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ABSTRACT

Inductive reasoning is an essential capability for large language models (LLMs)
to achieve higher intelligence, which requires the model to generalize rules from
observed facts and then apply them to unseen examples. We present MIRAGE, a
synthetic dataset that addresses the limitations of previous work, specifically the
lack of comprehensive evaluation and flexible test data. In it, we evaluate LLMs’
capabilities in both the inductive and deductive stages, allowing for flexible vari-
ation in input distribution, task scenario, and task difficulty to analyze the factors
influencing LLMs’ inductive reasoning. Based on these multi-faceted evaluations,
we demonstrate that the LLM is a poor rule-based reasoner. In many cases, when
conducting inductive reasoning, they do not rely on a correct rule to answer the
unseen case. From the perspectives of different prompting methods, observation
numbers, and task forms, models tend to consistently conduct correct deduction
without correct inductive rules. Besides, we find that LLMs are good neighbor-
based reasoners. In the inductive reasoning process, the model tends to focus on
observed facts that are close to the current test example in feature space. By lever-
aging these similar examples, the model maintains strong inductive capabilities
within a localized region, significantly improving its reasoning performance.

1 INTRODUCTION

Inductive reasoning, known as the ability of an intelligent agent to infer abstract rules from limited
observations and apply them to new examples, is crucial for large language model (LLMs) pro-
gressing toward artificial general intelligence (AGI) (Xu et al., 2024b; Sun et al., 2024; Wang et al.,
2024b). As illustrated in Figure 1, given a set of observed facts, inductive reasoning process expect
the model to generate abstract rules from the provided facts (i.e. [A,B,C] → [B+C,B+C,C] in the
rule induction task) and apply these rules to answer specific new questions (i.e. [3,4,7] → [11,11,7]
in the example inference task). Despite its significant research value, it has been relatively neglected
compared to other types of reasoning (e.g., math reasoning, multi-hop reasoning, etc.).

Recently, some works have started to explore this problem. They primarily evaluate the model’s
inductive reasoning capabilities using various datasets (Shao et al., 2024; Cheng et al., 2024; Qiu
et al., 2024; Jiang et al., 2024). Though they have made great progress, their works still have two
main limitations: (1) Previous works lack comprehensive evaluation. Most works have only one
evaluation task: the inductive task on collected rules (Yang et al., 2024b; Shao et al., 2024) or the
deductive task on specific test samples (Chollet, 2019; Xu et al., 2024a; Qiu et al., 2024). There-
fore, they can only evaluate the rule induction performance or final results of inductive reasoning,
instead of comprehensively analyzing the whole process (i.e. inductive + deductive). (2) Previous
works lack flexible test data. Most former datasets evaluate the overall performance of models by
collecting observation and test examples under the same rules (Rule, 2020; Kim et al., 2022; Lake
et al., 2019). However, due to the absence of transformation rules, it is impossible to extend these
examples, resulting in a fixed test set. This limitation makes it challenging to assess the impact of
factors such as distribution, quantity, and form of input examples on the model’s inductive reasoning,
thereby hindering a deeper analysis of the model’s reasoning mechanisms.

In this paper, we present MIRAGE (Meta Inductive ReAsoning Evaluation), a dataset designed to ad-
dress the two aforementioned limitations. It includes both inductive and deductive evaluation tasks,
while offering flexibility to construct test data with various forms, arbitrary input distributions, and
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[0,1,3] → [4,4,3]     [5,2,5] → [7,7,5]     [2,1,8] → [9,9,8]     [9,6,3] → [9,9,3]      [3,3,7] → [10,10,7] 

Observed Facts

Rule Induction Task

Rule-based

Example Inference Task

[A,B,C] →  [B+C,B+C,C]

What is the rule?

Answer: [11,11,7]

[3,4,7] → ?

Answer: [11,11,7]

Neighbor-based

Rule: [A,B,C] → [B+C,B+C,C] Case: [3,3,7] → [10,10,7]

[A,B,C] → [A+4,B+1,C]

[3,4,7] → ?

What is the rule?

Figure 1: An overview of two paradigms (i.e. rule-based and neighbor-based) in inductive reasoning.

controllable difficulties. In detail, we first construct a rule library based on various vector operations
(e.g., [A,B,C] → [B+C,B+C,C] as shown in Figure 1). Using the automatically synthesized rules,
we can generate facts arbitrarily through instantiation, ensuring the flexibility and scalability of the
test data. Next, we filter out the noise data (e.g. duplicated facts) to further improve the effectiveness
and quality of our dataset. Finally, to comprehensively evaluate the inductive reasoning process, we
not only design inductive and deductive questions based on the synthesized data but also construct
diverse application scenarios for these tasks, including list transformations, real-world problems,
code generations, and string transformations (as shown in Figure 2).

Based on our dataset, we perform a deeper analysis of the model’s inductive reasoning process,
from which we draw two new conclusions about the inductive reasoning mechanisms of LLMs: (1)
Language models are poor rule-based reasoners. As shown in the left column of Figure 1, in the
rule-based reasoning paradigm, inductive reasoning involves first deriving the correct rule through
the observation of examples and then using the inductive rule to answer new questions (like what
humans do). However, we find that LLMs perform poorly in this paradigm: In many cases, though
they can not induce a correct rule, they can still perform well on example inference tasks. Through
experimentation, we observe this performance gap between induction and deduction across different
prompting methods, models, observed example numbers, and scenarios. This indicates that the final
performance of the LLM’s inductive reasoning rarely relies on the intermediate inductive rules. (2)
Language models are good neighbor-based reasoners. Furthermore, we identify an important
mechanism behind LLM’s inductive reasoning, which we refer to as “neighbor-based reasoning”:
If some observed facts are close to the test examples in feature space, the model tends to leverage this
similarity to improve inductive reasoning performance. For example, as shown in the right column
of Figure 1, even when the model cannot generate the correct rule, it can rely on the neighbor fact
[3,3,7] → [10,10,7] (here the distance between [3,3,7] and [3,4,7] is small, so we refer to them
as neighbors) to successfully performs the reasoning. We demonstrate that this paradigm persists
across different scenarios, models, and observed example numbers. However, it can only enhance
the performance within a localized scope.

To sum up, the main contributions of our work are as follows: (1) We present a new dataset MI-
RAGE, through it, we can comprehensively evaluate the LLM’s inductive reasoning process under
more flexible settings. (2) We find that LLM is a poor rule-based inductive reasoner. In many
cases, it does not rely on inductive rules to make correct deductions. (3) We demonstrate that
LLM is a neighbor-based inductive reasoner. When performing inductive reasoning, models rely
on the neighbor facts in the observed fact set to get better performance.

2 DATA CONSTRUCTION

In this section, we describe the whole pipeline to build MIRAGE. We start by constructing rules
based on five basic operations (§2.1). Next, we substitute the instantiate vectors into the rules to
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generate facts (§2.2) and apply filtering to them (§2.3). Finally, we transform the facts into different
scenarios, creating questions to evaluate the LLM’s inductive reasoning performance (§2.4).

2.1 RULE GENERATION

According to previous work and relevant definitions (Huber, 2017; Han et al., 2024), in inductive
reasoning, for each observed fact Xk = (x,y), the input vector x is transformed into the output
vector y according to a certain rule f , i.e.:

f(x) = y, ∀(x,y) ∈ X (1)

where X is the observed fact set under the rule f . We believe that f is the core of the problem, as it allows
us to generate additional facts for X based on the rule automatically. Conversely, inferring f from X requires
significantly more effort due to the vast range of possible rules. Therefore, we first consider automating these
rules’ large-scale synthesis.

Based on previous representative datasets (Chollet, 2019; Rule, 2020; Xu et al., 2024a), we summarize the
main types of rules, resulting in five atomic operations in this dataset: (1) Add: The operation adds certain
components together. For example: [x, y, z] → [x, x+y, z]. (2) Copy: The operation copies some components
to others. For example: [x, y, z] → [x, x, z]. (3) Map: The operation applies a linear transformation to some
components. For example: [x, y, z] → [x, ky + b, z]. To avoid the interference of complex math calculations,
we have k ∈ [1, 9] and b ∈ [0, 9]. (4) Pad: The operation fills certain components with constant values. For
example: [x, y, z] → [x, c, c], where c ∈ [0, 9]. (5) Swap: The operation swaps certain components. For
example: [x, y, z] → [z, y, x].

For each operation O, we randomly initialize the set index vector d on which the operation applies and the
index vector r where the result is output. Specifically, for x ∈ x, y ∈ y:

yj =

{
[O(xd)]i, if j ∈ r
xj , if j /∈ r

(2)

where ri = j and [·]i represents the i-th component. Therefore, we can generate a meta-rule f = (O,d, r).
Through sampling (O,d, r) randomly, we can construct a meta-rule library F.

2.2 FACT GENERATION

After generating the rule library, we can randomly initialize x, and apply a specific rule f ∈ F to get y. We
repeat this process to generate the fact set X under the rule f . All the (x,y) ∈ X are used for the LLM to
induce the rule f . It is worth noting that we can control the inductive difficulty by adjusting two factors: the
dimension D of x,y and the fact number N of X. As an example, in Figure 1, D is 3 and N is 5. Empirically,
a higher D and a smaller N tend to increase the task difficulty. Additionally, to avoid the interference of
complex mathematical calculations in evaluating inductive reasoning ability, we restrict the elements in each x
to integers between 0 and 9.1 Since we can synthesize any D-dimensional vector x to construct a fact, we can
flexibly control the input distribution.

2.3 DATA FILTERING

To ensure the quality of the dataset and the effectiveness of the evaluation, we need to filter out some noisy
data. The following filtering steps are applied: (1) Filtering out duplicate facts. For any two facts in X, if
their input vectors x are identical, one of them is removed and resampled. This ensures that for each rule, all
observed facts are unique. (2) Filtering out duplicate rules. To ensure diversity in the evaluation, we also
remove duplicate rules, which have the same (O,d, r). (3) Filtering out trivial facts. After random sampling,
X may include some trivial facts that provide little value for model induction, such as facts like x = y, x = 0,
or y = 0. We filter the data to ensure that each X contains at most one trivial fact, thereby limiting the noise
that could affect the model’s inductive reasoning process.

2.4 QUESTION GENERATION

So far, we have constructed all the metadata that we need to generate specific questions. It is worth noting that
both F and X contain only abstract rules and facts, without any specific context. Therefore, they represent the
fundamental inductive reasoning test data, which is why we refer to them as meta-rules and meta-facts. As
shown in Figure 2, to evaluate the practical inductive reasoning capability of models, we apply these metadata

1Our pilot experiments indicate that, under these constraints, most of the models can achieve an accuracy
of nearly 100% in performing purely mathematical operations. See Appendix A.2 for details.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Meta Rule

[A,B,C] -> [B+C, B+C, C]

Meta Fact

[3,3,6] -> [9, 9, 6]

Real-world Problem

Rule:

Jack went to trade items. He 

originally had A beds, B 

bags, C chairs. After the 

trade, he has B+C beds, 

B+C bags, C chairs.

Jack went to trade items. He 

originally had 3 beds, 3 bags, 

6 chairs. After the trade, he 

has 9 beds, 9 bags, 6 chairs.

Fact:

List Transformation

Rule:

Fact:

[A,B,C] -> [B+C,B+C,C]

[3,3,6] -> [9,9,6]

Code Generation

Rule:

def f(A,B,C):  

     A,B,C = B+C, B+C, C

     return A,B,C

Fact:

f(3,3,6) = 9,9,6

String Transformation

Rule:

ABC -> BCBCC

Fact:

ddg -> dgdgg

Figure 2: Examples in four different scenarios of MIRAGE.

to various scenarios to generate concrete problems. Specifically, we have: (1) List Transformation (LT): List
transformation is the primary format used in previous inductive reasoning tasks (Rule, 2020; Xu et al., 2024a;
Chollet, 2019), and here we adopt this approach as well. We transform all fact vectors into one-dimensional
lists and require the model to inductively infer the transformation rules applied to these lists. (2) Real-world
Problem (RP): Previous datasets lack tests for inductive reasoning capabilities in real-world scenarios (Rule,
2020; Xu et al., 2024a; Qiu et al., 2024).2 To mitigate this gap, we populate the metadata into different natural
language templates across five real-life scenarios. The example in Figure 2 describes a trading scenario, where
we use different items to represent different dimensions of the vector. All item transactions follow the same
rule. (3) Code Generation (CG): For each fact, we use x as the input and y as the output of a function. The
model is then tasked with predicting the corresponding Python function. (4) String Transformation (ST):
The former three scenarios are related to numbers. Here, we replace the basic elements in the fact vectors with
characters to conduct a new test. Notably, we modify the operations as follows: addition in the Add and Map
operations is replaced with string concatenation, multiplication in Map is replaced with character replication,
zero-padding in Pad becomes character deletion, and the numbers 0-9 are replaced with the characters a-j.

For humans, although the process of reasoning tends to be implicit, according to the traditional definition in
logic, it can be divided into two stages: induction and deduction. Here, we focus on the objectives of these two
stages: deriving the correct rules through induction and making inferences on new instances using deduction.
We aim to explore the correlation between the two during the reasoning process of LLMs. Therefore, for each
scenario, we design two tasks: rule induction (RI) and example inference (EI), defined as follows:

• Rule Induction Task: Given an observed fact set X, this task evaluates the model’s accuracy in
inducing transformation rules f . It aims to evaluate the model’s proficiency in mastering intermediate
rules during inductive reasoning (Yang et al., 2024b; Shao et al., 2024).

• Example Inference Task: Given an observed fact set X, the task provides an unseen example input
xt as input and measures the accuracy of the predicted yt. It aims to evaluate the final performance
of the model’s inductive reasoning (Chollet, 2019; Xu et al., 2024a; Qiu et al., 2024).

We provide all the prompts used for these tasks in Appendix A.3.

3 LANGUAGE MODELS ARE POOR RULE-BASED REASONERS

3.1 OVERALL PERFORMANCES ON MIRAGE

Setup We first evaluate the overall performance of various LLMs on MIRAGE. Here, we select GPT-4
(OpenAI, 2023), GPT-4o, Claude-3.5, Llama3-8B (Dubey et al., 2024), and Llama2-13B (Touvron et al., 2023)
as representative models.3 For the first three models, given their strong instruction-following capabilities, we
provide only the instruction and allow them to answer the questions in a zero-shot setting. For the latter two
models, to improve the format accuracy of the response, we additionally provide five examples before they
answer the questions. Unless otherwise specified, we continue to use this setup to prompt the model in the
subsequent experiments. For the dataset setting, we fix the size N at 5 and measure performance across four
scenarios when the dimension D = 3, 5, 8. We sample 500 questions for each test. More implementation details
can be found in Appendix B.1.

Results The results are shown in Table 1, from which we can draw the following conclusions: (1) LLMs’
inductive reasoning does not rely on rule induction. Given the same set of observed facts, the model’s
performance on rule induction is noticeably worse than on example inference in almost all cases. This suggests

2Here, real-world scenarios refer to mathematical inductive reasoning within natural language contexts.
3Due to the frequency limitations of API calls, we can not conduct our evaluation on the latest o1 model.
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Model Task D=3 D=5 D=8
LT RP CG ST LT RP CG ST LT RP CG ST

Llama2-13B RI 0.01 0.00 0.00 0.03 0.01 0.01 0.00 0.21 0.00 0.01 0.00 0.10
EI 0.26 0.11 0.25 0.22 0.13 0.03 0.14 0.25 0.06 0.01 0.06 0.19

Llama3-8B RI 0.15 0.11 0.19 0.19 0.23 0.04 0.14 0.22 0.16 0.02 0.08 0.21
EI 0.30 0.15 0.25 0.25 0.20 0.12 0.25 0.29 0.09 0.11 0.16 0.24

GPT-4o RI 0.41 0.32 0.38 0.32 0.35 0.21 0.44 0.30 0.33 0.16 0.41 0.24
EI 0.68 0.37 0.61 0.56 0.58 0.25 0.64 0.39 0.42 0.17 0.49 0.29

GPT-4 RI 0.47 0.29 0.41 0.28 0.58 0.22 0.56 0.27 0.46 0.15 0.45 0.23
EI 0.68 0.37 0.61 0.57 0.63 0.29 0.71 0.44 0.42 0.21 0.64 0.30

Claude-3.5 RI 0.44 0.35 0.34 0.46 0.22 0.20 0.38 0.33 0.24 0.13 0.38 0.26
EI 0.79 0.45 0.62 0.58 0.65 0.33 0.76 0.45 0.46 0.24 0.59 0.30

Table 1: Overall performance (accuracy) of different models on MIRAGE. The best results in rule
induction (RI) are in bold, while the best results in example inference (EI) are underlined.

that most of the model’s correct deductions do not depend on inducing a correct rule. (2) LLMs face difficulties
in handling inductive reasoning in real-world problems. When comparing different scenarios, all models
perform the worst on the RP tasks. For example, GPT-4o only achieves 0.16 and 0.17 accuracy when the
dimension is 8. This indicates that, compared to purely symbolic forms (LT, CG, ST), natural language forms
pose a greater challenge for the models’ inductive reasoning abilities.

Supplementary Experiments In the main experiments, we find that there is a significant performance
gap between rule induction and example inference for LLMs. However, this gap may be caused by the dif-
ference in difficulty between the two tasks. When the model is unable to perform correct inductive reasoning,

Model Rule Induction Example Inference

BF AF CR BF AF CR

GPT-4o 0.50 0.13 0.74 0.66 0.15 0.77
Claude-3.5 0.37 0.07 0.81 0.65 0.22 0.66

Table 2: Comparison of CR on two tasks (D = 3, N = 3). BF
and AF indicate the accuracy before and after perturbation.

it is likely to guess the correct answers
for the EI task more easily compared to
the RI task, resulting in a higher accu-
racy. We conduct this additional experi-
ment to eliminate the interference of this
factor. Specifically, we randomly perturb
one fact in X to violate rule f . Then,
we observe the performance of both tasks
and calculate the change rate (CR) of
accuracy before and after the perturba-
tion. CR represents the sensitivity of the
model’s performance to the input. If CR
is high, it indicates a strong correlation between task performance and input, making it difficult to answer the
question correctly through random guessing, Therefore, CR can serve as an indicator of the reasoning difficulty
for the task. We randomly choose 100 pieces of test data from the dataset and generate questions under the
LF scenario.4 The experimental results on different models are demonstrated in Table 2. We can observe that
the two tasks have comparable CR for both models, indicating that the reasoning difficulty of the EI task is not
lower than the RI task. The tasks themselves do not cause such a large performance gap.

3.2 PERFORMANCES OF ADVANCED METHODS

In §3.1, we observe that LLMs perform poorly on our dataset, especially in inductive tasks. Considering
previous work has proposed numerous methods to elicit the model’s reasoning abilities (Wei et al., 2022; Wang
et al., 2023b; Madaan et al., 2023), we wonder whether they can boost models’ performance on MIRAGE.

Setup Since we focus on exploring the model’s intrinsic capabilities, we only consider methods that do
not introduce any external tools or knowledge. Specifically, the methods are as follows: Input-Output (IO):
We prompt models to generate answers directly under different shots. Inductive-Deductive (ID): We prompt
models to generate rules for inductive tasks and apply them to answer questions in deductive tasks. Chain-of-
Thought (CoT) (Wei et al., 2022): We prompt models to generate rationales and answers for the two tasks.
Self-Consistency (SC) (Wang et al., 2023b): Based on CoT, we sample n rationales and use the major voting
strategy to predict the final answer. Self-Refine (SR) (Madaan et al., 2023): We prompt the model to provide
feedback on the generated rules, and then refine the rules based on that feedback (with a maximum of t itera-
tions). After the iteration stops, we use the latest rule to answer the inductive task and apply it to answer the

4Unless otherwise specified, this configuration will be maintained for all subsequent experiments.
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Method LT RP CG ST
RI EI (∆) RI EI (∆) RI EI (∆) RI EI (∆)

IO (0-shot) 0.46 0.76 0.30 0.43 0.72 0.28 0.39 0.46 0.08 0.47 0.70 0.23
IO (5-shot) 0.63 0.76 0.13 0.59 0.77 0.17 0.55 0.54 -0.02 0.52 0.78 0.26

ID (0-shot) 0.46 0.56 0.11 0.46 0.57 0.11 0.33 0.42 0.09 0.22 0.65 0.43
ID (5-shot) 0.59 0.68 0.08 0.57 0.66 0.08 0.47 0.54 0.08 0.48 0.69 0.21

CoT (0-shot) 0.50 0.57 0.07 0.47 0.55 0.08 0.34 0.39 0.05 0.52 0.62 0.10
CoT (5-shot) 0.56 0.59 0.04 0.41 0.55 0.13 0.37 0.40 0.03 0.45 0.64 0.20

SC (n=5) 0.59 0.74 0.15 0.49 0.62 0.14 0.38 0.45 0.07 0.57 0.68 0.10

SR (t=3) 0.48 0.64 0.16 0.42 0.67 0.25 0.36 0.49 0.13 0.53 0.67 0.14

HR (t=3, n=1) 0.56 0.68 0.12 0.45 0.71 0.26 0.41 0.53 0.11 0.43 0.71 0.27
HR (t=3, n=5) 0.66 0.79 0.13 0.59 0.80 0.21 0.55 0.60 0.05 0.49 0.67 0.18

Table 3: Performance of different methods on MIRAGE using GPT-4o. The best results in each
column are highlighted in bold, while the second best results are underlined.

deductive task. Hypothesis Refinement (HR) (Qiu et al., 2024): HR is an optimized version of SR, which first
generates n rules. In each iteration, we apply the current rules to all observed examples, compare the actual
output with the expected output, and get the number of correct predictions along with the information about
incorrect examples. If a candidate rule is correct for all observed facts, it is immediately returned. Otherwise,
the rule with the highest number of correct predictions and the associated error information is used as input for
the model to refine, generating n rules for the next round, until the maximum number of iterations t is reached.
We sample 200 questions for each test.

Results We demonstrate the experimental results on GPT-4o in Table 3 and report other results in Appendix
B.2. We can conclude that: (1) Advanced methods provide limited improvement to the model’s inductive
reasoning ability or may even have negative effects. For both tasks, directly answering with few-shot settings
can consistently achieve the highest or second-highest accuracy in most cases. After applying prompting meth-
ods like CoT, the model’s accuracy decreases by up to 18% and 22% on two tasks, respectively. It indicates
that the key to optimizing inductive reasoning does not lie in refining the intermediate inductive process (as
CoT-like methods do). (2) The model’s disregard for abstract rules during inductive reasoning is method-
agnostic. Although some methods use instructions to guide the model to focus more on the previously induced
rules during reasoning (e.g. ID, SR, HR), there remains a significant gap in the model’s RI and EI performance.
For example, in the case of SR, the model’s example inference accuracy outperforms its rule induction accuracy
by an average of 16%.

3.3 IMPACT OF INCREASING FACT SIZE

In the previous experiments, we consistently fix the observed fact numbers N . Therefore, as a supplement, we
explore the impact of N on the model’s inductive reasoning process in this section. Theoretically, as the number
of observed facts increases, the scope of the candidate rules narrows, which can lead to the incorrect inductive
process becoming correct. If the reasoning process is rule-based, the model is likely to generate the correct rule
(inductive) before applying it correctly (deductive). In other words, the time when the LLM induces the correct
rule is no later than the time it performs the correct deduction. Thus, the cumulative number of observations
required for the inductive rule to change from incorrect to correct should not exceed the number required for
the test case to become correct. We design this experiment to validate whether it holds on the LLM.

Setup Given a fact set Xk of size k, and a fixed test input xt, we define the inductive correction threshold
(ICT) and deductive correction threshold (DCT) as follows:

ICT = k ⇐⇒ ∀i < k, M(Xi|I) ̸= f ∧M(Xk|I) = f (3)

DCT = k ⇐⇒ ∀i < k, M(Xi,xt|D) ̸= f(xt) ∧M(Xk,xt|D) = f(xt) (4)

Here, M(·|I),M(·|D) are the model’s outputs in RI and EI tasks. We set D = 5 and vary N , then analyze the
distribution of these two thresholds across 100 samples, reporting the results in Figure 3.

Results Based on the result, we further demonstrate that LLM’s deduction does not rely on an inductive
rule. From both of the two figures, we can observe that most points are distributed in the upper left region
of the line x = y, indicating that for the vast majority of cases, DCT is smaller than ICT. Therefore, the fact
numbers N does not affect the conclusion we stated earlier. LLM requires fewer facts to successfully perform
an example inference task compared to correct induction.
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(b) Claude-3.5

Figure 3: The distribution of ICT and DCT for
the examples across different models.
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Figure 4: Performance on EI tasks under different
scenarios of observed and test facts.

3.4 TRANSFERABILITY TEST OF INDUCTIVE RULES

Finally, we investigate the impact of different scenarios on the inductive reasoning process. For rule-based
reasoning, once a rule is formed through induction, it should be transferable. That is, a rule induced in one
scenario should be applicable to another scenario with the same underlying transformation. We experiment to
explore whether LLMs possess this ability when performing inductive reasoning.

Setup Specifically, we exclude ST in this experiment since its basic transformations differ from the other
three scenarios (see §2.1). For the remaining three scenarios, we generate the observed facts in one scenario,
and then transform the test case into another scenario. Since our dataset can generate questions in different
scenarios based on the same meta-rule, we can easily ensure that they share the same underlying transformation.

Results From the results shown in Figure 4, we can get that: (1) LLMs lack transferability in inductive
reasoning. Across different cases, the highest performance occurs when the scenarios of the observed and
test facts are consistent (i.e., the diagonal from the top left to the bottom right in the figure).(2) The inductive
reasoning process of the LLM is form-related. Compared to the transfer between LT and RP (or CG and RP),
the transfer between LT and CG demonstrates better performance. We infer that this is because the forms of LT
and CG are more similar (see Figure 2). Based on the above two observations, we further confirm that LLMs do
not rely on abstract rules when performing inductive reasoning. So, what is the underlying mechanism behind
it? In the following section, we focus on addressing this question.

4 LANGUAGE MODELS ARE GOOD NEIGHBOR-BASED REASONERS

4.1 MOTIVATION

From § 3.4, we know that closer forms between the observed facts and the test case can enable the model to
perform inductive reasoning more effectively. However, is the positive impact brought by the similarity limited
only to the form? The answer to this question is likely “No”. Upon reviewing related works, we find that
models tend to match various similar patterns in the context and use them to predict the next token (Olsson
et al., 2022; Wang et al., 2023a; Hu et al., 2024b). Therefore, we aim to identify a metric to measure some
other similarities between the observed facts and the test input. Since all of our facts are transformed from
vectors, we associate this similarity with the distance between these facts in feature space.

In topology, if f : X → Y is a continuous function between two Euclidean spaces and N (x0, ϵ) is a ϵ-
neighborhood of the point x0 in X , then we have:

∃η > 0, s.t. ∀x ∈ N (x0, ϵ), f(x) ∈ N (f(x0), η) (5)

In other words, continuous functions preserve the neighborhood property. If a fact input vector x closes
to the test input xt, then their output vectors y and yt will remain close.5 Therefore, the close distance
between yt and y may allow LLM to predict yt based on y in observed facts without the need for correct
rule generation. In the following sections, we demonstrate through experiments that the model’s inductive
reasoning relies on this paradigm, which we refer to as neighbor-based reasoning.

4.2 NEIGHBOR FACTS IN INDUCTIVE REASONING

Before conducting the experiments, we first define some key concepts in our work: the distance d and neighbor-
hood N . In our setup, the components at corresponding positions in the vectors follow the same transformation

5We rigorously prove in Appendix C.1 that the rules f in our dataset are all continuous functions.
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Figure 5: Performance of different fact types on our dataset (D = 3, N = 5). The dashed line
represents the baseline accuracy.

Type N=3 N=5 N=8
LT RP CG ST LT RP CG ST LT RP CG ST

Baseline 0.52 0.19 0.78 0.42 0.66 0.36 0.71 0.46 0.76 0.34 0.80 0.54
IF Only 0.78 0.46 0.82 0.59 0.84 0.52 0.84 0.63 0.86 0.54 0.91 0.70
CF Only 0.48 0.25 0.59 0.43 0.69 0.35 0.72 0.50 0.75 0.34 0.82 0.53
OF Only 0.46 0.18 0.50 0.38 0.49 0.23 0.57 0.36 0.61 0.23 0.67 0.38

Table 4: Performance of different fact types under various settings (D = 5). The best results in each
column are highlighted in bold, while the worst results are underlined.

rules, while non-corresponding components may undergo different transformations (see Equation 2). Hence,
we consider using the distance based on the corresponding components: Chebyshev distance.6 Given observed
fact Xi = (xi,yi) and test input xt, we have:

d(Xi,xt) = max
k

(|xik − xtk|) (6)

where xik and xtk are the k-th component of two input vectors. Then we can define the ϵ-neighborhood of xt

based on the distance:

N (xt, ϵ) = {Xi | d(xi − xt) ≤ ϵ} (7)

Setup According above definitions, we can divide an observed fact Xk into three categories based on the
distance between x and the test input xt: (1) In-neighborhood Fact (IF): If Xk ∈ N (xt, ϵ), we call Xk is a in-
neighborhood fact. (2) Cross-neighborhood Fact (CF): If Xk /∈ N (xt, ϵ), but ∃i ∈ [1, D], s.t. |xi−xti| ≤ ϵ,
we consider it a suboptimal neighbor fact because some of its components can still contribute to the model’s
inductive reasoning process. In this case, we call Xk is a cross-neighborhood fact. (3) Out-neighborhood Fact
(OF): If ∀i ∈ [1, D], |xi − xti| > ϵ, we call Xk is an out-neighborhood fact. By generating examples based
on these definitions, we can make the fact set X contain only one type of fact. After constructing different fact
sets, we compare the model’s performance on EI tasks under these settings. Besides, we use the performance
under the default fact set as the baseline, where all facts are randomly sampled without any constraints.

Results We report the experimental results in Figure 5. It demonstrates that: (1) LLM’s inductive reasoning
is neighbor-based. By comparing the three settings, we find that observed facts closer to the test case result in
better performance (IF > CF > OF) across all of the models. Besides, compared to the baseline (the dashed
line in figures), the accuracy significantly drops after we remove all the neighbor cases in X (i.e. OF). These
phenomena indicate that the model heavily relies on neighbor facts during reasoning. (2) LLMs have a strong
ability to capture neighboring patterns. When we set the neighborhood radius ϵ to 4, both IF and CF still
contribute to high reasoning performances for the model. Besides, OF continues to show a significant decline
(compared to ϵ = 3). These observations indicate that LLMs can still learn similar patterns even when the
observed facts are relatively distant.

4.3 UNIVERSALITY OF NEIGHBOR-BASED REASONING

We consider whether LLM’s inductive reasoning universally relies on neighbor cases, hence, we set ϵ to 1 and
repeat the experiment under more different settings, where the baseline is the same as we set in § 4.2. The

6We demonstrate through experiments that this distance is more suitable for constructing neighborhoods
compared to other distances. For details, see Appendix C.2.
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Figure 7: Deductive Density (Id) of various fact types on GPT-4o under different test radius η and
neighborhood radius ϵ (N = 5). BL represents the performance of the baseline, where we use default
fact sets with no substitution.

results on GPT-4o are reported in Table 4, which demonstrates that the neighbor-based paradigm is universal
in LLMs’ inductive reasoning process. Across different scenarios and fact numbers, IF consistently gets the
highest accuracy, while OF gets the lowest accuracy. The reliance of LLMs’ inductive reasoning on neighbor
facts is independent of the specific task scenarios, models, or fact numbers. For more results on other models,
you can see Appendix C.3.

4.4 EFFECTIVE SCOPE OF NEIGHBOR-BASED REASONING

Individual

[3,4,7]

Localized Global

Neighborhood

[3,3,6]

[4,3,8]

[9,9,1]

[1,0,4]

[3,4,7]
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[3,3,6]

[4,3,8]

[9,9,1]

[1,0,4]Test Space Test Space

[3,4,7]

Neighborhood

[3,3,6]

[4,3,8]

[9,9,1]

[1,0,4]Test Space

η η η

Figure 6: Examples for three different effective scopes.

We have demonstrated that neighbor exam-
ples in observed facts significantly affect the
model’s performance on the test case. How-
ever, what is the effective scope of it? Is it only
pattern matching on a single test example or
reasoning an implicit rule that affects more ex-
amples? To answer the question, we first make
three assumptions about its possible scope and
show them in Figure 6. For individual scope,
the model can only answer the test case xt (e.g.
[3,4,7] in the figure), for all other cases, the ac-
curacy of the prediction is very low. For lo-
calized scope, the model can also answer cases
close to xt (i.e. the neighbor facts of xt). For global scope, the model can answer all cases with high accuracy.

Setup In our experiment, we sample n test cases Xt (here n = 5) in each EI task τ and define the accuracy
aτ for this particular task as:

aτ =
1

n

∑
x∈Xt

I[M(Xτ ,x|D) = f(x)] (8)

Here Xτ is the observed fact set of the task. Let T denote the set of all EI tasks (we set |T | = 100), we define
deductive density Id as:

Id =
1

|Tc|
∑
τ∈T

aτ I[M(Xτ ,xt|D) = f(xt)] (9)

|Tc| =
∑
τ∈T

I[M(Xτ ,xt|D) = f(xt)] (10)

where xt is the origin test input in task τ . We use this metric to indicate the impact of a successful deduction
(i.e. [3, 4, 7] in Figure 6) on reasoning over other examples in the test region N (xt, η). A high Id indicates that
the model performs well in most cases within this region, while a low Id suggests that the model’s reasoning is
more localized or even individual. For comparison, we set the test radius η to 1, 2, 3, and infinity (i.e. the full
test space), and calculate the corresponding Id for the model. Besides, we also vary the neighborhood radius ϵ
to examine the impact of different distributions of neighbor facts on their effective scope (here we set the test
region to the full space). We repeat the experiment five times to eliminate the interference of random errors,
and the results are illustrated in Figure 7.

Results We can draw conclusions as follows: (1) LLM conducts localized reasoning through the
neighbor-based paradigm. From Figure 7a, 7c, we observe that the Id of IF and CF decreases continuously
as the radius of the test domain expands. These neighbor cases are highly effective within the neighborhood of

9
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xt. For example, in Figure 7a, when η = 1, the model can achieve over 0.9 Id. However, this impact dimin-
ishes for test cases that are farther from xt. As an example, in Figure 7c, the model only gets around 0.5 Id
in full test space. (2) The effective scope of neighbor facts is proportional to their distance from the test
case. According to Figure 7b,7d, the Id of IF and CF (particularly IF) increases as ϵ becomes large. When
the neighborhood radius increases, the distribution of these facts becomes more dispersed. We can infer that a
more dispersed distribution of neighbor facts tends to make the effective scope more global.

5 LIMITATIONS AND DISCUSSIONS

Interpretation Methods. Most model interpretation studies delve into the internal of models (e.g. neu-
rons, attention layers), providing a comprehensive explanation of the working mechanisms (Romera-Paredes
et al., 2024; Li et al., 2024). However, our work does not conduct internal analysis but instead relies on per-
formance comparisons under different settings. There are two main considerations for this: On one hand, this
work aims to identify mechanisms that are applicable to black-box models. Since we do not have access to
the internal parameters of these models, we are unable to use previous methods. On the other hand, white-
box models exhibit poor inductive reasoning capabilities according to Table 1. Therefore, conducting in-depth
interpretations based on white-box models may introduce noise to the conclusions.

Experimental Settings. The goal of this paper is to evaluate and explain the inductive reasoning process in
LLMs, rather than to improve the task performance. Therefore, we do not meticulously design the prompts used
in the experiments, nor do we use the best-performing inductive reasoning methods throughout the analysis.
We believe that the experimental setup of 0-shot IO with simple instructions is more aligned with real-world
application scenarios, making our evaluation and explanation results more meaningful.

Future Directions. Our study demonstrates that LLMs perform poorly in rule-based reasoning but excel
at using neighbor facts for reasoning. Future work could explore methods to encourage the model to follow
rules more closely during reasoning or to further optimize the model’s inductive reasoning abilities based on
this neighbor-matching finding.

6 RELATED WORK

Evaluating Inductive Reasoning Abilities of LLMs. Existing studies on evaluating LLM’s inductive
reasoning capabilities mainly use only a single task. On one hand, some works assess the model’s rule induction
ability by evaluating the accuracy on unseen examples (Moskvichev et al., 2023; Tang et al., 2023; Gendron
et al., 2023; Xu et al., 2024b; Qiu et al., 2024). However, since the model’s deduction does not always rely on
inducing the correct rule, this indirect evaluation method can introduce some inaccuracies. On the other hand,
some studies directly evaluate the correctness of the generated rules to assess inductive reasoning ability (Shao
et al., 2024; Cheng et al., 2024; Yang et al., 2024b). These studies lack evaluation on test examples, making
it difficult to confirm the model’s mastery of the inductive rules. Our work evaluates both aspects, providing a
comprehensive analysis of the model’s inductive reasoning process.

Mechanism Analysis on LLM’s Reasoning. A growing body of interpretability research has begun
analyzing the reasoning mechanisms of LLMs, aiming to deepen our understanding of how these models func-
tion. Some studies explore the mechanisms behind mathematical reasoning (Zhang et al., 2024; Hu et al.,
2024b; Romera-Paredes et al., 2024; Stolfo et al., 2023), some works investigate multi-hop reasoning (Wang
et al., 2024a; Hou et al., 2023; Yang et al., 2024a; Biran et al., 2024), and some focus on other types of rea-
soning (Li et al., 2024; Hu et al., 2024a). However, there is currently a lack of analysis on the mechanisms
of inductive reasoning. Our work mitigates this gap and uncovers the neighbor-based paradigms LLMs follow
when performing inductive reasoning.

7 CONCLUSION

In this paper, we focus on evaluating and explaining the inductive reasoning process of LLMs. First, we con-
struct a dataset MIRAGE, which provides both inductive and deductive evaluation tasks, with the flexibility to
generate test examples in any distribution, different difficulties, and various forms. Based on it, we demon-
strated that LLM is a poor rule-based reasoner, it does not need to rely on inductive rules when performing
inductive reasoning. Compared to correct induction, the model can perform successful deduction with fewer
observations, and this deduction is closely related to the form of the input. Furthermore, we identify a key
paradigm of LLM inductive reasoning: neighbor-based reasoning. The model tends to leverage observed facts
that are close to the test examples in feature space for inductive reasoning. Through it, the model can achieve
strong inductive reasoning capabilities within a localized scope and apply this ability to make inferences on
unseen examples.
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A MORE DETAILS FOR DATASET CONSTRUCTION

A.1 COMPARISON OF DATASETS BETWEEN RELATED WORK AND OUR STUDY

Since our work is conducted entirely on our MIRAGE dataset, we aim to provide a detailed comparison with
representative datasets from related studies to demonstrate its effectiveness. Specifically, we report the com-
parison in Table 5. From the results, we can see that our dataset can cover most of the operations and forms
in previous datasets. For example, the transformation examples in the 1D-ARC dataset shown in the table are
equivalent to our PAD operation. Therefore, we demonstrate that our dataset is an effective dataset for inductive
reasoning. Moreover, based on its coverage, conducting experiments solely on it is sufficient.

Dataset Fact Form Main Operation Example

ARC (Chollet, 2019) List (2D) Fill, Move, Pile

input: [[0,1,0],[1,1,0],
[0,1,0],[0,1,1],[0,1,0],
[1,1,0]]

output: [[0,2,0],[2,2,0],
[0,2,0],[0,2,2],[0,2,0],
[2,2,0],[0,2,0],[0,2,2],
[0,2,0]

MiniSCAN (Lake et al., 2019) String String Translation
input: her sneury voirk

output: GREEN BLUE

ListFunctions (Rule, 2020) List List Operation
input: [4,7,6,9,0]

output:[4,8,6,9,0]

MiniARC (Kim et al., 2022) List (2D) Fill, Move, Pile

input: [[1,1,5,6,8],
[0,1,5,6,6],[5,5,5,5,5],
[7,7,5,4,4],[7,7,5,0,4]]

output: [[1,6,0,0,0],
[7,4,0,0,0],[0,0,0,0,0],
[0,0,0,0,0], [0,0,0,0,0]]

1D-ARC (Xu et al., 2024a) List Fill, Move, Pile

input: [0,0,2,0,0,0,0,2,
0,0,0]

output: [0,0,2,2,2,2,2,2,
0,0,0]

Case2Code (Shao et al., 2024) Code Python Function
input: dict(no=2)

output: [2]

MIRAGE All above + RP All above See Figure 2

Table 5: Comparison between some representative datasets and ours.

A.2 EVALUATION OF MATHEMATICAL OPERATION DIFFICULTY IN MIRAGE

Our data introduces some mathematical operations in Add and Map, here we aim to demonstrate that these
calculations are inherently simple for LLMs, ensuring that they do not interfere with our evaluation of the
model’s inductive reasoning performance. Specifically, we randomly construct linear operations in Add and
Map with single-digit operands (cover all of the operations included in this paper) and observe the accuracy
of each model on 100 questions. The results are reported in Table 6. We can observe that most of the modes
can achieve very high accuracy on these math operations. Specifically, all closed-source models achieve 100%
accuracy. This indicates that our dataset construction effectively eliminates noise introduced by mathematical
calculations in most cases.
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Operation Llama2-13B Llama3-8B GPT-4o GPT-4 Claude-3.5

Map 0.96 0.93 1.00 1.00 1.00
Add 0.51 0.99 1.00 1.00 1.00

Table 6: Accuracy of basic mathematical computations across different models in our dataset.

A.3 EVALUATION TEMPLATES FOR DIFFERENT TASKS AND SCENARIOS

In Tables 14 and 15, we report the evaluation prompts used to evaluate the models in our work. In Table 16, we
provide the templates used for constructing different scenarios in RP.

B MORE DETAILS FOR RULE-BASED REASONING EVALUATION

B.1 IMPLEMENT DETAILS FOR MAIN EXPERIMENTS

For model version, we select Llama-2-13b-chat-hf, Meta-Llama-3-8B-Instruct,
gpt-4-0613, gpt-4o-2024-05-13 and claude-3-5-sonnet-20240620. All experiments
are conducted on 4 NVIDIA GeForce RTX 3090 GPUs. For the sake of simplicity, we include all the prompts
used in this work in the supplementary materials.

B.2 MORE EXPERIMENTS ON OTHER MODELS

In this section, we repeat the experiments in § 3.2 on the Llama3-8B model and Llama2-13B model, the results
are shown in Table 7, 8. Here we set D = 3, N = 5. We can observe that the results in our main text still hold
on these models. We do not apply HR on them, since these two models have difficulty in evaluating the rule
based on given templates under 0-shot settings.

Method LT RP CG ST
RI EI (∆) RI EI (∆) RI EI (∆) RI EI (∆)

IO (0-shot) 0.21 0.54 0.33 0.03 0.48 0.45 0.17 0.22 0.05 0.07 0.45 0.38
IO (5-shot) 0.32 0.41 0.09 0.35 0.40 0.05 0.14 0.24 0.10 0.25 0.35 0.10

ID (0-shot) 0.10 0.24 0.14 0.12 0.30 0.18 0.10 0.17 0.07 0.01 0.35 0.34
ID (5-shot) 0.35 0.44 0.09 0.30 0.40 0.10 0.01 0.04 0.03 0.31 0.33 0.02

CoT (0-shot) 0.25 0.39 0.14 0.13 0.39 0.26 0.16 0.14 -0.02 0.16 0.42 0.26
CoT (5-shot) 0.54 0.59 0.05 0.36 0.40 0.04 0.41 0.55 0.14 0.47 0.66 0.19

SC (n=5) 0.47 0.54 0.07 0.35 0.37 0.02 0.45 0.55 0.10 0.51 0.62 0.11

SR (t=3) 0.16 0.26 0.10 0.09 0.27 0.18 0.08 0.20 0.12 0.05 0.39 0.34

Table 7: Performance of different methods on MIRAGE using Llama3-8B (100 examples).

Method LT RP CG ST
RI EI (∆) RI EI (∆) RI EI (∆) RI EI (∆)

IO (0-shot) 0.01 0.29 0.28 0.01 0.41 0.40 0.01 0.15 0.15 0.18 0.40 0.22
IO (5-shot) 0.02 0.37 0.35 0.01 0.34 0.33 0.01 0.14 0.14 0.05 0.30 0.25

ID (0-shot) 0.00 0.02 0.02 0.00 0.03 0.03 0.00 0.06 0.06 0.17 0.20 0.02
ID (5-shot) 0.02 0.12 0.10 0.01 0.14 0.14 0.00 0.01 0.01 0.01 0.30 0.29

CoT (0-shot) 0.03 0.10 0.08 0.03 0.20 0.17 0.00 0.13 0.13 0.06 0.13 0.08
CoT (5-shot) 0.01 0.24 0.23 0.02 0.14 0.12 0.00 0.14 0.14 0.07 0.10 0.03

SC (n=5) 0.07 0.24 0.17 0.08 0.49 0.41 0.01 0.34 0.33 0.17 0.37 0.20

SR (t=3) 0.00 0.03 0.03 0.01 0.07 0.06 0.00 0.06 0.06 0.01 0.10 0.09

Table 8: Performance of different methods on MIRAGE using Llama2-13B (200 examples).
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B.3 EXPERIMENTS ON FINE-TUNING METHOD

In the main text, we primarily use in-context learning to evaluate the performance of various models. Here,
we supplement the evaluation with the performance of fine-tuned models on MIRAGE. Specifically, we use
Meta-Llama-3-8B-Instruct as the backbone, setting N = 5 and D = 5, and train the model on 8,000
samples. For the training parameters, we set the learning rate to 0.0001, the batch size to 1, and the number of
epochs to 10. Additionally, LoRA is employed to train people on different types of tasks. The performances on
100 test examples are presented in Table 9. It demonstrates that fine-tuning can effectively enhance the model’s
inductive reasoning capabilities. Compared to the 5-shot ICL, the model performs better on both reasoning
tasks, even when not trained on tasks of the same format.

Method LT RP CG ST
RI EI RI EI RI EI RI EI

5-shot ICL 0.31 0.27 0.04 0.17 0.16 0.28 0.21 0.32
LT Training 0.89 0.82 0.22 0.24 0.34 0.80 0.26 0.38
RP Training 0.51 0.44 0.78 0.74 0.42 0.69 0.24 0.35
CG Training 0.76 0.75 0.22 0.25 0.86 0.80 0.26 0.37
ST Training 0.51 0.52 0.19 0.21 0.33 0.61 0.50 0.35

Table 9: Performance of the fine-tuned model on MIRAGE. The best results in each column are
highlighted in bold.

C MORE DETAILS FOR NEIGHBOR-BASED REASONING EVALUATION

C.1 PROOF OF CONTINUES FUNCTIONS

Here, we prove that the five basic vector operations in MIRAGE are all continuous functions:
Theorem 1 (Add Operation Continuity). Let A = (a1, a2, . . . , an) ∈ Rn. Define a mapping f : Rn → Rn

such that for a fixed index k ∈ {1, 2, . . . , n} and a fixed subset I ⊆ {1, 2, . . . , n}, we have

f(A) = (a1, . . . , ak−1,
∑
i∈I

ai, ak+1, . . . , an),

where k /∈ I . Then f is a continuous function.

Proof. Consider two vectors A,B ∈ Rn:

A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn).

The mapping f replaces the k-th element of the vector with the sum of elements indexed by the subset I . Thus,

f(A) = (a1, . . . , ak−1,
∑
i∈I

ai, ak+1, . . . , an),

f(B) = (b1, . . . , bk−1,
∑
i∈I

bi, bk+1, . . . , bn).

The distance between the images of A and B under f is

∥f(A)− f(B)∥ =

√√√√ n∑
j=1,j ̸=k

(aj − bj)2 +

(∑
i∈I

ai −
∑
i∈I

bi

)2

.

Let us focus on the term involving the sums:∑
i∈I

ai −
∑
i∈I

bi =
∑
i∈I

(ai − bi).

By the triangle inequality, we have ∣∣∣∣∣∑
i∈I

(ai − bi)

∣∣∣∣∣ ≤∑
i∈I

|ai − bi|.
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Therefore, (∑
i∈I

ai −
∑
i∈I

bi

)2

≤

(∑
i∈I

|ai − bi|

)2

.

Using the Cauchy-Schwarz inequality, we get(∑
i∈I

|ai − bi|

)2

≤ |I|
∑
i∈I

(ai − bi)
2,

where |I| is the cardinality of the set I .

Therefore,

∥f(A)− f(B)∥ ≤

√√√√ n∑
j=1,j ̸=k

(aj − bj)2 + |I|
∑
i∈I

(ai − bi)2.

This can be bounded as
∥f(A)− f(B)∥ ≤ C∥A−B∥,

where C is a constant depending on n and |I|.

Therefore, for any ϵ > 0, choose δ = ϵ
C

. If ∥A−B∥ < δ, then

∥f(A)− f(B)∥ < Cδ = ϵ.

Hence, f is continuous.

Theorem 2 (Copy Operation Continuity). Let A = (a1, a2, . . . , an) ∈ Rn. Define a mapping f : Rn → Rn

such that for fixed indices J ⊆ {1, 2, . . . , n} and a fixed index k ∈ {1, 2, . . . , n}, we have

f(A) = (b1, b2, . . . , bn),

where

bi =

{
ak if i ∈ J,

ai otherwise.

Then f is a continuous function.

Proof. Consider two vectors A,B ∈ Rn:

A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn).

The mapping f replaces each element of A at the positions indexed by J with the value of the element at index
k. Specifically,

f(A) = (c1, c2, . . . , cn),

where

ci =

{
ak if i ∈ J,

ai otherwise.

Similarly,
f(B) = (d1, d2, . . . , dn),

where

di =

{
bk if i ∈ J,

bi otherwise.

The distance between the images of A and B under f is given by

∥f(A)− f(B)∥ =

√√√√ n∑
i=1

(ci − di)2.

By the definition of f , we have

ci − di =

{
ak − bk if i ∈ J,

ai − bi otherwise.
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Therefore, the distance can be rewritten as

∥f(A)− f(B)∥ =

√∑
i∈J

(ak − bk)2 +
∑
i/∈J

(ai − bi)2.

Since the sum over J has |J | terms that are all equal to (ak − bk)
2, this simplifies to

∥f(A)− f(B)∥ =

√
|J |(ak − bk)2 +

∑
i/∈J

(ai − bi)2.

This can be bounded as
∥f(A)− f(B)∥ ≤ C∥A−B∥,

where C is a constant depending on n and |J |.

Therefore, for any ϵ > 0, choose δ = ϵ
C

. If ∥A−B∥ < δ, then

∥f(A)− f(B)∥ < Cδ = ϵ.

Hence, f is continuous.

Theorem 3 (Map Operation Continuity). Let A = (a1, a2, . . . , an) ∈ Rn. Define a mapping f : Rn → Rn

such that for fixed indices J ⊆ {1, 2, . . . , n} and fixed scalars k, b ∈ R, we have

f(A) = (b1, b2, . . . , bn),

where

bi =

{
kai + b if i ∈ J,

ai otherwise.

Then f is a continuous function.

Proof. Consider two vectors A,B ∈ Rn:

A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn).

The mapping f applies the linear transformation kx+ b to the elements of A indexed by J and leaves the other
elements unchanged:

f(A) = (c1, c2, . . . , cn),

where

ci =

{
kai + b if i ∈ J,

ai otherwise.

Similarly,
f(B) = (d1, d2, . . . , dn),

where

di =

{
kbi + b if i ∈ J,

bi otherwise.

The distance between the images of A and B under f is given by

∥f(A)− f(B)∥ =

√√√√ n∑
i=1

(ci − di)2.

By the definition of f , we have

ci − di =

{
k(ai − bi) if i ∈ J,

ai − bi otherwise.

Therefore, the distance can be rewritten as

∥f(A)− f(B)∥ =

√∑
i∈J

(k(ai − bi))2 +
∑
i/∈J

(ai − bi)2.
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This simplifies to

∥f(A)− f(B)∥ =

√
k2
∑
i∈J

(ai − bi)2 +
∑
i/∈J

(ai − bi)2.

Let C = max(1, |k|). Then

∥f(A)− f(B)∥ ≤ C

√√√√ n∑
i=1

(ai − bi)2 = C∥A−B∥.

Therefore, for any ϵ > 0, choose δ = ϵ
C

. If ∥A−B∥ < δ, then

∥f(A)− f(B)∥ < Cδ = ϵ.

Hence, f is continuous.

Theorem 4 (Pad Operation Continuity). Let A = (a1, a2, . . . , an) ∈ Rn. Define a mapping f : Rn → Rn

such that for a fixed subset J ⊆ {1, 2, . . . , n} and a fixed constant C ∈ R, we have

f(A) = (b1, b2, . . . , bn),

where

bi =

{
C if i ∈ J,

ai otherwise.

Then f is a continuous function.

Proof. Consider two vectors A,B ∈ Rn:

A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn).

The mapping f replaces each element of A at the positions indexed by J with the constant C, and leaves the
other elements unchanged:

f(A) = (c1, c2, . . . , cn),

where

ci =

{
C if i ∈ J,

ai otherwise.

Similarly,
f(B) = (d1, d2, . . . , dn),

where

di =

{
C if i ∈ J,

bi otherwise.

The distance between the images of A and B under f is given by

∥f(A)− f(B)∥ =

√√√√ n∑
i=1

(ci − di)2.

By the definition of f , we have

ci − di =

{
0 if i ∈ J,

ai − bi otherwise.

Therefore, the distance can be rewritten as

∥f(A)− f(B)∥ =

√∑
i/∈J

(ai − bi)2.

Note that the sum is only over the indices not in J . This is because the elements in J are replaced by the
constant C, and thus their difference is zero.
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Since
∥f(A)− f(B)∥ ≤ ∥A−B∥,

for any ϵ > 0, choose δ = ϵ. If ∥A−B∥ < δ, then

∥f(A)− f(B)∥ < ϵ.

Therefore, f is continuous.

Theorem 5 (Swap Operation Continuity). Let A = (a1, a2, . . . , an) ∈ Rn. Define a mapping f : Rn → Rn

such that for fixed disjoint subsets I, J ⊆ {1, 2, . . . , n} with I ∩ J = ∅ and |I| = |J |, the elements of A
indexed by I are swapped with the elements indexed by J . Then f is a continuous function.

Proof. Let A = (a1, a2, . . . , an) ∈ Rn, and let I = {i1, i2, . . . , im} and J = {j1, j2, . . . , jm} be two
disjoint subsets of indices with |I| = |J | = m. Define the mapping f such that it swaps the elements of A
indexed by I and J . Specifically, for any A, the mapping f produces a vector B = f(A) given by

bk =


ajr if k = ir for some r = 1, 2, . . . ,m,

air if k = jr for some r = 1, 2, . . . ,m,

ak otherwise.

Consider two vectors A,C ∈ Rn:

A = (a1, a2, . . . , an), C = (c1, c2, . . . , cn).

Applying the mapping f to both vectors, we obtain

f(A) = (b1, b2, . . . , bn), f(C) = (d1, d2, . . . , dn),

where

bk =


ajr if k = ir for some r = 1, 2, . . . ,m,

air if k = jr for some r = 1, 2, . . . ,m,

ak otherwise,

and similarly,

dk =


cjr if k = ir for some r = 1, 2, . . . ,m,

cir if k = jr for some r = 1, 2, . . . ,m,

ck otherwise.

The distance between f(A) and f(C) is given by

∥f(A)− f(C)∥ =

√√√√ n∑
k=1

(bk − dk)2.

Since f only swaps the elements indexed by I and J , we have

bk − dk =


ajr − cjr if k = ir for some r,

air − cir if k = jr for some r,

ak − ck otherwise.

Therefore, the norm becomes

∥f(A)− f(C)∥ =

√√√√ m∑
r=1

(ajr − cjr )
2 +

m∑
r=1

(air − cir )
2 +

∑
k/∈I∪J

(ak − ck)2.

Rearranging the terms, we have

∥f(A)− f(C)∥ =

√√√√ n∑
k=1

(ak − ck)2 = ∥A−C∥.

Therefore, for any ϵ > 0, choose δ = ϵ. If ∥A−C∥ < δ, then

∥f(A)− f(C)∥ = ∥A−C∥ < ϵ.

Hence, f is continuous.
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C.2 COMPARISON WITH OTHER DISTANCE METRIC

We aim to explore whether using different distance metrics to define neighbor facts would also influence the
model’s inductive reasoning. Therefore, we additionally introduce three other distance metrics: Euclidean
distance deuc, Manhattan distance dman, and Minkowski distance dmin. Like Equation 6, we have:

deuc(Xi,xt) =

√√√√ D∑
k=1

(xik − xtk)2 (11)

dman(Xi,xt) =

D∑
k=1

|xik − xtk| (12)

dmin(Xi,xt) =

(
D∑

k=1

|xik − xtk|p
) 1

p

(13)

where we set p = 3. We can generate three distinct new neighborhoods N (xt, ϵ) by incorporating these
distances into Equation 7, thereby constructing three new kinds of OF. Therefore, we compare the model’s
performance on EI tasks when using only these different OFs, and the results are shown in Figure 8. From the
figure, we can see that our neighborhood construction outperforms those constructed using other distance
metrics. The EI performance of the other three OFs across different radii is similar to the baseline, indicating
that removing neighbor facts constructed using these methods does not influence the model’s inductive reason-
ing ability. In contrast, our constructed OF leads to a significant decline in accuracy, proving the validity of our
neighborhood construction.
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(b) Claude-3.5

Figure 8: Performance comparison of the impact of different OFs. The dashed line represents
the baseline accuracy using default fact sets. Euc represents Euclidean distance, Man represents
Manhattan distance and Min represents Minkowski distance.

C.3 MORE EXPERIMENTS ON OTHER MODELS

We repeat the experiments in § 4.3 on Llama2-13B, Claude-3.5 and Llama3-8B. The results are shown in Table
10, 11, 12. Besides, we also repeat the experiments in § 4.4 on Claude-3.5 and report the results in Figure 9.
The results of all these additional experiments are consistent with those in the main text.

C.4 SUPPLEMENTARY EXPERIMENT FOR MAIN EXPERIMENT

We observe that, in the experiment of § 4.2, though the performance of OF significantly decreases compared
to the baseline, some models are still able to maintain around 40% accuracy, even with only distant observed
facts. We infer that models are likely to conduct rule-based reasoning in these cases. Hence, we design an extra
experiment for supplementary. In it, we prompt LLMs to induct rules and finish deductive tasks (i.e. ID in
§3.2) on these cases in Table 13. From the table, we can observe that the model’s deductive accuracy using the
rule exceeds 70% when there are fewer neighbor facts in the context. This demonstrates that the model tends
to rely more on rule-based induction if there is less neighbor-based matching.
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Type N=3 N=5 N=8
LT RP CG ST LT RP CG ST LT RP CG ST

Baseline 0.18 0.05 0.14 0.30 0.15 0.05 0.17 0.23 0.14 0.00 0.17 0.31
IF Only 0.43 0.14 0.35 0.34 0.48 0.03 0.49 0.36 0.46 0.02 0.52 0.36
CF Only 0.17 0.06 0.14 0.28 0.15 0.04 0.22 0.25 0.14 0.00 0.17 0.31
OF Only 0.16 0.04 0.13 0.27 0.09 0.02 0.09 0.26 0.10 0.01 0.10 0.22

Table 10: Performance of different fact types under various settings on Llama2-13B (D = 5).

Type N=3 N=5 N=8
LT RP CG ST LT RP CG ST LT RP CG ST

Baseline 0.49 0.23 0.49 0.38 0.68 0.39 0.80 0.53 0.78 0.51 0.81 0.56
IF Only 0.76 0.42 0.84 0.61 0.90 0.46 0.87 0.61 0.89 0.62 0.93 0.76
CF Only 0.54 0.23 0.59 0.36 0.67 0.36 0.81 0.56 0.76 0.42 0.85 0.53
OF Only 0.50 0.24 0.49 0.45 0.60 0.30 0.71 0.39 0.66 0.26 0.77 0.49

Table 11: Performance of different fact types under various settings on Claude-3.5 (D = 5).

Type N=3 N=5 N=8
LT RP CG ST LT RP CG ST LT RP CG ST

Baseline 0.19 0.12 0.26 0.29 0.27 0.17 0.28 0.32 0.24 0.26 0.37 0.20
IF Only 0.55 0.22 0.55 0.38 0.65 0.40 0.65 0.46 0.68 0.41 0.75 0.41
CF Only 0.21 0.07 0.29 0.29 0.27 0.14 0.31 0.31 0.27 0.22 0.39 0.19
OF Only 0.24 0.06 0.34 0.26 0.23 0.08 0.24 0.25 0.18 0.11 0.23 0.15

Table 12: Performance of different fact types under various settings on Llama3-8B (D = 5).
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Figure 9: Deductive Density of various fact types on Claude-3.5 under different test radius η and
neighborhood radius ϵ (D = 5, N = 5).

Model ϵ=1 ϵ=2 ϵ=3 Avg

GPT-4o 0.74 0.72 0.76 0.74
Claude-3.5 0.76 0.72 0.73 0.74

Table 13: Performance on the correct case of OF. We use the 0-shot setting and vary the radius ϵ.
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Scenario Prompt

LT

Please summarize the rules of the list transformation based on the given facts.

Your reply should strictly follow the following format:

Rule: [A, B, C] → [<<expression>>, <<expression>>, <<expression>>]

Fact 1: Input: {INPUT} Output: {OUTPUT}
...

Fact n: Input: {INPUT} Output: {OUTPUT}
Please generate the rule of list transformation based on the former facts.

RP

Please summarize the rules of the {TASK TYPE} based on the given facts.

Your reply should strictly follow the following format:

Rule: If there are A {OBJ1}, B {OBJ2}, C {OBJ3}. After the {TASK TYPE},

there are <<expression>> {OBJ1}, <<expression>> {OBJ2}, <<expression>> {OBJ3}.

Fact 1: Input: {INPUT} Output: {OUTPUT}
...

Fact n: Input: {INPUT} Output: {OUTPUT}
Please generate the rule of {TASK TYPE} based on the former facts.

CG

Please summarize the rules of the function based on the given facts.

Your reply should strictly follow the following format:

Rule:

def f(A, B, C):

A, B, C = <<expression>>, <<expression>>, <<expression>>

return A, B, C

Fact 1: Input: {INPUT} Output: {OUTPUT}
...

Fact n: Input: {INPUT} Output: {OUTPUT}
Please generate the rule of function based on the former facts.

ST

Please summarize the rules of the string transformation based on the given facts.

Your reply should strictly follow the following format:

Rule: ABC → ...

Fact 1: Input: {INPUT} Output: {OUTPUT}
...

Fact n: Input: {INPUT} Output: {OUTPUT}
Please generate the rule of string transformation based on the former facts.

Table 14: Prompts for inductive tasks (D = 3).
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Scenario Prompt

LT

Please answer the question based on rules of the list transformation in the given facts.

Your reply should strictly follow the following format:

Answer: [<<expression>>, <<expression>>, <<expression>>]

Fact 1: Input: {INPUT} Output: {OUTPUT}
...

Fact n: Input: {INPUT} Output: {OUTPUT}
Question: Input: {TEST INPUT}

RP

Please answer the question based on rules of the {TASK TYPE} in the given facts.

Your reply should strictly follow the following format:

Answer: <<expression>> {OBJ1}, <<expression>> {OBJ2}, <<expression>> {OBJ3}.

Fact 1: Input: {INPUT} Output: {OUTPUT}
...

Fact n: Input: {INPUT} Output: {OUTPUT}
Question: Input: {TEST INPUT}

CG

Please answer the question based on rules of the functioon in the given facts.

Your reply should strictly follow the following format:

Answer: <<expression>>, <<expression>>, <<expression>>

Fact 1: Input: {INPUT} Output: {OUTPUT}
...

Fact n: Input: {INPUT} Output: {OUTPUT}
Question: Input: {TEST INPUT}

ST

Please answer the question based on rules of the string transformation in the given facts.

Your reply should strictly follow the following format:

Answer: ...

Fact 1: Input: {INPUT} Output: {OUTPUT}
...

Fact n: Input: {INPUT} Output: {OUTPUT}
Question: Input: {TEST INPUT}

Table 15: Prompts for EI tasks (D = 3).
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Scenario Template Objects

Trade
{NAME} went to the market to trade items based on the rule.

chairs, tables, pens ...He originally had {obj expression}
After the trade, he had {obj expression}

Diet
{NAME} adjusted his diet plan according to the expert’s advice.

apples, bananas, oranges ...He originally planned to take in {obj expression}
After the adjustment, he had {obj expression}

Magic
{NAME} was performing a card magic trick.

Spade 5s, Jokers, Hearts 6s ...Initially, he had {obj expression}
After performing the magic, he ended up with {obj expression}

Invest
{NAME} adjusted the investment amount of each asset based on criteria.

stocks, bonds, funds ...Initially, he invested {obj expression}
After the adjustment, he invested {obj expression}

Course
{NAME} adjusted the students’ courses according to certain rules.

math, science, history ...Initially, the weekly course schedule was: {obj expression}
After the adjustment, the weekly course schedule was: {obj expression}

Table 16: Prompts for real-world problems construction.
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