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ABSTRACT

The gradient descent-ascent (GDA) algorithm has been widely applied to solve
minimax optimization problems. In order to achieve convergent policy parameters
for minimax optimization, it is important that GDA generates convergent variable
sequences rather than convergent sequences of function values or gradient norms.
However, the variable convergence of GDA has been proved only under convexity
geometries, and there lacks understanding for general nonconvex minimax opti-
mization. This paper fills such a gap by studying the convergence of a more general
proximal-GDA for regularized nonconvex-strongly-concave minimax optimiza-
tion. Specifically, we show that proximal-GDA admits a novel Lyapunov function,
which monotonically decreases in the minimax optimization process and drives the
variable sequence to a critical point. By leveraging this Lyapunov function and
the KL geometry that parameterizes the local geometries of general nonconvex
functions, we formally establish the variable convergence of proximal-GDA to a
critical point z*, i.e., z; — z*,y; — y*(«*). Furthermore, over the full spectrum
of the KE.-parameterized geometry, we show that proximal-GDA achieves different
types of convergence rates ranging from sublinear convergence up to finite-step
convergence, depending on the geometry associated with the Kt parameter. This
is the first theoretical result on the variable convergence for nonconvex minimax
optimization.

1 INTRODUCTION

Minimax optimization is a classical optimization framework that has been widely applied in various
modern machine learning applications, including game theory [Ferreira et al.| (2012)), generative
adversarial networks (GANs) |Goodfellow et al.| (2014), adversarial training [Sinha et al.| (2017),
reinforcement learning |Qiu et al.|(2020), imitation learning Ho and Ermon! (2016); [Song et al.| (2018)),
etc. A typical minimax optimization problem is shown below, where f is a differentiable function.
min max f(@,y).

A popular algorithm for solving the above minimax problem is gradient descent-ascent (GDA), which
performs a gradient descent update on the variable x and a gradient ascent update on the variable
y alternatively in each iteration. Under the alternation between descent and ascent updates, it is
much desired that GDA generates sequences of variables that converge to a certain optimal point,
i.e., the minimax players obtain convergent optimal policies. In the existing literature, many studies
have established the convergence of GDA-type algorithms under various global geometries of the
objective function, e.g., convex-concave geometry (f is convex in = and concave in y) Nedi¢ and
Ozdaglar|(2009), bi-linear geometry [Neumann! (1928)); [Robinson|(1951) and Polyak-FL.ojasiewicz (PL)
geometry Nouiehed et al.[(2019); Yang et al.|(2020). Some other work studied GDA under stronger
global geometric conditions of f such as convex-strongly-concave geometry Du and Hu|(2019) and
strongly-convex-strongly-concave geometry Mokhtari et al.| (2020); Zhang and Wang|(2020), under
which GDA is shown to generate convergent variable sequences. However, these special global
function geometries do not hold for modern machine learning problems that usually have complex
models and nonconvex geometry.
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Recently, many studies characterized the convergence of GDA in nonconvex minimax optimization,
where the objective function is nonconvex in x. Specifically, Lin et al.|(2020); Nouiehed et al.| (2019);
Xu et al.| (2020b); Bot and Bohm| (2020) studied the convergence of GDA in the nonconvex-concave
setting and [Lin et al.| (2020)); Xu et al.|(2020b) studied the nonconvex-strongly-concave setting. In
these general nonconvex settings, it has been shown that GDA converges to a certain stationary point
at a sublinear rate, i.e., |G(x¢)|| < ¢~ for some a > 0, where G(z) corresponds to a certain
notion of gradient. Although such a gradient convergence result implies the stability of the algorithm,
namely, lim;_, o [|++1 — 2:|| = 0, it does not guarantee the convergence of the variable sequences
{z+}¢, {y+}+ generated by GDA. So far, the variable convergence of GDA has not been established
for nonconvex problems, but only under (strongly) convex function geometries that are mentioned
previously [Du and Hul|(2019); Mokhtari et al.|(2020); Zhang and Wang| (2020). Therefore, we want
to ask the following fundamental question:

e (QI: Does GDA have guaranteed variable convergence in nonconvex minimax optimization? If so,
where do they converge to?

In fact, proving the variable convergence of GDA in the nonconvex setting is highly nontrivial due to
the following reasons: 1) the algorithm alternates between a minimization step and a maximization
step; 2) It is well understood that strong global function geometry leads to the convergence of GDA.
However, in general nonconvex setting, the objective functions typically do not have an amenable
global geometry. Instead, they may satisfy different types of local geometries around the critical
points. Hence, it is natural and much desired to exploit the local geometries of functions in analyzing
the convergence of GDA. The Kurdyka-t.ojasiewicz (KL) geometry provides a broad characterization
of such local geometries for nonconvex functions.

The Kurdyka-ELojasiewicz (KE) geometry (see Section [2] for details) Bolte et al. (2007} 2014)
parameterizes a broad spectrum of the local nonconvex geometries and has been shown to hold for a
broad class of practical functions. Moreover, it also generalizes other global geometries such as strong
convexity and PL. geometry. In the existing literature, the KL geometry has been exploited extensively
to analyze the convergence rate of various gradient-based algorithms in nonconvex optimization, e.g.,
gradient descent |Attouch and Bolte| (2009); L1 et al.[|(2017) and its accelerated version |Zhou et al.
(2020) as well as the distributed version Zhou et al.|(2016a). Hence, we are highly motivated to study
the convergence rate of variable convergence of GDA in nonconvex minimax optimization under
the KE geometry. In particular, we want to address the following question:

e (02: How does the local function geometry captured by the KL parameter affects the variable
convergence rate of GDA?

In this paper, we provide comprehensive answers to these questions. We develop a new analysis
framework to study the variable convergence of GDA in nonconvex-strongly-concave minimax
optimization under the Kt geometry. We also characterize the convergence rates of GDA in the full
spectrum of the parameterization of the Kb geometry.

1.1 OUR CONTRIBUTIONS

We consider the following regularized nonconvex-strongly-concave minimax optimization problem

min max f(z,y) +g(x) = h(y), ®

where f is a differentiable and nonconvex-strongly-concave function, g is a general nonconvex
regularizer and h is a convex regularizer. Both g and h can be possibly nonsmooth. To solve
the above regularized minimax problem, we study a proximal-GDA algorithm that leverages the
forward-backward splitting update [Lions and Mercier| (1979); Attouch et al.|(2013).

We study the variable convergence property of proximal-GDA in solving the minimax problem
(P). Specifically, we show that proximal-GDA admits a novel Lyapunov function H(x,y) (see
Proposition [2)), which is monotonically decreasing along the trajectory of proximal GDA, i.e.,
H(x¢41,yt4+1) < H(xt,y:). Based on the monotonicity of this Lyapunov function, we show that
every limit point of the variable sequences generated by proximal-GDA is a critical point of the
objective function.

Moreover, by exploiting the ubiquitous KE geometry of the Lyapunov function, we prove that the
entire variable sequence of proximal-GDA has a unique limit point, or equivalently speaking, it
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converges to a certain critical point z*, i.e., x; — =*, y; — y*(z*) (see the definition of y* in Section
[2). To the best of our knowledge, this is the first variable convergence result of GDA-type algorithms
in nonconvex minimax optimization.

Furthermore, we characterize the asymptotic convergence rates of both the variable sequences and
the function values of proximal-GDA in different parameterization regimes of the Kb geometry.
Depending on the value of the KL parameter 6, we show that proximal-GDA achieves different
types of convergence rates ranging from sublinear convergence up to finite-step convergence, as we
summarize in Table [ below.

Table 1: Convergence rates of proximal-GDA under different parameterizations of Kb geometry.
Note that ¢ denotes a sufficiently large positive integer.

KL parameter Function value convergence rate Variable convergence rate
=1 Finite-step convergence Finite-step convergence
0c (i) O(exp (.— [2(1 = )]"~1)) O(exp (.— [2(1 = 6)]~"))
2 Super-linear convergence Super-linear convergence
g1 O((1+9) " )p>0  O((min{2,1+p) ") p>0
2 Linear convergence Linear convergence
2 Sub-linear convergence Sub-linear convergence

1.2  RELATED WORK

Deterministic GDA algorithms: |Yang et al.|(2020) studied an alternating gradient descent-ascent
(AGDA) algorithm in which the gradient ascent step uses the current variable x; instead of x;.
Bot and Bohm| (2020) extended the AGDA algorithm to an alternating proximal-GDA (APGDA)
algorithm for a regularized minimax optimization. Xu et al.|(2020b) studied an alternating gradient
projection algorithm which applies /5 regularizer to the local objective function of GDA followed
by projection onto the constraint sets. [Daskalakis and Panageas| (2018)); [Mokhtari et al.| (2020);
Zhang and Wang|(2020) analyzed optimistic gradient descent-ascent (OGDA) which applies negative
momentum to accelerate GDA. [Mokhtari et al.| (2020) also studied an extra-gradient algorithm
which applies two-step GDA in each iteration. [Nouiehed et al.| (2019) studied multi-step GDA
where multiple gradient ascent steps are performed, and they also studied the momentum-accelerated
version. (Cherukuri et al.[(2017); Daskalakis and Panageas| (2018)); Jin et al.| (2020) studied GDA in
continuous time dynamics using differential equations. |Adolphs et al.|(2019) analyzed a second-order
variant of the GDA algorithm.

Stochastic GDA algorithms: |Lin et al.|(2020); |Yang et al.| (2020); Bot and Bohm|(2020) analyzed
stochastic GDA, stochastic AGDA and stochastic APGDA, which are direct extensions of GDA,
AGDA and APGDA to the stochastic setting respectively. Variance reduction techniques have been
applied to stochastic minimax optimization, including SVRG-based Du and Hu|(2019); |Yang et al.
(2020), SPIDER-based Xu et al.| (2020a), STORM |Qiu et al.| (2020) and its gradient free version
Huang et al.|(2020). Xie et al.|(2020) studied the complexity lower bound of first-order stochastic
algorithms for finite-sum minimax problem.

KL geometry: The KL geometry was defined in [Bolte et al.|(2007). The KE geometry has been
exploited to study the convergence of various first-order algorithms for solving minimization problems,
including gradient descent|Attouch and Bolte|(2009), alternating gradient descent |Bolte et al.| (2014),
distributed gradient descent|[Zhou et al.|(2016a; 2018a), accelerated gradient descent|L1 et al.[(2017).
It has also been exploited to study the convergence of second-order algorithms such as Newton’s
method [Noll and Rondepierre| (2013); [Frankel et al.|(2015)) and cubic regularization method |[Zhou
et al.| (2018b).
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2 PROBLEM FORMULATION AND KE. GEOMETRY

In this section, we introduce the problem formulation, technical assumptions and the Kurdyka-
Lojasiewicz (KL) geometry. We consider the following regularized minimax optimization problem.

min max f(z,y) +g(x) = h(y), ®

where f : R™ x R™ — R is a differentiable and nonconvex-strongly-concave loss function, ) C R™
is a compact and convex set, and g, h are the regularizers that are possibly non-smooth. In particular,
define ®(z) := maxycy f(x,y) — h(y), and then the problem (P) is equivalent to the minimization
problem ming,egm ®(z) + g(z).

Throughout the paper, we adopt the following standard assumptions on the problem (P).
Assumption 1. The objective function of the problem (P) satisfies:

1. Function f(-,-) is L-smooth and function f(x,-) is p-strongly concave;

2. Function (® + g)(x) is bounded below, i.e., infxecgm (P + g)(z) > —o0;

3. Forany o € R, the sub-level set {x : (® + g)(x) < a} is compact;

4. Function h is proper and convex, and function g is proper and lower semi-continuous.

To elaborate, item 1 considers the class of nonconvex-strongly-concave functions f that has been
widely studied in the existing literature Lin et al.[(2020); Jin et al.| (2020); |Xu et al.| (2020bga)); Lu
et al. (2020). Items 2 and 3 guarantee that the minimax problem (P) has at least one solution, and
the variable sequences generated by the proximal-GDA algorithm (See Algorithm [T)) are bounded.
Item 4 requires the regularizer h to be convex (possibly non-smooth), which includes many norm-
based popular regularizers such as ¢, (p > 1), elastic net, nuclear norm, spectral norm, etc. On the
other hand, the other regularizer g can be nonconvex but lower semi-continuous, which includes all
the aforementioned convex regularizers, £, (0 < p < 1), Schatten-p norm, rank, etc. Hence, our
formulation of the problem (P) covers a rich class of nonconvex objective functions and regularizers
and is more general than the existing nonconvex minimax formulation in|Lin et al.|(2020), which
does not consider any regularizer.

Remark 1. We note that the strong concavity of f(x, ) in item I can be relaxed to concavity, provided
that the regularizer h(y) is p-strongly convex. In this case, we can add —%||y||* to both f(x,y) and
h(y) such that Assumptianstill holds. For simplicity, we will omit the discussion on this case.

By strong concavity of f(x,-), it is clear that the mapping y*(z) := arg max,cy f(z,y) — h(y)
is uniquely defined for every « € R™. In particular, if z* is the desired minimizer of ®(x), then
(x*, y*(x*)) is the desired solution of the minimax problem (P).

Next, we present some important properties regarding the function ®(z) and the mapping y*(z). The
following proposition from [Bot and Bohm| (2020) generalizes the Lemma 4.3 of [Lin et al.|(2020) to
the regularized setting. The proof can be found in Appendix |[Al Throughout, we denote k = L/ as
the condition number and denote V1 f(x,y), Vo f(z,y) as the gradients with respect to the first and
the second input argument, respectively. For example, with this notation, V1 f(z, y*()) denotes the
gradient of f(x,y*(x)) with respect to only the first input argument z, and the x in the second input
argument y* (z) is treated as a constant.

Proposition 1 (Lipschitz continuity of y* (x) and V®()). Let Assumption[I|hold. Then, the mapping
y*(x) and the function ®(x) satisfy

1. Mapping y*(x) is k-Lipschitz continuous;
2. Function ®(x) is L(1 + k)-smooth with V®(x) = V1 f(z,y*(z)).

As an intuitive explanation of Proposition |1} since the function f(z,y) — h(y) is L-smooth with
respect to z, both the maximizer y*(z) and the corresponding maximum function value ®(x) should
not change substantially with regard to a small change of .

Recall that the minimax problem (P) is equivalent to the standard minimization problem
mingerm ®(2) + g(x), which, according to item 2 of Proposition I} includes a smooth nonconvex
function ®(x) and a lower semi-continuous regularizer g(z). Hence, we can define the optimiza-
tion goal of the minimax problem (P) as finding a critical point =* of the nonconvex function
®(x) + g(z) that satisfies the necessary optimality condition 0 € J(® + g)(z*) for minimizing
nonconvex functions. Here, 0 denotes the notion of subdifferential as we elaborate below.
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Definition 1. (Subdifferential and critical point, Rockafellar and Wets|(2009)) The Frechét subdiffer-
ential Oh of function h at x € dom h is the set of u € R? defined as

5h(x) = {u : liminf hz) = hz) = uT(z = 2) > O},

ZHL, 2T Hz——xH

and the limiting subdifferential Oh at x € dom h is the graphical closure of oh defined as:
Oh(z) == {u: Jax — z, hzr) — h(x), up € Oh(xy), ur — ul}.
The set of critical points of h is defined as crith := {z : 0 € Oh(z)}.

Throughout, we refer to the limiting subdifferential as subdifferential. We note that subdifferential
is a generalization of gradient (when h is differentiable) and subgradient (when h is convex) to the
nonconvex setting. In particular, any local minimizer of h must be a critical point.

Next, we introduce the Kurdyka-tojasiewicz (KL) geometry of a function h. Throughout, the
point-to-set distance is denoted as distq(z) := inf,cq ||z — ul|.

Definition 2 (KL geometry, Bolte et al.|(2014)). A proper and lower semi-continuous function h is
said to have the KE geometry if for every compact set Q) C domh on which h takes a constant value
hq € R, there exist e, A > 0 such that for all T € Q and all x € {z € R™ : distq(z) < €,hq <
h(z) < hq + A}, the following condition holds:

¢ (h(x) — hq) - distop()(0) > 1, (1)

where ' is the derivative of function ¢ : [0, \) — R, which takes the form p(t) = gto for certain
universal constant ¢ > 0 and KE parameter 6 € (0, 1].

The KE geometry characterizes the local geometry of a nonconvex function around the set of critical
points. To explain, consider the case where h is a differentiable function so that Oh(z) = Vh(x).

Then, the KE inequality in eq. (1)) becomes h(z) — ho < O(||Vh(z)|| = ), which generalizes the
Polyak-Eojasiewicz (PL) condition h(z) — hg < O(||Vh(z)||?) Eojasiewicz|(1963); Karimi et al.
(2016) (i.e., KL parameter 6 = %). Moreover, the KL geometry has been shown to hold for a
large class of functions including sub-analytic functions, logarithm and exponential functions and
semi-algebraic functions. These function classes cover most of the nonconvex objective functions
encountered in practical machine learning applications Zhou et al.|(2016b)); |Yue et al.|(2018)); Zhou
and Liang| (2017); Zhou et al.|(2018b).

The KE geometry has been exploited extensively to analyze the convergence of various first-order
algorithms, e.g., gradient descent|Attouch and Bolte (2009); Li et al.[(2017), alternating minimization
Bolte et al.|(2014)) and distributed gradient methods|[Zhou et al.|(2016a)). It has also been exploited to
study the convergence of second-order algorithms such cubic regularization Zhou et al.| (2018b). In
these works, it has been shown that the variable sequences generated by these algorithms converge to
a desired critical point in nonconvex optimization, and the convergence rates critically depend on
the parameterization 6 of the KE geometry. In the subsequent sections, we provide a comprehensive
understanding of the convergence and convergence rate of proximal-GDA under the KE. geometry.

3 PROXIMAL-GDA AND GLOBAL CONVERGENCE ANALYSIS

In this section, we study the following proximal-GDA algorithm that leverages the forward-backward
splitting updates Lions and Mercier| (1979); |Attouch et al.|(2013) to solve the regularized minimax
problem (P) and analyze its global convergence properties. In particular, the proximal-GDA algorithm
is a generalization of the GDA |Du and Hu! (2019) and projected GDA |[Nedi¢ and Ozdaglar (2009)
algorithms. The algorithm update rule is specified in Algorithm[I] where the two proximal gradient
steps are formally defined as

. 1
prox, . (21 = 02 Vif (21, y¢)) :€ argmin {g(u) + lu— 2 + nmvlf(wuyt)IIz}, 2
wER™ 2777-
. 1
prox,, 5 (ye + 1, Vaf(2s,y:)) := argmin {h(v) +g- v =yt —ny Vaf(ze, yt)IIQ}, 3)
vey Ny
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Algorithm 1 Proximal-GDA

Input: Initialization x, yo, learning rates 7, 1.
for t=0,1,2,...,7T —1do

Ti41 € prOX'r]Ig(xt - nxvlf(xtvyt))a
Yi+1 = PYOXnyh(Z/t + "7yv2f(xtayt))-

end
Output: x7, yr.

Recall that our goal is to obtain a critical point of the minimization problem min,cgm ®(x) + g(z).
Unlike the gradient descent algorithm which generates a sequence of monotonically decreasing
function values, the function value (® + ¢)(z) along the variable sequence generated by proximal-
GDA is generally oscillating due to the alternation between the gradient descent and gradient ascent
steps. Hence, it seems that proximal-GDA is less stable than gradient descent. However, our next
result shows that, for the problem (P), the proximal-GDA admits a special Lyapunov function that
monotonically decreases in the optimization process. The proof of Proposition [2]is in Appendix [B]

Proposition 2. Let Assumption|l|hold and define the Lyapunov function H(z) := ®(z) + g(x) +
(1 — 2)|ly—y*(2)||? with z := (z,y). Choose the learning rates such that n, < m ny < 1.

Then, the variables z; = (x, y;) generated by proximal-GDA satisfy, for allt = 0,1,2, ...

1 * *
H(ze41) < H(z) = 2||weqr — 2|)® — @(Hytﬂ — (@ )|P + lye — vy (@)]?). @

We first explain how this Lyapunov function is introduced in the proof. By eq. (I9) in the supplemen-
tary material, we established a recursive inequality on the objective function (® + ¢)(x;41). One
can see that the right hand side of eq. contains a negative term — ||z, 1 — x¢||? and an undesired
positive term ||y*(x;) — y¢||?>. Hence, the objective function (® + g)(x;, 1) may be oscillating and
cannot serve as a proper Lyapunov function. In the subsequent analysis, we break this positive term
into a difference of two terms ||y* (z¢) — y¢||? — ||y (x4+1) — ye+1]|%, by leveraging the update of y; 1
for solving the strongly concave maximization problem. After proper rearranging, this difference
term contributes to the quadratic term in the Lyapunov function.

We note that the Lyapunov function H(z) is the objective function ®(x) + g(z) regularized by the
additional quadratic term (1 — 715 |ly — y*()||?, and such a Lyapunov function clearly characterizes
our optimization goal. To elaborate, consider a desired case where the sequence x; converges to
a certain critical point z* and the sequence y; converges to the corresponding point y*(z*). In
this case, it can be seen that the Lyapunov function H (z;) converges to the desired function value
(® + g)(«*). Hence, solving the minimax problem (P) is equivalent to minimizing the Lyapunov
function. More importantly, Proposition shows that the Lyapunov function value sequence { H(z;) }+
is monotonically decreasing in the optimization process of proximal-GDA, implying that the algorithm
continuously makes optimization progress. We also note that the coefficient (1— ﬁ) in the Lyapunov
function is chosen in a way so that eq. (4) can be proven to be strictly decreasing. This monotonic
property is the core of our analysis of proximal-GDA.

Based on Proposition |2} we obtain the following asymptotic properties of the variable sequences
generated by proximal-GDA. The proof can be found in Appendix [C|

Corollary 1. Based on Proposition the sequences {x, y; }+ generated by proximal-GDA satisfy

Jim e =@l = 0, lim flyees —well = 0, lim lye =y ()] = 0.

The above result shows that the variable sequences generated by proximal-GDA in solving the
problem (P) are asymptotically stable. In particular, the last two equations show that y; asymptotically
approaches the corresponding maximizer y* (z;) of the objective function f(zy,y) + g(x¢) — h(y).
Hence, if x; converges to a certain critical point, y; will converge to the corresponding maximizer.

Discussion: We note that the monotonicity property in Proposition [2] further implies the convergence
rate result ming<j<¢ |51 — x| < O(t~1/2) (by telescoping over t). When there is no regularizer,
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this convergence rate result can be shown to further imply that ming<j<; ||[V®(z1)|| < O(t~1/2),
which reduces to the Theorem 4.4 of [Lin et al.|(2020). However, such a convergence rate result
does not imply the convergence of the variable sequences {x; }+, {y: }:. To explain, we can apply
the convergence rate result ||z;; — z¢|| < O(t~'/2) to bound the trajectory norm as ||z7| <
lzoll + ZtT;()l 241 — 2¢|| = VT, which diverges to +00 as T' — oo. Therefore, such a type of
convergence rate does not even imply the boundedness of the trajectory. In this paper, our focus is to
establish the convergence of the variable sequences generated by proximal-GDA.

All the results in Corollary [T]imply that the alternating proximal gradient descent & ascent updates of
proximal-GDA can achieve stationary points, which we show below to be critical points.

Theorem 1 (Global convergence). Let Assumption || hold and choose the learning rates 1, <
m, Ny < % Then, proximal-GDA satisfies the following properties.

1. The function value sequence {(® + g)(x+)}+ converges to a finite limit H* > —oo;

2. The sequences {x}+, {y: }+ are bounded and have compact sets of limit points. Moreover, (P +
9)(x*) = H* for any limit point ©* of {4 }+;

3. Every limit point of {x } is a critical point of (® + g)(z).

The proof of Theorem [I]is presented in Appendix [D] The above theorem establishes the global
convergence property of proximal-GDA. Specifically, item 1 shows that the function value sequence
{(® + g)(z)}+ converges to a finite limit H*, which is also the limit of the Lyapunov function
sequence {H (z¢)}+. Moreover, items 2 & 3 further show that all the converging subsequences of
{x;}+ converge to critical points of the problem, at which the function ® + g achieves the constant
value H*. These results show that proximal-GDA can properly find critical points of the minimax
problem (P). Furthermore, based on these results, the variable sequences generated by proximal-GDA
are guaranteed to enter a local parameter region where the Kurdyka-t.ojasiewicz geometry holds,
which we exploit in the next section to establish stronger convergence results of the algorithm.

4  VARIABLE CONVERGENCE OF PROXIMAL-GDA UNDER K. GEOMETRY

We note that Theoremonly shows that every limit point of {x; }; is a critical point, and the sequences
{z¢, y+ }+ may not necessarily be convergent. In this section, we exploit the local KE geometry of the
Lyapunov function to formally prove the convergence of these sequences. Throughout this section,
we adopt the following assumption.

Assumption 2. Regarding the mapping y*(z), the function ||y*(z) — y||? has a non-empty subdiffer-
ential, i.e., 9, (||y* (z) — y||?) # 0.

Note that in many practical scenarios y*(z) is sub-differentiable. In addition, Assumptionensures
the sub-differentiability of the Lyapunov function H (z) := ®(z) + g(z) + (1 — %) |ly — y*(2)|*.
We obtain the following variable convergence result of proximal-GDA under the KL geometry. The
proof is presented in Appendix

Theorem 2 (Variable convergence). Let Assumption[I| & 2| hold and assume that H has the KL ge-
ometry. Choose the learning rates 1, < m and 0, < 1. Then, the sequence {(x,y:)}

generated by proximal-GDA converges to a certain critical point (z*,y*(z*)) of (® + g)(z), i.e.,
to x o x( %
z >ty =yt (@)

Theorem [2] formally shows that proximal-GDA is guaranteed to converge to a certain critical point
(z*, y*(x*)) of the minimax problem (P), provided that the Lyapunov function belongs to the large
class of KL functions. To the best of our knowledge, this is the first variable convergence result of
GDA-type algorithms in nonconvex minimax optimization. The proof logic of Theorem [2] can be
summarized as the following two key steps.

Step 1: By leveraging the monotonicity property of the Lyapunov function in Proposition 2] we
first show that the variable sequences of proximal-GDA eventually enter a local region where the
KL geometry holds;

Step 2: Then, combining the KE inequality in eq. (I)) and the monotonicity property of the Lyapunov
function in eq. @), we show that the variable sequences of proximal-GDA are Cauchy sequences and
hence converge to a certain critical point.
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5 CONVERGENCE RATE OF PROXIMAL-GDA UNDER K¥. GEOMETRY

In this section, we exploit the parameterization of the Kb geometry to establish various types of
asymptotic convergence rates of proximal-GDA.

‘We obtain the following asymptotic convergence rates of proximal-GDA under different parameter
regimes of the KE. geometry. The proof is presented in Appendix [F} In the sequel, we denote ¢, as a
sufficiently large positive integer, denote ¢ > 0 as the constant in Definition [2]and also define

M := max{%(ni+(L—|—4/@2)(1+H))2,4/@2(L+4ﬁ)2}. &)

Theorem 3 (Funtion value convergence rate). Under the same conditions as those of Theorem (2} the
Lyapunov function value sequence { H(z¢)}+ converges to the limit H* at the following rates.

1. If KE geometry holds with @ = 1, then H(z;) | H* within finite number of iterations;
2. IfKE geometry holds with 6 € (3, 1), then H(z;) | H* super-linearly as

ﬁ)titn), Vit > to; (6)

3. If KL geometry holds with 0 = %, then H(z;) | H* linearly as

H(z) — H* < (2Mc?)~ 7T exp ( _ (

H(z)— H*

IN

1 \to—t i} .
<1+m> (H(zt,) — H™), Vt>to; (N

4. If KL geometry holds with 6 € (0, %) then H(z;) | H* sub-linearly as

H(z)— H* < [C(t—t0)] 75, Vit >t ®)

where C' = min ;&i@,d;(l_%)(l - 2*(1’2‘9))] > 0.
It can be seen from the above theorem that the convergence rate of the Lyapunov function of
proximal-GDA is determined by the KL parameter 6. A larger 6 implies that the local geometry
of H is ‘sharper’, and hence the corresponding convergence rate is orderwise faster. In particular,
the algorithm converges at a linear rate when the KE. geometry holds with 6 = % (see the item
3), which is a generalization of the Polyak-Lojasiewicz (PL) geometry. As a comparison, in the
existing analysis of GDA, such a linear convergence result is established under stronger geometries,
e.g., convex-strongly-concave Du and Hu| (2019), strongly-convex-strongly-concave |Mokhtari et al.
(2020); [Zhang and Wang| (2020) and two-sided PL condition |Yang et al.|(2020). In summary, the
above theorem provides a full characterization of the fast convergence rates of proximal-GDA in the
full spectrum of the KL geometry.

Moreover, we also obtain the following asymptotic convergence rates of the variable sequences that
are generated by proximal-GDA under different parameterization of the Kt. geometry. The proof is
presented in Appendix

Theorem 4 (Variable convergence rate). Under the same conditions as those of Theorem |2| the
sequences {xy,y; }+ converge to their limits ©* | y* (x*) respectively at the following rates.

1. If KL geometry holds with 0 = 1, then (xy,y:) — (x*,y*(x*)) within finite number of itera-
tions;
2. If KE geometry holds with 0 € (1,1), then (z¢,y;) — (z*,y*(z*)) super-linearly as

1 et
max {Jlee =2 Jye =" @)} < O (= (—gy) ")) vzt ©

3. If KE geometry holds with 0 = %, then (x4, y;) — (z*,y* (¢*)) linearly as
. - . 1 (to—t)/2
maxc {2 = 2" lye = y* @)} < O (min {21+ 1)), Vet (10

4. If KL geometry holds with 0 € (0, 3), then (zy,y;) — (z*,y* (¢*)) sub-linearly as

max { o — 2|,y = y* (@)} < O((t —t0) ™7 ), ¥t > to. ()
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To the best of our knowledge, this is the first characterization of the variable convergence rates of
proximal-GDA in the full spectrum of the KL geometry. It can be seen that, similar to the convergence
rate results of the function value sequence, the convergence rate of the variable sequences is also
affected by the parameterization of the K. geometry.

6 CONCLUSION

In this paper, we develop a new analysis framework for the proximal-GDA algorithm in nonconvex-
strongly-concave optimization. Our key observation is that proximal-GDA has a intrinsic Lyapunov
function that monotonically decreases in the minimax optimization process. Such a property demon-
strates the stability of the algorithm. Moreover, we establish the formal variable convergence of
proximal-GDA to a critical point of the objective function under the ubiquitous Kt. geometry. Our
results fully characterize the impact of the parameterization of the KL. geometry on the convergence
rate of the algorithm. In the future study, we will leverage such an analysis framework to explore the
convergence of stochastic GDA algorithms and their variance-reduced variants.
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SUPPLEMENTARY MATERIAL

A PROOF OF PROPOSITIONI]

Proposition 1 (Lipschitz continuity of y*(z) and V®(z)). Let Assumption[l|hold. Then, the mapping
y*(x) and the function ®(x) satisfy

1. Mapping y*(x) is k-Lipschitz continuous;
2. Function ®(x) is L(1 + k)-smooth with V®(x) = V1 f(z,y*(z)).

Proof. We first prove item 1. Since f(x,y) is strongly concave in y for every x and h(y) is convex,
the mapping y*(x) = argmaxycy f(x,y) — h(y) is uniquely defined. We first show that y*(z) is a
Lipschitz mapping. Consider two arbitrary points x1, x2. The optimality conditions of y* (1) and
y*(x2) imply that
(y =y (x1), Vaf (21,57 (21)) —u1) <0, Vy €V, ur € Oh(y™(21)), (12)
(y —y"(w2), Vaf(22,y" (22)) —u2) <0, Vy €V, uz € Oh(y™(z2)). (13)

Setting y = y*(x2) ineq. (12), y = y*(z1) in eq. and summing up the two inequalities, we
obtain that

T1

)

(" (z2) —y" (1), Vaf(z1,y" (1)) — Vo f(z2,y"(2)) — w1 + u2) < 0. (14)
Since 0h is a monotone operator (by convexity), we know that (us — uy,y*(x2) — y*(x1)) > 0.
Hence, the above inequality further implies that
(Y (@2) = y*(21), Vo f (21,9 (21)) — Vaf(z2,y"(22))) < 0. (15)
Next, by strong concavity of f(x1, -), we have that

(y*(x2) = y*(21), Vaf (21,5 (x2)) = Vaf(z1,y" (1)) + plly* (z1) — y*(z2) > < 0. (16)
Adding up the above two inequalities yields that
plly (1) = y* (x2) |1 < (y* (22) = y* (1), Vaf (22,9 (22)) — Vo f (21, 4" (22)))
<y (z2) =y (@) V2 f (22, y" (22)) — Vaf(z1,y"(22)) ||
< Ljy*(z2) — y* (z1)[[[|w2 — 21|
The above inequality shows that ||y*(z1) — y*(z2)| < k||z2 — 21||, and item 1 is proved.

Next, we will prove item 2.

Consider 4,, = {y*(z) : z € R™,||z|| < n} C Y. Since h is proper and convex, h(yy) < +0oo
for some yy € Y. Since f is L-smooth, its value is finite everywhere. Hence, for any z € R™,
D(x) = maxyey F(@,y) ~ hy) > F(2,00) — h(go) > o0, 50 hly* (x)) = (24" (x)) — B(z) <
+00. Therefore, based on Corollary 10.1.1 of Rockafellar (1970), h(y) is continuous on A,, and
thus f(x,y) — h(y) is continuous in (x,y) € R™ x A,. Also, V1 f(z,y) is continuous in (z,y) €
R™ x A, since f is L-smooth. For any sequence {zj} such that ||z || < n and y*(zx) — y € Y,
y = y*(a’) for any limit point 2’ of {x;} (there is at least one such limit point since ||z| < n)
since we have proved that y* is continuous. As ||z/|| < n, y € A,. Hence, A, is closed. As
A,, is included in bounded Y, A,, is compact. Therefore, based on the Danskin theorem Bernhard
and Rapaport| (1995), the function ®,,(z) := argmaxyea, f(z,y) — h(y) is differntialable with
V,(x) = Vif(z,y*(x)). On one hand, ®,,(z) < ®(x) since A,, C Y. On the other hand, when
lz] < n, y*(x) € Ap, so ®(z) = f(z,y*(x)) — h(y*(x)) < &,(z). Hence, when ||z| < n,
O(z) = P, (x) and thus VO (z) = VP, (x) = Vi f(x,y*(z)). Since n can be arbitrarily large,
V&(z) = Vi f(z,y*(z)) for any z € R™.

Next, consider any z1, 2 € R™, we obtain that
[V®(z2) — VO (21)|| =[|V1f(22,y™(22)) = Vif(21,y" (x1))]l
SLllzy — 1|l + Ly (z2) — y" (21) |l
<L|lzs — 21| + L[lze — x|
=L(1+4 &)z — 21]],
which implies that ®(z) is L(1 + x)-smooth.

12
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B PROOF OF PROPOSITION

PropOSItlon 2. Let Assumption|l|hold and define the Lyapunov function H(z) := ®(z) + g(x) +
(1- m)Hy y*(2)||? with z := (x,y). Choose the learning rates such that 1, < = My < %

Then, the variables z; = (x,y;) generated by proximal-GDA satisfy, for allt = 0,1,2, ...

H(z41) < H(z) = 2lwe1 — ze))® = —5 (lyerr — v @) IIP + lye — v* (@) ?). @)

1
4K
Proof. Consider the ¢-th iteration of proximal-GDA. By smoothness of ¢ we obtain that

L(1+ k)
2

On the other hand, by the definition of the proximal gradient step of x;, we have

D(z41) < P(x4) + (Tpy1 — o1, V(1)) + |1 — 2 ). (17

g(wer1) + 7||9?t+1 —z + 0 Vif (@) |1? < gla) + 7||77LV1f(1‘t’yt)H ;

which further simplifies to

—2||? = (w1 — 24, Vi f (e, 90))- (18)

1
9(@iy1) < g(e) — 5o
Adding up eq. (I7) and eq. (T8) yields that
®(wi41) + g(@e41)

< O(x4) + glwr) — (i )||$t+1 — 24||® + (Ti31 — 2, V(1) — Vi f (e, 31))

= b(e0) + 1) — (5 = 2D lever — il + s — a1V R — TS

= @) + glar) — (5=~ ; Nllwer = 2l + e — wulllVaf (e @) - Vi feew)|
< 0o + 920~ (5 = “ D) ver — sl + Dl = el Iy ) il
Smew@»—Q;—L“;“—LtﬁwM1<MP+;mea—mF 19

Next, consider the term ||y*(z;) — y|| in the above inequality. Note that y*(x;) is the unique
minimizer of the strongly concave function f(x:,y) — h(y), and y;41 is obtained by applying one
proximal gradient step on it starting from y,. Hence, by the convergence rate of proximal gradient
ascent algorithm under strong concavity, we conclude that with ), < 1

[y — v (@) ® < (1= 5" lye — y* (20> (20)
Hence, we further obtain that

(146D lyeer =y @)l + A+ 6)lly" (@e41) =y ()2
(1 =672 llye = y" (@o)I* + 621+ £)zers — 2. 2

ly* (ze41) — yega ||* <
<

Adding eqs. (T9) & (1), we obtain

O(wi41) + g(wis1)

1 L(1+k) L2

<) +ole) = (5= Ty Ty AR e

1 * *
(1= 33 I @) = well? = Iy (@) = e |

13
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Rearranging the equation above and recalling the definition of the Lyapunov function
H(2) = ®(x) + g(w) + (1= 7 ) lly = v (@)]]%, we have

1 L(l+r) L2
20 2 2

— K21+ 8)) a1 — ]

1 * *

—@(Hy () = yel> + ly* (@41) = yeraI”) (22)
When 7, < k7 3(L + 3)72, using £ > 1 yields that
1 L(l+k) L3k?

2

— — K21
2 2 - (4w

1 L L?k3
> SRML+3) = S (2r)K% — 2“ — K2(2k)

1
= 5M’[(L +3)2 —2L — L* — 4]

1
= k(4L +5) > 2 (23)

2
As aresult, eq. (@) can be concluded by substituting eq. (23) into eq. (22).

C PROOF OF COROLLARY ]

Corollary 1. Based on Proposition the sequences {x, y: }+ generated by proximal-GDA satisfy

A {lze oy =zl =0, Hm flyers —gell = 0, lim fly, — 7 (ze) [ = 0.

Proof. To prove the first and third items of Corollary [T} summing the inequality of Proposition 2] over
t=0,1,...,7 — 1, we obtain that for all 7" > 1,

T-1

1 * *
S [2hee =l + Ut =y @) I+ e — 7 () )]
t=0

< H(z) — H(2r)
< H(z) — [®(2r) + g(a7)]
< H(z) — CEier]%fm (®(2) + g(z)) < +o0.

Letting T' — oo, we conclude that

o0

1
> [2llzees =@l + 75 (lyers = y* @er)l? + lly — y* @)2)] < +oo.
t=0
Therefore, we must have lim;_, o0 [|Zt41 — @¢|| = lims— oo ||ye — y* (24)]| =0.

To prove the second item, note that
* * €q- @) 1 * t
lyerr — yell < llyerr — v (@)l + lye — v ()| < (V1I—=r"1+ Dy — y"(z)]| = 0.
O

D PROOF OF THEOREMI]

Theorem 1 (Global convergence). Let Assumption || hold and choose the learning rates 1, <
m, Ny < % Then, proximal-GDA satisfies the following properties.

14
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1. The function value sequence {(® + g) () }+ converges to a finite limit H* > —oo;

2. The sequences {xt}+, {y: }+ are bounded and have compact sets of limit points. Moreover, (® +
9)(x*) = H* for any limit point x* of {x,}+;

3. Every limit point of {x+ }+ is a critical point of (® + g)(z).

Proof. We first prove some useful results on the Lyapunov function H(z). By Assumptionwe know
that &+ g is bounded below and have compact sub-level sets, and we first show that H (z) also satisfies

these conditions. First, note that H(z) = ®(z) + g(x) + (1 - ﬁ) ly — v (2)||* > ®(x) + g(=).

Taking infimum over z, y on both sides we obtain that inf,;, ,, H(z) > inf, ®(z) + g(x) > —oo. This
shows that H (z) is bounded below. Second, consider the sub-level set Z,, := {z = (z,y) : H(z) <

a} for any o € R. This set is equivalent to {(z,y) : ®(z) + g(z) + (1 - ﬁ) ly — y*(2)|* < a}.
For any point (z,y) € Z,, the x part is included in the compact set {z : ®(x) + g(z) < a}.
Therefore, the x in this set must be compact. Also, the y in this set should also be compact as it is

inside the co-coercive function ||y — y*(x)||>. Hence, we have shown that H (z) is bounded below
and have compact sub-level set.

We first show that {(® + g)(x;)}; has a finite limit. We have shown in Proposition [2|that { H(z;) },
is monotonically decreasing. Since H (z) is bounded below, we conclude that { H(z;) }+ has a finite

limit H* > —oo, i.e., limy_ oo (P + g)(x¢) + (1 - ﬁ) lly: — v*(z¢)||*> = H*. Moreover, since
lye — y* (z2)|| < 0, we further conclude that lim;_, o (® + ¢)(z;) = H*.

Next, we prove the second item. Since {H (z;) }+ is monotonically decreasing and H (z) has compact
sub-level set, we conclude that {z; }+, {y }+ are bounded and hence have compact sets of limit points.
Next, we derive a bound on the subdifferential. By the optimality condition of the proximal gradient
update of x; and the summation rule of subdifferential in Corollary 1.12.2 of [Kruger| (2003), we have

1
0 € 9g(xt41) + ” (ze41 — 20+ 10V f (2, 90)).

xT
Then, we obtain that

1
7]7<xt — :L't+1) — Vlf(xt,yt) + V(I)(xt+1) S 8(<I> + g)($t+1), 24)

which further implies that

. 1
dista(@ 4 g)(zer1)(0) < FthJrl — x| + [[Vif (e, yt) — VO(zp41) |

1 *
n*HUUtJrl — x| + |IVif(ze,ye) — Vif(@epr, v (@e41)) ||

IN

1 *
17H55t+1 =zl + L|wes1 — el + v (@es1) — 9ell)
T

IN

1 . * *
(5 Bl =l + Ly o) =y ol + lly ) = )
1
< (5 + 20+ e =il + Ll (@) = wil

Since we have shown that |41 — | 40, [ly*(xt) — yell % 0, we conclude from the above

inequality that disty(s4¢)(z,)(0) 4 0. Therefore, we have shown that

1
o (@ey = ) = Vif(@ien,gn) + V(o) € 0(® + g)(we),
1
and n*(xtfl — ) = Vif(@i—1, 1) + V() Lo. 25)

Now consider any limit point z* of z; so that ;) EASS along a subsequence. By the proximal
update of Ty(j), WE have

1
9(@y5)) + ﬁ”mt(j) — zyjy—1l1> + (@) — Ty -1, ViF(@a)—15 Ye)—1))
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* 1 * *
<g(x") + WHSC - It(j)—1||2 + (2" = 2)—1, Vi f (@) =15 Ye()—1))-

Taking limsup on both sides of the above inequality and noting that {x; }+, {y; }+ are bounded, V f is
Lipschitz, ||x:11 — x| % 0and Ty(jy — x*, we conclude that lim sup; g(z(;)) < g(z*). Since g
is lower-semicontinuous, we know that lim inf; g(x(;)) > g(«*). Combining these two inequalities
yields that lim; g(z(;y) = g(z*). By continuity of ®, we further conclude that lim; (® 4 g)((j)) =
(® + g)(z*). Since we have shown that the entire sequence {(® + g)(z:)}+ converges to a certain
finite limit H*, we conclude that (® + g)(z*) = H* for all the limit points z* of {x;}.

Next, we prove the third item. To this end, we have shown that for every subsequence ;) EN

we have that (® + g)(zy(;)) EA (® + g)(z*) and there exists u; € (P + g)(z+) such that u, 5o
(by eq. (23)). Recall the definition of limiting sub-differential, we conclude that every limit point z*
of {x}+ is a critical point of (® 4 g)(x), i.e., 0 € (P + g)(z*).

O

E PROOF OF THEOREM 2]

Theorem 2 (Variable convergence). Let Assumption[I| & 2|hold and assume that H has the KL ge-
ometry. Choose the learning rates 1, < m and n, < % Then, the sequence {(x,y:)

generated by proximal-GDA converges to a certain critical point (x*, y*(z*)) of (® + g)(z), i.e.,

2

)

Proof. We first derive a bound on OH (z). Recall that H(z) = ®(x)+g(x)+ (1 - ﬁ) ly—y*(x)
and that ||y*(z) — y||? has non-empty subdifferential 9, (||y*(x) — y||*). We therefore have

0.H(z) 2 0@+ g)(w) + (1 - 15 )2e(ly* (@) — o),
Vo HE) = (2 55 ) (") - ),

where the first inclusion follows from the scalar multiplication rule and sum rule of sub-differential,
see Proposition 1.11 & 1.12 of [Kruger|(2003). Next, we derive upper bounds on these sub-differentials.

Based on Deﬁnition we can take any u € /8;(\\31* () — y||?) and obtain that

ly*(2) —ylI* = ly* (@) —yl* —uT(z — @)

0 < liminf
2F#T, 2T HZ — .’II”
* o Tl,,* * _ —_— T —
< g B = @I )+ (@)~ 2]~ w1~ 2)
2ZHAT, 2T ||Z — %H
* ok * * _ T —_
< ming 10 =y @Iy )+ ) = 29~ 0Tz~ 2)
Z#T, 2T ||Z — Z’H

Q) uT(z — )
< liminf |k|ly*(2) +y*(z) — 2y|| — ——=
< liminf y*(2) + y*(x) — 2y Tz =l
(#4)

N . ul(z —x
=25y (x) — y|| — limsup ( )

ZH#T,Zz—T ||Z - ‘TH
(441) *
="26[ly™(x) = yll = [Jull (26)
where (i) and (ii) use the fact that y* is x-Lipschitz based on Proposition|I| and the limsup in (iii) is
achieved by letting z = z + ou with o — 07 in (ii). Hence, we conclude that ||u|| < 2k[jy*(z) — y||.
Since 9, (||y*(x) — y||?) is the graphical closure of 9, (||y* (x) — y||?), we have that

disto, (|- ()—y)2) (0) < 26[ly" (x) =y
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Then, utilizing the characterization of d(® + g)(z) in eq. (24), we obtain that

diStaH(zH_l)(O)
< disto, 1 (z041)(0) + | Vy H (2e41) |

. 1y 1y, .
< disto(@-+9)(z11)(0) + (1 - @)dlsmz(l\y*(rwl)—ywlHQ)(O) + (2 - 272) Iy (@er1) = yesa

1 1 )
< n*||$t+1 — x| + Vi f (e, y¢) — VO(z41) || + (2 - ﬁ) (14 &) ly* (ze41) — s |
xT

@ /1 « *
< (oo 1) hevsn =il + Ll o) =yl + 200+ 1)l @) = e

()

1 *
< (5 + 20+ 9l =l + Ly () = i

+2(1+ ) [V 1= r2|ly"(@e) — yell + £/ (1 + K)[[we41 — $t||}

(i) /1 .
< (5 + @+ 4049l =l + (D + 40y () = el @7)
where (i) uses Propositionthat VO(ziy1) = Vif(zig1,y*(2441)) and that y* is k-Lipschitz, (ii)
uses eq. and the inequality that v/a + b < v/a + v/b (a,b > 0) and (iii) uses £ > 1.

Next, we prove the convergence of the sequence under the assumption that H(z) is a KE function.
Recall that we have shown in the proof of Theorem |I|that: 1) { H(z:)}+ decreases monotonically to
the finite limit H*; 2) for any limit point *, y* of {x;}+, {y:}+, H(z*,y*) has the constant value
H*. Hence, the KL inequality (see Definition [2)) holds after sufficiently large number of iterations,
i.e., there exists o € N1 such that for all ¢ > %,

(p/(H(Zt) — H*)distaH(zt)(O) Z 1.
Rearranging the above inequality and utilizing eq. (27)), we obtain that for all ¢ > ¢,
o' (H(z) — H")
1

Z - . /A

dlStaH(zt)(O)

1 -1

> [(oo+ a4 8) )z = el + (L 40) ) = e ] (28)

By concavity of the function ¢ (see Definition 2)), we know that
p(H(z) = H") = p(H (2141) — HY)
> ¢'(H(2¢) — H")(H(2) = H(2141))

; 1 *
g lze1 — 2ol + gz lye — y* (@) |12 (29)
(& + L+ 420+ 1)) 2 = 2ol + (L + 4Ry (@1-1) = 1
2
@ [ llzees — il + e — v (@)
(& + @+ 4621+ 1) llo = @all + (L + 49)ly* (@e-1) = e |

where (i) uses Propositionand eq. , (ii) uses the inequality that a? + b? > %(a +b)2.
Rearranging the above inequality that
1 . 2
(e = il + 5 llye =y (o)l
< 2[p(H (2) — HY) — p(H (2041) — H")]

Kn% +(L+467)(1 + n)) |z — 2o || + (L + 48)||y* (z1-1) — yt_lﬂ

< [Clo((z0) — ) — p(H (z112) — 1Y)

17
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1/1 1 2
o (o + @A) o = mall + G2+ 4)ly (we) — ye ]
where the final step uses the inequality that 2ab < (Ca + %)2 for any a,b > 0 and C' > O (the value

of C' will be assigned later). Taking square root of both sides of the above inequality and telescoping
overt =tp,...,T — 1, we obtain that

T—1 1 T—1
Dl — ol + o > llye =y (@)

t=to t=to
T-1

1,1
< Ol (z1y) — H'] = OlH(er) = '] 4 (=4 (L4 482) (14 1)) D e — e
* t=to
1 T-1
+o L+ 4k) D>yt @e-1) = yel
t=to
Ce o 11 ) =
< GG = Y 4 (- (D )14 ) t}o:_l e
1 T-2
+5(L+4’€) Z " (2e) — well
t=tog—1

where the final steps uses ¢(s) = £s” and the fact that H(2r) — H* > 0. Since the value of
C > 0 is arbitrary, we can select large enough C' such that ( 77% + (L +4k)*(1 + n)) < % and
é (L +4k) < 5. Hence, the inequality above further implies that

1« Ce 1 1
3 Dl = < F[H(Zto) - H*’ + 5”%0 — g1l + ﬂ”y*(xto—l) — Y1 < +oo.
t=to

Letting " — oo, we conclude that

o0
Z ||£Ct+1 — l'tH< + 0.
t=1

Moreover, this implies that {z; }; is a Cauchy sequence and therefore converges to a certain limit, i.e.,

Ty L 2*. We have shown in Theoremthat any such limit point must be a critical point of ® + g.
Hence, we conclude that {x; }; converges to a certain critical point 2* of (® + g)(z). Also, note that
ly* (z¢) — || < 0, 24 ~ 2* and y* is a Lipschitz mapping, so we conclude that {y; }; converges to
yr (")

O

F PROOF OF THEOREM 3]

Theorem 3 (Funtion value convergence rate). Under the same conditions as those of Theorem|[2] the
Lyapunov function value sequence { H(z;)}+ converges to the limit H* at the following rates.

1. If KL geometry holds with 0 = 1, then H (z;) | H* within finite number of iterations;
2. If KE geometry holds with 0 € (%,1), then H(z;) | H* super-linearly as

=) ) vz ©)

H(Zt) _H*< (QMCZ)_M% exp ( — (2(17_

3. If KE geometry holds with 0 = 3, then H(z;) | H* linearly as

1

H(z) = B < (14 55

) H )~ HY), et @)
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4. If KL geometry holds with 6 € (0, %), then H(z;) | H* sub-linearly as

H(z)— H* < [Clt—t0)] 77, Vt >t ®)

where C' = min {éj\}iz,d;(](l*%)(l - 2_(1_29))] > 0.

Proof. Note that eq. (2Z7) implies that

. 1 2 x
diston(e,,1) (0 <2(— + (L +42)(1+ 1)) llowps — 2l + 2L+ 48)2y (@) — il
(30)

Recall that we have shown that for all ¢ > ¢, the KL property holds and we have
12 1
[/ (H(2) — H")] dlSt%H(zt)(O) > 1.

Throughout the rest of the proof, we assume ¢ > ¢,. Substituting eq. (30) into the above bound yields
that

’ #\12 1 2 2 2

1 <2[¢/(H(z) — H")] [(n— + (L4414 K)oy — 20
L+ 482y (2-1) = 2]
1

4K2

where the second inequality uses the definition of M in eq. (3).

<MY/ (H(z) = H)] [2llan e+ 75l @) —wial?] - GD)

Substituting eq. (4) and ¢’ (s) = ¢s?~! (¢ > 0) into eq. (BT)) and rearranging, we further obtain that
wnf—17—2
[e(H(z) — H*)?™ 7" < 2M[H(2—1) — H(z)]

Defining d; = H(z;) — H*, the above inequality further becomes

1 B
dioy = dy > s a?=9, (32)

Next, we prove the convergence rates case by case.

(Case 1) If 8 = 1, then eq. implies that d;_1 — d; > ﬁ > 0 whenever d; > 0. Hence, d;
achieves 0 (i.e., H(z:) achieves H*) within finite number of iterations.

(Case 2)If 0 ¢ (%, 1), since d; > 0, eq. (32) implies that

1 -
dios 2 g d 7, (33)

which is equivalent to that

} D (34)

2M) =14, < [(2Mc2)ﬁdt,1

Since d; | 0, (QMCQ)Tlfldt1 < e~ ! for sufficiently large t; € NT and ¢; > ¢,. Hence, eq. (34)
implies that for ¢t > t;

} [t ]

(2Mc?) =14, < [(2Mc2)ﬁdtl

=

Note that 6 € (1,1) implies that ﬁ > 1, and thus the inequality above implies that H(z;) | H*
at the super-linear rate given by eq. (6).
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(Case 3)If 0 = 1,

1
—d, >
di 1 —di > M2 dy, (35)
-1
which implies that d; < (1 + ﬁ) dy—1. Therefore, d; | 0 (i.e., H(z;) | H*) at the linear rate
given by eq. ({7).

(Case 4) If 6 € (0, %), consider the following two subcases.

If di—1 < 2dy, denote ¥(s) = ﬁs’(“%), then
B ey, D s
S ds 2 dt71 (dtfl — dt)

wm»—wwtnzﬂ?l—wmezé

t

@G 1/ dy \20-9) 1 1
> — > >
— 2Mc? <dt—1) T 23-20)fc2 T 8Mc2 (36)
where (i) uses d; < d;—; and —2(1 — 0) < —1, and (ii) uses eq. (32).
Ifd;_1 > 2d;
1 —(1-26 —(1-26 1 —(1-26 (-
lde) = ldir) =55 (de T = a7 2 (T - (2dy)T0)
1—270=200 o) 1—2707200 o)
1o M F 1o Gn
where we use —(1 — 26) < 0, d¢—1 > 2d; and d; < d,.
Hence,
1 1270220 o C
- > mi =
Y(ds) — 1 (ds—1) > min [SMCQ, T 5 > O (38)
which implies that
dy) > Y(d —(t—1ty) > t—t
V(de) 2 9(deo) + 755t —t0) 2 755t —to)

By substituing the definition of v, the inequality above implies that H(z;) | H* in a sub-linear rate
given by eq. (B). O

G PROOF OF THEOREM [4]

Theorem 4 (Variable convergence rate). Under the same conditions as those of Theorem 2| the
sequences {xy, Yyt }+ converge to their limits ©* | y* (x*) respectively at the following rates.

1. If KE geometry holds with 0 = 1, then (x4, y;) — (x*,y*(x*)) within finite number of itera-
tions;
2. If KE geometry holds with 0 € (1,1), then (z¢,y;) — (x*,y*(z*)) super-linearly as

1 —to
max {Jlee =2 Jye =" @)} < O (= (5—gy) ")) vzt ©

3. If KL geometry holds with 6 = % then (x4, y:) — (x*,y*(«*)) linearly as

mae { e, — 2] e — ")} < O((min {214 - D)) vz o)

2Mc?
4. If KL geometry holds with 0 € (0, 3), then (z4,y;) — (z*,y* (z*)) sub-linearly as

max {la; — 2*|, g = y* (@)} < O((t 1) ™), ¥t > to. ()
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Proof. (Case 1) If @ = 1, then based on the first case of Appendlxl = H* after finite number
of iterations. Hence, for large enough ¢, Proposition 2] yields that

2)|e1 — @l t 2 (||yt+1 =y @ )P + lye — v (@)|I?) < H(z) = H(z41) = 0, (39)

which implies that z; 1 = 2 and y; = y*(2;) for large enougth t. Hence, x; — z* and y; — y*(x*)
within finite number of iterations.

(Case 2)If 6 € (1,1), denote A; = ||z¢41 — @ + 5= ||y — y*(x¢)||. Then, based on the definition
of M in eq. (3)), we have

1
(5 +4)(Utm)l — o 4 (E+ 4y (o) = g | < V2 Ay 40)

Hence, eqs. (28) & [@0) and ¢’ (s) = cs?~! imply that
o(H(z)— H*)?™' > (V2M A1),
which along with § — 1 < 0 implies

H(z)— H* < (cvV2MA,_)T7. 1)

Then, eqs. 29) & @0) imply that

o1 — 2ell? + oz llye — y* (20)]2

O(H(z) — H*) — o(H(2441) — H*) > WIAMA, .

Using the inequality that a? + b > 3 (a + b)? and recalling the definition of A; and ¢(s) = s, the
above inequality further implies that

g(H(zt) —HY)? — g(H(th) —HY)? > 4\/%?&_1' 42)
Substituting eq. into eq. (@#2) and using H (2;41) — H* > 0 yield that
43 < 5 (VLA 1),
which is equivalent to that
C14; < (CrAy 1), (43)

where
C1 = (4/6) 2= (cV/2M) 777

Note that eq. @) holds for ¢ > ¢y. Since A; — 0, there exists t; > to such that C1 4;, < e™
Hence, by iterating eq. @3) from ¢ = ¢; + 1, we obtain

1 9))t_tl], V>t 4 1.

C1A; < exp [— (2(17_

Hence, forany ¢t > ¢; + 1,

oo o0

Ao dew|- (ﬁ)s_h}

-G 1 ) - )]
oo () 1S e {lars) I Gamw)
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(2) r t—1t17 s—t
gl Gamg) 1 eol - (Grmg) |
o[- Gamg) 1Z e - ()

Zofsn |- (77) "I}

> 1 and that s > t > t; + 1, and (ii) uses the fact

where (i) uses the inequalities that ﬁ

S
that Z —o €XP [ - (ﬁ) ] < +o00 is a positive constant independent from ¢. Therefore, the
convergence rate (9) can be directly derived as follows

T—1
|z — ™| —hmsup |lzs — 27| < hmsup Z lest1 — sl
T— T—oo
T-1 1 —ty
<limsup A < (9{ exp [— (7> ] }, (45)

and
lye =y @) <llye —y" (@) || + ly" (z) — y™ (@")|| < 26A4s + K|z — 27|

<on Y-+l =o€ 0 e [~ (5r5) ]}
s=t

where (i) uses the Lipschitz property of y* in Proposition|[T] and (ii) uses eqs. #4) & (@3).
(Case 3 & 4) Notice that eq. still holds if 8 € (0, 2] Hence, if A; > At 1, then eq. 1}
implies that

8cv2M

A, <
t=""9

[(H(Zt) - H*)e — (H(zt41) — H*)H]

Otherwise, A; < %At_l. Combining these two inequalities yields that

SV {51 (e) = H7Y = () — ) + S,

A <

Notice that the inequality above holds whenever ¢ > ty. Hence, telescoping the inequality above
yields

r 8cv/2M 1 =
DA < = [(Hz) = HY = (H(er) = B 45 Y Ay, V>t (46)

s=t s=t—1

which along with Ar > 0, H(zr41) — H* > 0 implies that

T
1 8cv2M . 1
5 E AS S ) (H(Zt) —H )9 + §At,17

s=t
Letting t = tg and T' — oo in the above inequality yields that Z:ito Ag < 4o00. Hence, by letting
T — oo and denoting Sy = Z;X;t Ag in eq. , we obtain that

8cvV2M

1
Si<—, (H(zt)—H*)"+§St_1, Yt > to,

which further implies that

1 8evV2M 1 .
S < gmSt—p— D gims(H(z) —H)’ (47)
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(Case 3) If @ = 1/2, eq. (7) holds. Substituting eq. (7) and § = 1/2 into eq. yields that
t

| 1 1\ (to=9)/2
St gy St +8eV/2M[H (z1,) — H] ) (H ) 0

ot—s IMc2

s=to+1

1 Cy <~ /1 1 \—5/2
S9w Sty + ot Z (Z * 8Mc2) “8)

s=tp+1
where
1 t0/2

Cz = Sey/2M[H(z1,) — H(1+ W) (49)

is a positive constant independent of ¢.
. 1 1
Notice that when 7 + g7z > 1,

t

Y Gram) st
4 " 8Me2 = 0
s=tg+1

1 1
and when 1t o= < 1,

3 (1+ 1 ),5/2_(1+ 1 )t/21(i+szécz <OK1+ 1 )ft/j
4" 8Me2 “\4 " 8Me . N 4" 8Me2
s=to+1 1= (Z + 8Mc2)

Since either of the two above inequalities holds, combining them yields that

t s _
> (tam) | =o{mlw(irgm) )

s=tp+1

> (t—t0)/2

Substituing the above inequality into eq. (48) yields that

S0 < g iy + O max [27(t — 1), (14 52 ) )

<of w21+ )] )

lze — x*|| %) iAS =5 < (9{ {min (271+ ﬁ)]—tm}’

Hence,

s=t

where (i) comes from eq. {@3). Then,

lyr — o @I <llge — u* (@0ll + 15" (@) — y* ()| < 26As + w27
1 —t/2
<2k + Kl — x| SO{[min (2’1+W” }

The two above inequalities yield the linear convergence rate (10).
(Case 4) If 6 € (0, %), then eq. holds. Substituting eq. into eq. yields that for some
constant C3 > 0,

t

1 8cvV2M Cs 0
St §2t7t0 Sto + 7 Z
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/oar t—to __6
< tlt St 8003 223 8003 2M Z 2S(t—t0> 1—26
2t=to 2t= toe 2i~tog L 2
() 1 S 4 8cC3v2M ot 4 8cC3v2M (t - to)—ﬁ?_toﬂ
= 2t=te Tl T 9i—teg 2t=tog 2
1 1 __0_ __0_
:O[2Ho + S () He} - O{(t ~to) He]’ (50)

where (i) denotes t; = | (t —to)/2], (ii) uses the inequality that 3" i"H 20 < YTl 90 < ot—totl,
Therefore, the sub-linear convergence rate eq. (TT)) follows from the following mequalltles

e — 2" < 8y < O|(t — to) 77,
and

lye =y @) <llye = y* (@)l + ly* (ze) — y* (@) < 26A¢ + K|z — 27|
<268y + kllz — 2" S O|(t — o) T |.
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