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Abstract
Massively multilingual models, pretrained on001
monolingual data, yield state-of-the-art results002
in a wide range of natural language process-003
ing tasks. In machine translation, multilingual004
pretrained models are often fine-tuned on par-005
allel data from one or multiple language pairs.006
Multilingual fine-tuning improves performance007
on medium- and low-resource languages but008
requires modifying the entire model and can009
be prohibitively expensive. Training a new set010
of adapters on each language pair or training011
a single set of adapters on all language pairs012
(language-pair or language-agnostic adapters)013
while keeping the pretrained model’s parame-014
ters frozen has been proposed as a parameter-015
efficient alternative. However, the former do016
not learn cross-lingual representations, while017
the latter share parameters for all languages018
and potentially have to deal with negative in-019
terference. In this paper, we propose train-020
ing language-family adapters on top of a pre-021
trained multilingual model to facilitate cross-022
lingual transfer. Our model consistently out-023
performs other adapter-based approaches. We024
also demonstrate that language-family adapters025
provide an effective method to translate to lan-026
guages unseen during pretraining.1027

1 Introduction028

Recent work in multilingual natural language pro-029

cessing (NLP) has created models that reach com-030

petitive performance, while incorporating many031

languages into a single architecture (Devlin et al.,032

2019; Conneau et al., 2020). Because of its abil-033

ity to share cross-lingual representations, which034

largely benefits lower-resource languages, multi-035

lingual neural machine translation (NMT) is an036

attractive research field (Firat et al., 2016; Zoph037

et al., 2016; Johnson et al., 2017; Ha et al., 2016;038

Zhang et al., 2020; Fan et al., 2020). Multilingual039

models are also appealing because they are more ef-040

ficient in terms of the number of model parameters,041

1Our source code is attached and will be released.

enabling simple deployment (Arivazhagan et al., 042

2019; Aharoni et al., 2019). Massively multilin- 043

gual pretrained models can be used for multilingual 044

NMT, if they are fine-tuned in a many-to-one (to 045

map any of the source languages into a target lan- 046

guage, which is usually English) or one-to-many 047

(to translate a single source language into multi- 048

ple target languages) fashion (Aharoni et al., 2019; 049

Tang et al., 2020). Recently, a large dataset was 050

proposed, which enables training a many-to-many 051

(multiple source to multiple target languages) NMT 052

model (Fan et al., 2020). 053

Multilingual pretrained models generally permit 054

improving translation on low-resource language 055

pairs. Specializing the model to a specific language 056

pair further boosts performance, but is computa- 057

tionally expensive. For example, mBART-50 (Tang 058

et al., 2020), pretrained on monolingual data of 059

50 languages, still has to be fine-tuned for NMT, 060

which poses a computational overhead. 061

To avoid fine-tuning large models, previous 062

work has focused on efficiently building multi- 063

lingual NMT models. Adapters (Rebuffi et al., 064

2017; Houlsby et al., 2019), which are lightweight 065

feedforward layers added in each Transformer 066

(Vaswani et al., 2017) layer, have been proposed as 067

a parameter-efficient method for fine-tuning. In ma- 068

chine translation, training a different set of adapters 069

on each language pair on top of a pretrained multi- 070

lingual NMT model, without updating the parame- 071

ters of the underlying model, has shown to improve 072

results for high-resource languages (Bapna and Fi- 073

rat, 2019). Low-resource languages do not benefit 074

from this approach though, as adapters are trained 075

with limited data. In a similar vein, Cooper Stick- 076

land et al. (2021) fine-tune a pretrained model for 077

multilingual NMT using a single set of adapters, 078

trained on all languages. Their approach manages 079

to narrow the gap but still does not perform on par 080

with multilingual fine-tuning. 081

Many-to-one and one-to-many NMT force lan- 082
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guages into a joint space (in the encoder or de-083

coder side) and neglect diversity. One-to-many084

NMT faces the difficulty of learning a conditional085

language model and decoding into multiple lan-086

guages (Arivazhagan et al., 2019; Tang et al., 2020).087

To better model the target languages, recent ap-088

proaches propose exploiting both the unique and089

the shared features (Wang et al., 2018), reorganiz-090

ing parameter-sharing (Sachan and Neubig, 2018),091

decoupling multilingual word encodings (Wang092

et al., 2019a), or accounting for linguistic similari-093

ties (Tan et al., 2019; Fan et al., 2020).094

In this work, we propose using language-family095

adapters that enable efficient multilingual NMT.096

We train adapters for NMT on top of mBART-097

50 (Tang et al., 2020), a model pretrained on098

monolingual data on 50 different languages. The099

adapters are trained using bi-text from each lan-100

guage family, while the pretrained model is not101

updated. Families are formed based on linguistic102

knowledge bases. Our approach improves positive103

cross-lingual transfer, compared to language-pair104

adapters (Bapna and Firat, 2019), which ignore sim-105

ilarities between languages, and language-agnostic106

adapters (Cooper Stickland et al., 2021), which107

are trained on all languages and can suffer from108

negative interference (Wang et al., 2020).109

Our main contributions are: 1) A novel, effec-110

tive approach for multilingual translation which111

trains adapters on top of a pretrained model for112

each language family. In the English-to-many set-113

ting which we examine, language-family adapters114

achieve a +1 BLEU improvement over language-115

pair adapters and +2.7 BLEU improvement over116

language-agnostic adapters when evaluated on 16117

medium- and low-resource language pairs from118

OPUS-100. 2) We propose inserting embedding-119

layer adapters into the Transformer to encode lex-120

ical information and conduct an ablation study121

to show that they contribute to better translation122

scores across all languages. 3) We contrast group-123

ing languages based on linguistic knowledge to124

grouping them based on clustering the representa-125

tions of a multilingual pretrained language (PLM)126

model using a Gaussian Mixture Model (GMM)127

and provide insights. 4) We analyze the effect of128

our approach when evaluating on languages that129

are new to mBART-50.130

2 Background 131

Massively Multilingual Models. Multilingual 132

masked language models have pushed the start- 133

of-the-art on cross-lingual language understand- 134

ing by training a single model for many languages 135

(Devlin et al., 2019; Conneau and Lample, 2019; 136

Conneau et al., 2020). Encoder-decoder Trans- 137

former (Vaswani et al., 2017) models that are pre- 138

trained using monolingual corpora from multiple 139

languages, such as mBART (Liu et al., 2020), have 140

also shown to outperform strong baselines in NMT. 141

Recently, mBART-50 (Tang et al., 2020) was in- 142

troduced, pretrained in 50 languages and multilin- 143

gually fine-tuned for NMT. However, while mul- 144

tilingual models are known to outperform strong 145

baselines and simplify model deployment, they are 146

susceptible to negative interference/transfer (Mc- 147

Cann et al., 2018; Arivazhagan et al., 2019; Wang 148

et al., 2019b; Conneau et al., 2020) and catastrophic 149

forgetting (Goodfellow et al., 2014) when the pa- 150

rameters of a multilingual model are shared across 151

a large number of languages. Negative transfer af- 152

fects the translation quality of high-resource (Con- 153

neau et al., 2020), but also low-resource languages 154

(Wang et al., 2020). Our approach takes advan- 155

tage of language families and provides the flexi- 156

bility necessary to decode into multiple languages, 157

improving results in both low- and mid-resource 158

scenarios compared to related methods. 159

Adapters for NMT. Adapters are parameter- 160

efficient modules that are typically added to a pre- 161

trained Transformer and are fine-tuned on a down- 162

stream task, while the pretrained model is frozen. 163

Bapna and Firat (2019) add language-pair adapters 164

to a pretrained multilingual NMT model (one set 165

for each language pair), to recover performance for 166

high-resource language pairs. Cooper Stickland 167

et al. (2021) start from an unsupervised pretrained 168

model and train language-agnostic adapters (one 169

set for all language pairs) to improve performance 170

in multilingual NMT. Philip et al. (2020) train 171

monolingual adapters to permit zero-shot transla- 172

tion to directions that were not seen during train- 173

ing, while Üstün et al. (2021) propose denoising 174

adapters, i.e., adapters trained using monolingual 175

data, for unsupervised multilingual NMT. 176

We identify some challenges in relevant previous 177

works (Bapna and Firat, 2019; Cooper Stickland 178

et al., 2021). Scaling language-agnostic adapters 179

to a large number of languages is problematic, as 180

when they are updated with data from multiple 181
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languages, negative transfer occurs. In contrast,182

language-pair adapters do not face this problem,183

but at the same time do not allow any sharing be-184

tween language pairs. Language-family adapters185

intuitively strike a balance, providing a trade-off186

between the two approaches, and our experiments187

show that they lead to higher translation quality.188

Language Families. Extensive work on cross-189

lingual transfer has demonstrated that jointly train-190

ing a model using similar languages can improve191

low-resource results in several NLP tasks, such192

as part-of-speech or morphological tagging (Täck-193

ström et al., 2013; Cotterell and Heigold, 2017),194

entity linking (Tsai and Roth, 2016; Rijhwani et al.,195

2019), and machine translation (Zoph et al., 2016;196

Johnson et al., 2017; Neubig and Hu, 2018; On-197

cevay et al., 2020). Linguistic knowledge bases198

(Littell et al., 2017; Dryer and Haspelmath, 2013)199

study language variation and can provide insights200

to phenomena such as negative interference. Lan-201

guages can be clustered together using linguistic202

information, forming language families. Tan et al.203

(2019) and Kong et al. (2021) leverage families for204

multilingual NMT, the former by training language-205

family NMT models from scratch, the latter by206

training a separate shallow decoder for each fam-207

ily. Instead, our approach keeps a pretrained model208

frozen and only trains language-family adapters,209

which is parameter-efficient.210

3 Language-Family Adapters for NMT211

Fine-tuning a pretrained model for multilingual212

NMT provides a competitive performance, yet213

is computationally expensive, as all layers of214

the model need to be updated. A parameter-215

efficient alternative suggests fine-tuning a pre-216

trained multilingual model for NMT with data from217

all languages of interest using adapters (language-218

agnostic adapters), while keeping the pretrained219

model unchanged. However, as multiple lan-220

guages share the same parameters in a single set221

of adapters, capacity issues arise. Languages are222

also grouped together, even though they might be223

different in terms of geographic location, script,224

syntax, typology, etc. As a result, linguistic di-225

versity is not modeled adequately and translation226

quality degrades.227

We address the limitations of previous methods228

by proposing language-family adapters for multi-229

lingual NMT. We exploit linguistic knowledge to230

enable cross-lingual transfer between related lan-231
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Figure 1: Proposed adapter architecture inside a Trans-
former model. Adapter layers, shown in green, are
trained for NMT. Figure best viewed in color.

guages and avoid negative interference. Our ap- 232

proach is to train adapters using language pairs 233

of a linguistic family on top of mBART-50, while 234

keeping the pretrained model frozen. 235

3.1 Adapter Architecture 236

Adapters are usually added to each Transformer 237

layer. An adapter uses as input the output of the 238

previous layer. Formally: Let zi be the output 239

of the i-th layer, of dimension h. We apply a 240

layer-normalization (Ba et al., 2016), followed by 241

a down-projection D ∈ Rh×d, a ReLU activation 242

and an up-projection U ∈ Rd×h, where d is the 243

bottleneck dimension and the only tunable hyper- 244

parameter. The up-projection is combined with 245

a residual connection (He et al., 2016) with zi ac- 246

cording to the following equation: Adapteri(zi) = 247

U ReLU(D LN(zi)) + zi. This follows Bapna and 248

Firat (2019). Adapters are randomly initialized. 249

3.2 Embedding-layer Adapter 250

Because we keep the token embeddings of mBART- 251

50 frozen, adding flexibility to the model to encode 252

lexical information of the languages of interest is 253

crucial, especially for unseen languages (not part 254

of its pretraining corpus). Lexical cross-lingual 255

information could be encoded by learning new em- 256

beddings for the unseen languages (Artetxe et al., 257

2020) but this would be computationally expen- 258

sive. We instead add an adapter after the embed- 259

ding layer, in both the encoder and the decoder, 260

which receives as input the lexical representation 261

of each sequence and aims to capture token-level 262

cross-lingual transformations. 263

Our approach draws inspiration from Pfeiffer 264
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et al. (2020) and simplifies the invertible adapters265

structure. We use the large vocabulary of mBART-266

50 to extend the model to unseen languages. We267

note that adding scripts that do not exist in the268

vocabulary of mBART-50 is not possible with269

our approach. We point out that Chronopoulou270

et al. (2020); Pfeiffer et al. (2021); Vernikos271

and Popescu-Belis (2021) have recently proposed272

approaches to permit fine-tuning to unseen lan-273

guages/scripts when using PLMs and we leave fur-274

ther exploration to future work.275

3.3 Model Architecture276

To train a model for multilingual NMT, we leverage277

mBART-50, a model pretrained on data from 50278

languages using a denoising auto-encoding objec-279

tive. We want to fine-tune this model on a variety of280

language pairs, by leveraging similarities between281

languages. Our model aims to provide a parameter-282

efficient alternative to traditional fine-tuning of the283

entire pretrained model.284

To this end, we insert adapters after each feed-285

forward layer both in the encoder and in the de-286

coder, following Bapna and Firat (2019) and we287

also add embedding-layer adapters. We freeze the288

pretrained encoder-decoder Transformer and fine-289

tune only the adapters on NMT. We leverage the290

knowledge of the pretrained model, but encode291

additional cross-lingual information on each lan-292

guage family using adapters. We fine-tune a new293

set of adapters multilingually on each language294

family and evaluate the performance on mid- and295

low-resource language pairs. Our proposed model296

architecture is depicted in Figure 1.297

4 Experimental Setup298

Data. We initially fine-tune the model on TED299

talks (Qi et al., 2018), using data from 17 languages300

paired to English. We then scale to a larger paral-301

lel dataset, using OPUS-100 (Zhang et al., 2020)302

for the same languages paired to English (with303

the only exception being English-Filipino, which304

does not appear in OPUS-100). For the TED ex-305

periments, we choose 17 languages, 9 of which306

were present during pretraining, while 8 are new307

to mBART-50. For OPUS-100, we use the same308

16 languages (without Filipino), 9 of which were309

present during pretraining and 7 are new. In both310

sets of experiments, the languages belong to 3 lan-311

guage families, namely Balto-Slavic, Austronesian312

and Indo-Iranian. The parallel data details are re-313

Language (code) Family Train Set
TED OPUS-100

⋆Bulgarian (bg) BS 174k 1M
Persian (fa) I 151k 1M

⋆Serbian (sr) BS 137k 1M
Croatian (hr) BS 122k 1M
Ukrainian (uk) BS 108k 1M
Indonesian (id) A 87k 1M

⋆Slovak (sk) BS 61k 1M
Macedonian (mk) BS 25k 1M
Slovenian (sl) BS 20k 1M
Hindi (hi) I 19k 534k
Marathi (mr) I 10k 27k

⋆Kurdish (ku) I 10k 45k
⋆Bosnian (bs) BS 6k 1M
⋆Malay (ms) A 5k 1M

Bengali (bn) I 5k 1M
⋆Belarusian (be) BS 5k 67k
⋆Filipino (fil) A 3k -

Table 1: Languages used in the experiments. ⋆ indicates
languages that are unseen from mBART-50, i.e., they
do not belong to the pretraining corpus. BS stands for
Balto-Slavic, I for Indoiranian, A for Austronesian.

ported in Table 1. 314

Baselines. We compare the proposed language- 315

family adapters with 1) language-agnostic 316

(LANG-AGNOSTIC) and 2) language-pair 317

adapters (LANG-PAIR). While the adapters are 318

trained using parallel data, mBART-50 (pretrained 319

on monolingual data) is not updated. Moreover, we 320

compare our approach to multilingual fine-tuning 321

(ML-FT), although it requires fine-tuning the entire 322

model and is thus not directly comparable to the 323

parameter-efficient approaches we study. We show 324

this result in the Appendix. 325

The first baseline, LANG-AGNOSTIC adapters, 326

fine-tunes a set of adapters using data from all lan- 327

guages (similar to Cooper Stickland et al., 2021). 328

The second baseline, LANG-PAIR adapters, fol- 329

lows Bapna and Firat (2019): a new set of adapters 330

is trained for each language pair, so no parameters 331

are shared between different language pairs. 332

Training details. We start from the mBART-50 333

checkpoint2. We extend its embedding layer with 334

randomly initialized vectors to account for the new 335

languages. We reuse the 250k sentencepiece (Kudo 336

and Richardson, 2018) model of mBART-50. We 337

use the fairseq (Ott et al., 2019) library for all ex- 338

periments. We select the final models using valida- 339

tion perplexity. If the model is trained on multiple 340

languages (using mixed mini-batches), we use the 341

2https://github.com/pytorch/fairseq
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Model
BALTO- AUSTRO- INDO-
SLAVIC NESIAN IRANIAN

bg⋆ sr⋆ hr uk sk⋆ mk sl bs⋆ be⋆ id ms⋆ fil⋆ fa hi mr ku⋆ bn AVG

OPUS-100
Lang-pair 27.8 17.5 23.7 17.7 25.0 35.0 24.1 21.0 10.1 28.0 24.5 - 10.5 15.6 17.0 14.1 13.0 20.3
Lang-agnostic 21.6 19.7 21.4 13.8 24.1 28.9 19.6 19.5 11.3 28.6 21.8 - 8.1 16.9 17.8 12.8 11.2 18.6
Lang-family 25.4 20.9 23.7 15.1 27.7 31.9 22.6 20.3 15.2 31.3 25.4 - 9.8 18.7 25.0 15.3 12.9 21.3

TED
Lang-pair 35.7 21.1 30.5 21.1 24.2 27.0 21.4 28.6 12.5 35.4 23.4 12.2 14.0 14.1 10.0 4.9 9.0 20.3
Lang-agnostic 31.7 24.0 29.7 21.9 20.6 26.5 20.2 27.8 7.7 33.8 22.1 11.6 17.0 15.5 7.0 3.3 6.0 19.2
Lang-family 33.8 25.1 30.5 22.2 22.8 28.0 21.5 27.8 9.5 34.7 22.0 11.5 17.5 19.8 10.3 4.1 11.6 20.7

Table 2: Test set BLEU scores when translating out of English (en → xx) on OPUS-100 and TED. LANG-PAIR stands
for language-pair, LANG-AGNOSTIC for language-agnostic, and LANG-FAMILY for language-family adapters.
Languages denoted with ⋆ are new to mBART-50. Results in bold are significantly different (p < 0.01) to the best
adapter baseline.

overall perplexity. We use beam search with size342

5 for decoding and evaluate BLEU scores using343

SacreBLEU 3 for OPUS-100 and SacreBLEU with-344

out tokenization for TED (Post, 2018). We also345

compute COMET (Rei et al., 2020) scores using346

the wmt-large-da-estimator-1719 pretrained model.347

Results are reported in the Appendix.348

To train the models, we freeze mBART-50. We349

fine-tune the LANG-FAMILY, LANG-AGNOSTIC350

adapters in a multilingual, one-to-many setup, us-351

ing English as the source language. LANG-PAIR352

adapters are fine-tuned for each language pair. All353

models have a bottleneck dimension of 512. We354

otherwise use the same hyperparameters as Tang355

et al. (2020) and report them in the Appendix.356

5 Results and Discussion357

5.1 Main results358

Table 2 shows translation results for a subset of lan-359

guages of OPUS-100 and TED in terms of BLEU360

using parallel data to fine-tune mBART-50 in the361

en → xx direction. We also report COMET scores362

in the Appendix.363

Our approach (LANG-FAMILY) consistently im-364

proves results, with an average +1 BLEU per-365

formance boost across all languages compared366

to fine-tuning with LANG-PAIR adapters on367

OPUS-100 and +2.7 improvement compared to368

LANG-AGNOSTIC adapters. This shows that repre-369

sentations from similar languages are beneficial to a370

multilingual model in a low- and medium-resource371

setup. As the LANG-PAIR approach trains a new372

set of adapters on each language pair, it completely373

ignores similarities between languages and does374

not benefit from potential positive transfer, obtain-375

ing worse translations.376

3Signature “BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.1”

Parameters Runtime GPUs

LANG-AGNOSTIC 27M 35h 8
LANG-FAMILY 81M 78h 8
LANG-PAIR 432M 192h 8

Table 3: Parameters used by our approach and the base-
lines to train on OPUS-100.

We note that our approach is also a lot more 377

efficient than the LANG-PAIR approach, as it re- 378

quires only 20% of the parameters of LANG-PAIR 379

adapters. 380

The most related baseline, LANG-AGNOSTIC, 381

which groups all languages together, provides 18.6 382

BLEU score on average on OPUS-100. Training a 383

set of adapters jointly on languages from different 384

linguistic families hinders the decoding ability of 385

the model, as negative interference affects its cross- 386

lingual ability. Our approach instead fine-tunes a 387

model on multiple languages which are similar to 388

each other, yielding a +2.7 improvement compared 389

to LANG-AGNOSTIC when trained and evaluated 390

in OPUS-100. This showcases the utility of our 391

model, which leverages both multilingual learning 392

and language-family specific representations. 393

Our approach also outperforms both baselines on 394

TED. It yields a +1.5 performance boost compared 395

to LANG-AGNOSTIC and +0.4 BLEU compared 396

to LANG-PAIR. This shows that selectively shar- 397

ing languages together is more beneficial compared 398

to grouping them all together or training each lan- 399

guage pair separately. Although the improvement 400

is marginal compared to LANG-PAIR, we note that 401

our approach is also a lot more efficient in terms of 402

parameters and easy to deploy. 403

5



BALTO- AUSTRO- INDO-
SLAVIC NESIAN IRANIAN

bg hr mk be id ms fa ku bn AVG-16

LANG-AGNOSTIC w/o emb adapter 21.3 21.5 28.3 10.5 28.7 21.5 7.6 12.4 10.9 18.1
LANG-AGNOSTIC with emb adapter (BASELINE) 21.6 21.4 28.9 11.3 28.6 21.8 8.1 12.8 11.2 18.6
LANG-FAMILY w/o emb adapter 24.3 22.6 31.2 13.4 31.4 25.2 9.0 13.7 12.2 20.6
LANG-FAMILY with emb adapter (OURS) 25.4 23.7 31.9 15.2 31.3 25.4 9.8 15.3 12.9 21.3

Table 4: Ablation of the proposed architecture for en → xx (BLEU scores) on OPUS-100. We present results only
for a subset of languages per language family. Full results can be found in the Appendix.

5.2 Computational cost404

We show in Table 3 the number of trainable pa-405

rameters used for each approach. The mBART-406

50 model has 680M parameters. Our approach407

trains parameters that add up to just 11.9% of the408

full model. LANG-AGNOSTIC is the most efficient409

approach, requiring just 8.4% trainable parame-410

ters. However, there is a cost in terms of per-411

formance compared to our model. Finally, train-412

ing LANG-PAIR adapters is relatively expensive413

(52.2% of the trainable parameters of mBART-50).414

All in all, our LANG-FAMILY approach provides415

a trade-off between performance and efficiency416

in terms of model parameters and is an effective417

method of adapting pretrained multilingual models418

to mid- and low-resource languages.419

5.3 Embedding-layer adapter420

In our proposed approach, the encoder and decoder421

embeddings are not updated during fine-tuning. We422

hypothesize that the model cannot learn useful lexi-423

cal representations that would be fed to the encoder424

or decoder and finally result in better decoding to425

the target languages. To overcome this issue, we426

introduce an adapter after the encoder embedding427

layer, as well as after the decoder embedding layer.428

We do not tie these adapter layers, since they only429

add up a small number of parameters (1M each,430

i.e., 0.1% of mBART-50 parameters).431

As we can see in Table 4, we get consis-432

tent gains across almost all language pairs by433

adding these adapters, for both our model and the434

LANG-AGNOSTIC baseline. The former yields a435

+0.5 performance boost, while the latter a +0.7436

improvement in terms of BLEU. While the gains437

are modest, they are consistent and come at a438

very small computational overhead. For some lan-439

guages, such as Kurdish (which is an unseen lan-440

guage for mBART-50), results improve by +1.6441

when using embedding-layer adapters. Since Kur-442

dish is not part of mBART-50 pretraining corpus,443

encoding token-level representations is in this case 444

more challenging and embedding-layer adapters 445

allows the model to specialize in this language. 446

5.4 Automatic clustering of languages 447

Gaussian Mixture Model. For our main set of ex- 448

periments, we used language families from WALS. 449

However, not all languages in a single language 450

family share the same linguistic properties (Ah- 451

mad et al., 2019). Moreover, it can often be the 452

case that a language pair with data from a specific 453

domain (e.g., Twitter) might not have a positive 454

overlap, if trained together with a language pair 455

from a distant domain (e.g., EuroParl). Training a 456

model with data from heterogeneous domains leads 457

to degraded performance, as was recently shown 458

for the task of language modeling (Chronopoulou 459

et al., 2021). 460

A data-driven approach may be able to induce 461

the similarities between languages in an unsuper- 462

vised way. To this end, we group languages to- 463

gether using Gaussian Mixture Model (GMM) clus- 464

tering of text representations obtained from a PLM 465

(Aharoni and Goldberg, 2020). We used released 466

code by the authors of the paper.4 467

We use XLM-R (Conneau et al., 2020), a multi- 468

lingual PLM and specifically the xlmr-roberta-base 469

HuggingFace (Wolf et al., 2020) checkpoint. We 470

encode 500 sequences of 512 tokens from each 471

language (using the OPUS-100 dataset) to create 472

sentence representations, by performing average 473

pooling of the last hidden state. We then use PCA 474

projection of dimension 100 and fit the sentence 475

representations to a GMM with 3 components (3 476

Gaussian distributions, i.e., clusters). As this is a 477

soft assignment, every language belongs with some 478

probability to one or more clusters. We present the 479

confusion matrix in the Appendix. For simplicity, 480

we map each language to just one cluster based on 481

where the majority of its samples are assigned to. 482

4https://github.com/roeeaharoni/
unsupervised-domain-clusters
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Language Groups bg id fa be ku AVG

ling. family <be, bg, sr, hr, uk, sk, mk, sl, bs> <id, ms> <ku, fa, hi, mr, bn> 25.4 31.3 9.8 15.2 15.3 21.3
GMM <bg, sr, hr, uk, sk, mk, sl, bs> <ku, id, ms> <be, fa, hi, mr, bn> 23.9 29.7 9.2 14.9 14.3 19.4
random <bg, hr, mk, bs, be, ms, hi, mr, ku> <sl, id> <sr, uk, sk, fa, bn> 22.9 27.8 7.0 12.1 15.0 18.4

Table 5: Evaluation of different methods to form language families for en → xx (BLEU) on OPUS-100. We present
results only for a subset of languages. Full results are shown in the Appendix.
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Figure 2: 2D projection of the GMM clustering. We
use red (and the circle or star sign) for languages that
belong to the Balto-Slavic family (according to linguis-
tic knowledge), blue (plus sign) for Austronesian, green
(triangle or reversed triangle sign) for Indo-Iranian lan-
guages. Notice that the languages that are primarily
“mis-allocated” (i.e., belong to a linguistic family differ-
ent to the cluster they are assigned to) are Belarusian
(star sign) and Kurdish (triangle sign).

We confirm that XLM-R has a strong cross-lingual483

ability, as it was able to separate the languages to484

clusters, which correspond almost exactly to the485

families formed by linguistic knowledge.486

In Figure 2, we show a 2-dimensional projection487

of the GMM clustering and in Table 5 (second row),488

the language groups that were formed by the same489

clustering. We notice that the GMM clusters are for490

the most part corresponding to the groups formed491

by linguistic knowledge. In our experiments, only492

Belarusian and Kurdish were allocated to groups493

that contained languages that are largely different.494

We believe that this might be caused by some do-495

main mismatch, for example between the parallel496

dataset of Belarusian and those of the other Balto-497

Slavic languages. We have randomly sampled a498

subset of data for all languages, therefore we be-499

lieve that the clustering obtained is robust to data500

variations.501

Results. We see in Table 5 that training adapters us- 502

ing language groups computed by GMM clustering 503

yields worse translation scores in terms of BLEU 504

compared to language groups based on linguistic 505

similarities. We conclude that perhaps it could be 506

helpful to automatically cluster languages together, 507

in the absence of linguistic knowledge bases. How- 508

ever, when such resources are available, leveraging 509

them provides a more accurate translation model. 510

Moreover, randomly clustering languages to- 511

gether is ineffective, as expected. We believe that 512

this shows that taking into account linguistic sim- 513

ilarities or similar cross-lingual representations is 514

beneficial when training a multilingual model for 515

NMT. By ignoring relations between languages, 516

negative interference can occur and hinder the over- 517

all translation quality of the model. 518

Δ
 B

LE
U

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

avg balto-slavic avg austronesian avg indo-iranian

language family adapters language-agnostic adapters

Figure 3: Grouping based on language family using
OPUS-100. Difference (in terms of BLEU) compared
to the performance of the LANG-PAIR model is shown.

6 Analysis 519

6.1 Performance according to language family 520

To evaluate the contribution of grouping languages 521

based on linguistic information, we compute the 522

difference of LANG-FAMILY adapters compared to 523

the LANG-AGNOSTIC baseline per language fam- 524

ily in terms of BLEU score. We show the results in 525

Figure 3. The LANG-PAIR baseline is displayed as 526

the x-axis in the same Figure. 527

Compared to the LANG-AGNOSTIC baseline, 528

LANG-FAMILY adapters perform better in all lan- 529

7



guage families. On Balto-Slavic, our approach530

performs on par with the LANG-PAIR baseline531

(<0.5 BLEU difference). On both Austronesian532

and Indo-Iranian, our approach largely outperforms533

(more than +2 BLEU) both the LANG-PAIR and the534

LANG-AGNOSTIC baselines. This is arguably the535

case because LANG-AGNOSTIC adapters, trained536

using parallel data from all languages, group dis-537

similar languages together and do not take into538

account language variation. Training adapters us-539

ing languages with common linguistic properties540

results in consistently improved translations.541

We also observe that LANG-AGNOSTIC542

adapters perform worse than LANG-PAIR adapters543

when evaluated on each language family. This544

intuitively makes sense, as multilingual approaches545

only surpass the performance of bilingual ones546

in very low-resource scenarios. For most of547

the language pairs examined in our setup, we548

have 1M parallel sentences available, therefore549

a bilingual model yields a higher translation550

accuracy. Of course, training such a model is a551

lot more computationally expensive than both our552

approach and the LANG-AGNOSTIC baseline and553

the number of parameters grows linearly with the554

number of language pairs (see Table 3).555

6.2 Performance on seen vs unseen languages556

We also evaluate the performance of language-557

family adapters on languages that are not included558

in the mBART-50 pretraining data (unseen), com-559

pared to results on languages that belong to its560

pretraining corpus (seen). We present the re-561

sults in Figure 4. We observe that LANG-FAMILY562

adapters boost the translation quality compared563

to the LANG-PAIR adapter baseline (depicted as564

the x-axis) on unseen languages. As the pre-565

trained model has no knowledge of these lan-566

guages, LANG-FAMILY adapters provide useful567

cross-lingual signal. LANG-FAMILY adapters that568

are fine-tuned on seen languages also yield an im-569

provement compared to baselines.570

LANG-AGNOSTIC adapters perform signifi-571

cantly worse than both our approach and the572

LANG-PAIR baseline. This might be the case be-573

cause of negative transfer between unrelated lan-574

guages, that are clustered and trained together using575

the LANG-AGNOSTIC model. This issue is preva-576

lent for both the seen and the unseen languages.577

Δ
 B

LE
U

-3.0

-2.0

-1.0

0.0

1.0

2.0

avg unseen avg seen

language family adapters language-agnostic adapters

Figure 4: Grouping based on “seen” (existing in the
pretraining corpus), or “unseen” language using OPUS-
100. Difference (in terms of BLEU) compared to the
performance of the LANG-PAIR model is shown.

7 Conclusion 578

We have presented a novel approach for fine-tuning 579

a pretrained multilingual model for NMT using 580

language-family adapters. Our approach can be 581

used for multilingual NMT, combining the modu- 582

larity of adapters with effective cross-lingual trans- 583

fer between related languages. We have shown 584

that language-family adapters perform better than 585

both language-agnostic and language-pair adapters, 586

while being computationally efficient. We also con- 587

trast our method of grouping languages together 588

based on language families to an automatic way of 589

clustering data from different languages, using the 590

representations of a pretrained multilingual model 591

and discuss the potential utility of this method. Fi- 592

nally, for languages new to mBART-50, we have 593

shown that our approach provides an effective way 594

of leveraging shared cross-lingual information be- 595

tween similar languages, considerably improving 596

translations versus the baselines. 597

In the future, a more elaborate approach to en- 598

code lexical-level representations could further 599

boost the performance of language-family adapters. 600

We also hypothesize that the effectiveness of our 601

model could be leveraged for other cross-lingual 602

tasks, such as natural language inference, document 603

classification and question-answering. 604

8



8 Limitations and Risks605

Our work uses a large multilingual pretrained606

model. As unsupervised models are trained on607

large chunks of monolingual data from a lot of608

languages in the Internet, they encode biases that609

could harm marginalized populations (Bender et al.,610

2021). The NMT model we propose could be used611

to translate toxic text. However, we believe that612

adapters could potentially be used to specialize a613

multilingual pretrained model to not generate trans-614

lations that contain hateful or toxic language.615
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A Appendix965

A.1 Dataset statistics966

First, we show the script and language family (ac-967

cording to linguistic information) of each language968

used in our set of experiments in Table 6. We also969

present in detail the statistics of all parallel data970

used in our set of experiments in Table 8. We note971

that the number of train, validation and test set972

presented refers to sentences.973

The TED dataset we used can be974

downloaded using the command wget975

http://phontron.com/data/976

ted_talks.tar.gz while the OPUS-100977

can be downloaded from the following link. We978

include the urls in the main repository of the979

submitted code, in the download_data.sh file.980

Language (code) Family Script

⋆Bulgarian (bg) Balto-Slavic Cyrillic
Persian (fa) Indo-Iranian Arabic

⋆Serbian (sr) Balto-Slavic Cyrillic
Croatian (hr) Balto-Slavic Latin
Ukrainian (uk) Balto-Slavic Cyrillic
Indonesian (id) Austronesian Latin

⋆Slovak (sk) Balto-Slavic Latin
Macedonian (mk) Balto-Slavic Cyrillic
Slovenian (sl) Balto-Slavic Latin
Hindi (hi) Indo-Iranian Devanagari
Marathi (mr) Indo-Iranian Devanagari

⋆Kurdish (ku) Indo-Iranian Arabic
⋆Bosnian (bs) Balto-Slavic Cyrillic
⋆Malay (ms) Austronesian Latin

Bengali (bn) Indo-Iranian Bengali
⋆Belarusian (be) Balto-Slavic Cyrillic
⋆Filipino (fil) Austronesian Latin

Table 6: Languages that are used in the experiments.
⋆ indicates languages that are unseen from mBART-
50, i.e., they do not belong to the pretraining corpus.
Filipino is only used in the TED experiments.

981

Adapter size Dropout Lang-Family Lang-Agnostic

128 0.1 16.8 10.1
128 0.3 16.4 9.5
256 0.1 19.0 14.9
256 0.3 18.6 14.0
512 0.1 20.7 19.2
512 0.3 19.9 18.5

Table 7: Hyperparameter tuning for dropout, adapter
bottleneck size on TED. Average performance (on all
language pairs using TED) per model. We chose the
best-performing combination of dropout and bottleneck
size for our experiments.

A.2 Training details 982

We train each model for 130k updates with a 983

batch size of 900 tokens per GPU for OPUS-100 984

and 1024 tokens per GPU for TED. We use 8 985

NVIDIA-V100 GPUs for OPUS-100 and 2 GPUs 986

for TED (much smaller dataset). We evaluate mod- 987

els after 5k training steps. We use early stop- 988

ping with a patience of 5. To balance high and 989

low-resource language pairs, we use temperature- 990

based sampling (Arivazhagan et al., 2019) with 991

T = 1.5. We include the command we used to 992

train the language-family adapter in OPUS-100 993

in the train_lang_family_adapter.sh 994

script in the main repository of the uploaded code. 995

A.3 Evaluation of main results using 2 metrics 996

We evaluate the translations of our model 997

(LANG-FAMILY adapters) and all the baselines 998

trained on OPUS-100 using COMET (Rei et al., 999

2020). COMET leverages progress in cross-lingual 1000

language modeling, creating a multilingual ma- 1001

chine translation evaluation model that takes into 1002

account both the source input and a reference 1003

translation in the target language. We rely on 1004

wmt-large-da-estimator-1719. COMET 1005

scores are not bounded between 0 and 1; higher 1006

scores signify better translations. Our results are 1007

summarized in Table 10. We see that COMET cor- 1008

relates with BLEU in our experiments. 1009

A.4 Hyperparameters 1010

We tune the dropout and the adapter bottleneck size 1011

on TED. We use values 0.1, 0.3 for the dropout and 1012

128, 256, 512 for the bottleneck size. We list the 1013

hyperparameters we used to train both our proposed 1014

model and the baselines in Table 9. 1015

A.5 Embedding-layer results 1016

We report in Table 11 the results of the abla- 1017

tion study concerning the use of embedding-layer 1018

adapters on all languages. 1019

A.6 Position of adapter in the encoder layer 1020

We had initially (in the first submission of our pa- 1021

per) inserted the adapter layer in the encoder side 1022

of the Transofmer before the feed-forward layer. 1023

However, more careful experimentation showed 1024

that the best model architecture for our setup is 1025

adding the adapter after the feed-forward layer, fol- 1026

lowing Bapna and Firat (2019). We show results of 1027

both model architectures in Table 13. We note that 1028

13

https://object.pouta.csc.fi/OPUS-100/v1.0/opus-100-corpus-v1.0.tar.gz


Language Source Train Valid Test Source Train Valid Test

Bulgarian (bg) TED 174k 4082 5060 OPUS-100 1M 2k 2k
Persian (fa) TED 151k 3930 4490 OPUS-100 1M 2k 2k
Serbian (sr) TED 137k 3798 4634 OPUS-100 1M 2k 2k
Croatian (hr) TED 122k 3333 4881 OPUS-100 1M 2k 2k
Ukrainian (uk) TED 108k 3060 3751 OPUS-100 1M 2k 2k
Indonesian (id) TED 87k 2677 3179 OPUS-100 1M 2k 2k
Slovak (sk) TED 61k 2271 2445 OPUS-100 1M 2k 2k
Macedonian (mk) TED 25k 640 438 OPUS-100 1M 2k 2k
Slovenian (sl) TED 20k 1068 1251 OPUS-100 1M 2k 2k
Hindi (hi) TED 19k 854 1243 OPUS-100 534k 2k 2k
Marathi (mr) TED 10k 767 1090 OPUS-100 27k 2k 2k
Kurdish (ku) TED 10k 265 766 OPUS-100 45k 2k 2k
Bosnian (bs) TED 6k 474 463 OPUS-100 1M 2k 2k
Malay (ms) TED 5k 539 260 OPUS-100 1M 2k 2k
Bengali (bn) TED 5k 896 216 OPUS-100 1M 2k 2k
Belarusian (be) TED 5k 248 664 OPUS-100 67k 2k 2k
Filipino (fil) TED2020 3k 338 338 OPUS-100 - - -

Table 8: Dataset details for TED (Qi et al., 2018; Reimers and Gurevych, 2020) and OPUS-100 (Zhang et al., 2020).

Hyperparameter Value

Checkpoint mbart50.pretrained
Architecture mbart_large
Optimizer Adam
β1, β2 0.9, 0.98
Weight decay 0.0
Label smoothing 0.2
Dropout 0.1
Attention dropout 0.1
Batch size 1024 tokens
Update frequency 2
Warmup updates 4k
Total number of updates 130k
Max learning rate 1e-04
Temperature sampling 5
Adapter dim. 512

Table 9: Fairseq hyperparameters used for our set of
experiments.

both model architectures include embedding-layer1029

adapters, and 1 adapter/transformer layer in both1030

the encoder and the decoder.1031

A.7 Results using GMM, random clustering1032

and language families1033

Full results of Table 5 can be seen in Table 12.1034

LANG-FAMILY LANG-PAIR ML-FT
Lang BLEU COMET BLEU COMET BLEU COMET

bg 25.4 67.2 27.8 72.1 28.0 76.5
sr 20.9 44.3 17.5 38.2 21.1 48.4
hr 23.7 55.0 23.7 53.1 24.5 55.1
uk 15.1 -17.0 17.7 14.4 17.1 35.9
sk 27.7 54.3 25.0 50.1 30.5 64.9
mk 31.9 62.9 35.0 64.1 35.6 62.1
sl 22.6 48.9 24.1 65.8 24.5 64.3
bs 20.3 44.1 21.0 37.1 22.1 50.8
be 15.2 -10.2 10.1 -21.6 17.9 36.6
id 31.3 60.1 28.0 64.0 31.5 60.1
ms 25.4 53.5 24.5 66.1 25.5 68.0
fa 9.8 -23.5 10.5 -22.1 9.5 -15.0
hi 18.7 39.1 15.6 -19.1 18.4 36.4
mr 25.0 67.0 17.0 9.0 24.7 58.1
ku 15.3 -18.5 14.1 -12.9 15.6 -9.1
bn 12.9 -16.0 13.0 -24.1 14.1 -8.5

avg 21.3 32.0 20.3 27.1 22.5 42.8

Table 10: Test set BLEU and COMET scores when trans-
lating out of English using OPUS-100. Languages
are presented by decreasing amount of parallel data
per language family. LANG-PAIR stands for language-
pair adapters, LANG-AGNOSTIC for language-agnostic,
while LANG-FAMILY for language-family adapters.
ML-FT stands for multilingual fine-tuning of the entire
mBART-50 model.
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bg⋆ sr⋆ hr uk sk⋆ mk sl bs⋆ be⋆ id ms⋆ fa hi mr ku⋆ bn AVG

Lang-agnostic w/o emb 21.3 19.0 21.5 13.9 23.6 28.3 19.1 18.9 10.5 28.7 21.5 7.6 16.1 16.9 12.4 10.9 18.1
Lang-agnostic with emb 21.6 19.7 21.4 13.8 24.1 28.9 19.6 19.5 11.3 28.6 21.8 8.1 16.9 17.8 12.8 11.2 18.6
Lang-family w/o emb 24.3 20.4 22.6 14.8 26.3 31.2 21.9 20.6 13.4 31.4 25.2 9.0 18.3 23.7 13.7 12.2 20.6
Lang-family with emb 25.4 20.9 23.7 15.1 27.7 31.9 22.6 20.3 15.2 31.3 25.4 9.8 18.7 25.0 15.3 12.9 21.3

Table 11: Full results of the ablation of the proposed architecture for en → xx (BLEU scores) on OPUS-100. Bold
results indicate best performance on average.

bg sr hr uk sk mk sl bs be id ms fil fa hi mr ku bn AVG

GMM 23.9 17.7 24.4 11.0 19.3 22.9 19.0 23.6 14.9 29.7 23.4 - 9.2 18.8 25.5 14.3 13.2 19.4
random 22.9 18.8 23.5 10.0 22.5 31.9 21.1 20.1 12.1 25.8 24.9 - 5.0 18.6 22.9 15.0 8.1 18.4

Table 12: Evaluation of different methods to form language families for en → xx (BLEU) on OPUS-100.

bg sr hr uk sk mk sl bs be id ms fil fa hi mr ku bn AVG

Lang. family before ff 32.7 24.6 30.2 21.7 21.5 26.8 20.4 27.2 9.2 33.8 22.8 11.7 17.1 19.1 9.5 4.2 9.8 20.1
Lang. family after ff 33.8 25.1 30.5 22.2 22.8 28.0 21.5 27.8 9.5 34.7 22.0 11.5 17.5 19.8 10.3 4.1 11.6 20.7
Lang. agnostic before ff 30.7 23.4 28.8 21.3 19.7 25.3 19.7 26.5 8.1 32.9 22.2 11.5 16.5 14.8 6.5 3.3 6.0 18.7
Lang. agnostic after ff 31.7 24.0 29.7 21.9 20.6 26.5 20.2 27.8 7.7 33.8 22.1 11.6 17.0 15.5 7.0 3.3 6.0 19.2

Table 13: BLEU scores on TED of our proposed approach and the LANG-AGNOSTIC baseline, using two different
model architectures. Before ff refers to adding an adapter in the encoder before the feed-forward layer. Bold results
indicate best performance on average.
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