
adversarial images generated on the ensemble of all four diverse source models with 300 iterations.

The API predicts a list of semantic labels along with confidence scores. Specifically, only the top
classes with confidence no lower than 50% are returned, and at most 10 classes are shown. Note
that the confidence score here is not a probability (which would sum to one). We measured both the
targeted and non-targeted transferability. Since all returned labels are with relatively high confidence
(≥ 50%), we do not limit our measure of success rates to only top-1 class. Instead, for non-targeted
success, we measured whether or not the ground-truth class appeared in the returned list, while
for targeted success, whether or not the target class appeared. Due to the fact that the semantic
label set predicted by the API does not exactly correspond to the 1000 ImageNet classes, we treated
semantically similar classes as the same class.

Table 4 reports the results averaged over 100 images that originally yield correct predictions. As can be
seen, in general, achieving targeted transfer success is much more difficult than non-targeted success.
In particular, the Logit attack achieved the best targeted transferability, with quasi-imperceptible
perturbations shown in Figure 4. Our results reveal the potential vulnerability of Google Cloud Vision
against simple transfer-based attacks, which require no query interaction.

4.2 Simple vs. Resource-Intensive Transferable Attacks

In this subsection, we compared simple transferable attacks with state-of-the-art resource-intensive
approaches, TTP [16] and FDA(N)+xent [15], which necessitate training target-class-specific models
on additional data.

Compared with TTP. We compared the Logit attack with the state-of-the-art TTP, which is based on
training target-class-specific GANs on additional data. We tested both Logit and TTP on our dataset
following the “10-Targets (all-source)” setting in [16]. We chose ResNet50 as the white-box model
in the single-model transfer scenario and an ensemble of ResNet{18,50,101,152} in the ensemble
transfer scenario. DenseNet121 and VGG16 bn are tested as the target models. Note that the same
knowledge of the white-box model is available to both attacks but it is leveraged in different ways.

8



Specifically, for the Logit attack, the white-box model is used as a source model for iterative attack
optimization, while for TTP, it is used as a discriminator during training the GANs.

Table 5: Targeted transfer success rates (%) of
Logit vs. TTP in single-model and ensemble trans-
fer scenarios under two norm bounds.

Bound Attack D121 V16 D121-ens V16-ens

ε = 16
TTP 79.6 78.6 92.9 89.6
Logit 75.9 72.5 99.4 97.7

ε = 8
TTP 37.5 46.7 63.2 66.2
Logit 44.5 46.8 92.6 87.0

As shown in Table 5, under the commonly
adopted ε = 16, the Logit attack can achieve
comparable results to TTP in all cases. Specifi-
cally, we can observe that the model ensemble is
more helpful to Logit than for TTP. This might
be because even with the single model as the
discriminator, TTP can learn good enough fea-
tures of target semantics by training with the
objective of matching the perturbation and tar-
get class distributions with large-scale data. The
clearer target semantics learned by TTP can be
confirmed by comparing the unbounded pertur-
bations achieved by TTP (e.g., Figure 3 in [16]) with those by the Logit shown in Figure 5.

This fact that TTP perturbations heavily rely on semantic patterns of the target class might cause
TTP to degrade under lower norm bounds. To validate this assumption, we further compared Logit
and TTP under ε = 8. As expected, the Logit attack consistently surpassed TTP, especially with
a very large margin in the ensemble transfer scenario. The different comparing results for the two
perturbation sizes also suggest that comparing attacks only under a single perturbation size may not
reveal their characteristics.

Table 6: Targeted transfer success rates (%) of
unbounded adversarial images by different attacks
with the same iteration budget.

FDA(4)

+xent CE Po+Trip Logit

Res50→Dense121 65.8 69.3 88.1 84.1
Res50→VGG16 48.1 54.1 67.8 74.2

Figure 5: Unbounded adversarial examples
that reflect target semantics. More examples
can be found in Appendix E.

Compared with FDA(N)+xent. We compared the three simple transferable attacks (CE, Po+Trip,
and Logit) with FDA(N)+xent on generating unbounded adversarial images, in consistence with
“distal transfer” in [15]2. Specifically, the adversarial perturbations were initialized as random
Gaussian noise and allowed to be as large as possible. Although such unbounded adversarial images
may not be practically compelling, they can provide better isolated indication on transferability
by eliminating the dependency on the source images and the bound restrictions. The results were
averaged over 4000 image examples, each of which was optimized towards a random target class. As
suggested by [15], the MI transfer method was removed since it empirically harms the performance
in this unbounded case.

Table 6 shows that all the three simple transferable attacks achieved stronger targeted transferability
than FDA(N)+xent. As can be seen from Figure 5, the unbounded adversarial perturbations can
somehow reflect the target semantics. This finding suggests that achieving targeted transferability
relies on robust, semantic features [45] that are expected to be learned by various models and also
understood by humans. In this way, achieving targeted transferability is fundamentally different from
non-targeted transferability, for which attacking non-robust features is known to be sufficient [45].
It is also worth noting that in practical scenarios with small norm bounds, the semantically-aligned
perturbations would not be expected to change human judgements.

4.3 Simple Logit Attack for Targeted UAPs in a Data-Free Manner

The above observation that the perturbations can reflect certain target semantics motivates us to
apply the Logit attack to achieving targeted Universal Adversarial Perturbations (UAPs), which can
drive multiple original images into a specific target class. Existing attempts at achieving targeted
UAPs have mainly relied on large-scale optimization over additional data [17–19]. However, the

2We conducted comparisons only in this setting since the authors have not (yet) released their source code.
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Table 7: Success rates (%) of targeted UAPs
generated by CE and Logit attacks for differ-
ent models.

Attack Inc-v3 Res50 Dense121 VGG16

CE 2.6 9.2 8.7 20.1
Logit 4.7 22.8 21.8 65.9

Figure 6: UAPs (ε = 16, VGG16) with differ-
ent classes using CE and Logit. More exam-
ples can be found in Appendix F.

simple Logit attack can be easily extended to generate targeted UAPs in a data-free manner. The only
difference from the above transferable Logit attack is that here a mean image (all pixel values set as
0.5 out of [0,1]) is used as the original image.

In our experiment, for each target class, we generated a single targeted UAP vector (ε = 16) with
300 iterations and applied it to all 1000 images in our dataset. Table 7 reports the results averaged
over all the 1000 ImageNet classes. As can be seen, the logit loss can yield substantial success,
remarkably outperforming the CE loss. This can be confirmed by Figure 6, which shows the Logit
attack can yield more semantically-aligned perturbations than CE. This observation also supports
the claim from [18] that universal perturbations contain dominant features, and images act like noise
with respect to perturbations.

5 Conclusion and Outlook

In this paper, we have demonstrated that achieving targeted transferability is not as difficult as current
work concludes. Specifically, we find that simple transferable attacks can actually achieve surprisingly
strong targeted transferability when given enough iterations for convergence. We have validated the
effectiveness of simple transferable attacks in a wide range of transfer scenarios, including three
newly-introduced challenging scenarios. These challenging scenarios have better revealed the actual
strength of different attacks. In particular, we demonstrate that a very simple Logit attack is superior
in all transfer scenarios, achieving even better results than the state-of-the-art resource-intensive
approaches. We also show the potential usefulness of the Logit attack for generating targeted universal
adversarial perturbations in a data-free manner. Overall, we hope our findings will inspire future
research to conduct a more meaningful evaluation on targeted transferability. Our future work will
focus on studying why different model architectures yield different transferability. In particular,
the very low success rates when targeting Inception-v3 should be explored. Moving forward, there
needs to be a more comprehensive discussion on the resource consumption of different attacks from
multiple aspects, such as training and inference time, hardware resources, and data size.

Strong transferability can obviously benefit black-box applications of adversarial images for social
good, such as protecting user privacy [42, 43, 46–48]. In addition, it will also motivate the community
to design stronger defenses given our finding that even simple attacks can generate highly transferable
adversarial images. It remains a possibility that our methodology may be misused by malicious actors
to break legitimate systems. However, we firmly believe that the help that our paper can provide to
researchers significantly outweighs the help that it may provide an actual malicious actor.
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