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Abstract

Deep reinforcement learning (DRL) algorithms require substantial samples and
computational resources to achieve higher performance, which restricts their practi-
cal application and poses challenges for further development. Given the constraint
of limited resources, it is essential to leverage existing computational work (e.g.,
learned policies, samples) to enhance sample efficiency and reduce the compu-
tational resource consumption of DRL algorithms. Previous works to leverage
existing computational work require intrusive modifications to existing algorithms
and models, designed specifically for specific algorithms, lacking flexibility and
universality. In this paper, we present the Snapshot Reinforcement Learning
(SNAPSHOTRL) framework, which enhances sample efficiency by simply altering
environments, without making any modifications to algorithms and models. By
allowing student agents to choose states in teacher trajectories as the initial state to
sample, SNAPSHOTRL can effectively utilize teacher trajectories to assist student
agents in training, allowing student agents to explore a larger state space at the
early training phase. We propose a simple and effective SNAPSHOTRL baseline
algorithm, S3RL, which integrates well with existing DRL algorithms. Our exper-
iments demonstrate that integrating S3RL with TD3, SAC, and PPO algorithms
on the MuJoCo benchmark significantly improves sample efficiency and average
return, without extra samples and additional computational resources.

1 Introduction

Deep Reinforcement Learning (DRL) has enjoyed numerous accomplishments in game, simulation,
and real-world environments. However, the development of powerful agents requires a significant
amount of samples and computational resources. For example, AlphaStar [Vinyals et al., 2019] was
trained using 16 TPU-v3 for 14 days, during which each agent used the equivalent of 200 years
of the real-time StarCraft II game. Similarly, Robotic Transformer 2 (RT-2) [Brohan et al., 2023]
utilized demonstration data collected by 13 robots over 17 months in an office kitchen environment.
This obstacle prevents researchers who lack necessary resources from reproducing these works, thus
limiting the applications and development of these works.
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Figure 1: Schematic of S3RL training process. The figure illustrates a teacher trajectory (light blue
line with outline) from the initial point (red pin) to the goal point (yellow pentagram). Dark blue
dots scattered on this trajectory indicate environment snapshots obtained from the teacher agent’s
interaction with environment, from which the student agent starts new training represented by green
trajectories. Truncation points(black and yellow squares) on the right of three student trajectories
signify truncated training implemented to prevent the student agent from deviating excessively from
the teacher trajectory. The student trajectory on far right reaches the goal point, demonstrating that
the student agent can successfully accomplish tasks. The figure vividly portrays the mechanism
and objective of S3RL: to support the training of new agents effectively by leveraging environment
snapshots.

In light of this, Reincarnating Reinforcement Learning (RRL) [Agarwal et al., 2022] emerges as a
promising research workflow. RRL aims to maximize the utilization of pre-existing computational
work, thus releasing researchers from the need for tabula rasa when training agents and ultimately
enhancing sample efficiency and reducing computational resource consumption. Previous RRL
studies mainly concentrated on reusing pre-existing agent models or replay buffers, to enhance the
performance of new agents. For example, seminal works such as those by Vecerík et al. [2017],
Nair et al. [2020], Lu et al. [2021], Wu et al. [2022], Nakamoto et al. [2023], Luo et al. [2023] have
capitalized on leveraging previously gathered demonstration data for offline pre-training, followed
by careful online fine-tuning to refine agent behaviors. In parallel, Pardo et al. [2018], Ross et al.
[2011], Agarwal et al. [2022] combined with prior agents to propose special loss functions. Further,
Czarnecki et al. [2019], Sun et al. [2018], Zhu et al. [2023] utilize Q-function of teacher agent to
compute additional rewards, guiding learning process of student agent.

However, these works usually require intrusive modifications to existing algorithms and models. Such
modifications are designed for specific algorithms, lacking flexibility and universality. Researchers
need to frequently adjust the design of algorithms and models during experimental studies to verify
their ideas. Integrating their newly designed RL algorithms with existing RRL strategies again creates
additional workloads, which hardly meet their needs.

We have dubbed our framework Snapshot Reinforcement Learning (SNAPSHOTRL). SNAPSHOTRL
can enhance sample efficiency by simply altering environments, without making any modifications
to algorithms and models. For simulated environments, the implementation of SNAPSHOTRL
merely involves incorporating wrappers that enable the loading of snapshots into the environment,
thus avoiding the necessity for extensive code modifications and significantly easing its integration
into various RL research works. Environment snapshots preserve complete data of the simulation
environment and allow the environment to be restored to a specific previously saved snapshot point.
Our main idea is that using snapshots from teacher agent trajectories to assist student agent training
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allows student agents to choose states within teacher agent trajectories as initial points to begin
sampling, leading to a broader exploration of states by student agents during the early training
phase. By training with snapshots generated by teacher agents with environment, our framework can
effectively leverage the experience accumulated by teacher agents, similar to the practice of endgame
training in the game of Go.

In this paper, we first introduce SNAPSHOTRL research framework, propose standardized evaluation
suggestions, and analyze the challenges faced by this framework. Subsequently, we designed and
introduced SNAPSHOTRL with Status Classification and Student Trajectory Truncation (S3RL), a
simple and effective SNAPSHOTRL baseline algorithm developed for these challenges. The schematic
process of S3RL training is illustrated in Figure 1. Our experimental results show that, on the
Gymnasium MuJoCo benchmark [Todorov et al., 2012, Towers et al., 2023], when integrated with
TD3, SAC, and PPO algorithms, S3RL achieves superior performance over baseline methods with
just 50% of timesteps, significant improvements sample efficiency. It is important to note that the
performance improvement with S3RL was achieved without increasing any computational cost in the
learning part and without directly providing additional samples to student agents, which is different
from previous RRL works. Without using additional off-policy samples, this makes SNAPSHOTRL a
framework that is friendly to on-policy RL algorithms.

2 Preliminaries

In our RL framework based on the concept of a Markov Decision Process (MDP), we consider a
process defined by a tuple (S,A, P,R,O, γ), where

• S is the state space, which represents different states of the system.

• A is the action space, which includes all possible actions that can be taken by the agent.

• P : S×A×S → [0, 1] is the state-transition probability function. It quantifies the likelihood
of transitioning from one state to another, given a particular action.

• R : S × A × S → R is the reward function. R(s, a, s′) denotes the immediate reward
received after transitioning from state s to state s′, due to action a.

• O is the observation space, represented by a function O : S → O, where O is the set of all
possible observations. O(s) denotes the observation when the system is in state s.

• γ is a discount factor. γ ∈ [0, 1)

Additionally, we introduce the concept of environment snapshot, which is an extended representation
of environment at a certain timestep. An environment snapshot captures not only the current state of
the system but also the complete set of parameters defining the MDP. This allows for the possibility
of preserving the entire state of the system, including the MDP configuration, facilitating operations
such as environment resets to a past state. We denote an environment snapshot as follows:

Si = ⟨si | (S,A, P,R,O, γ)⟩

Here, Si includes the current state si and the tuple representing the entire MDP configuration.

An agent’s purpose in this model is to learn a policy π : S → A, which selects an action a = π(s) to
execute in state s. The aim is to maximize the expected cumulative reward over time.

3 SNAPSHOTRL: A Framework for Leveraging Prior Trajectories

In this section, we introduce a new framework for enhanced sample efficiency in RL algorithms —
SNAPSHOTRL. We elucidate the core mechanism of SNAPSHOTRL, including how to capture and
store trajectory snapshots, the principles for selecting and applying snapshots, as well as the intuition
and expected outcomes behind this mechanism.

For the most straightforward implementation of the SNAPSHOTRL framework in pseudocode, please
refer to the parts of Algorithm 1 excluding those marked by .
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3.1 Procuring Snapshots

We found that SNAPSHOTRL is highly sensitive to the distribution of snapshots, and this distribution
directly impacts algorithm performance. Conventionally, algorithms that leverage environment
snapshots tend to manually select snapshots deemed important by experts, a practice that is both
random and inflexible, making it difficult to compare and evaluate the performance of different
SNAPSHOTRL algorithms. To standardize research on SNAPSHOTRL, we systematically save agent
models, and during each student agent training process, we interactively generate multiple trajectories
with the environment, saving the environment snapshot of each step in the snapshot collection DS for
further use.

Our design facilitates the flexible creation of new SNAPSHOTRL algorithms by researchers, who
have access to a wealth of information, including Q-values output by agent models. Varying the
random seed generates different collections of DS , which helps us to evaluate our new SNAPSHOTRL
algorithms more accurately.

3.2 Weaning off Snapshots

The goal of SNAPSHOTRL is to enhance the sample efficiency of existing reinforcement learning
algorithms on existing environments, rather than create environments inherently more favorable
for agent training. During training process of SNAPSHOTRL algorithms, the environment used for
training is different from the one used for evaluation, and the state distribution of training environment
is actively controlled. The ultimate goal is for agents to adapt and perform better on the original
environment, a transition that involves progressive reduction of dependence on snapshots. In the
algorithm we present later, SNAPSHOTRL is applied only during the first 10% of training timesteps,
after which the agent continues training in the unaltered, original environment. Our results indicate
that using SNAPSHOTRL only in the initial training phase significantly improves sample efficiency of
existing algorithms.

4 S3RL: A simple SNAPSHOTRL baseline

Following the introduction and analysis of SNAPSHOTRL in the previous section, this section will
present SNAPSHOTRL with Status Classification and Student Trajectory Truncation (S3RL), a base-
line algorithm for SNAPSHOTRL. S3RL consists of two improvement parts: (1) Status Classification
(SC) and (2) Student Trajectory Truncation (STT), which are designed to address the challenges of
state duplication and insufficient influence within SNAPSHOTRL. Please refer to Algorithm 1 for the
pseudocode of S3RL.

4.1 Status Classification

Within our SNAPSHOTRL algorithm, we identified an issue: the snapshot collection DS often contains
many duplicate or similar snapshots, resulting in an excessively high likelihood of selecting similar
snapshots during random sampling processes. Taking the MuJoCo Hopper environment2 as an
example, a well-trained monopedal robot quickly enters a phase of motion marked by distinctive
periodic characteristics after it has started. If randomly selected from all snapshots without adjustment,
it might focus too much on the periodic phase, neglecting crucial snapshots like those found during
the start-up phase.

To address this issue, we have developed a state classification strategy, which is based on Q-value of
state in snapshot. Using the standard K-means clustering algorithm, we categorize snapshot according
to the Q-values produced by teacher agent and uniformly select snapshot from each category to
ensure balanced category coverage. Our work does not delve into which specific snapshots are most
conducive to the learning process of student agents. We simply propose a straightforward method
of state classification designed to maintain an equilibrium in the significance attributed to various
snapshots.

2Documentation for Hopper Environment: https://gymnasium.farama.org/environments/mujoco/hopper/
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Algorithm 1 S3RL: SnapshotRL with Status Classification and Student Trajectory Truncation

1: Input: a environment E, a collection of environment snapshots {(S1, q1), (S2, q2), · · · , (SN , qN )}, maxi-
mum length of student agent trajectory T , a RL algorithm Alg such as TD3.

2: Initialize policy π from scratch. Initialize snapshot dataset DS ← {(S1, q1), (S2, q2), · · · , (SN , qN )}.
3: D′

S ← KMEANS(DS)

After applying K-means, partition DS into k disjoint clusters by Q-value, with each cluster Ci containing
ni states.
D′

S = {C1, C2, . . . , Ck} where Ci = {Si,1,Si,2, . . . ,Si,ni},
∑k

1 ni = N.
4: while number_of_iterations ≤ max_iterations do
5: E = RESET(E)
6: if in snapshot environment train phase then
7: C = RANDOMCHOICE(D′

S )

8: S = RANDOMCHOICE(C)

9: E = LOADSNAPSHOT(E,S)
10: end if
11: Roll out policy π within the environment E using the exploration method Alg to get a time-limited

trajectory {(o1, a1, r1), · · · , (ot, at, rt)} , where the length of the trajectory, indicated by t, will not
exceed the predefined limit T .

12: Update π by Alg.
13: end while

4.2 Student Trajectory Truncation

In SNAPSHOTRL framework, only initial states of student agent trajectories is regulated. However,
such an approach might not be sufficient for tasks that require long-term foresight. The influence of
initial states tends to decrease as student agent trajectories lengthen. This is particularly evident in
the early stages of training, when student agents may inadvertently fall into adverse states, quickly
diminishing the effect of SNAPSHOTRL.

To address this challenge, we propose Student Trajectory Truncation (STT) strategy. STT prematurely
truncates student agent trajectories (e.g., setting the maximum episode length in MuJoCo environ-
ments to 100 instead of the default 1000 steps). This strategy increases the frequency with which
student agents encounter states within DS , aiming to enhance the agent’s learning opportunities from
the initial states that are controlled by SNAPSHOTRL.

5 Experiments

Our experiments will answer the following questions: (1) How does SNAPSHOTRL affect the learned
policies quality? (2) What are the most key components of SNAPSHOTRL? (3) Does SNAPSHOTRL
have strong robustness and algorithmic compatibility?

We first train five teacher agents using CleanRL’s TD3 implementation, each for 1 million timesteps
on MuJoCo benchmark, with five random seeds. Teacher models can be found in Table 4. We select
the best performing teacher agent for generating snapshot dataset. To ensure the robustness of our
experimental results, we generate a unique snapshot dataset for each run using a teacher agent with
varying random seeds. The teacher agent interacts with the environment for ten episodes and saves
an environment snapshot into a snapshot dataset every ten timesteps.

Subsequently, we integrate SNAPSHOTRL and S3RL with TD3 and run it on six MuJoCo envi-
ronments, including Hopper-v4, Walker2d-v4, HalfCheetah-v4, Ant-v4, Swimmer-v4, and
Humanoid-v4. Our experimental results are shown in Figure 2 and 9. We use SNAPSHOTRL training
only for the first 100, 000 timesteps, after that we use the original environment for training, the high-
lighted part in figures is SNAPSHOTRL training phase . The results show that the TD3 algorithm
using only SNAPSHOTRL cannot achieve better performance than TD3, and even performs worse in
some environments. However, when we combine SC and STT strategies with SNAPSHOTRL, sample
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Figure 2: Learning curves sample efficiency comparison of TD3, SNAPSHOTRL+TD3, and
S3RL+TD3 on six MuJoCo environments. For individual environment results, see Figure 9.

efficiency and average return of TD3 are significantly improved in all six environments. We also
evaluated the performance of S3RL+TD3 under different levels of teacher agents, see Appendix C.1.

To evaluate the compatibility of the S3RL algorithm, we conducted a series of experiments integrating
S3RL with SAC and PPO algorithms. For detailed information about these experiments, please
refer to Appendices C.2 and C.3. Our results indicate that while S3RL significantly enhances
the performance when combined with off-policy algorithms like TD3 and SAC, the performance
improvements with the on-policy PPO algorithm are comparatively modest. See Appendix C.3 for
analysis and discussion of this phenomenon.

5.1 Ablation Study

We also conducted ablation experiments, and the results are shown in Figure 3. SNAP-
SHOTRL+SC+STT (S3RL) significantly outperformed its ablation variants (SNAPSHOTRL, SNAP-
SHOTRL+SC and SNAPSHOTRL+STT) in terms of both sample efficiency and average return. This
indicates that SC and STT methods are effective ways to improve the performance of SNAPSHOTRL,
and can improve the performance of SNAPSHOTRL whether used alone or in combination.

Figure 3: Ablation study results showing the impact of key components on the sample efficiency of
S3RL+TD3 on six MuJoCo environments. For individual environment results, see Figure 10.

In addition, Pardo et al. [2018] pointed out that premature truncation can affect algorithm performance.
Our ablation experiment TD3+STT sets the truncation step to 100 steps in the first 100, 000 timesteps,
which reverts to the default setting of 1000 steps. The results show that without SNAPSHOTRL,
STT has a negative impact on the performance of TD3. This result indicates that the performance
improvement does not come from the premature truncation effect of STT, but from the fact that STT
enhances the impact of SNAPSHOTRL on training.

5.2 Hyperparameter Robustness Study

In S3RL, both SC and STT components possess a hyperparameter each, namely the number of
clusters K and the truncation step T , respectively. To demonstrate that the performance improvements
obtained with our algorithm are mainly attributable to its design innovations, rather than meticulous
parameter optimization, we swept a range of hyperparameters, reporting algorithm performance
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under these varying conditions. The experimental outcomes, as illustrated in Figure 4 and Figure 5,
reveal that our algorithm’s performance is not critically dependent on the fine-tuning of the cluster
count K, and that the truncation step T exhibits a negative correlation with performance metrics
within a certain range.

Figure 4: Learning curves sample efficiency sweeps for S3RL+TD3 across K on six MuJoCo
environments. For individual environment results, see Figure 11.

Figure 5: Learning curves sample efficiency sweeps for S3RL+TD3 across T on six MuJoCo
environments. For individual environment results, see Figure 12.

These findings bolster our confidence in S3RL: it can achieve performance gains through its innovative
design while remaining robust to choices in hyperparameter settings. Specifically, the results show
that although the number of clusters K has a minimal impact on performance, it is noteworthy
that even a minimal configuration of K = 2 results in improvements compared to S3RL without
SC. Furthermore, the appropriate selection of the truncation step T can further optimize outcomes.
This suggests that fine-tuning the truncation strategy could offer new avenues for improvements in
the efficiency and effectiveness of the algorithm in the future. In forthcoming work, we anticipate
that adjusting these parameters through adaptive methods or employing advanced parameter search
strategies could further enhance the performance of S3RL and streamline its application process.

6 Related Work

In this section, we provide an overview of representative related works in this field, offering a
comparative analysis with our contributions.

Hosu and Rebedea [2016], Salimans and Chen [2018], Pinto et al. [2018], Nair et al. [2018] use
states in demonstration trajectories as initial states of agents, and demonstration trajectories are
obtained by experts interacting with environment or planner solving it. Peng et al. [2018] uses a set
of states carefully selected by human experts as a set of initial states of agent. The cost of obtaining
these demonstration data is relatively high. It depends on human experts, while our work only uses
demonstration data obtained from previous interactions between agent and environment, which is
easy to obtain and reproduce. Our work focuses on using suboptimal demonstration data from prior
agents, rather than expert demonstration data. Messikommer et al. [2023] saves the previously visited
states during the training process, and uses states as initial states in subsequent training. It proposes
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to use an Embedding Network to extract features from the previously visited states and then use these
features to classify states. Different from State Classification proposed in our work, we use Q-values
output by prior agents as features required for classification. We believe that prior agents have already
learned some helpful information, which is reflected in Q-values, so we do not need to retrain an
Embedding Network for classification.

Similar to our work are Jump-Start RL (JSRL) [Uchendu et al., 2023] and Reverse Forward Curricu-
lum Learning (RFCL) Tao et al. [2024]. These approaches respectively utilize a teacher agent and
demonstration data to alter the initial state distribution of the student agent, while also providing
additional samples to the agent using samples obtained from the teacher agent and offline demonstra-
tion data. Our SNAPSHOTRL can be understood as JSRL without rolling in teacher agent samples
or reverse curriculum learning without rolling in offline data. We have found that not incorporating
additional samples has a significant negative impact on sample efficiency. SNAPSHOTRL aims to
provide a more universal RRL training framework, adaptable to existing off-policy and on-policy
RL algorithms, without invasive modifications to the existing algorithms. This allows for better
integration into the workflow of RL researchers.

7 Conclusion

The contributions of this paper are as follows. (1) We have proposed SNAPSHOTRL framework,
which focuses on leveraging prior trajectories to enhance sample efficiency of new agents. (2) We
have designed S3RL, a baseline algorithm for SNAPSHOTRL, which consists of two improvement
parts, SC and STT, designed to address challenges of state duplication and insufficient influence
within SNAPSHOTRL. (3) Experiments were carefully designed to analyze the utility of components
of S3RL, assess its robustness, and the performance improvements of integrating S3RL with various
RL algorithms.

In future work, we aim to further explore the potential of SNAPSHOTRL, studying how SNAPSHOTRL
can be applied to more complex environments and real-world applications. Additionally, we plan to
study the integration of SNAPSHOTRL with other methodologies, particularly those that leverage
prior computational efforts, to ensure compatibility and more effective utilization.

8 Limitation

There are several limitations in this research. Firstly, our method depends on trajectories provided
by teacher agents. Thus, its effectiveness might be limited in environments where teacher agents
perform inadequately. If teacher agents cannot provide high-quality demonstrations, this could
impact the learning efficacy of student agents. Secondly, our method requires environment snapshots,
yet acquiring complete snapshots can be highly challenging, or restoring from a particular state
might incur significant costs in some real-world environments. Lastly, our method may experience
adverse performance impacts when applied to on-policy algorithms. Our experiments revealed that
SNAPSHOTRL+PPO and S3RL+PPO only exhibited satisfactory performance in a limited set of
environments, and a detailed analysis of the reasons is provided in Appendix C.3.

Reproducibility Statement

To enhance the reproducibility of our work and support the validation and further research by peers, we
have provided a detailed description of our implementation in Section 3, Section 4, and Appendix B,
with hyperparameters and models listed in Appendices E and F, respectively. All associated source
code, models, and Weights & Biases experiment reports are accessible via sdpkjc.github.io/snapshotrl.

Our experiment results are adapted for comparison with the Open RL Benchmark [Huang et al., 2024],
enabling researchers to contrast them with various algorithms without reproducing the experiments.

We invite fellow researchers to use these resources to verify our findings or as a foundation for their
investigative efforts.
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A Clarification on Terminology: Snapshot vs. Checkpoint and State

Why do we use the term snapshot instead of checkpoint? We deliberately use the term snapshot
to distinguish it from the more commonly used checkpoint in machine learning, emphasizing the
stored models. In the context of reinforcement learning, snapshot is deliberately chosen to represent
the comprehensive state of the interaction environment at a specific timestep, encompassing all
aspects necessary to replicate an instance of the environment with precise fidelity fully.

What distinguishes a snapshot from an RL environment state? A snapshot captures a more
comprehensive set of information than what is conveyed by the term state. In addition to the
observable environment state, a snapshot includes hidden variables present in scenarios like Partially
Observable Markov Decision Processes (POMDP) and meta-information managed by environment
wrappers. This richer data collection ensures that the snapshot can reinitialize the environment,
providing interactability that a simple state cannot.

B Experiment Details

We used the CleanRL library’s implementations for TD3, SAC, and PPO algorithms in our ex-
periments Huang et al. [2022]. For PPO algorithm, however, we amended CleanRL’s original
implementation to rectify its incorrect truncation handling, informed by the approach used in Stable
Baselines3 Raffin et al. [2021]3.

The implementations of S3RL+TD3, S3RL+SAC, and S3RL+PPO algorithms are all based on
modifications of the previously described CleanRL implementations. Every implementation strictly
adheres to CleanRL’s single-file design philosophy to aid researchers in understanding and replicating
our work.

All learning curve figures presented in this paper represent the average of evaluation results. In each
run, we conduct an evaluation every 5000 timesteps, with each evaluation comprising three episodes.
We then calculate the average of these episodes to determine the evaluation result for that particular
timestep.

Our experiments were conducted on machines equipped with NVIDIA 4090 GPUs and Intel 8336C
processors. Each individual experiment required approximately one to two hours of execution time.

3The correction applied is detailed in Stable Baselines3’s pull request 658: https://github.com/DLR-RM/
stable-baselines3/pull/658
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C Additional Experiment

C.1 Sweep of Teacher Models

In this subsection, we evaluated S3RL+TD3 under different performances of teacher agents. We
trained five teacher agents using CleanRL’s TD3 implementation, each for 1 million timesteps on
MuJoCo benchmark, with five different random seeds. These teacher agents were subsequently
ranked based on their evaluated performance, detailed in Table 4.

We designed five sets of experiments, where each set uses teacher agents of different performance
rankings to conduct the S3RL+TD3 experiment. Our experimental results, as shown in Figures 6
and 13, indicate that S3RL+TD3 shows variability in performance under the guidance of teacher
agents with different levels of performance. High-performing teacher agents generate a snapshot
dataset that can lead to more significant performance improvements for the student agents, while those
with relatively weaker performance offer more limited effects. Notably, even teacher agents with
performance below the average performance of TD3 can still enhance student agent’s performance,
suggesting that S3RL+TD3 can be effective even when high-quality teacher agents are unavailable.

Figure 6: Learning curves sample efficiency sweeps for S3RL+TD3 across teacher models on six
MuJoCo environments. For individual environment results, see Figure 13.

C.2 Evaluating S3RL with Soft Actor-Critic

Soft Actor-Critic (SAC) is an advanced off-policy algorithm that optimizes a stochastic policy in an
entropy-augmented RL framework, promoting a balance between exploration and exploitation.

Similar to the experiments with TD3, we trained five teacher agents using CleanRL’s SAC imple-
mentation, and selected the best performing teacher agent for generating the snapshot dataset. SAC
teacher models can be found in Table 5. Our results, as shown in Figure 7 and 14, indicate that
S3RL+SAC significantly outperforms SAC and SNAPSHOTRL+SAC in terms of sample efficiency.

Figure 7: Learning curves sample efficiency comparison of SAC, SNAPSHOTRL+SAC and
S3RL+SAC on six MuJoCo environments. For individual environment results, see Figure 14.
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Figure 8: Learning curves sample efficiency comparison of PPO, SNAPSHOTRL+PPO and
S3RL+PPO on six MuJoCo environments. For individual environment results, see Figure 15.

C.3 Evaluating S3RL with Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a widely adopted on-policy algorithm that enhances learning
stability and efficiency by employing a novel objective function with a clipping mechanism to prevent
disruptive policy updates.

Similar to the experiments with TD3, we trained five teacher agents using PPO algorithm, and
selected the best performing teacher agent for generating the snapshot dataset. PPO teacher models
can be found in Table 6. Our PPO is based on CleanRL’s PPO implementation but presents a
few implementation differences. For details, please refer to Appendix B. Our results, as shown in
Figure 8 and 15, indicate that S3RL+PPO only exhibits satisfactory performance in a limited set of
environments.

The performance gains achieved by S3RL+PPO are small compared to S3RL+TD3 and S3RL+SAC,
which we analyze for the following reasons:

• In S3RL+TD3 and S3RL+SAC experiments, due to their off-policy attributes, samples
collected during the snapshotRL phase are stored in the replay buffer, thus exerting a
continuous influence on subsequent learning phases. However, S3RL+PPO, being an on-
policy algorithm, does not retain samples from the snapshotRL phase in the replay buffer,
which consequently weakens their impact on future learning stages.

• PPO employs Generalized Advantage Estimation (GAE), and the early handle truncation
operation of STT strategy may affect the calculation of GAE.

• PPO normalized observations and rewards, but training environment during SNAPSHOTRL
phase may alter the distribution of observations and rewards, affecting training after weaning
off snapshots.

• Across the MuJoCo benchmarks, the performance of PPO teacher agents is generally lower
when compared with TD3 and SAC teacher agents.
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D Additional Curves
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Figure 9: Detailed learning curves for TD3, SNAPSHOTRL+TD3, and S3RL+TD3 on each of six
MuJoCo environments. Each subplot illustrates performance variance in sample efficiency across
environments.
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Figure 10: Ablation study details of S3RL+TD3, showing the impact of key components on sample
efficiency on each of six MuJoCo environments. Each subplot illustrates performance variance in
sample efficiency across environments.
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Figure 11: Learning curves sample efficiency sweeps for S3RL+TD3 across K on each of six
MuJoCo environments. Each subplot illustrates performance variance in sample efficiency across
environments.
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Figure 12: Learning curves sample efficiency sweeps for S3RL+TD3 across T on each of six
MuJoCo environments. Each subplot illustrates performance variance in sample efficiency across
environments.
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Figure 13: Learning curves sample efficiency sweeps for S3RL+TD3 across teacher models on each
of six MuJoCo environments. Each subplot illustrates performance variance in sample efficiency
across environments.
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Figure 14: Detailed learning curves for SAC, SNAPSHOTRL+SAC and S3RL+SAC on each of six
MuJoCo environments. Each subplot illustrates performance variance in sample efficiency across
environments.
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Figure 15: Detailed learning curves for PPO, SNAPSHOTRL+PPO and S3RL+PPO on each of six
MuJoCo environments. Each subplot illustrates performance variance in sample efficiency across
environments.
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E Hyperparameter

The hyperparameters for the implementations of S3RL+TD3, S3RL+SAC, and S3RL+PPO can
be found in Table 1, 2, and 3, respectively. Each table is structured such that the standard hy-
perparameters correspond to the standard settings of each algorithm, while the latter parameters
represent additional hyperparameters introduced for SnapshotRL with Status Classification and

Student Trajectory Truncation (S3RL).

Parameter Names Parameter Values

Ntotal Total Time Steps 1,000,000
α Learning Rate 0.0003
Nbuffer Replay Memory Buffer Size 1,000,000
γ Discount Factor 0.99
τ Target Smoothing Coefficient 0.005
Nbatch Batch Size 256
Policy Noise Scale 0.2
Exploration Noise Scale 0.1
Time Steps Before Learning 25,000
Training Policy Frequency (Delayed) 2
Noise Clip Parameter for Target Policy Smoothing Regularization 0.5
Optimizer Adam

Ntep Number of Teacher Episodes 10
Nsostp Number of Steps in Snapshot Training Phase 100,000
K for KMeans in State Classification 6
T in Student Trajectory Truncation 100

Table 1: TD3 and SNAPSHOTRL+TD3 hyperparameters.

Parameter Names Parameter Values

Ntotal Total Time Steps 1,000,000
αpolicy Policy Network Learning Rate 0.0003
αQ Q Network Learning Rate 0.001
Nbuffer Replay Memory Buffer Size 1,000,000
γ Discount Factor 0.99
τ Target Smoothing Coefficient 0.005
Nbatch Batch Size 256
Policy Noise Scale 0.2
Exploration Noise Scale 0.1
Time Steps Before Learning 5,000
Policy Training Frequency (Delayed) 2
Target Networks Update Frequency 1
Noise Clip Parameter for Target Policy Smoothing Regularization 0.5
Entropy Regularization Coefficient 0.2
Entropy Coefficient Auto-Tuning True
Optimizer Adam

Ntep Number of Teacher Episodes 10
Nsostp Number of Steps in Snapshot Training Phase 100,000
K for KMeans in State Classification 6
Tstu in Student Trajectory Truncation 100

Table 2: SAC and SNAPSHOTRL+SAC hyperparameters.
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Parameter Names Parameter Values

Ntotal Total Time Steps 1,000,000
α Learning Rate 0.0003
Nenvs Number of Parallel Environments 1
Nsteps Number of Steps per Environment 2048
γ (Discount Factor) 0.99
λ (for GAE) 0.95
Nmb Number of Mini-batches 32
K (Number of PPO Update Iteration Per Epoch) 10
ε (PPO’s Clipping Coefficient) 0.2
c1 (Value Function Coefficient) 0.5
c2 (Entropy Coefficient) 0.0
ω (Gradient Norm Threshold) 0.5
Value Function Loss Clipping True
Optimizer Adam

Ntep Number of Teacher Episodes 10
Nsostp Number of Steps in Snapshot Training Phase 100,000
K for KMeans in State Classification 6
Tstu in Student Trajectory Truncation 100

Table 3: PPO and SNAPSHOTRL+PPO hyperparameters.
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F Teacher Models

Table 4, 5, and 6 detail teacher models used in our experiments, ranked by their performance in
terms of the mean evaluation score minus the standard deviation. The model that ranks highest in
each environment is indicated by a icon. Our main experimental analysis relies solely on these
top-ranked models.

Environment Model Name (Click to go to repo) Evaluation Score Commit

Hopper-v4

sdpkjc/Hopper-v4-td3_continuous_action-seed3 3577.72± 18.84 77fccc4
cleanrl/Hopper-v4-td3_continuous_action-seed1 3244.59± 8.55 1e14f8f
sdpkjc/Hopper-v4-td3_continuous_action-seed2 3162.70± 400.28 e3219bd
sdpkjc/Hopper-v4-td3_continuous_action-seed5 3161.47± 427.71 754ff16
sdpkjc/Hopper-v4-td3_continuous_action-seed4 3094.02± 807.61 398b843

Walker2d-v4

cleanrl/Walker2d-v4-td3_continuous_action-seed1 3964.51± 9.70 51752b6
sdpkjc/Walker2d-v4-td3_continuous_action-seed5 3678.97± 340.29 089a235
sdpkjc/Walker2d-v4-td3_continuous_action-seed3 3314.10± 12.34 614767a
sdpkjc/Walker2d-v4-td3_continuous_action-seed4 3624.09± 539.63 dbf05cb
sdpkjc/Walker2d-v4-td3_continuous_action-seed2 3527.67± 746.96 fdf3439

HalfCheetah-v4

cleanrl/HalfCheetah-v4-td3_continuous_action-seed1 10762.42± 84.09 8547754
sdpkjc/HalfCheetah-v4-td3_continuous_action-seed4 10653.27± 75.24 0f60f2f
sdpkjc/HalfCheetah-v4-td3_continuous_action-seed3 11443.36± 933.39 0c33876
sdpkjc/HalfCheetah-v4-td3_continuous_action-seed2 10185.49± 107.47 ec9624a
sdpkjc/HalfCheetah-v4-td3_continuous_action-seed5 10204.25± 139.05 39939c8

Ant-v4

sdpkjc/Ant-v4-td3_continuous_action-seed4 5473.45± 118.94 9a956a6
sdpkjc/Ant-v4-td3_continuous_action-seed3 5211.38± 428.70 14610c5
cleanrl/Ant-v4-td3_continuous_action-seed1 5240.79± 730.24 3bd17bc
sdpkjc/Ant-v4-td3_continuous_action-seed5 2802.61± 163.65 074ff1a
sdpkjc/Ant-v4-td3_continuous_action-seed2 2606.88± 36.88 ad845c9

Swimmer-v4

sdpkjc/Swimmer-v4-td3_continuous_action-seed4 113.19± 18.53 1161fa1
sdpkjc/Swimmer-v4-td3_continuous_action-seed2 88.97± 19.63 d6ad4b1
sdpkjc/Swimmer-v4-td3_continuous_action-seed5 82.71± 14.26 69dfa47
cleanrl/Swimmer-v4-td3_continuous_action-seed1 60.09± 9.06 6eab7d2
sdpkjc/Swimmer-v4-td3_continuous_action-seed3 62.38± 12.78 380bcd0

Humanoid-v4

sdpkjc/Humanoid-v4-td3_continuous_action-seed3 5279.53± 35.43 e9dd75c
sdpkjc/Humanoid-v4-td3_continuous_action-seed5 5189.38± 27.99 c015a50
sdpkjc/Humanoid-v4-td3_continuous_action-seed2 5038.18± 130.45 5f196ad
cleanrl/Humanoid-v4-td3_continuous_action-seed1 5303.39± 514.14 0450bee
sdpkjc/Humanoid-v4-td3_continuous_action-seed4 4880.24± 1187.43 873f6ab

Table 4: TD3 Models Evaluation Scores and Links
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Environment Model Name (Click to go to repo) Evaluation Score Commit

Hopper-v4

sdpkjc/Hopper-v4-sac_continuous_action-seed4 2862.20± 972.12 1ee692e
sdpkjc/Hopper-v4-sac_continuous_action-seed3 2493.92± 609.06 4015a94
sdpkjc/Hopper-v4-sac_continuous_action-seed1 2274.04± 605.18 63ba003
sdpkjc/Hopper-v4-sac_continuous_action-seed5 1598.77± 492.69 bf93082
sdpkjc/Hopper-v4-sac_continuous_action-seed2 1555.12± 279.93 d6b664e

Walker2d-v4

sdpkjc/Walker2d-v4-sac_continuous_action-seed4 5350.98± 89.84 c8561ff
sdpkjc/Walker2d-v4-sac_continuous_action-seed3 5237.31± 942.48 2bb35b1
sdpkjc/Walker2d-v4-sac_continuous_action-seed1 5192.85± 85.73 29d35a9
sdpkjc/Walker2d-v4-sac_continuous_action-seed5 4731.36± 28.52 7a7f631
sdpkjc/Walker2d-v4-sac_continuous_action-seed2 3678.91± 523.03 49501ed

HalfCheetah-v4

sdpkjc/HalfCheetah-v4-sac_continuous_action-seed4 11623.83± 156.02 bf0622e
sdpkjc/HalfCheetah-v4-sac_continuous_action-seed2 11615.36± 1484.63 f5122c3
sdpkjc/HalfCheetah-v4-sac_continuous_action-seed3 11543.00± 122.49 a8c2810
sdpkjc/HalfCheetah-v4-sac_continuous_action-seed1 11211.47± 972.19 19da4f5
sdpkjc/HalfCheetah-v4-sac_continuous_action-seed5 8187.18± 676.54 6816d88

Ant-v4

sdpkjc/Ant-v4-sac_continuous_action-seed3 5735.30± 989.07 b1126bf
sdpkjc/Ant-v4-sac_continuous_action-seed4 5517.12± 1143.23 83b4537
sdpkjc/Ant-v4-sac_continuous_action-seed2 5511.89± 1041.57 514f6d2
sdpkjc/Ant-v4-sac_continuous_action-seed1 5314.44± 1159.54 b32f853
sdpkjc/Ant-v4-sac_continuous_action-seed5 3544.68± 2044.81 be8c365

Swimmer-v4

sdpkjc/Swimmer-v4-sac_continuous_action-seed3 148.97± 5.85 6c0875a
sdpkjc/Swimmer-v4-sac_continuous_action-seed2 76.70± 25.53 cf113b4
sdpkjc/Swimmer-v4-sac_continuous_action-seed1 74.85± 27.64 d9fd594
sdpkjc/Swimmer-v4-sac_continuous_action-seed4 50.26± 2.03 40ca421
sdpkjc/Swimmer-v4-sac_continuous_action-seed5 46.46± 1.08 94560c4

Humanoid-v4

sdpkjc/Humanoid-v4-sac_continuous_action-seed4 5604.16± 404.34 316b06c
sdpkjc/Humanoid-v4-sac_continuous_action-seed5 5570.79± 750.60 6e3b960
sdpkjc/Humanoid-v4-sac_continuous_action-seed3 5328.96± 1015.76 204ee92
sdpkjc/Humanoid-v4-sac_continuous_action-seed2 5306.36± 466.78 72f53bc
sdpkjc/Humanoid-v4-sac_continuous_action-seed1 5220.03± 212.43 6f2042f

Table 5: SAC Models Evaluation Scores and Links
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Environment Model Name (Click to go to repo) Evaluation Score Commit

Hopper-v4

Hopper-v4-ppo_fix_continuous_action-seed3 2515.99± 807.22 3d317e2
Hopper-v4-ppo_fix_continuous_action-seed5 2444.71± 794.51 3f3fd61
Hopper-v4-ppo_fix_continuous_action-seed2 1990.14± 683.73 54a25d8
Hopper-v4-ppo_fix_continuous_action-seed4 1917.18± 681.46 2322d58
Hopper-v4-ppo_fix_continuous_action-seed1 1649.65± 559.09 d27a3d5

Walker2d-v4

Walker2d-v4-ppo_fix_continuous_action-seed4 4735.58± 1183.56 9df90bd
Walker2d-v4-ppo_fix_continuous_action-seed2 4057.75± 1062.76 b25b341
Walker2d-v4-ppo_fix_continuous_action-seed3 3781.41± 1202.34 907651a
Walker2d-v4-ppo_fix_continuous_action-seed1 3357.25± 1235.64 28a01f1
Walker2d-v4-ppo_fix_continuous_action-seed5 2401.69± 876.52 67e3c10

HalfCheetah-v4

HalfCheetah-v4-ppo_fix_continuous_action-seed1 4043.23± 526.25 bc83fb6
HalfCheetah-v4-ppo_fix_continuous_action-seed4 2522.56± 537.35 515348e
HalfCheetah-v4-ppo_fix_continuous_action-seed2 1866.44± 23.70 871ea55
HalfCheetah-v4-ppo_fix_continuous_action-seed5 1821.81± 27.10 b007d7f
HalfCheetah-v4-ppo_fix_continuous_action-seed3 1741.62± 30.79 f696a66

Ant-v4

Ant-v4-ppo_fix_continuous_action-seed2 3611.87± 747.12 b88f77d
Ant-v4-ppo_fix_continuous_action-seed3 2739.20± 562.54 419360f
Ant-v4-ppo_fix_continuous_action-seed4 2942.98± 823.33 07048f2
Ant-v4-ppo_fix_continuous_action-seed5 2383.17± 1044.23 3eec78a
Ant-v4-ppo_fix_continuous_action-seed1 1866.34± 766.40 be0d911

Swimmer-v4

Swimmer-v4-ppo_fix_continuous_action-seed1 131.51± 2.04 989c6ba
Swimmer-v4-ppo_fix_continuous_action-seed4 119.79± 2.48 5057fec
Swimmer-v4-ppo_fix_continuous_action-seed3 75.22± 4.29 cc81c0e
Swimmer-v4-ppo_fix_continuous_action-seed2 63.36± 1.08 63be675
Swimmer-v4-ppo_fix_continuous_action-seed5 60.77± 3.35 4435bb6

Humanoid-v4

Humanoid-v4-ppo_fix_continuous_action-seed4 704.90± 153.81 83d57b0
Humanoid-v4-ppo_fix_continuous_action-seed3 687.42± 159.92 318aafa
Humanoid-v4-ppo_fix_continuous_action-seed2 645.69± 143.65 b5dcc47
Humanoid-v4-ppo_fix_continuous_action-seed5 591.69± 107.84 d08d91f
Humanoid-v4-ppo_fix_continuous_action-seed1 640.32± 171.90 e1edbff

Table 6: PPO Models Evaluation Scores and Links
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