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ABSTRACT

We propose DoE2Vec, a variational autoencoder (VAE)-based methodology to
learn optimization landscape characteristics for downstream meta-learning tasks,
e.g., automated selection of optimization algorithms. Principally, using large
training data sets generated with a random function generator, DoE2Vec self-
learns an informative latent representation for any design of experiments (DoE).
Unlike the classical exploratory landscape analysis (ELA) method, our approach
does not require any feature engineering and is easily applicable for high dimen-
sional search spaces. For validation, we inspect the quality of latent reconstruc-
tions and analyze the latent representations using different experiments. The latent
representations not only show promising potentials in identifying similar (cheap-
to-evaluate) surrogate functions, but also can significantly boost performances
when being used complementary to the ELA features in classification tasks.

1 INTRODUCTION

Solving real-world black-box optimization problems can be extremely complicated, particularly if
they are strongly nonlinear and require expensive function evaluations. As suggested by the no free
lunch theorem in Wolpert & Macready (1997), there is no such things as a single-best optimization
algorithm, that is capable of optimally solving all kind of problems. The task in identifying the most
time- and resource-efficient optimization algorithms for each specific problem, also known as the
algorithm selection problem (ASP) (see Rice (1976)), is tedious and challenging, even with domain
knowledge and experience. In recent years, landscape-aware algorithm selection has gained increas-
ing attention from the research community, where the fitness landscape characteristics are exploited
to explain the effectiveness of an algorithm across different problem instances (see van Stein et al.
(2013); Simoncini et al. (2018)). Beyond that, it has been shown that landscape characteristics are
sufficiently informative in reliably predicting the performance of optimization algorithms, e.g., using
Machine Learning approaches (see Bischl et al. (2012); Dréo et al. (2019); Kerschke & Trautmann
(2019a); Jankovic & Doerr (2020); Jankovic et al. (2021); Pikalov & Mironovich (2021)). In other
words, the expected performance of an optimization algorithm on an unseen problem can be esti-
mated, once the corresponding landscape characteristics have been identified. Interested readers are
referred to Muñoz et al. (2015b;a); Kerschke et al. (2019); Kerschke & Trautmann (2019a); Malan
(2021).

Exploratory landscape analysis (ELA), for instance, considers six classes of expertly designed fea-
tures, including y-distribution, level set, meta-model, local search, curvature and convexity, to nu-
merically quantify the landscape complexity of an optimization problem, such as multimodality,
global structure, separability, plateaus, etc. (see Mersmann et al. (2010; 2011)). Each feature class
consists of a set of features, which can be relatively cheaply computed. Other than typical ASP tasks,
ELA has shown great potential in a wide variety of applications, such as understanding the under-
lying landscape of neural architecture search problems in van Stein et al. (2020) and classifying the
Black-Box Optimization Benchmarking (BBOB) problems in Renau et al. (2021). Recently, ELA
has been applied not only to analyze the landscape characteristics of crash-worthiness optimization
problems from automotive industry, but also to identify appropriate cheap-to-evaluate functions as
representative of the expensive real-world problems (see Long et al. (2022)). While ELA is well es-
tablished in capturing the optimization landscape characteristics, we would like to raise our concerns
regarding the following aspects.
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1. Many of the ELA features are highly correlated and redundant, particularly those within
the same feature class (see Škvorc et al. (2020)).

2. Some of the ELA features are insufficiently expressive in distinguishing problem instances
(see Renau et al. (2019)).

3. Since ELA features are manually engineered by experts, their feature computation might
be biased in capturing certain landscape characteristics (see Seiler et al. (2020)).

4. ELA features are less discriminative for high-dimensional problems (see Muñoz & Smith-
Miles (2017)).

Instead of improving the ELA method directly, e.g., searching for more discriminative landscape
features, we approach the problems from a different perspective. In this paper, we introduce an
automated self-supervised representation learning approach to characterize optimization landscapes
by exploiting information in the latent space. Essentially, a deep variational autoencoder (VAE)
model is trained to extract an informative feature vector from a design of experiments (DoE), which
is essentially a generic low-dimensional representation of the optimization landscape. Thus, the
name of our approach: DoE2Vec. While the functionality of our approach is fully independent of
ELA, experimental results reveal that its performance can be further improved when combined with
ELA (and vice versa). To the best of our knowledge, a similar application approach with VAE in
learning optimization landscape characteristics is still lacking. Section 2 briefly introduces the state-
of-the-art representation learning of optimization landscapes as well as the concepts of (variational)
autoencoder. This is followed by the description of our methodology in Section 3. Next, we explain
and discuss our experimental results in Section 4. Lastly, conclusions and outlooks are included in
Section 5.

2 REPRESENTATION OF OPTIMIZATION LANDSCAPE

In the conventional ELA approach, landscape features are computed primarily using a DoE of some
samples points W = {w1, ..., wn} evaluated on an objective function f , i.e., f : Rd → R, with
wi ∈ Rd, n represents sample size, and d represents function dimension. The objective function
values f(wi), i ∈ {1, . . . , n} are the inputs of VAE models in DoE2Vec. In this work, we consider
ELA features similar to those in Long et al. (2022), which do not require additional sampling,
and compute them with the package flacco by Kerschke & Trautmann (2019b;c). These features
include commonly used dimensionality reduction approaches such as Principal Component Analysis
(PCA) Abdi & Williams (2010), a number of simple surrogate models and many others.

To overcome the drawbacks of the ELA approach, attentions have been focused on developing
algorithm selection approaches without requiring landscape features. For example, Prager et al.
(2022) proposed two feature-free approaches using a deep learning method, where optimization
landscapes can be represented through either 1) image-based fitness maps or 2) graph-like fitness
clouds. In the first approach, convolutional neural networks were employed to project data sets into
two-dimensional fitness maps, using different dimensionality reduction techniques. In the second
approach, data sets were embedded into point clouds using modified point cloud transformers, which
can accurately capture the global landscape characteristics. Nonetheless, the fitness map approach
suffered from the curse of dimensionality, while the fitness cloud approach was limited to fixed
training sample size. Additional relevant works can be found in Alissa et al. (2019); Seiler et al.
(2020; 2022); Prager et al. (2021). Unlike these approaches, which were directly used as classi-
fiers, the latent feature sets generated by our proposed approach can be easily combined with other
features, such as ELA features, for classification tasks. In our work, we do not propose to replace
conventional ELA features, but to actually extend them with autoencoder (AE) based latent-space
features. Since the implementation of both approaches mentioned above is not available, a compar-
ison to our work in terms of classifying high-level properties is only feasible by directly comparing
their results on a identical experimental setup. Following this, results from the downstream tasks in
this work can partially be compared to the mentioned results in Seiler et al. (2022), inlcuding the
standard Principal Component Analysis (PCA), reduced Multiple Channel (rMC) and a transformer
based approach (Transf.), taking into account that additional hyperparameter tuning was involved in
their classification experiments with ELA features.
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Our approach is capable of learning the representations of optimization landscapes in an automated,
generic and unsupervised manner, with the advantage that the learned features are not biased to-
wards any particular landscape characteristic. Unlike previously mentioned approaches, our pro-
posed method is independent of the sampling method. By using only fully connected (dense) layers
that learn from one-dimensional (flattened) landscapes, an AE or a VAE is, in theory, capable of
learning any number of input-dimensions without scaling difficulties. Furthermore, the fast-to-train
(V)AE models can be easily shared in practice.

2.1 AUTOENCODER

A standard AE usually has a symmetrical architecture, consisting of three components: an encoder,
a hidden layer, also known as bottleneck, and a decoder (Figure 1). In short, an encoder projects the
input space X to a representative feature space H, i.e., e : X −→ H, while a decoder transforms the
feature space back to the input space d : H −→ X̂ (see Charte et al. (2020; 2018)). In other words,
AE attempts to optimally reconstruct the original input space X , by minimizing the reconstruction
error L(X , X̂ ), e.g. mean squared error, during the (unsupervised) training process. Commonly,
AE is constructed with an input layer and an output layer of the same dimension dim(X) and a
bottleneck layer of lower dimension dim(H), i.e., dim(H) < dim(X), to improve its ability in
capturing crucial representations of the input space.

Following this, AE has rapidly gained popularity in the field of dimensionality reduction as well as
representation learning Bengio et al. (2013); Tschannen et al. (2018). In comparison with the simple
principal component analysis (PCA) technique, AE has the advantage that nonlinear representation
features can be learned with activation functions, such as a sigmoid function.

2.2 VARIATIONAL AUTOENCODER

Originating from the same family as traditional AE, a VAE typically has a similar architecture with
some modifications, as shown in Figure 1. Unlike AE, the latent space of a VAE is encoded as a

Figure 1: Architecture of a (standard) AE on the left and VAE on the right used in DoE2Vec. The
latent space z is defined by z = µ + σ · ϵ, where ϵ denotes the sampling with mean µ and variance
σ.

distribution by using a mean and variance layer, together with a sampling method. Following this,
the latent space can be properly regularized to provide more meaningful features. During the training
process, a common loss function LVAE (Equation 1) of VAE is to be minimized, consisting of a
regularization term (Equation 2), which can be expressed as the Kullback–Leibler (KL) divergence
LKL, and a reconstruction error, e.g., mean squared error LMSE (Equation 3).

LVAE(X , X̂ ) = β · LKL(X , X̂ ) + LMSE(X , X̂ ) , (1)

LKL(X , X̂ ) =
1

2

|X |∑
i=1

(exp(σi)− (1 + σi) + µ2
i ) , (2)

LMSE(X , X̂ ) =
∑

x∈X ,x̂∈X̂

(x− x̂)2 , (3)

where a weighting factor β is included to ensure a good trade-off between LKL and LMSE, σ and µ

are the variance and mean latent layers of the VAE and X̂ is the reconstruction of the input space.
Detailed explanations regarding VAE can be found in Kingma & Welling (2013; 2019).
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2.3 BLACK-BOX OPTIMIZATION BENCHMARKING

The development of DoE2Vec is based on the well-known academic BBOB suite by Hansen et al.
(2009), consisting of altogther 24 noise-free real-parameter single objective optimization problems
of different landscape complexity. For each BBOB problem, the global optimum (within [−5, 5]d)
can be randomly shifted, e.g., through translation or rotation, to generate a new problem instance.

3 DOE2VEC

Generally, our proposed method uses a VAE with similar design as described in Section 2.2. Pre-
cisely, our VAE model has an architecture of altogether seven fully connected layers, where rectified
linear unit (ReLU) activation functions are assigned to the hidden layers, while a sigmoid activation
function is used for the final output layer of the decoder. The encoder is composed of four fully
connected layers with dim(X) depending on the DoE sample size n, starting with the input layer
size n, two hidden layers with sizes n/2 and n/4 and the latent size ls (ls < n/4) for the mean and
log variance of the latent space. The decoder is composed of three fully connected layers with sizes
n/4, n/2 and n for the final output layer. The focus of our approach lies on VAE, rather than AE,
because it has the additional benefits of regularizing the latent space without loss of generalisation.
For comparison, we consider a standard AE model as well (with the same number of hidden layers,
except that the latent space is now a single dense layer, instead of a mean and log variance layer
with a sampling scheme). Full specifications of the different models are available in our Github
repository (for Review (2022)), while pre-trained models are also available on Huggingface.

The general workflow of DoE2Vec can be summarized as follows:

1. First, a DoE of size 2m is created, where m is a user defined parameter. By default, a Sobol
sequence by Sobol’ (1967) is used as sampling scheme, but any sampling scheme or even
a custom DoE can be utilized in practice.

2. The DoE samples, initially within the domain [0, 1]d, can be re-scaled to any desired func-
tion boundaries, as the DoE2Vec method is scale-invariant by design.

3. Next, the DoE samples are evaluated for a set of functions randomly generated using the
random function generator from Long et al. (2022), which was originally proposed by Tian
et al. (2020). The main advantage of using this function generator is that a large training set
can be easily created, covering a wide range of function landscape of different complexity.

4. Following this, all objective function values are first re-scaled to [0, 1] and then used as
input vectors to train (V)AE models.

5. Lastly, the latent space of the trained V(AE) models can be used as feature vectors for
further downstream classification tasks, such as optimization algorithm selection.

In the next section, we will show that the learned feature representations have attractive characteris-
tics and they are indeed useful for downstream classification and meta-learning tasks.

4 EXPERIMENTAL RESULTS AND DISCUSSIONS

In this work, we have conducted altogether four experiments for different research purposes. Basi-
cally, the first two experiments are to investigate the quality of VAE models trained and to validate
the latent space representation learned, while the last two experiments are to evaluate the potential
of the DoE2Vec approach for downstream meta-learning tasks, as follows.

1. Analyzing the reconstruction of function landscapes and the impact of the latent size and
KL loss weight (weighting factor β).

2. Investigating the differences in latent space representation between a standard AE and a
VAE model.

3. Identifying functions with similar landscapes based on the latent representations.
4. Three downstream multi-class classification experiment to show the potential of the pro-

posed approach in practice, using the latent feature vectors as inputs.
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In our experiments, we fix the sampling scheme to a Sobol sequence and m to eight, ending up with
a DoE of 256 samples. Unless otherwise specified, all AE and VAE models are trained on a set of
250, 000 five-dimensional (5d) random functions.

4.1 RECONSTRUCTION OF FUNCTION LANDSCAPES

In our first experiment, we investigate the impact of two model parameters, namely the KL loss
weight and the latent size, on the model loss functions. For this purpose, a total of 30 VAE models
are trained using combinations of six different latent sizes (4, 8, 16, 24, 32) and five different KL loss
weights (0.0001, 0.0002, 0.001, 0.005, 0.01). Results in the left subplot of Figure 2 clearly show that
latent sizes have a positive effect on the LVAE, with the improvement diminishes beyond 16. On the
other hand, the LMSE can be improved with smaller KL loss weights, as shown in the right subplot.
In Figure 3, the combined effects of these parameters on the LKL and LMSE are fully visualized.

Figure 2: Impact of different latent sizes and KL loss weights on the loss functions. Left: LVAE
against latent sizes. Right: LMSE against KL loss weight.

Figure 3: Parallel coordinates plot of different latent sizes and KL loss weights in relation with the
validation LKL and LMSE. (Columns left to right: Latent size, KL loss weight, LMSE and LKL.)
Each color or line represents a combination of latent size and KL loss weight. Conflict between both
loss terms can be observed, since parameter combinations with low LMSE have a higher LKL and
vice versa.

In the remaining experiments, we use a latent size of either 24 or 32 (expressed as (V)AE-24 or
(V)AE-32) and a KL loss weight of 0.001 as a good compromise between the two loss terms. It is to
be noted that, while the (V)AE architecture can be further improved by applying neural architecture
search, we leave it for future work, since the landscape reconstruction is not the ultimate purpose of
this work. In fact, the reconstruction here is meant to be a way in evaluating the quality of learned
representations. Subsequently, we verify the capability of a VAE-24 model by reconstructing a large
variety of functions, using the 24 BBOB functions (first problem instance) (Figure 4).
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Figure 4: Reconstructions of the 24 2d BBOB funcions (labelled from f1 to f24) using a VAE-24
model. The surface plots are generated based on a DOE of 256 samples using triangulation. Gener-
ally, the reconstructed landscapes look similar to the actual landscapes based on visual inspection.

4.2 LATENT SPACE REPRESENTATION

Next, we project the latent space of an AE and a VAE from our DoE2Vec approach onto a 2d visual-
ization using multidimensional scaling (MDS) method, as shown in Figure 5. For a comprehensive
comparison, a similar MDS visualization for the feature vectors with all the (considered) ELA fea-
tures is included as well. Interestingly, the latent space of ELA has a better looking cluster-structure,
while the latent space of AE and VAE have a clear structure. As expected, the latent space of AE
contains a few outliers and is in general more widespread than the latent space of VAE.

Figure 5: From left to right: 2d MDS visualization of the (normalized) ELA feature spaces, the
latent space of an AE-32 model and the latent space of a VAE-32 model. Altogether 100 problem
instances for all 24 BBOB functions, resulting in a total of 2,400 dots (in each subplot), where each
dot represents a feature vector of a BBOB instance and the color denotes the corresponding BBOB
function.

To further analyze the differences in latent space representation between the AE and VAE models,
we use the generator part of the models to iteratively generate new function landscapes. To be
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precise, we select one latent representation as starting point and individually vary each latent variable
with small steps between −1 and +1 of its original value. In Table 1, the generated landscapes are
shown only for the extreme cases of an AE-4 and a VAE-4 model. Based on this result, two important
conclusions can be drawn.

1. The interpolation for both models is very smooth, showing that the models can learn the
landscape representations well and are able to learn the structure, even though the dimen-
sionality of the function landscapes d is not known.

2. The VAE model utilizes a more compact feature representation, where its output variance
is greater than those of the AE model for the same variation of latent features.

Table 1: Comparison of function landscapes generated by an AE-4 and a VAE-4 model for different
latent variables, using the BBOB f22 encoding as starting point (v1, v2, v3, v4). In each column, the
latent features are separately varied by −1 or +1. Complete variation of the latent features can be
found in videos available in our Github repository.

start v1 v2 v3 v4
−1 +1 −1 +1 −1 +1 −1 +1

AE

VAE

4.3 SIMILAR REPRESENTATIVE FUNCTIONS

The first main application of DoE2Vec is to identify cheap-to-evaluate functions with similar latent
space representation for a given DoE, which can be very useful when dealing with real-world ex-
pensive black box optimization problems, as also described in Long et al. (2022). In this way, large
experiments can now be conducted on a “similar” function group at a much lower computational
cost. Since a direct analytical verification of the results is very challenging, we instead use a visual
inspection based on 2d functions to showcase the potential of the proposed method. In Table 2,
the 24 BBOB functions are paired with their respective “nearest” random function, where nearest
is defined as the random function that has the closest feature representation in terms of Euclidean
distance. For most BBOB functions, a very well fitting (almost identical) random function can be
identified by the DoE2Vec model, where random functions of equal complexity are suggested for
the more complex BBOB functions.

4.4 CLASSIFICATION TASKS

Secondly, the DoE2Vec approach is designed to learn characteristic representations of an optimiza-
tion landscape, which can be verified through a classical classification task of high level function
properties. These high level properties, such as multimodality, global structure and funnel structure,
are important for the ASP, as they often determine the difficulty of an optimization problem. Table
3 illustrates the BBOB functions and their associated high level properties. In this experiment, a
standard random forest (RF) model (using sklearn from Pedregosa et al. (2011)) is implemented
for the multiclass classification tasks based on the latent representations learned by four DoE2Vec
models, consisting of AE-24, AE-32, VAE-24 and VAE-32. In other words, the high level properties
of a BBOB function are to be predicted using the latent representations. Again, we compare the
DoE2Vec approach against the classical ELA method, which is specifically constructed to excel in
exactly this kind of function property classification tasks. Beyond that, a combination of classical
ELA features with a VAE-32 model is included to evaluate the complimentary effect of the different
feature sets.

The classification results (macro F1 scores) of the different feature sets are summarized in Table
4. It is not surprising that the ELA features generally perform very well and outperform the latent
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Table 2: Four columns with pairs of BBOB function and their respective nearest random function
identified based on latent feature vectors using the VAE-24 model.

features most of the time, especially in classifying the global structure and multimodal landscapes.
Fascinatingly, the classification performances can be significantly improved when the DoE2Vec is
combined with the classical ELA method, indicating that both feature sets seem to be complimentary
to each other.

5 CONCLUSIONS AND FUTURE WORK

In this work we propose DoE2Vec, a VAE-based approach to learn the latent representations of an
optimization landscape, similar to the classical landscape features. Using a wide set of experiments,
we have shown that DoE2Vec is able to reconstruct a large set of functions accurately and that the ap-
proach can be used for downstream meta-learning tasks, such as algorithm selection. The proposed
methodology can be effectively used next to existing techniques, such as classical ELA features, to
further increase the classification accuracy of certain downstream tasks. In fact, DoE2Vec can learn
good feature representations for optimization landscapes and has several advantages over the ELA
approach, such as feature engineering or selection knowledge is not required, domain knowledge
in ELA is not needed and it is applicable to optimization tasks in a very straightforward manner.
Nonetheless, there are a few known limitations to the proposed method, such as 1) Our approach is
scale-invariant, but not rotation- or translation-invariant. Using a different loss function to train the
autoencoders might be able to improve this 2) If a custom DoE sample is used, the model needs to
be trained from scratch (no pre-trained model available). This typically takes a few minutes up to an
hour, depending on the sample size n and number of random functions to train on, 3) The learned
feature representations are a black-box that are hard to interpret directly.

In future work, we plan to improve our approach by tackling some of the challenges mentioned.
Apart from that, we would like to verify the usefulness of the random functions with similar latent
features w.r.t. the performances of an optimization algorithm.
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Table 3: High level properties of the 24 BBOB functions. This table was first introduced in Seiler
et al. (2022)

BBOB function Multimodal Global Structure Funnel

1: Sphere none none yes
2: Ellipsoidal separable none none yes
3: Rastrigin separable high strong yes
4: Büche-Rastrigin high strong yes
5: Linear Slope none none yes

6: Attractive Sector none none yes
7: Step Ellipsoidal none none yes
8: Rosenbrock low none yes
9: Rosenbrock rotated low none yes

10: Ellipsoidal high conditioned none none yes
11: Discus none none yes
12: Bent Cigar none none yes
13: Sharp Ridge none none yes
14: Different Powers none none yes

15: Rastrigin multimodal high strong yes
16: Weierstrass high medium none
17: Schaffer F7 high medium yes
18: Schaffer F7 moderately ill-cond. high medium yes
19: Griewank-Rosenbrock high strong yes

20: Schwefel medium deceptive yes
21: Gallagher 101 Peaks medium none none
22: Gallagher 21 Peaks low none none
23: Katsuura high none none
24: Lunacek bi-Rastrigin high weak yes

Table 4: Classification results (averaged macro F1 scores over 10 runs with different random seeds)
using a standard RF model with 100 trees, trained on the feature representations (from AE, VAE,
classical ELA or ELA combined with VAE-32) of the first 100 instances for each BBOB function
and validated on instance 101 to 120. * PCA, rMC and Transformer results are directly taken from
the work of Seiler et al. (2022), which uses an identical experimental setup but without repetitions.

d Task AE-24 AE-32 VAE-24 VAE-32 ELA PCA* rMC* Transf.* ELA-VAE

multimodal 0.875 0.849 0.877 0.856 0.984 0.994 0.971 0.991 0.991
2 global struct. 0.903 0.904 0.902 0.889 0.983 0.992 0.965 0.991 0.998

funnel 0.985 0.974 0.956 0.978 1.000 0.999 0.995 1.000 1.000

multimodal 0.908 0.903 0.880 0.889 0.963 0.897 0.947 0.991 0.998
5 global struct. 0.838 0.828 0.810 0.793 1.000 0.807 0.859 0.978 1.000

funnel 1.000 1.000 0.996 0.991 1.000 0.990 0.989 1.000 1.000

multimodal 0.877 0.813 0.844 0.838 1.000 0.839 0.952 0.974 1.000
10 global struct. 0.794 0.737 0.783 0.745 0.902 0.774 0.911 0.963 0.991

funnel 0.998 0.993 0.997 0.993 0.972 0.977 0.991 1.000 0.997

multimodal 0.726 0.722 0.700 0.694 0.970 - - - 0.991
20 global struct. 0.689 0.621 0.606 0.626 0.972 - - - 0.997

funnel 0.993 0.982 0.985 0.982 1.000 - - - 1.000

6 REPRODUCIBILITY STATEMENT

We provide an open-source documented implementation of our package at
https://github.com/xxxxxxx/doe2vec, with visualizations and video explanations. Pre-trained
models (weights) are available on Huggingface https://huggingface.co/xxxxxx. All models are
trained using a single T4 GPU and the computations are carbon neutral (CO2-free) by using solar
power. Average training time of a model on 250, 000 random functions was five minutes.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-
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