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Abstract

The table-based fact verification task has re-001
cently gained widespread attention and yet re-002
mains to be a very challenging problem. It in-003
herently requires informative reasoning over004
natural language together with different nu-005
merical and logical reasoning on tables (e.g.,006
count, superlative, comparative). In this paper,007
we present a Self-adaptive Mixture-of-Experts008
Network (SaMoE), a novel framework built009
on this fundamental property. Specifically, we010
have developed a mixture-of-experts neural net-011
work to recognize and execute different types012
of reasoning—the network is composed of mul-013
tiple experts, each handling a specific part of014
the semantics for reasoning, whereas a man-015
agement module is applied to decide the con-016
tribution of each expert network to the verifi-017
cation result. A self-adaptive method is devel-018
oped to teach the management module combin-019
ing results of different experts more efficiently020
without external knowledge. The experimental021
results illustrate that our framework achieves022
85.1% accuracy on the benchmark dataset TAB-023
FACT, comparable with the previous state-of-024
the-art models. We hope our framework can025
serve as a new baseline for table-based verifica-026
tion. Our code will be available at (URL to be027
released here).028

1 Introduction029

Fact Verification, aiming to determine the consis-030

tency between a statement and given evidence, has031

become a crucial part of various applications such032

as fake news detection, rumor detection (Rashkin033

et al., 2017; Thorne et al., 2018; Goodrich et al.,034

2019; Vaibhav et al., 2019; Kryscinski et al., 2020).035

While most existing research focuses on verifica-036

tion based on unstructured text, a new trend is037

extending the scope to structured evidence (e.g.,038

tables), which is informative and ubiquitous in039

our daily lives. Table-based verification is more040

challenging than unstructured-text-based due to the041

complexity of the requirements, including sophis- 042

ticated textual, numerical, and logical reasoning 043

across evidence tables; even for some statements, 044

multiple types of reasoning are indispensable to 045

complete the verification. An example is presented 046

in Figure 1. 047

Figure 1: An Example of table-based fact verification.

To tackle the challenges above, previous work 048

established two kinds of methods: (1) program- 049

enhanced methods (Chen et al., 2020; Zhong et al., 050

2020; Shi et al., 2020; Yang et al., 2020) and (2) 051

table-based pre-trained models (Eisenschlos et al., 052

2020; Liu et al., 2021). The program-enhanced 053

methods mainly leverage programs generated by 054

the semantic parser. Specifically, statements are 055

parsed into executable programs to extract the logi- 056

cal/numerical semantics, which is further be lever- 057

aged together with contextual semantics learned by 058

a language model (e.g., BERT) in inference. How- 059

ever, the semantic parsers that generate semantic- 060

consistent programs must be trained in a weak su- 061

pervision setting, which brings difficulties in train- 062

ing. Furthermore, generalizing this method to other 063

datasets is almost impossible without the API set 064

modification according to the reasoning require- 065

ments on the new datasets. 066

The table-based pre-trained models leverage 067

elaborate model structure (Herzig et al., 2020) and 068

pre-training tasks (Eisenschlos et al., 2020; Liu 069

et al., 2021) to enhance the reasoning skills on struc- 070

tured data. Nevertheless, two significant shortcom- 071

ings remain. Firstly, the process is demanding due 072
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Figure 2: An overview of SaMoE.

to the tremendous computing resources required073

by pre-training. Moreover, the effectiveness of pre-074

training to its downstream tasks mainly depends on075

the adaptability between these two tasks. Therefore,076

implementing pre-training tasks may fail to meet077

the requirements when facing the unseen reasoning078

types demanded by new datasets.079

In this paper, we introduce an innovative frame-080

work, Self-adaptive Mixture of Experts (SaMoE),081

to address the previously mentioned problems. The082

entire framework is illustrated in Figure 2. SaMoE083

consists of 3 components: feature extractor, ex-084

perts, and management module, which is the085

combination of manager and supervisor networks.086

Each expert initially takes the same feature as input087

and then learns to deal with different parts of the088

reasoning types (e.g., contextual/logical/numerical)089

required by table-based verification. A manage-090

ment module is designed to guide the training of091

experts and combine experts’ verification results092

effectively. The manager network in this module093

assigns each expert a unique attention score, al-094

lowing each individual to focus on different kinds095

of reasoning types and summarizes experts’ en-096

tire outputs as the final verification result. How-097

ever, managers failed to allocate the highest atten-098

tion score to the expert who performs best on the099

current reasoning type in most circumstances. To100

alleviate this problem, we introduce a supervisor101

network to adjust the attention score given by the102

manager. The supervisor network is trained self-103

adaptively (i.e., it learns directly from experts’ per-104

formance on the train set) without prior knowledge105

of the task or dataset. Extensive experiments are106

conducted to show that our proposed framework,107

implemented with a general pre-trained language 108

model RoBERTa (Liu et al., 2019), outperforms 109

previous state-of-the-art methods, including table- 110

based pre-trained models. The main contributions 111

of this work are as follows: 112

• We innovatively implement mixture-of- 113

experts for table-based verification, aiming 114

to arrange each expert to different types of 115

reasoning. This method can also be easily 116

generalized to other datasets. 117

• We investigate a self-adaptive method to ad- 118

just suitable attention score to each expert ac- 119

cording to its performance on different reason- 120

ing types, achieving more efficient coopera- 121

tion across experts. 122

• Our framework achieves better performance 123

on the TABFACT dataset without the assis- 124

tance of table-based pre-trained models. 125

2 Task Formulation 126

The table-based verification task expects one to de- 127

termine whether a statement S is entailed or refuted 128

by an evidence table T . The process above can be 129

regarded as a binary classification task and thus de- 130

noted as f(S, T ) = ŷ, where f is the verification 131

model and ŷ ∈ {0, 1} its prediction. 132

3 Methods 133

We present the proposed framework (SaMoE), 134

which leverages a set of experts to deal with differ- 135

ent parts of the reasoning types involved in table- 136

based verification. This section is organized as fol- 137

lows. Sec.3.1 introduces the feature extractor that 138
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extracts the joint semantics of the table-statement139

pair. Sec.3.2 describes experts that verify the state-140

ments separately based on the same extracted se-141

mantics. Sec.3.3 describes the management mod-142

ule that guides the experts’ training and combines143

their verification results effectively; two compo-144

nents of this module, the manager and the supervi-145

sor, are introduced in this section individually.146

3.1 Feature Extractor147

Feature extractor parses the statement-table pair148

and learns the joint table-statement semantics. Ta-149

bles are initially pruned and serialized into a se-150

quence. Subsequently, the serialized tables are151

transmitted into the language model together with152

the statements for joint representation learning.153

These two processes will be further interpreted in154

the following subsections.155

3.1.1 Table Pre-processing156

As for Tables, the pre-processing (pruning and se-157

rializing) before the joint representation learning158

provides convenience for subsequent processing of159

the existing language model.160

Table Pruning Table pruning discards some161

parts of the table that do not participate in the ver-162

ification, according to the input size limit of the163

language model. We take advantage of the table-164

pruning algorithm proposed in Chen et al. (2020)165

and further enhance its performance. The origi-166

nal algorithm matches the entities in statements167

with cells in tables by a heuristic method and se-168

lects the columns that include matched cells to169

form the pruned table. Noticed that the algorithm170

always fails to select the critical columns of veri-171

fication while there is still room left for the input172

sequence of the language model, we further add a173

greedy strategy on the algorithm that keeps adding174

columns that are not selected to the pruned table175

until reaching the maximum input size of the down-176

stream model to make the best use of its capacity.177

Table Serializing Tables are further serialized to178

a 1-D sequence after pruning to be compatible with179

the input format of the language model. We fol-180

low the serializing method used in TABLE-BERT181

(Chen et al., 2020) that paraphrases tables with182

a natural language template. Specifically, a table183

with m rows and n columns is paraphrased as “row184

1 is: h1 is T11; ... ; hn is T1n. row 2 is: ... row m is:185

h1 is Tm1; ... ; hn is Tmn.", where hi refers the ith186

header and Tij the value in the (i, j)− th cell of ta- 187

ble T . We find that such template-serialized tables 188

are more suitable for language models pre-trained 189

on unstructured text to process. 190

3.1.2 Joint Representation Learning 191

After the table pre-processing, the serialized table 192

and the statement are further passed to a language 193

model to learn the joint contextual representation 194

of each token. The learned representation vectors 195

are then transmitted to the experts and the man- 196

agement module for inference and management. 197

Specifically, the serialized table and the statement 198

are initially tokenized into two token sequences T̃ 199

and S. Then the joint token sequence X is formed 200

as X = [⟨s⟩, S, ⟨/s⟩, T̃, ⟨/s⟩], where ⟨s⟩ and ⟨/s⟩ 201

are the separators that identify the beginning and 202

the end of each token sequence. The token se- 203

quence X will be padded or truncated to fit the 204

maximum input length of the language model. Fi- 205

nally, a transformer model is applied to learn the 206

contextual representation of X : 207

H = fLM (X) (1) 208

where H ∈ Rn×d refers to the learned joint repre- 209

sentation, n is the maximum input length and d the 210

dimension of the representation vector. fLM de- 211

notes the contextual representation learning process 212

of the language model. In this paper, we implement 213

it with transformer (Vaswani et al., 2017), the most 214

popular contextual representation model in recent 215

years. 216

3.2 Experts 217

A group of experts is applied to verify the state- 218

ments separately based on the same statement-table 219

joint semantics extracted by the feature extractor 220

module. Experts share the same model structure, 221

while the parameter learning strategy of SaMoE 222

gives expert differentiation. Specifically, each ex- 223

pert is implemented with a stack of transformer 224

encoding layers. An MLP classifier that calculates 225

the probability of the statement is entailed by the 226

evidence table based on the encoded semantics. We 227

implement experts with the same general structure 228

rather than different structures specially designed 229

for certain reasoning types since we anticipate that 230

the proposed framework can be smoothly general- 231

ized to other datasets. The process above can be 232

formulated as follows: 233

hi = fEnci(H) (2) 234
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235

pi = softmax(tanh(hiWi
1)W

i
2) (3)236

where hi ∈ Rd is the token ⟨s⟩’s final represen-237

tation vector encoded by the ith expert’s encoder238

Enci. It implies the ith expert’s whole understand-239

ing to the statement-table pair. Wi
1 ∈ Rd×d and240

Wi
2 ∈ Rd×2 are the trainable parameters of ith ex-241

pert’s classifier, which projects hi to the probabili-242

ties pi ∈ R2 that the statement is entailed/refuted243

by the table. tanh and softmax are activation244

functions. ne refers to the number of experts.245

3.3 Management Module246

Learning the joint semantics parsed in Sec.3.1, the247

management module intends to generate attention248

scores to bias experts’ training and combine ex-249

perts’ results efficiently. The module consists of250

two components: manager and supervisor, both of251

them are implemented based on transformer model.252

The manager is mainly designed to guide experts’253

training, while the supervisor is applied to combine254

experts’ results efficiently.255

Manager The manager guides the training of ex-256

perts and forms a preliminary assumption to the257

expert combination. It encodes the joint represen-258

tation matrix and generates attention scores aM to259

guide the experts’ training process:260

hM = fEncM (H) (4)261

262

eM = tanh(hMWM
1 )WM

2 (5)263
264

aM = softmax(eM ) (6)265

where EncM denotes the manager’s encoder,266

WM
1 ∈ Rd×d and WM

2 ∈ Rd×ne are trainable pa-267

rameters. The network structures of the manager268

and experts are basically the same, only different in269

the layers of the encoder and the output dimension.270

After preceding calculation, the normalized at-271

tention scores aM are used to guide the training272

of experts by a specially designed verification loss,273

which will be introduced in Sec.4.1.1.274

Supervisor The supervisor adjusts the attention275

scores submitted by the manager to improve the co-276

operative efficiency among experts (i.e. assigning277

higher weights to experts who perform better on278

the current input pair). The network predicts the279

deviation between the preliminary assumption (i.e.,280

the attention) and the ideal combination weights281

based on the knowledge encoded in the joint repre- 282

sentation matrix H: 283

hS = fEncS (H) (7) 284

285
eS = tanh(hSWS

1 )W
S
2 (8) 286

287
aS = softmax(eM + eS) (9) 288

where WS
1 ∈ Rd×d, WS

2 ∈ Rd×ne are trainable 289

parameters and EncS refers to the encoder of the 290

supervisor. Parameters of the supervisor are op- 291

timized self-adaptively based on experts’ perfor- 292

mance on the train set. More details of this learning 293

strategy will be presented in Sec.4.2. 294

4 Parameter Learning 295

Parameters in SaMoE are learned in two consec- 296

utive stages: 1) Supervised learning: parameters 297

in the feature extractor, experts and the manager 298

are end-to-end optimized under the supervision of 299

labels; 2) Self-adaptive learning: parameters in the 300

supervisor are self-optimized by observing experts’ 301

performance on the train set (other parameters are 302

fixed simultaneously). A weighted sum of two 303

losses is minimized in the first stage to achieve 304

diverse and balanced training of experts. For the 305

second stage, we minimize a self-adaptive loss cal- 306

culated based on the experts’ classification loss. 307

Subsequent sections introduce these two learning 308

stages in detail. 309

4.1 Supervised Learning 310

Supervised learning guides each expert on dealing 311

with different reasoning types while maintaining 312

balanced training across experts. To achieve the 313

goals above, we develop two loss functions: 1) ver- 314

ification loss LV that measures the weighted sum 315

of each expert’s classification loss, differentiating 316

experts’ learning with different attention scores as- 317

signed by the manager; 2) manager assumption 318

loss LM that is applied to prevent the occurrence 319

of imbalanced training across experts. The overall 320

loss of this state is calculated by a weighted sum 321

of these two terms: L1 = LV + λLM , where λ 322

is a hyperparameter that controls the ratio of LM . 323

Subsequent sections provide detailed introduction 324

to these two terms. 325

4.1.1 Verification Loss 326

The verification loss LV is designed based on the 327

loss function proposed in Jacobs et al. (1991). It 328
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is calculated by the weighted sum of each expert’s329

cross-entropy:330

LV =

ne∑
i=1

(aM )i · CE(pi, l) (10)331

where (aM )i is the ith element of the attention332

scores aM , l ∈ {0, 1} is the label of the statement-333

table pair and CE(·, ·) the cross-entropy function.334

Note that it is necessary to calculate each expert’s335

cross-entropy independently. We want each expert336

to behave like an independent expert (i.e., complete337

the verification without the help of other experts).338

The attention vector aM acts as a "training sched-339

uler" in this loss function: experts that are assigned340

with larger attention scores receive a larger gradient341

than other experts on the current input, resulting in342

diverse experts’ performance.343

4.1.2 Manager Assumption Loss344

We have trained the MoE with only the verification345

loss LV and observe a severe "imbalanced experts"346

phenomenon that only one expert is well-trained347

(i.e., the expert performance is improved by train-348

ing) and the manager keeps assigning a close-to-1349

attention score to this expert, which is also reported350

in previous research (Eigen et al., 2013; Shazeer351

et al., 2017). To avoid this problem, we develop352

another loss function that forces the manager to353

assign reasonable attention scores to experts:354

LM = D(aP ||aM ) (11)355

where D(·||·) denotes the Kullback–Leibler diver-356

gence and aP a prior assumption that is generated357

with a simple heuristic algorithm (to be introduced358

in the next paragraph) which requires limited prior359

knowledge of the reasoning types. By minimizing360

LM , the manager learns to assign each expert with361

a reasonable attention score, resulting in a balanced362

training across experts.363

Prior Assumption Generation The prior as-364

sumption aP is generated to represent the probabil-365

ities that the statement involves different reasoning366

types that we are interested in. Specifically, we367

develop a trigger-word-based heuristic algorithm368

to form the prior assumption for each statement369

automatically:370

1. Initialize the prior assumption with e0 ∈ Rne ,371

which is empirically set as (0.1, 0.1, ..., 0.6)T .372

The (e0)ne represents the probability that the373

statement does not involve any predefined rea- 374

soning types and thus is set higher than other 375

values in advance. 376

2. Traverse the trigger-word set of each reason- 377

ing type (ne − 1 types in total). If a trigger 378

word/pattern w that belongs to ith reasoning 379

type is detected in the statement, the trigger’s 380

weight sw (set empirically) is accumulated 381

to the ith dimension of a zero-initialized bias 382

vector δ ∈ Rne : δi ← δi + sw. 383

3. Add the bias vector δ to the prior assumption 384

e0 and normalize to get the prior assumption: 385

aP = softmax(e0 + δ). 386

Figure 3 presents an example of this process. Learn- 387

ing to imitate the prior assumption, the manager 388

guides each expert to focus on different reason- 389

ing types and thus achieves diverse experts. We 390

implement a relatively small trigger-word pool in 391

experiments and find the method works effectively, 392

indicating that the method can be smoothly gen- 393

eralized to other datasets with little modification 394

to the predefined reasoning types and trigger-word 395

pool.

Figure 3: An example of prior assumption generation
with ne = 5 and 4 predefined reasoning types.

396

4.2 Self-adaptive Learning 397

Self-adaptive learning aims to enhance further the 398

expert combining efficiency with only the knowl- 399

edge of the expert’s performance on the train set. 400

Specifically, an “expert ability" vector aE ∈ Rne 401

is calculated based on the “expert loss" vector 402

m ∈ Rne , where mi = CE(pi, l) is the cross- 403

entropy loss of the ith expert. Note that the cross- 404

entropy of the expert is negatively correlated with 405

its performance. Then the expert ability vector aE 406

is calculated as follows: 407

aE = softmax(−α ·m) (12) 408

where α =
√

β/V ar(m) is a variance- 409

normalizing coefficient and β is a hyperparameter 410
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that decides the variance of the expert ability vector411

before the activation (i.e., V ar(−α·m) = β). Such412

normalization is designed based on the observation413

that m tends to have a extreme small variance and414

softmax(−m) often generates a close-to-uniform415

distribution. Note that the generated aE is pos-416

itively correlated with the experts’ performance417

(e.g., if the ith expert outperforms the jth expert on418

the input pair then we have (aE)i > (aE)j).419

Based on aE , we develop the loss function that420

has the same form with LM in Sec 4.1.2:421

LS = D(aE ||aS) (13)422

By minimizing the loss above, the higher atten-423

tion scores are assigned to the best-performed ex-424

perts after the supervisor’s adjustment, resulting in425

more efficient cooperation across experts.426

5 Experiment Setup427

5.1 Data and Metric428

We conduct the experiments on TABFACT, a large429

scale benchmark dataset of the table-based fact ver-430

ification task1. TABFACT contains a total of 117k431

statements and 16k Wikipedia tables. The test set432

is further divided into a simple and complex sub-433

set based on verification difficulty, for verifying434

some statements on TABFACT requires more logi-435

cal/numerical reasoning skills. We choose accuracy436

as the evaluation metric following the existing work437

to make our experiment results comparable. More438

details of TABFACT are presented in Appendix A.439

5.2 Implementation Details440

Training Details We set ne = 5 expert networks441

in our implementation of SaMoE. The transformer442

layers are 12 for encoders in the feature extractor443

and experts and 2 for encoders in the manager and444

supervisor. The hidden states’ dimension d, the445

maximum input length n, the λ in Sec.4.1, and the446

β in Sec.4.2 are set to 1024, 512, 0.1 and 0.1 re-447

spectively. We applied RoBERTa-Large (Liu et al.,448

2019) to initialize the feature extractor and experts449

in our framework. The details of parameter initial-450

ization can be found in Appendix B.451

We apply Adam optimizer (Kingma and Ba,452

2015) in training with learning rate 2e-5, dropout453

rate 0.1, warmup step 17,304, and batch size 32.454

1We did not conduct experiments on other datasets such as
SEM-TAB-FACTS (Wang et al., 2021) and InfoTabs (Gupta
et al., 2020), since there is little work and comparisons have
been made on these datasets.

SaMoE is first trained in the supervised learning 455

stage for 57,680 steps (20 epochs). Then the super- 456

visor is trained in the self-adaptive learning stage 457

for another 5,000 steps, while the best parameters 458

of other parts in the framework are loaded and fixed. 459

The model is evaluated every 1000 steps, and the 460

model that achieves the highest performance on the 461

development set is saved. All the codes are imple- 462

mented with Pytorch (Paszke et al., 2019) and the 463

transformers package (Wolf et al., 2020). 464

Settings of Prior Assumption We choose the 465

top 4 types of reasoning types that appear most 466

frequently in TABFACT2 (count, comparative, su- 467

perlative, negation). We apply a small trigger-word 468

pool containing only 26 trigger words, injecting 469

limited prior knowledge of the dataset. More de- 470

tails of this part are presented in Appendix C. 471

5.3 Baselines 472

We compared our proposed framework with differ- 473

ent kinds of baselines on TABFACT: (1) Program- 474

enhanced methods: LPA (Chen et al., 2020), Log- 475

icalFactChecker (Zhong et al., 2020), HeterTFV 476

(Shi et al., 2020), ProgVGAT (Yang et al., 2020) 477

and Decomp (Yang and Zhu, 2021); (2) Table- 478

based pre-trained models: TAPAS (Eisenschlos 479

et al., 2020) and TAPEX (Liu et al., 2021); (3) 480

Other methods: Table-BERT (Chen et al., 2020) 481

and SAT (Zhang et al., 2020). 482

6 Results 483

6.1 Overall Performance 484

We compare the proposed SaMoE with different 485

kinds of baselines, and the results are listed in 486

Table 1. Baselines are presented with the best 487

performance reported in the corresponding papers. 488

SaMoE obtains an accuracy of 85.1% on the test 489

set, achieving a new state-of-the-art on the dataset. 490

Results show that our method consistently out- 491

performs all the program-enhanced methods with 492

a significant 2.4% improvement compared with 493

the Decomp method (the best performed program- 494

enhanced method). Note that SaMoE performs 495

similar with Decomp-LARGE on the simple subset 496

of the test set (93.6% vs. 93.6%) while outper- 497

forms Decomp-LARGE with a remarkable 3.5% 498

on the complex subset (80.9% vs. 77.4%). Such 499

analysis indicates that the performance improve- 500

ment is mainly derived from successfully verifying 501

2We follow the statistics in Chen et al. (2020) for the
frequency of different reasoning types.
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Model Val Test Testsimple Testcomplex Small Test
TABLE-BERT 66.1 65.1 79.1 58.2 68.1
LPA 65.1 65.3 78.7 58.5 68.9
LogicalFactChecker 71.8 71.7 85.4 65.1 74.3
HeterTFV 72.5 72.3 85.9 65.7 74.2
SAT 73.3 73.2 85.5 67.2 -
ProgVGAT 74.9 74.4 88.3 67.6 76.2
Decomp-LARGE 82.7 82.7 93.6 77.4 84.7
TAPAS-LARGE 81.5 81.2 93.0 75.5 84.1
TAPEX 84.6 84.2 93.9 79.6 85.9
SaMoE 84.2 85.1 93.6 80.9 86.7
Human Performance - - - - 92.1

Table 1: Performance (accuracy) of models and human on TABFACT.

complex statements, which required more sophisti-502

cated reasoning than statements in the simple set.503

SaMoE even shows comparable performance with504

the previous SOTA TAPEX that is pre-trained to505

execute SQL queries on tables. Our method out-506

performs TAPEX with a 0.9% improvement on the507

test set and a further 1.3% improvement on the508

complex subset, indicating that SaMoE, based on a509

text-based pre-trained model, performs even better510

than table-based pre-trained models on a variety511

of complex reasoning types demanded by the table-512

based verification.

Model Val Test
SaMoE 84.2 85.1
SaMoE w/o Sa 84.0 84.7
SaMoE w/o Sa (ne = 1) 83.6 84.0

Table 2: Ablation results that shows the effectiveness
of the proposed MoE and self-adaptive learning meth-
ods. SaMoE w/o Sa denotes that the framework without
self-adaptive learning, and ne = 1 denotes that the
framework involves only one expert, where the manage-
ment module does not work in this situation.

513

6.2 Ablation Study514

We further investigate the effectiveness of the MoE515

structure and self-adaptive learning with an abla-516

tion study. We conduct two experiments: one re-517

duces the number of experts to 1 to disable the con-518

tribution from the MoE structure (SaMoE w/o Sa519

(ne = 1)); the other trains the proposed framework520

with only the supervised learning stage (SaMoE521

w/o Sa). Results are presented in Table 2. The522

MoE structure achieves a 0.7% improvement on523

the test set (84.7% vs. 84.0%), and self-adaptive524

learning further improves the performance slightly525

(85.1% vs. 84.7%). Note that the slight improve- 526

ment of self-adaptive learning is expected since the 527

experts and the feature extractor are fixed in this 528

stage. The results demonstrate the effectiveness 529

of both the MoE structure and the self-adaptive 530

learning. 531

6.3 Effectiveness Analysis 532

We show in this section that the effectiveness of the 533

proposed framework is derived from two aspects: 534

the differentiation of experts (each expert outper- 535

forms others on a specific part of reasoning types) 536

and the effective attention assignment by the man- 537

agement module (the best-performed experts are 538

assigned with higher attention scores).

(a) Trained with LV (b) Trained with LV + LM

Figure 4: Comparison of models trained with/without
the manager assumption loss LM .

539

6.3.1 Expert Differentiation 540

We first investigate the proposed manager assump- 541

tion loss LM and find that it achieves balanced 542

training across experts, which is the premise of 543

expert differentiation. Figure 4 compares the two 544

models trained with and without LM , with the per- 545

formance curves of different experts on the devel- 546

opment set presented in each sub-figure. Once LM 547

is applied, four experts that fail to be trained (the 548
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performance stays around 50% as training steps549

increase) achieve comparable performance with550

the rest expert (expert 5 in sub-figure (a)). The re-551

sult indicates that the proposed LM leads balanced552

training across experts.

Figure 5: The proportion of statements in the test set
that at least k experts verify them correctly (k ∈ [1, 5]).

553
We further show that the proposed framework554

achieves differentiation across experts. Figure 5555

presents the proportion of statements in the test set556

that are verified correctly by at least k experts (k557

varies from 1 to 5). Note that the proportion in-558

creases rapidly as k decreases (76.2% to 90.7% for559

k from 5 to 1), which illustrates that experts behave560

differently on a large proportion of statements. The561

results indicate that SaMoE successfully achieves562

expert differentiation, which expands the original563

performance upper bound considerably (90.7%).

Model
Accuracy

Top 1 Top 2 Top 3
SaMoE 32.0 59.0 76.0
SaMoE w/o Sa 25.4 44.8 67.6

Table 3: The top-k accuracy of the management module
that predicts the best-performed experts on the test set.

564

6.3.2 Effective Attention Assignment565

We conduct a detailed analysis to investigate566

whether the management module assigns higher at-567

tention scores to experts with the best performance568

after self-adaptive learning. To achieve this goal,569

we regard the management module as a ne-class570

classifier and calculate the top-k accuracy of pre-571

dicting the best-performed expert (the one with the572

smallest cross-entropy) on the test set where k is573

chosen in [1, 2, 3]. The results of the analysis574

are presented in Table 3. The top-k accuracy is575

improved significantly after self-adaptive learning576

(+6.6%, +14.2%, +8.4% respectively), indicating 577

that the management module successfully assigns 578

higher attention scores to the best-performed ex- 579

perts by self-adaptive learning. 580

Based on the significant performance upper 581

bound expanded by the expert differentiation, the 582

effective attention assignment achieves more effi- 583

cient cooperation across these diverse experts, thus 584

improving the verification performance. 585

7 Related Works 586

Table-Based Fact Verification Most of the cur- 587

rent models utilize programs to improve the 588

model’s ability to handle various types of numeri- 589

cal and logical reasoning (Chen et al., 2020; Zhong 590

et al., 2020; Shi et al., 2020; Yang et al., 2020; Yang 591

and Zhu, 2021), while Eisenschlos et al. (2020); 592

Liu et al. (2021) leverage table-based pre-trained 593

models to parse the structural and numerical seman- 594

tics of tables better. Unlike previous works, we use 595

a novel mixture-of-experts framework to handle 596

different logical and numerical semantics without 597

semantic parsing and table-based pre-training. 598

Mixture of Experts Mixture of experts is a spe- 599

cial model combining method. Jacobs et al. (1991) 600

first introduces this method and proposes a loss 601

that encourages competitive learning across expert 602

models. We develop a self-adapted mixture-of- 603

experts framework that achieves a more effective 604

combination of experts by learning from the ex- 605

perts’ performance on the train set. 606

8 Conclusion 607

This paper proposes a framework that leverages the 608

mixture of experts to recognize and execute differ- 609

ent types of reasoning required for table-based fact 610

verification. We propose an MoE model guided 611

with limited prior knowledge to handle different 612

parts of the reasoning types required by table-based 613

verification with diverse experts. Moreover, we 614

design a novel supervisor network to adjust the 615

imprecise attention score and achieve a more effi- 616

cient combination across experts. A self-adaptive 617

learning strategy is further applied to train the pro- 618

posed supervisor network without prior knowledge 619

of the task or dataset. The experiments show that 620

the proposed model achieves a new state-of-the-art 621

performance of 85.1% accuracy on the benchmark 622

dataset TABFACT. The ablation studies and analy- 623

sis further indicate the effectiveness of the proposed 624

MoE structure and self-adaptive learning strategy. 625
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A Statistics of TABFACT781

Table 4 shows the basic statistics of TABFACT. As782

the table shows, the whole dataset is randomly di-783

vided into three subsets with the ratio be 8:1:1. The784

average numbers of rows and columns in tables785

keep approximately the same across three subsets,786

which reflects the consistency of data distribution.

Split #Sentence #Table Avg.row Avg.col
Train 92,283 13,182 14.1 5.5
Dev 12,792 1,696 14.0 5.4
Test 12,779 1,695 14.2 5.4

Table 4: Statistics of TABFACT, including the number
of statements, tables, and the average number of rows
and columns in tables.

787

B Parameter Initialization788

For parameter initialization, We leverage789

RoBERTa-Large, a pre-trained language model790

that has 24 transformer encoding layers. We791

initial parameters of the feature extractor with792

the embedding layer and the bottom 12 encoding793

layers of RoBERTa-Large and each expert with794

the upper 12 encoding layers of RoBERTa-Large,795

respectively. We use PyTorch to initialize other796

parameters randomly.797

C Specific Setting of Prior Assumption798

Generation799

We choose four reasoning types that appear most800

frequently in TABFACT: count, comparative, su-801

perlative, and negation. The detailed definitions of802

four reasoning types chosen in our implementation803

are listed below:804

1. Count: counting the number of specific rows805

in the table, such as “xxx be listed a total of 3806

times", “xxx win only 1 time in ...", etc.807

2. Comparative: comparing two values in the808

statement or cells, such as “xxx play in more809

than 1 game during ...", “xxx has a larger yyy810

than zzz", etc.811

3. Superlative: finding the highest/lowest value812

of the specific column, such as “the longest813

xxx be yyy", “the lowest score at xxx be yyy",814

etc.815

4. Negation: negating the original semantics of816

the statement, such as “xxx has never lost a817

game in ...", “xxx never score 0 points", etc.818

Type Trigger Weight
Count only+[number] 1.6
Count [number]+times 2
Count [number]+of 1.6
Count there be+[number] 1.6

Negation no 1.5
Negation not 1.5
Negation never 1.5
Negation didn’t 1.5

Comparative [JJS] or [RBS] 1.5
Superlative [JJR] or [RBR] 1.5

Table 5: Some trigger words/patterns applied in the
generation of the prior assumption on TABFACT.

A small trigger-word pool that contains only 26 819

trigger words/patterns is applied for the prior as- 820

sumption generation: 11 triggers for the "count" 821

type, 15 for "negation"; and for the rest types (i.e., 822

"comparative" and "superlative" types), the NLTK 823

package is employed to recognize the comparative 824

and superlative words automatically. Such a small 825

trigger-word pool injects limit prior knowledge of 826

the dataset, indicating that the proposed method 827

can be generalized to other datasets by simply mod- 828

ifying the pool of trigger words. Table 5 presents 829

some words/patterns in the trigger-word pool ap- 830

plied in our experiments. x+[number] denotes a 831

combination of a word and a number that is served 832

as a trigger (e.g., for the statement “xxx win 3 833

times in ...", we match the phrase “3 times" with 834

the trigger “[number]+times"). 835
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