
Published as a conference paper at ICLR 2023

BETTY: AN AUTOMATIC DIFFERENTIATION LIBRARY
FOR MULTILEVEL OPTIMIZATION

Sang Keun Choe1 Willie Neiswanger2 Pengtao Xie3,4∗ Eric Xing1,4∗
1Carnegie Mellon University 2Stanford University 3UCSD 4MBZUAI ∗Equal contribution
{sangkeuc,epxing}@cs.cmu.edu, neiswanger@cs.stanford.edu, p1xie@ucsd.edu

ABSTRACT

Gradient-based multilevel optimization (MLO) has gained attention as a framework
for studying numerous problems, ranging from hyperparameter optimization and
meta-learning to neural architecture search and reinforcement learning. However,
gradients in MLO, which are obtained by composing best-response Jacobians
via the chain rule, are notoriously difficult to implement and memory/compute
intensive. We take an initial step towards closing this gap by introducing BETTY,
a software library for large-scale MLO. At its core, we devise a novel dataflow
graph for MLO, which allows us to (1) develop efficient automatic differentiation
for MLO that reduces the computational complexity from O(d3) to O(d2), (2)
incorporate systems support such as mixed-precision and data-parallel training
for scalability, and (3) facilitate implementation of MLO programs of arbitrary
complexity while allowing a modular interface for diverse algorithmic and systems
design choices. We empirically demonstrate that BETTY can be used to implement
an array of MLO programs, while also observing up to 11% increase in test
accuracy, 14% decrease in GPU memory usage, and 20% decrease in training wall
time over existing implementations on multiple benchmarks. We also showcase that
BETTY enables scaling MLO to models with hundreds of millions of parameters.
We open-source the code at https://github.com/leopard-ai/betty.

1 INTRODUCTION

Multilevel optimization (MLO) addresses nested optimization scenarios, where upper level opti-
mization problems are constrained by lower level optimization problems following an underlying
hierarchical dependency. MLO has gained considerable attention as a unified mathematical framework
for studying diverse problems including meta-learning (Finn et al., 2017; Rajeswaran et al., 2019),
hyperparameter optimization (Franceschi et al., 2017), neural architecture search (Liu et al., 2019),
and reinforcement learning (Konda & Tsitsiklis, 1999; Rajeswaran et al., 2020). While a majority of
existing work is built upon bilevel optimization, the simplest case of MLO, there have been recent
efforts that go beyond this two-level hierarchy. For example, (Raghu et al., 2021) proposed trilevel
optimization that combines hyperparameter optimization with two-level pretraining and finetuning.
More generally, conducting joint optimization over machine learning pipelines consisting of multiple
models and hyperparameter sets can be approached as deeper instances of MLO (Garg et al., 2022;
Raghu et al., 2021; Somayajula et al., 2022; Such et al., 2020).

Following its increasing popularity, a multitude of optimization algorithms have been proposed to
solve MLO. Among them, gradient-based (or first-order) approaches (Pearlmutter & Siskind, 2008;
Lorraine et al., 2020; Raghu et al., 2021; Sato et al., 2021) have recently received the limelight
from the machine learning community, due to their ability to carry out efficient high-dimensional
optimization, under which all of the above listed applications fall. Nevertheless, research in gradient-
based MLO has been largely impeded by two major bottlenecks. First, implementing gradients in
multilevel optimization, which is achieved by composing best-response Jacobians via the chain rule,
requires both programming and mathematical proficiency. Second, algorithms for best-response
Jacobian calculation, such as iterative differentiation (ITD) or approximate implicit differentiation
(AID) (Grazzi et al., 2020), are memory and compute intensive, as they require multiple forward/back-
ward computations and oftentimes second-order gradient (i.e. Hessian) information.

1

https://github.com/leopard-ai/betty

Published as a conference paper at ICLR 2023

Engine

Problem 4

Problem 3

Problem 2 Problem 1

Problem

Step

module

costdata loader

optimizer

load data

update

grad calc.cost calc.

parent step

lower prob.

upper prob.
config

if inner loop is done

upper-to-lower

lower-to-upper
Best-response Jacobian

ITD-RMAD AID-FD

AID-NMN AID-CG

Systems Support

data-parallel fp16

grad accum.

Figure 1: In Engine (left), users define their MLO program as a hierarchy/graph of optimization
problems. In Problem (middle), users define an optimization problem with a data loader, cost
function, module, and optimizer, while upper/lower level constraint problems (i.e. Uk,Lk) are injected
by Engine. The “step” function in Problem serves as the base of gradient-based optimization,
abstracting the one-step gradient descent update process. Finally, users can easily try out different
best-response Jacobian algorithms & system features (right) via Config in a modular manner.

In recent years, there has been some work originating in the meta-learning community on developing
software libraries that target some aspects of gradient-based MLO (Blondel et al., 2021; Deleu et al.,
2019; Grefenstette et al., 2019). For example, JAXopt (Blondel et al., 2021) provides efficient and
modular implementations of AID algorithms by letting the user define a function capturing the
optimality conditions of the problem to be differentiated. However, JAXopt fails to combine the
chain rule with AID to support general MLO programs beyond a two-level hierarchy. Similarly,
higher (Grefenstette et al., 2019) provides several basic primitives (e.g. making PyTorch’s (Paszke
et al., 2019) native optimizers differentiable) for implementing ITD/AID algorithms, but users still
need to manually implement complicated internal mechanisms of these algorithms as well as the
chain rule to implement a given instance of MLO. Furthermore, most existing libraries do not have
systems support, such as mixed-precision and data-parallel training, that could mitigate memory and
computation bottlenecks. As a result, gradient-based MLO research built upon these libraries has
been largely limited to simple bilevel optimization and small-scale setups.

In this paper, we attempt to bridge this gap between research and software systems by introducing
BETTY, an easy-to-use and modular automatic differentiation library with various systems support
for large-scale MLO. The main contributions of this paper are as follows:

1. We develop an efficient automatic differentiation technique for MLO based on a novel interpreta-
tion of MLO as a special type of dataflow graph (Section 3). In detail, gradient calculation for
each optimization problem is automatically carried out by iteratively multiplying best-response
Jacobians (defined in Section 2) through the chain rule while reverse-traversing specific paths of
this dataflow graph. This reverse-traversing procedure is crucial for efficiency, as it reduces the
computational complexity of our automatic differentiation technique from O(d3) to O(d2), where
d is the dimension of the largest optimization problem in the MLO program.

2. We introduce a software library for MLO, BETTY, built upon the above automatic differentiation
technique. Our software design (Section 4), motivated by the dataflow graph interpretation,
provides two major benefits: (1) it allows for incorporating various systems support, such as mixed-
precision and data-parallel training, for large-scale MLO, and (2) it facilitates implementation of
MLO programs of arbitrary complexity while allowing a modular interface for diverse algorithmic
and systems design choices. The overall software architecture of BETTY is presented in Figure 1.

3. We empirically demonstrate that BETTY can be used to implement an array of MLO applications
with varying scales and complexities (Section 5). Interestingly, we observe that trying out different
best-response Jacobian algorithms with our modular interface (which only requires changing one
line of code) can lead to up to 11% increase in test accuracy, 14% decrease in GPU memory
usage, and 20% decrease in training wall time on various benchmarks, compared with the original
papers’ implementations. Finally, we showcase the scalability of BETTY to models with hundreds
of millions of parameters by performing MLO on the BERT-base model with the help of BETTY’s
systems support, which was otherwise infeasible.

2

Published as a conference paper at ICLR 2023

2 BACKGROUND: GRADIENT-BASED MULTILEVEL OPTIMIZATION

To introduce MLO, we first define an important concept known as a “constrained problem” (Vicente
& Calamai, 1994).
Definition 1. An optimization problem P is said to be constrained by λ when its cost function C has
λ as an argument in addition to the optimization parameter θ (i.e. P : argminθ C(θ, λ, · · ·)).

Multilevel optimization (Migdalas et al., 1998) refers to a field of study that aims to solve a nested set
of optimization problems defined on a sequence of so-called levels, which satisfy two main criteria:
A1) upper-level problems are constrained by the optimal parameters of lower-level problems while
A2) lower-level problems are constrained by the nonoptimal parameters of upper-level problems.
Formally, an n-level MLO program can be written as:
Pn : θ∗n = argmin

θn

Cn(θn,Un,Ln;Dn) ▷ Level n problem

. . .
Pk : s.t. θ∗k = argmin

θk

Ck(θk,Uk,Lk;Dk) ▷ Level k ∈ {2, . . . , n− 1} problem

. . .
P1 : s.t. θ∗1 = argmin

θ1

C1(θ1,U1,L1;D1) ▷ Level 1 problem

where, Pk stands for the level k problem, θk / θ∗k for corresponding nonoptimal / optimal parameters,
and Uk /Lk for the sets of constraining parameters from upper / lower level problems. Here, Dk is the
training dataset, and Ck indicates the cost function. Due to criteria A1 & A2, constraining parameters
from upper-level problems should be nonoptimal (i.e. Uk ⊆ {θk+1, · · · , θn}) while constraining
parameters from lower-level problems should be optimal (i.e. Lk ⊆ {θ∗1 , · · · , θ∗k−1}). Although we
denote only one optimization problem per level in the above formulation, each level could in fact
have multiple problems. Therefore, we henceforth discard the concept of level, and rather assume
that problems {P1, P2, · · · , Pn} of a general MLO program are topologically sorted in a “reverse”
order (i.e. Pn / P1 denote uppermost / lowermost problems).

For example, in hyperparameter optimization formulated as bilevel optimization, hyperparameters
and network parameters (weights) correspond to upper and lower level parameters (θ2 and θ1). Train /
validation losses correspond to C1 / C2, and validation loss is dependent on optimal network parameters
θ∗1 obtained given θ2. Thus, constraining sets for each level are U1 = {θ2} and L2 = {θ∗1}.

In this paper, we focus in particular on gradient-based MLO, rather than zeroth-order methods like
Bayesian optimization (Cui & Bai, 2019), in order to efficiently scale to high-dimensional problems.
Essentially, gradient-based MLO calculates gradients of the cost function Ck(θk,Uk,Lk) with respect
to the corresponding parameter θk, with which gradient descent is performed to solve for optimal
parameters θ∗k for every problem Pk. Since optimal parameters from lower level problems (i.e.
θ∗l ∈ Lk) can be functions of θk (criterion A2), dCk

dθk
can be expanded using the chain rule as follows:

dCk
dθk

=
∂Ck
∂θk︸︷︷︸

direct gradient

+
∑

θ∗
l ∈Lk

dθ∗l
dθk︸︷︷︸

best-response Jacobian

× ∂Ck
∂θ∗l︸︷︷︸

direct gradient

(1)

While calculating direct gradients (purple) is straightforward with existing automatic differentiation
engines like PyTorch (Paszke et al., 2019), a major difficulty in gradient-based MLO lies in best-
response Jacobian1 (orange) calculation, which will be discussed in depth in Section 3. Once gradient
calculation for each level k is enabled via Equation (1), gradient-based optimization is executed from
lower to upper level problems in a topologically reverse order, reflecting underlying hierarchies.

3 AUTOMATIC DIFFERENTIATION FOR MULTILEVEL OPTIMIZATION

While Equation (1) serves as a mathematical basis for gradient-based multilevel optimization, how
to automatically and efficiently carry out such gradient calculation has not been extensively studied

1We abuse the term Jacobian for a total derivative here while it is originally a matrix of partial derivatives

3

Published as a conference paper at ICLR 2023

and incorporated into a software system that can support MLO programs involving many problems
with complex dependencies. In this section, we discuss the challenges in building an automatic
differentiation library for MLO, and provide solutions to address these challenges.

3.1 DATAFLOW GRAPH FOR MULTILEVEL OPTIMIZATION

One may observe that the best-response Jacobian term in Equation (1) is expressed with a total
derivative instead of a partial derivative. This is because θk can affect θ∗l not only through a direct
interaction, but also through multiple indirect interactions via other lower-level optimal parameters.
For example, consider the four-problem MLO program illustrated in Figure 2. Here, the parameter of
Problem 4 (θp4

) affects the optimal parameter of Problem 3 (θ∗p3
) in two different ways: 1) θp4

→ θ∗p3

and 2) θp4
→ θ∗p1

→ θ∗p3
. In general, we can expand the best-response Jacobian dθ∗

l

dθk
in Equation (1)

by applying the chain rule for all paths from θk to θ∗l as

dCk
dθk

=
∂Ck
∂θk

+
∑

θ∗
l ∈Lk

∑
q∈Qk,l

(
∂θ∗q(1)

∂θk︸ ︷︷ ︸
upper-to-lower

×

(len(q)−1∏
i=1

∂θ∗q(i+1)

∂θ∗q(i)︸ ︷︷ ︸
lower-to-upper

)
× ∂Ck

∂θ∗l

)
(2)

where Qk,l is a set of paths from θk to θ∗l , and q(i) refers to the index of the i-th problem in the path q
with the last point being θ∗l . Replacing a total derivative term in Equation (1) with a product of partial
derivative terms using the chain rule allows us to ignore indirect interactions between problems, and
only deal with direct interactions.

P4

P3

P2 P1

Figure 2: An example
dataflow graph for MLO.

To formalize the path finding problem, we develop a novel dataflow
graph for MLO. Unlike traditional dataflow graphs with no predefined
hierarchy among nodes, a dataflow graph for multilevel optimization
has two different types of directed edges stemming from criteria A1 &
A2: lower-to-upper and upper-to-lower. Each of these directed edges is
respectively depicted with green and red arrows in Figure 2. Essentially,
a lower-to-upper edge represents the directed dependency between two
optimal parameters (i.e. θ∗Pi

→ θ∗Pj
with Pi < Pj), while an upper-to-

lower edge represents the directed dependency between nonoptimal and
optimal parameters (i.e. θPi → θ∗Pj

with Pi > Pj). Since we need to
find paths from the nonoptimal parameter θk to the optimal parameter
θ∗l , the first directed edge must be an upper-to-lower edge (red), which
connects θk to some lower-level optimal parameter. Once it reaches the
optimal parameter, it can only move through optimal parameters via lower-to-upper edges (green) in
the dataflow graph. Therefore, every valid path from θk to θ∗l will start with an upper-to-lower edge,
and then reach the destination only via lower-to-upper edges. The best-response Jacobian term for
each edge in the dataflow graph is also marked with the corresponding color in Equation (2). We
implement the above path finding mechanism with a modified depth-first search algorithm in BETTY.

3.2 GRADIENT CALCULATION WITH BEST-RESPONSE JACOBIANS

Automatic differentiation for MLO can be realized by calculating Equation (2) for each problem Pk

(k = 1, · · · , n). However, a naive calculation of Equation (2) could be computationally onerous as
it involves multiple matrix multiplications with best-response Jacobians, of which computational
complexity is O(d3), where d is the dimension of the largest optimization problem in the MLO
program. To alleviate this issue, we observe that the rightmost term in Equation (2) is a vector, which
allows us to reduce the computational complexity of Equation (2) to O(d2) by iteratively performing
matrix-vector multiplication from right to left (or, equivalently, reverse-traversing a path q in the
dataflow graph). As such, matrix-vector multiplication between the best-response Jacobian and a
vector serves as a base operation of efficient automatic differentiation for MLO. Mathematically, this
problem can be simply written as follows:

Calculate
∂w∗(λ)

∂λ
× v (3)

Given w∗(λ) = argmin
w

C(w, λ). (4)

4

Published as a conference paper at ICLR 2023

Two major challenges in the above problems are: 1) approximating the solution of the optimization
problem (i.e. w∗(λ)), and 2) differentiating through the (approximated) solution.

In practice, an approximation of w∗(λ) is typically achieved by unrolling a small number of gradient
steps, which can significantly reduce the computational cost (Franceschi et al., 2017). While we
could potentially obtain a better approximation of w∗(λ) by running gradient steps until convergence,
this procedure alone can take a few days (or even weeks) when the underlying optimization problem
is large-scale (Deng et al., 2009; Devlin et al., 2018).

Once w∗(λ) is approximated, matrix-vector multiplication between the best-response Jacobian dw∗(λ)
dλ

and a vector v is popularly obtained by either iterative differentiation (ITD) or approximate implicit
differentiation (AID) (Grazzi et al., 2020). This problem has been extensively studied in bilevel
optimization literature (Finn et al., 2017; Franceschi et al., 2017; Lorraine et al., 2020), and we direct
interested readers to the original papers, as studying these algorithms is not the focus of this paper. In
BETTY, we provide implementations of several popular ITD/AID algorithms which users can easily
plug-and-play for their MLO applications. Currently available algorithms within BETTY include ITD
with reverse-mode automatic differentiation (ITD-RMAD) (Finn et al., 2017), AID with Neumann
series (AID-NMN) (Lorraine et al., 2020), AID with conjugate gradient (AID-CG) (Rajeswaran et al.,
2019), and AID with finite difference (AID-FD) (Liu et al., 2019).

3.3 EXECUTION OF MULTILEVEL OPTIMIZATION

In MLO, optimization of each problem should be performed in a topologically reverse order, as
the upper-level optimization is constrained by the result of lower-level optimization. To ease an
MLO implementation, we also automate such an execution order with the dataflow graph developed
in Section 3.1. Specifically, let’s assume that there is a lower-to-upper edge between problems Pi

and Pj (i.e. θ∗i → θ∗j). When the optimization process (i.e. a small number of gradient steps) of
the problem Pi is complete, it can call the problem Pj to start its one-step gradient descent update
through the lower-to-upper edge. The problem Pj waits until all lower level problems in Lj send
their calls, and then performs the one-step gradient descent update when all the calls from lower
levels are received. Hence, to achieve the full execution of gradient-based MLO, we only need to call
the one-step gradient descent processes of the lowermost problems, as the optimization processes of
upper problems will be automatically called from lower problems via lower-to-upper edges.

To summarize, automatic differentiation for MLO is accomplished by performing gradient updates of
multiple optimization problems in a topologically reverse order based on the lower-to-upper edges
(Sec. 3.3), where gradients for each problem are calculated by iteratively multiplying best-response
Jacobians obtained with ITD/AID (Sec. 3.2) while reverse-traversing the dataflow graph (Sec. 3.1).

4 SOFTWARE DESIGN

On top of the automatic differentiation technique developed in Section 3, we build an easy-to-use and
modular software library, BETTY, with various systems support for large-scale gradient-based MLO.
In detail, we break down MLO into two high-level concepts, namely 1) optimization problems and
2) hierarchical dependencies among problems, and design abstract Python classes for both of them.
Such abstraction is also motivated by our dataflow graph interpretation, as each of these concepts
respectively corresponds to nodes and edges. The architecture of BETTY is shown in Figure 1

Problem Each optimization problem Pk in MLO is defined by the parameter (or module) θk,
the sets of the upper and lower constraining problems Uk & Lk, the dataset Dk, the cost function
Ck, the optimizer, and other optimization configurations (e.g best-response Jacobian calculation
algorithm, number of unrolling steps). The Problem class is an interface where users can provide
each of the aforementioned components to define the optimization problem. In detail, each one
except for the cost function Ck and the constraining problems Uk & Lk can be provided through the
class constructor, while the cost function can be defined through a “training step” method and the
constraining problems are automatically provided by Engine.

Abstracting an optimization problem by encapsulating module, optimizer, and data loader together
additionally allows us to implement various systems support, including mixed-precision, data-parallel
training, and gradient accumulation, within the abstract Problem class. A similar strategy has also

5

Published as a conference paper at ICLR 2023

been adopted in popular frameworks for large-scale deep learning such as DeepSpeed (Rajbhandari
et al., 2020). Since implementations of such systems support as well as best-response Jacobian are
abstracted away, users can easily plug-and-play different algorithmic and systems design choices,
such as unrolling steps or mixed-precision training, via Config in a modular fashion. An example
usage of Problem is shown in Listing 1, and a full list of supported features in Config is provided
in Appendix F.

1 class MyProblem(Problem):
2 def training_step(self, batch):
3 # Users define the cost function here
4 return cost_fn(batch, self.module, self.other_probs, ...)
5 config = Config(type="darts", unroll_steps=10, fp16=True, gradient_accumulation=4)
6 prob = MyProblem("myproblem", config, module, optimizer, data_loader)

Listing 1: Problem class example.

Engine While Problem manages each optimization problem, Engine handles hierarchical
dependencies among problems in the dataflow graph. As discussed in Section 3.1, a dataflow graph
for MLO has upper-to-lower and lower-to-upper directed edges. We allow users to define two separate
graphs, one for each type of edge, using a Python dictionary, in which keys/values respectively
represent start/end nodes of the edge. When user-defined dependency graphs are provided, Engine
compiles them and finds all paths required for automatic differentiation with a modified depth-first
search algorithm. Moreover, Engine sets constraining problem sets for each problem based on the
dependency graphs, as mentioned above. Once all initialization processes are done, users can run a
full MLO program by calling Engine’s run method, which repeatedly calls the one-step gradient
descent procedure of lowermost problems. The example usage of Engine is provided in Listing 2.

1 prob1 = MyProblem1(...)
2 prob2 = MyProblem2(...)
3 dependency = {"u2l": {prob1: [prob2]}, "l2u": {prob1: [prob2]}}
4 engine = Engine(problems=[prob1, prob2], dependencies=dependency)
5 engine.run()

Listing 2: Engine class example.

5 EXPERIMENTS

To showcase the general applicability of BETTY, we implement three MLO benchmarks with varying
complexities and scales: data reweighting for class imbalance (Sec. 5.1), correcting and reweighting
corrupted labels (Sec. 5.2), and domain adaptation for a pretraining/finetuning framework (Sec. 5.3).
Furthermore, we analyze the effect of different best-response Jacobian algorithms and system features
by reporting GPU memory usage and training wall time. Last but not least, in the Appendix,
we include an additional MLO benchmark experiment on differentiable neural architecture search
(Appendix A), code examples (Appendix B), training details such as hyperparameters (Appendix C),
analyses on various algorithmic and systems design choices (Appendix D and E).

5.1 DATA REWEIGHTING FOR CLASS IMBALANCE

Many real-world datasets suffer from class imbalance due to underlying long-tailed data distributions.
Meta-Weight-Net (MWN) (Shu et al., 2019) proposes to alleviate the class imbalance issue with a data
reweighting scheme where they learn to assign higher/lower weights to data from more rare/common
classes. In detail, MWN formulates data reweighting with bilevel optimization as follows:

θ∗ = argmin
θ

Lval(w
∗(θ)) ▷ Reweighting

s.t. w∗(θ) = argmin
w

1

N

n∑
i=1

R(Li
train; θ) · Li

train(f(xi;w), yi) ▷ Classification

where w is the network parameters, Li
train is the training loss for the i-th training sample, and θ is

the MWN R’s parameters, which reweights each training sample given its training loss Li
train.

Following the original paper, we artificially inject class imbalance into the CIFAR-10 dataset by
geometrically decreasing the number of data sample for each class, as per an imbalance factor. While

6

Published as a conference paper at ICLR 2023

the official implementation, which is built upon Torchmeta (Deleu et al., 2019), only adopts ITD-
RMAD for best-response Jacobian calculation, we re-implement MWN with multiple best-response
Jacobian algorithms, which only require one-liner changes using BETTY, to study their effect on test
accuracy, memory efficiency, and training wall time. The experiment results are given in Table 1.

Algorithm IF 200 IF 100 IF 50 Memory Time

MWN (original) ITD-RMAD 68.91 75.21 80.06 2381MiB 35.8m

MWN (ours, step=1) ITD-RMAD 71.96 75.13 79.50 2381MiB 36.0m
MWN (ours, step=1) AID-CG 66.23±1.88 70.88±1.68 75.41±0.61 2435MiB 67.4m
MWN (ours, step=1) AID-NMN 66.45±1.18 70.92±1.35 75.90 ±1.73 2419MiB 67.1m
MWN (ours, step=1) AID-FD 75.45±0.63 78.11±0.43 81.15±0.25 2051MiB 28.5m
MWN (ours, step=5) AID-FD 76.56±1.19 80.45±0.73 83.11±0.54 2051MiB 65.5m

Table 1: MWN experiment results. IF denotes an imbalance factor. AID-CG/NMN/FD respectively
stand for implicit differentiation with conjugate gradient/Neumann series/finite difference.

We observe that different best-Jacobian algorithms lead to vastly different test accuracy, memory
efficiency, and training wall time. Interestingly, we notice that AID-FD with unrolling steps of both
1 and 5 consistently achieve better test accuracy (close to SoTA (Tang et al., 2020)) and memory
efficiency than other methods. This demonstrates that, while BETTY is developed to support large and
general MLO programs, it is still useful for simpler bilevel optimization tasks as well. An additional
analysis on the effect of best-response Jacobian can also be found in Appendix D.

Furthermore, to demonstrate the scalability of BETTY to large-scale MLO, we applied MWN to
sentence classification with the BERT-base model (Devlin et al., 2018) with 110M parameters.
Similarly, we artificially inject class imbalance into the SST dataset, and use AID-FD as our best-
response Jacobian calculation algorithm. The experiment results are provided in Table 2.

Algorithm IF 20 IF 50 Memory

Baseline AID-FD 89.99±0.38 87.54±0.70 8319MiB

MWN (fp32) AID-FD - - Out-of-memory
MWN (fp16) AID-FD 91.06±0.09 89.79±0.65 10511MiB

Table 2: MWN+BERT experiment results. fp32 and fp16 respectively stand for full-precision and
mixed-precision training.

As shown above, default full-precision training fails due to the CUDA out-of-memory error, while
mixed-precision training, which only requires a one-line change in Config, avoids this issue while
also providing consistent improvements in test accuracy compared to the BERT baseline. This
demonstrates that our system features are indeed effective in scaling MLO to large models. We
include more analyses on our systems support in Appendix E.

5.2 CORRECTING & REWEIGHTING CORRUPTED LABELS

Another common pathology in real-world data science is the issue of label corruption, stemming
from noisy data preparation processes (e.g. Amazon MTurk). One prominent example of this is in
weak supervision (Ratner et al., 2016), where users create labels for large training sets by leveraging
multiple weak/noisy labeling sources such as heuristics and knowledge bases. Due to the nature
of weak supervision, generated labels are generally noisy, and consequently lead to a significant
performance degradation. In this example, we aim to mitigate this issue by 1) correcting and 2)
reweighting potentially corrupted labels. More concretely, this problem can be formulated as an
extended bilevel optimization problem, as, unlike the MWN example, we have two optimization
problems—correcting and reweighting—in the upper level, as opposed to one. The mathematical
formulation of this MLO program is as follows:

θ∗ = argmin
θ

Lval(w
∗(θ, α)), α∗ = argmin

α
L′
val(w

∗(θ, α)) ▷ RWT & CRT

s.t. w∗(θ, α) = argmin
w

1

N

n∑
i=1

R(Li
train; θ) · Li

train(f(xi;w), g(xi, yi;α)) ▷ Classification

7

Published as a conference paper at ICLR 2023

where, α is the parameter for the label correction network g, and L′
val is augmented with the

classification loss of the correction network in addition to that of the main classification network f on
the clean validation set.

We test our framework on the WRENCH benchmark (Zhang et al., 2021a), which contains multiple
weak supervision datasets. In detail, we use a 2-layer MLP as our classifier, AID-FD as our best-
response Jacobian algorithm, and Snorkel Data Programming (Ratner et al., 2016) as our weak
supervision algorithm for generating training labels. The experiment results are provided in Table 3.

TREC AGNews IMDB SemEval ChemProt YouTube

Snorkel 57.52±0.18 62.00±0.07 71.03±0.55 71.00±0.00 51.54±0.41 77.44±0.22

Baseline 53.88±1.83 80.74±0.20 72.26±0.81 71.50±0.44 54.47±0.78 88.16±1.56
+RWT 57.56±1.41 82.79±0.10 77.18±0.13 77.23±3.38 65.33±0.72 91.60±0.75
+RWT&CRT 66.76±1.31 83.16±0.20 77.80±0.26 84.34±1.43 67.69±1.17 91.52±0.66

Table 3: Wrench Results. RWT stands for reweighting and CRT for correction

We observe that simultaneously applying label correction and reweighting significantly improves
the test accuracy over the baseline and the reweighting-only scheme in almost all tasks. Thanks to
BETTY, adding label correction in the upper-level on top of the existing reweighting scheme only
requires defining one more Problem class, and accordingly updating the problem dependency in
Engine (code examples can be found in Appendix B).

5.3 DOMAIN ADAPTATION FOR PRETRAINING & FINETUNING

Pretraining/finetuning paradigms are increasingly adopted with recent advances in self-supervised
learning (Devlin et al., 2018; He et al., 2020). However, the data for pretraining are oftentimes from
a different distribution than the data for finetuning, which could potentially cause negative transfer.
Thus, domain adaptation emerges as a natural solution to mitigate this issue. As a domain adaptation
strategy, (Raghu et al., 2021) proposes to combine data reweighting with a pretraining/finetuning
framework to automatically decrease/increase the weight of pretraining samples that cause negative/-
positive transfer. In contrast with the above two benchmarks, this problem can be formulated as
trilevel optimization as follows:

θ∗ = argmin
θ

LFT (v
∗(w∗(θ))) ▷ Reweighting

s.t. v∗(w∗(θ)) = argmin
v

(
LFT (v) + λ∥v − w∗(θ)∥22

)
▷ Finetuning

w∗(θ) = argmin
w

1

N

n∑
i=1

R(xi; θ) · Li
PT (w) ▷ Pretraining

where xi / Li
PT stands for the i-th pretraining sample/loss, R for networks that reweight importance

for each pretraining sample xi, and λ for the proximal regularization parameter. Additionally, w, v,
and θ are respectively parameters for pretraining, finetuning, and reweighting networks.

We conduct an experiment on the OfficeHome dataset (Venkateswara et al., 2017) that consists of
15,500 images from 65 classes and 4 domains: Art (Ar), Clipart (Cl), Product (Pr), and Real World
(RW). Specifically, we randomly choose 2 domains and use one of them as a pretraining task and the
other as a finetuning task. ResNet-18 (He et al., 2016) is used for all pretraining/finetuning/reweighting
networks, and AID-FT with an unrolling step of 1 is used as our best-response Jacobian algorithm.
Following (Bai et al., 2021), the finetuning and the reweighting stages share the same training dataset.
We adopted a normal pretraining/finetuning framework without the reweighting stage as our baseline,
and the result is presented in Table 4.

Our trilevel optimization framework achieves consistent improvements over the baseline for every
task combination at the cost of additional memory usage and wall time, which demonstrates the
empirical usefulness of multilevel optimization beyond a two-level hierarchy. Finally, we provide
an example of (a simplified version of) the code for this experiment in Appendix B to showcase the
usability of our library for a general MLO program.

8

Published as a conference paper at ICLR 2023

Algorithm Cl→Ar Ar→Pr Pr→Rw Rw→Cl Memory Time

Baseline N/A 65.43±0.36 87.62±0.33 77.43±0.41 68.76±0.13 3.8GiB 290s

+ RWT AID-FD 67.76±0.83 88.53±0.42 78.58±0.17 69.75±0.43 8.2GiB 869s

Table 4: Domain Adaptation for Pretraining & Finetuning results. Reported numbers are classification
accuracy on the target domain (right of arrow), after pretraining on the source domain (left of arrow).
We note that Baseline is a two-layer, and Baseline + Reweight a three-layer, MLO program.

6 RELATED WORK

Bilevel & Multilevel Optimization There are a myriad of machine learning applications that
are built upon bilevel optimization (BLO), the simplest case of multilevel optimization with a two-
level hierarchy. For example, neural architecture search (Liu et al., 2019; Zhang et al., 2021b),
hyperparameter optimization (Franceschi et al., 2017; Lorraine et al., 2020; Maclaurin et al., 2015),
reinforcement learning (Hong et al., 2020; Konda & Tsitsiklis, 1999), data valuation (Ren et al.,
2020; Wang et al., 2020), meta learning (Finn et al., 2017; Rajeswaran et al., 2019), and label
correction (Zheng et al., 2019) are formulated as BLO. In addition to applying BLO to machine
learning tasks, a variety of optimization techniques (Couellan & Wang, 2016; Grazzi et al., 2020; Ji
et al., 2021; Liu et al., 2021) have been developed for solving BLO.

Following the popularity of BLO, MLO with more than a two-level hierarchy has also attracted
increasing attention recently (Raghu et al., 2021; Somayajula et al., 2022; Such et al., 2020; Xie
& Du, 2022). In general, these works construct complex multi-stage ML pipelines, and optimize
the pipelines in an end-to-end fashion with MLO. For instance, (Garg et al., 2022) constructs the
pipeline of (data generation)–(architecture search)–(classification) and (He et al., 2021) of (data
reweighting)–(finetuning)–(pretraining), all of which are solved with MLO. Furthermore, (Sato et al.,
2021) study gradient-based methods for solving MLO with theoretical guarantees.

Multilevel Optimization Software There are several software libraries that are frequently used
for implementing MLO programs. Most notably, JAXopt (Blondel et al., 2021) proposes an efficient
and modular approach for AID by leveraging JAX’s native autodiff of the optimality conditions.
Despite its easy-to-use programming interface for AID, it fails to support combining the chain
rule with AID as in Equation (2), because it overrides the default behavior of JAX’s automatic
differentiation, which takes care of the chain rule. Therefore, it cannot be used for implementing
MLO beyond a two-level hierarchy without major changes in the source code and the software design.
Alternatively, higher (Grefenstette et al., 2019) provides two major primitives of making 1) stateful
PyTorch modules stateless and 2) PyTorch optimizers differentiable to ease the implementation of
AID/ITD. However, users still need to manually implement complicated internal mechanisms of
these algorithms as well as the chain rule with the provided primitives. Torchmeta (Deleu et al., 2019)
also provides similar functionalities as higher, but it requires users to use its own stateless modules
implemented in the library rather than patching general modules as in higher. Thus, it lacks the
support for user’s custom modules, limiting its applicability. learn2learn (Arnold et al., 2020) focuses
on supporting meta learning. However, since meta-learning is strictly a bilevel problem, extending
it beyond a two-level hierarchy is not straightforward. Finally, most existing libraries do not have
systems support, such as data-parallel training, that could mitigate memory/compute bottlenecks.

7 CONCLUSION

In this paper, we aimed to help establish both mathematical and systems foundations for automatic
differentiation in MLO. To this end, we devised a novel dataflow graph for MLO, upon which an
automatic differentiation procedure is built, and additionally introduced BETTY, a software library
with various systems support, that allows for easy programming of a wide range of MLO applications
in a modular fashion. We showed that BETTY allows for scaling up to both larger models with many
parameters, as well as to MLO programs with multiple dependent problems. As future work, we
plan to extend BETTY to support additional algorithmic and systems features, such as best-response
Jacobian algorithms for non-differentiable processes, and advanced memory optimization techniques
like model-parallel training and CPU-offloading.

9

Published as a conference paper at ICLR 2023

ETHICS STATEMENT

Multilevel optimization has the power to be a double-edged sword that can have both positive and
negative societal impacts. For example, both 1) defense or attack in an adversarial game, and 2)
decreasing or increasing bias in machine learning models, can all be formulated as MLO programs,
depending on the goal of the uppermost optimization problem, which is defined by users. Thus,
research in preventing malicious use cases of MLO is of high importance.

REPRODUCIBILITY STATEMENT

As one of main contributions of this work is a new software library for scalable multilevel optimization,
all of the source code for the library and examples will be released open source with an Apache-2.0
License, including a full implementation of all MLO programs and experiments described in this
paper. In addition, for reviewing purposes, we include our source code and easily runnable scripts for
all experiments in the supplemental material of this submission.

ACKNOWLEDGEMENTS

We thank all the reviewers for invaluable comments and feedback. EX acknowledges the sup-
port of NSF IIS1563887, NSF CCF1629559, NSF IIS1617583, NGA HM04762010002, NIGMS
R01GM140467, NSF IIS1955532, NSF CNS2008248, NSF IIS2123952, and NSF BCS2040381. WN
was supported in part by NSF (1651565), AFOSR (FA95501910024), ARO (W911NF-21-1-0125),
CZ Biohub, Sloan Fellowship, and U.S. Department of Energy Office of Science under Contract No.
DE-AC02-76SF00515.

REFERENCES

Sébastien MR Arnold, Praateek Mahajan, Debajyoti Datta, Ian Bunner, and Konstantinos Saitas
Zarkias. learn2learn: A library for meta-learning research. arXiv preprint arXiv:2008.12284, 2020.

Yu Bai, Minshuo Chen, Pan Zhou, Tuo Zhao, Jason Lee, Sham Kakade, Huan Wang, and Caiming
Xiong. How important is the train-validation split in meta-learning? In International Conference
on Machine Learning, pp. 543–553. PMLR, 2021.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López,
Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. arXiv
preprint arXiv:2105.15183, 2021.

Nicolas Couellan and Wenjuan Wang. On the convergence of stochastic bi-level gradient methods.
Optimization, 2016.

Hua Cui and Jie Bai. A new hyperparameters optimization method for convolutional neural networks.
Pattern Recognition Letters, 125:828–834, 2019.

Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul Cohen, and Yoshua Bengio. Torchmeta: A
Meta-Learning library for PyTorch, 2019. URL https://arxiv.org/abs/1909.06576.
Available at: https://github.com/tristandeleu/pytorch-meta.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1126–1135. JMLR. org, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In International Conference on Machine Learning,
pp. 1165–1173. PMLR, 2017.

10

https://arxiv.org/abs/1909.06576

Published as a conference paper at ICLR 2023

Bhanu Garg, Li Zhang, Pradyumna Sridhara, Ramtin Hosseini, Eric Xing, and Pengtao Xie. Learning
from mistakes–a framework for neural architecture search. Proceedings of the AAAI Conference
on Artificial Intelligence, 2022.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration com-
plexity of hypergradient computation. In International Conference on Machine Learning, pp.
3748–3758. PMLR, 2020.

Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska
Meier, Douwe Kiela, Kyunghyun Cho, and Soumith Chintala. Generalized inner loop meta-learning.
arXiv preprint arXiv:1910.01727, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Xuehai He, Zhuo Cai, Wenlan Wei, Yichen Zhang, Luntian Mou, Eric Xing, and Pengtao Xie. Towards
visual question answering on pathology images. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pp. 708–718, 2021.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework for bilevel
optimization: Complexity analysis and application to actor-critic. arXiv preprint arXiv:2007.05170,
2020.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
design. In International Conference on Machine Learning, pp. 4882–4892. PMLR, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. In
ICLR, 2019.

Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel optimization
with non-convex followers and beyond. Advances in Neural Information Processing Systems, 34,
2021.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In International Conference on Artificial Intelligence and Statistics, pp.
1540–1552. PMLR, 2020.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
through reversible learning. In International conference on machine learning, pp. 2113–2122.
PMLR, 2015.

Athanasios Migdalas, Panos M Pardalos, and Peter Värbrand. Multilevel optimization: algorithms
and applications, volume 20. Springer Science & Business Media, 1998.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Barak A. Pearlmutter and Jeffrey Mark Siskind. Reverse-mode ad in a functional framework: Lambda
the ultimate backpropagator. ACM Trans. Program. Lang. Syst., 30:7:1–7:36, 2008.

11

Published as a conference paper at ICLR 2023

Aniruddh Raghu, Jonathan Lorraine, Simon Kornblith, Matthew McDermott, and David K Duvenaud.
Meta-learning to improve pre-training. Advances in Neural Information Processing Systems, 34,
2021.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. Advances in neural information processing systems, 32, 2019.

Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game theoretic framework for model
based reinforcement learning. In International conference on machine learning, pp. 7953–7963.
PMLR, 2020.

Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data
programming: Creating large training sets, quickly. Advances in neural information processing
systems, 29, 2016.

Zhongzheng Ren, Raymond Yeh, and Alexander Schwing. Not all unlabeled data are equal: Learning
to weight data in semi-supervised learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
21786–21797. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/f7ac67a9aa8d255282de7d11391e1b69-Paper.pdf.

Ryo Sato, Mirai Tanaka, and Akiko Takeda. A gradient method for multilevel optimization. Advances
in Neural Information Processing Systems, 34, 2021.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-weight-
net: Learning an explicit mapping for sample weighting. In Advances in Neural Information
Processing Systems, pp. 1919–1930, 2019.

Sai Ashish Somayajula, Linfeng Song, and Pengtao Xie. A multi-level optimization framework for
end-to-end text augmentation. Transactions of the Association for Computational Linguistics, 10:
343–358, 2022.

Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth Stanley, and Jeffrey Clune. Generative
teaching networks: Accelerating neural architecture search by learning to generate synthetic
training data. In International Conference on Machine Learning, pp. 9206–9216. PMLR, 2020.

Kaihua Tang, Jianqiang Huang, and Hanwang Zhang. Long-tailed classification by keeping the
good and removing the bad momentum causal effect. Advances in Neural Information Processing
Systems, 33:1513–1524, 2020.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5018–5027, 2017.

Luis N Vicente and Paul H Calamai. Bilevel and multilevel programming: A bibliography review.
Journal of Global optimization, 5(3):291–306, 1994.

Yulin Wang, Jiayi Guo, Shiji Song, and Gao Huang. Meta-semi: A meta-learning approach for
semi-supervised learning. CoRR, abs/2007.02394, 2020. URL https://arxiv.org/abs/
2007.02394.

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive noisy
labeled data for image classification. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2691–2699, 2015.

Pengtao Xie and Xuefeng Du. Performance-aware mutual knowledge distillation for improving
neural architecture search. CVPR, 2022.

12

https://proceedings.neurips.cc/paper/2020/file/f7ac67a9aa8d255282de7d11391e1b69-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f7ac67a9aa8d255282de7d11391e1b69-Paper.pdf
https://arxiv.org/abs/2007.02394
https://arxiv.org/abs/2007.02394

Published as a conference paper at ICLR 2023

Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming Yang, Mao Yang, and Alexander Ratner.
Wrench: A comprehensive benchmark for weak supervision. arXiv preprint arXiv:2109.11377,
2021a.

Miao Zhang, Steven W Su, Shirui Pan, Xiaojun Chang, Ehsan M Abbasnejad, and Reza Haffari. idarts:
Differentiable architecture search with stochastic implicit gradients. In International Conference
on Machine Learning, pp. 12557–12566. PMLR, 2021b.

Guoqing Zheng, Ahmed Hassan Awadallah, and Susan T. Dumais. Meta label correction for learning
with weak supervision. CoRR, abs/1911.03809, 2019. URL http://arxiv.org/abs/1911.
03809.

13

http://arxiv.org/abs/1911.03809
http://arxiv.org/abs/1911.03809

Published as a conference paper at ICLR 2023

A ADDITIONAL MULTILEVEL OPTIMIZATION BENCHMARKS

A.1 DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH

A neural network architecture plays a significant role in deep learning research. However, the search
space of neural architectures is so large that manual search is almost impossible. To overcome
this issue, DARTS (Liu et al., 2019) proposes an efficient gradient-based neural architecture search
method based on the bilevel optimization formulation:

α∗ = argmin
α

Lval(w
∗(α), α) ▷ Architecture Search

s.t. w∗(α) = argmin
w

Ltrain(w;α) ▷ Classification

where α is the architecture weight and w is the network weight. The original paper uses implicit
differentiation with finite difference as its best-response Jacobian algorithm to solve the above MLO
program.

We follow the training configurations from the original paper’s CIFAR-10 experiment, with a few
minor changes. While the original paper performs a finite difference method on the initial network
weights, we perform it on the unrolled network weights. This is because we view their best-response
Jacobian calculation from the implicit differentiation perspective, where the second-order derivative
is calculated based on the unrolled weight. This allows us to unroll the lower-level optimization
for more than one step as opposed to strict one-step unrolled gradient descent of the original paper.
A similar idea was also proposed in iDARTS (Zhang et al., 2021b). Specifically, we re-implement
DARTS with implicit differentiation and finite difference using 1 and 3 unrolling steps. The results
are provided in Table 5.

Algorithm Test Acc. Parameters Memory Wall Time

Random Search Random 96.71% 3.2M N/A N/A
DARTS (original) AID-FD∗ 97.24% 3.3M 10493MiB 25.4h

DARTS (ours, step=1) AID-FD 97.39% 3.8M 10485MiB 23.6h
DARTS (ours, step=3) AID-FD 97.22% 3.2M 10485MiB 28.5h

Table 5: DARTS re-implementation results. AID-FD refers to implicit differentiation with a finite
difference method, and ∗ indicates the difference in the implementation of AID-FD explained above.

Our re-implementation with different unrolling steps achieves a similar performance as the original
paper. We also notice that our re-implementation achieves slightly less GPU memory usage and wall
time. This is because the original implementation calculates gradients for the architecture weights
(upper-level parameters) while running lower-level optimization, while ours only calculates gradients
of the parameters for the corresponding optimization stage.

14

Published as a conference paper at ICLR 2023

A.2 CORRECTING & REWEIGHTING CORRUPTED LABELS (EXTENDED)

To further demonstrate the general applicability of BETTY to different datasets and scales, we
performed experiments from Section 5.2 in two additional settings.

Clothing-1M + ResNet-50 Clothing-1M (Xiao et al., 2015) is a real-world noisy dataset that
consists of 1 million fashion images collected from various online shopping websites and has the
approximate noise ratio of 38.5%. Following the standard, we use ResNet-50 as our backbone model
and attempt to correct and reweight noisy labels with extended bilevel optimization. The experiment
result is presented in Table 6

Test Accuracy

Baseline 70.76%

+RWT 75.57%
+RWT&CRT 76.34%

Table 6: Clothing-1M + ResNet-50 results.

In this experiment, we are able to empirically show that the MLO application implemented with
BETTY works well with a large-scale dataset.

Wrench + BERT-base In recent years, finetuning the pretrained large language model has become
the standard for text classification. As the Wrench benchmark mostly consists of text classification
datasets, we further applied our “correcting and reweighting corrupted labels” framework to the
BERT-base model.

TREC AGNews IMDB SemEval ChemProt YouTube

Baseline 64.14±6.56 86.12±0.17 71.66±2.05 79.93±1.53 52.35±0.56 93.20±1.44

+RWT 84.07±4.42 89.62±0.60 87.85±0.24 87.45±0.69 71.42±1.50 94.67±0.46
+RWT&CRT 93.07±0.31 90.40±0.16 87.45±0.39 87.92±0.04 75.27±1.23 94.80±0.80

Table 7: Wrench + BERT-base results.

In this experiment, we are able to empirically show that the MLO application implemented with
BETTY works well with a large model.

15

Published as a conference paper at ICLR 2023

B CODE EXAMPLE

Here, we provide simplified code for our experiments from Section 5. Note that every experiment
shares a similar code structure when implemented with BETTY.

B.1 DATA REWEIGHTING FOR CLASS IMBALANCE

1 train_loader, valid_loader = setup_dataloader()
2 rwt_module, rwt_optimizer = setup_reweight()
3 cls_module, cls_optimizer, cls_scheduler = setup_classifier()
4

5 # Level 2
6 class Reweight(ImplicitProblem):
7 def training_step(self, batch):
8 inputs, labels = batch
9 outputs = self.classifier(inputs)

10 return F.cross_entropy(outputs, labels)
11

12 # Level 1
13 class Classifier(ImplicitProblem):
14 def training_step(self, batch):
15 inputs, labels = batch
16 outputs = self.module(inputs)
17 loss = F.cross_entropy(outputs, labels, reduction="none")
18 loss_reshape = torch.reshape(loss, (-1, 1))
19 # Reweighting
20 weight = self.reweight(loss_reshape.detach())
21 return torch.mean(weight * loss_reshape)
22

23 upper_config = Config(type="darts", retain_graph=True)
24 lower_config = Config(type="default", unroll_steps=5)
25

26 reweight = Reweight(name="reweight",
27 config=upper_config,
28 module=rwt_module,
29 optimizer=rwt_optimizer,
30 train_data_loader=valid_loader)
31 classifier = Classifier(name="classifier",
32 config=lower_config,
33 module=cls_module,
34 optimizer=cls_optimizer,
35 scheduler=cls_scheduler,
36 train_data_loader=train_loader)
37

38 probs = [reweight, classifier]
39 u2l = {reweight: [classifier]}
40 l2u = {classifier: [reweight]}
41 depends = {"l2u": l2u, "u2l": u2l}
42

43 engine = Engine(problems=probs, dependencies=depends)
44 engine.run()

Listing 3: Simplified code of “Data Reweighting for Class Imbalance”

16

Published as a conference paper at ICLR 2023

B.2 CORRECTING & REWEIGHTING CORRUPTED LABELS

1 train_loader, valid_loader = setup_dataloader()
2 rwt_module, rwt_optimizer = setup_reweight()
3 crt_module, crt_optimizer = setup_correct()
4 cls_module, cls_optimizer, cls_scheduler = setup_classifier()
5
6 # Level 2
7 class Correct(ImplicitProblem):
8 def training_step(self, batch):
9 inputs, labels = batch

10 outputs, embeds = self.classifier(inputs, return_embeds=True)
11 correct_outputs = self.module(embeds, test=True)
12 ce_loss = F.cross_entropy(outputs, labels)
13 aux_loss = F.cross_entropy(correct_outputs, labels)
14 return ce_loss + aux_loss
15
16 # Level 2
17 class Reweight(ImplicitProblem):
18 def training_step(self, batch):
19 inputs, labels = batch
20 outputs = self.classifier(inputs)
21 return F.cross_entropy(outputs, labels)
22
23 # Level 1
24 class Classifier(ImplicitProblem):
25 def training_step(self, batch):
26 inputs, labels = batch
27 outputs, embeds = self.module(inputs, return_embeds=True)
28 # Correcting
29 new_labels = self.correct(embeds, labels)
30 log_softmax = F.log_softmax(outputs, dim=-1)
31 loss = torch.sum(-log_softmax * new_labels, dim=-1)
32 loss_reshape = torch.reshape(loss, (-1, 1))
33 # Reweighting
34 weight = self.reweight(loss_reshape.detach())
35 return torch.mean(weight * loss_reshape)
36
37 upper_config = Config(type="darts", retain_graph=True)
38 lower_config = Config(type="default", unroll_steps=5)
39
40 correct = Correct(name="correct",
41 config=upper_config,
42 module=crt_module,
43 optimizer=crt_optimizer,
44 train_data_loader=valid_loader)
45 reweight = Reweight(name="reweight",
46 config=upper_config,
47 module=rwt_module,
48 optimizer=rwt_optimizer,
49 train_data_loader=valid_loader)
50 classifier = Classifier(name="classifier",
51 config=lower_config,
52 module=cls_module,
53 optimizer=cls_optimizer,
54 scheduler=cls_scheduler,
55 train_data_loader=train_loader)
56
57 probs = [correct, reweight, classifier]
58 u2l = {correct: [classifier], reweight: [classifier]}
59 l2u = {classifier: [correct, reweight]}
60 depends = {"l2u": l2u, "u2l": u2l}
61
62 engine = Engine(problems=probs, dependencies=depends)
63 engine.run()

Listing 4: Simplified code of “Correcting & Reweighting Corrupted Labels”

17

Published as a conference paper at ICLR 2023

B.3 DOMAIN ADAPTATION FOR PRETRAINING & FINETUNING

1 # Get module, optimizer, lr_scheduler, data loader for each problem
2 pt_module, pt_optimizer, pt_scheduler, pt_loader = setup_pretrain()
3 ft_module, ft_optimizer, ft_scheduler, ft_loader = setup_finetune()
4 rw_module, rw_optimizer, rw_scheduler, rw_loader = setup_reweight()
5

6 # Level 1
7 class Pretrain(ImplicitProblem):
8 def training_step(self, batch):
9 inputs, targets = batch

10 outs = self.module(inputs)
11 loss_raw = F.cross_entropy(outs, targets, reduction="none")
12

13 logit = self.reweight(inputs)
14 weight = torch.sigmoid(logit)
15 return torch.mean(loss_raw * weight)
16

17 # Level 2
18 class Finetune(ImplicitProblem):
19 def training_step(self, batch):
20 inputs, targets = batch
21 outs = self.module(inputs)
22 loss = F.cross_entropy(outs, targets, reduction="none")
23 loss = torch.mean(ce_loss)
24 # Proximal regularization
25 for (n1, p1), p2 in zip(self.module.named_parameters(), self.

pretrain.module.parameters()):
26 lam = 0 if "fc" in n1 else args.lam
27 loss += lam * (p1 - p2).pow(2).sum()
28 return loss
29

30 # Level 3
31 class Reweight(ImplicitProblem):
32 def training_step(self, batch):
33 inputs, targets = batch
34 outs = self.finetune(inputs)
35 return F.cross_entropy(outs, targets)
36

37 # Define optimization configurations
38 reweight_config = Config(type="darts", step=1, retain_graph=True)
39 finetune_config = Config(type="default", step=1)
40 pretrain_config = Config(type="default", step=1)
41

42 pretrain = Pretrain("pretrain", pt_config, pt_module, pt_optimizer
43 pt_scheduler, pt_loader)
44 finetune = Finetune("finetune", ft_config, ft_module, ft_optimizer
45 ft_scheduler, ft_loader)
46 reweight = Reweight("reweight", rw_config, rw_module, rw_optimizer
47 rw_scheduler, rw_loader)
48

49 probs = [reweight, finetune, pretrain]
50 u2l = {reweight: [pretrain]}
51 l2u = {pretrain: [finetune], finetune: [reweight]}
52 depends = {"u2l": u2l, "l2u": l2u}
53 engine = Engine(problems=probs, dependencies=depends)
54 engine.run()

Listing 5: Simplified code of “Domain Adaptation for Pretraining & Finetuning”

18

Published as a conference paper at ICLR 2023

B.4 DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH

1 train_loader, valid_loader = setup_dataloader()
2 arch_module, arch_optimizer = setup_architecture()
3 cls_module, cls_optimizer, cls_scheduler = setup_classifier()
4

5 # Level 2
6 class Architecture(ImplicitProblem):
7 def training_step(self, batch):
8 x, target = batch
9 alphas = self.module()

10 return self.classifier.module.loss(x, alphas, target)
11

12 # Level 1
13 class Classifier(ImplicitProblem):
14 def training_step(self, batch):
15 x, target = batch
16 alphas = self.architecture()
17 return self.module.loss(x, alphas, target)
18

19 arch_config = Config(type="darts",
20 step=1,
21 retain_graph=True,
22 first_order=True)
23 cls_config = Config(type="default")
24

25 architecture = Architecture(name="architecture",
26 config=arch_config,
27 module=arch_module,
28 optimizer=arch_optimizer,
29 train_data_loader=valid_loader)
30 classifier = Classifier(name="classifier",
31 config=cls_config,
32 module=cls_module,
33 optimizer=cls_optimizer,
34 scheduler=cls_scheduler,
35 train_data_loader=train_loader)
36

37 probs = [architecture, classifier]
38 u2l = {architecture: [classifier]}
39 l2u = {classifier: [architecture]}
40 depends = {"l2u": l2u, "u2l": u2l}
41

42 engine = Engine(problems=probs, dependencies=depends)
43 engine.run()

Listing 6: Simplified code of “Differentiable Neural Architecture Search”

19

Published as a conference paper at ICLR 2023

C EXPERIMENT DETAILS

In this section, we provide further training details (e.g. hyperparameters) of each experiment.

C.1 DATA REWEIGHTING FOR CLASS IMBALANCE

Dataset We reuse the long-tailed CIFAR-10 dataset from the original paper (Shu et al., 2019) as
our inner-level training dataset. More specifically, the imbalance factor is defined as the ratio between
the number of training samples from the most common class and the most rare class. The number of
training samples of other classes are defined by geometrically interpolating the number of training
samples from the most common class and the most rare class. We randomly select 100 samples from
the validation set to construct the upper-level (or meta) training dataset, and use the rest of it as the
validation dataset, on which classification accuracy is reported in the main text.

Meta-Weight-Network We adopt a MLP with one hidden layer of 100 neurons (i.e. 1-100-1) as
our Meta-Weight-Network (MWN). It is trained with the Adam optimizer (Kingma & Ba, 2014)
whose learning rate is set to 0.00001 throughout the whole training procedure, momentum values to
(0.9, 0.999), and weight decay value to 0. MWN is trained for 10,000 iterations and learning rate is
fixed throughout training.

Classification Network Following the original MWN work (Shu et al., 2019), we use ResNet32 (He
et al., 2016) as our classification network. It is trained with the SGD optimizer whose initial learning
rate is set to 0.1, momentum value to 0.9, and weight decay value to 0.0005. Training is performed
for 10,000 iterations, and we decay the learning rate by a factor of 10 on the iterations of 5,000 and
7,500.

C.2 CORRECTING & REWEIGHTING CORRUPTED LABELS

Dataset We directly use TREC, AGNews, IMDB, SemEval, ChemProt, YouTube text classification
datasets from the Wrench benchmark (Zhang et al., 2021a). More specifically, we use the training
split of each dataset for training the classification network, and the validation split for training the
correcting and the reweighting networks. Test accuracy is measured on the test split.

Correct Network Our correct network takes the penultimate activation from the classification
network, and outputs soft labels through the linear layer and the softmax layer. These new soft
labels are interpolated with the original labels via the reweighting scheme which is achieved with
2-layer MLP. As our reweighting network, the correct network is trained with Adam optimizer whose
learning rate is set to 0.00001, momentum values to (0.9, 0.999), and weight decay value to 0.

Reweighting Network For our reweighting network, we reuse Meta-Weight-Net from the “Data
Reweighting for Class Imbalance” experiment, follow all the training details.

Classification Network As our classification network, we adopt a 2-layer MLP with the hidden
size of 100. The classification network is trained for 30,000 iterations with the SGD optimizer whose
learning rate is set to 0.003, momentum to 0.9, and weight decay to 0.0001. Learning rate is decayed
to 0 with the cosine annealing schedule during training.

C.3 DOMAIN ADAPTATION FOR PRETRAINING & FINETUNING

Dataset We split each domain of the OfficeHome dataset (Venkateswara et al., 2017) into train-
ing/validation/test datasets with a ratio of 5:3:2. The pretraining network is trained on the training
set of the source domain. Finetuning and reweighting networks are both trained on the training set
of the target domain following the strategy proposed in (Bai et al., 2021). The final performance is
measured by the classification accuracy of the finetuning network on the test dataset of the target
domain.

20

Published as a conference paper at ICLR 2023

Pretraining Network We use ResNet18 (He et al., 2016) pretrained on the ImageNet dataset (Deng
et al., 2009) for our pretraining network. Following the popular transfer learning strategy, we split
the network into two parts, namely the feature (or convolutional layer) part and the classifier (or
fully-connected layer) part, and each part is trained with different learning rates. Specifically, learning
rates for the feature and the classifier parts are respectively set to 0.001 and 0.0001 with the Adam
optimizer. They share the same weight decay value of 0.0005 and momentum values of (0.9, 0.999).
Furthermore, we encourage the network weight to stay close to the pretrained weight by introducing
the additional proximal regularization with the regularization value of 0.001. Training is performed
for 1,000 iterations, and the learning rate is decayed by a factor of 10 on the iterations of 400 and 800.

Finetuning Network The same architecture and optimization configurations as the pretraining net-
work are used for the finetuning network. The proximal regularization parameter, which encourages
the finetuning network parameter to stay close to the pretraining network parameter, is set to 0.007.

Reweighting Network The same architecture and optimization configurations as the pretraining
network are used for the reweighting network, except that no proximal regularization is applied to the
reweighting network.

C.4 DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH

Dataset Follwing the original paper (Liu et al., 2019), we use the first half of the CIFAR-10 training
dataset as our inner-level training dataset (i.e. classification network) and the other half as the
outer-level training dataset (i.e. architecture network). Training accuracy reported in the main text is
measured on the CIFAR-10 validation dataset.

Architecture Network We adopt the same architecture search space as in the original paper (Liu
et al., 2019) with 8 operations, and 7 nodes per convolutional cell. The architecture parameters are
initialized to zero to ensure equal softmax values, and trained with the Adam optimizer (Kingma &
Ba, 2014) whose learning rate is fixed to 0.0003, momentum values to (0.5, 0.999), and weight decay
value to 0.001 throughout training. Training is performed for 50 epochs.

Classification Network Given the above architecture parameters, we set our classification network
to have 8 cells and the initial number of channels to be 16. The network is trained with the SGD
optimizer whose initial learning rate is set to 0.025, momentum to 0.9, and weight decay value to
0.0003. Training is performed for 50 epochs, and the learning rate is decayed following the cosine
annealing schedule without restart to the minimum learning rate of 0.001 by the end of training.

21

Published as a conference paper at ICLR 2023

D DESIGN CHOICE ANALYSIS

In this section, we visually compare the convergence speed of different best-response Jacobian
algorithms with the loss convergence graphs on the synthetic hyperparameter optimization task and
the data reweighting task (Section 5.1). Specifically, we analyze the convergence speed in terms of
both 1) the number of steps and 2) training time, as the per-step computational cost differs for each
algorithm.

D.1 SYNTHETIC HYPERPARAMETER OPTIMIZATION

Following (Grazzi et al., 2020), we constructed a synthetic hyperparameter optimization task
where we optimize the weight decay value for every parameter in simple binary logistic regression.
Mathematically, this problem can be formulated as bilevel optimization as follows:

λ∗ = argmin
λ

sigmoid(yuxT
uw

∗)

w∗ = argmin
w

sigmoid(ylxT
l w

∗) +
1

2
wT diag(λ)w

where, (xl, yl) and (xu, yu) are repsectively the training datasets for the lower-(and upper-)level
problems, with x ∈ Rn×d and y ∈ Rn×1. Here, n is the number of training data in each dataset and d
is the dimension of the feature vector. w ∈ Rd×1 is the logistic regression parameter, and λ ∈ Rd×1

is the hyperparameter (i.e. the per-parameter weight decay value).

Given the above setup, we compared four different best-reponse Jacobian algorithms: 1) ITD-RMAD,
2) AID-FD, 3) AID-CG, and 4) AID-Neumann. For the fair comparison, we fixed the unrolling step
to 100 for all algorithms. The experiment result is presented below:

Figure 3: Convergence analysis of different best-response Jacobian algorithms on the synthetic
hyperparameter optimization task

As shown in Figure 3, AID-CG achieves the fastest convergence both in terms of training steps and
training time. However, AID-FD achieves the fastest per-step computation time as it is the only
algorithms that doesn’t require the explicit calculation of the second-order derivative (i.e. Hessian).

D.2 DATA REWEIGHTING

To study how different best-response Jacobian algorithms perform on more complex tasks, we
repeated the above experiment on the data reweighting task from Section 5.1. Again, for the fair

22

Published as a conference paper at ICLR 2023

comparison, we used the same unrolling step of 1 for all algorithms. The experiment result is provided
in Figure 4.

Figure 4: Convergence analysis of different best-response Jacobian algorithms on the data reweighting
task

.

Unlike in the synthetic hyperparameter optimization task, AID-FD achieves the fastest convergence
in terms of training steps and training time as well as the best final validation accuracy. As AID-
FD doesn’t require any second-order derivative calculation, it also achieves the minimal per-step
computation cost.

Above two experiments follow the no free lunch theorem: the optimal design choice can vary for
different tasks without golden rules. However, thanks to the modular interface for switching between
different design choices (in Config), only minimal programming efforts would be needed with
BETTY, expediting the research cycle.

23

Published as a conference paper at ICLR 2023

E SYSTEMS SUPPORT

In this section, we perform additional analyses on the memory saving effects of our system features
with two benchmarks: (1) differentiable neural architecture search and (2) data reweighting for class
imbalance.

E.1 DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH

Baseline + mixed-precision

GPU Memory Usage 9867MiB 5759MiB

Table 8: GPU memory usage analysis for DARTS.

E.2 DATA REWEIGHTING FOR CLASS IMBALANCE

In this experiment, we use ResNet50 (He et al., 2016) instead of ResNet30, to better study the memory
reduction from our system features, when the larger model is used. Importantly, we also test the
data-parallel training feature in addition to the mixed-precision training feature.

Baseline + mixed-precision + data-parallel (2 GPUs)

GPU Memory Usage 6817MiB 4397MiB 3185/3077MiB (GPU0/1)

Table 9: GPU memory usage analysis for MWN with ResNet-50.

As shown above, we observe more reduction in memory usage as we add more system features.

24

Published as a conference paper at ICLR 2023

F SUPPORTED FEATURES

Here, we summarize the supported features within BETTY.

Category Features

Best-response
Jacobian

algorithms

· ITD-RMAD
· AID-FD
· AID-NMN
· AID-CG

Systems
· Mixed-precision
· Data-parallel
· Gradient accumulation

Logging
· Default Python logging
· TensorBoard
· Weights & Biases

Miscellaneous · Gradient clipping
· Early stopping

Table 10: Supported features in BETTY

25

Published as a conference paper at ICLR 2023

G DATAFLOW GRAPHS FOR EXPERIMENTS

Reweight

Classifier

Reweight

Classifier

Correct Reweight

Finetune

Pretrain

Architecture

Classifier

5.1 Data Rewieghting
for Class Imbalance

5.2 Correcting and Reweighitng
Corrupted Labels

A.1 Differentiable Neural
Architecture Search

5.3 Domain Adaptation for
Pretraining & Finetuning

Figure 5: Dataflow graphs for all our experiments

26

	Introduction
	Background: Gradient-based Multilevel Optimization
	Automatic Differentiation for Multilevel Optimization
	Dataflow Graph for Multilevel Optimization
	Gradient Calculation with Best-Response Jacobians
	Execution of Multilevel Optimization

	Software Design
	Experiments
	Data Reweighting for Class Imbalance
	Correcting & Reweighting Corrupted Labels
	Domain Adaptation for Pretraining & Finetuning

	Related Work
	Conclusion
	Additional Multilevel Optimization Benchmarks
	Differentiable Neural Architecture Search
	Correcting & Reweighting Corrupted Labels (Extended)

	Code Example
	Data Reweighting for Class Imbalance
	Correcting & Reweighting Corrupted Labels
	Domain Adaptation for Pretraining & Finetuning
	Differentiable Neural Architecture Search

	Experiment Details
	Data Reweighting for Class Imbalance
	Correcting & Reweighting Corrupted Labels
	Domain Adaptation for Pretraining & Finetuning
	Differentiable Neural Architecture Search

	Design Choice Analysis
	Synthetic Hyperparameter Optimization
	Data Reweighting

	Systems Support
	Differentiable Neural Architecture Search
	Data Reweighting for Class Imbalance

	Supported Features
	Dataflow Graphs for Experiments

