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Abstract

Large language models (LLMs) have im-
pressive in-context learning ability. When
prompted with a few examples of the same task,
LLMs can solve new questions without task-
specific training, demonstrating their ability of
in-context learning. Recent studies revealed
that the selection of contexts can significantly
affect the LM’s answer quality. In this work,
we propose Reward-Guided Example Selec-
tion(ReGES), a novel method that learns to iter-
atively select in-context examples conditioned
on the input question from feedback. Given
a task and an example set, we use the MCTS
algorithm to select different in-context exam-
ples, collect the LLM’s outputs, and evaluate
their accuracies. Then, we leverage the offline
RL algorithm to train a value function to esti-
mate the reward from in-context learning. Dur-
ing inference, we iteratively select a sequence
of in-context examples for the given question
based on the prediction of the value function.
Our method substantially improves the perfor-
mance of several LLMs (Vicuna, LLaMA-2,
GPT3.5) on four benchmarks (GSMS8K, Strat-
egy QA, TREC, QNLI), and can be combined
with in-context example retrieval method to
give further improvement. When combined
with BM25, ReGES achieves up to +6.6 ac-
curacy improvement with an average of +2.25
over strong baselines. Moreover, we observe
consistent improvement while applying the in-
context examples selected by our method to
language models that are not used during the
training phase, demonstrating its generalization
ability.

1 Introduction

Recent Transformer-based (Vaswani et al., 2017)
large language models (LLMs) show impressive
ability in various language tasks. However, fur-
ther improving off-the-shelf LLMs’ performance
on specific tasks is still required in many practi-
cal scenarios. One solution is to fine-tune LLMs

with more training data, which could substantially
improve the model’s performance. However, this
approach is computationally expensive, sometimes
even infeasible, since some models are not avail-
able for fine-tuning. Gathering enough annotations
for fine-tuning is also expensive and sometimes
infeasible for low-resource tasks.

Another way to improve the model’s perfor-
mance is in-context learning (ICL) (Wang et al.,
2023; Rubin et al., 2021; Fu et al., 2022). ICL
leverages LLMs’ ability to learn from only a few
examples in the prompt to solve new problems of
the same task without additional training. This
method enables fast and cheap adaptation of LLMs
to new tasks. However, the number of examples
that can be put into the prompt is limited by the
context lengths of the LLMs, and the performance
of ICL is usually inferior to fine-tuning approaches.
Some recent works (Rubin et al., 2021; Liu et al.,
2021; Wu et al., 2022) have shown that different
choices of in-context examples can significantly af-
fect the output quality. When given good and care-
fully chosen contexts, an LLLM’s performance can
match the performance of an LLM that is fine-tuned
with more data. On the other hand, when given bad
contexts, an LLM’s output may be almost random
(Zhao et al., 2021; Lu et al., 2021; Gao et al., 2020).
Therefore, it is crucial to select useful examples to
achieve a good ICL performance.

Existing work has employed a wide range of
methods to select good in-context samples for
ICL, including searching, heuristic-based (Fu et al.,
2022; Wu et al., 2022), retrieval (Rubin et al., 2021;
Wang et al., 2023), and so on. Specifically, Ye et al.
(2023) model the correlations between the selected
examples, but the potentially complex semantic re-
lationship between examples remains unexplored.
Zhang et al. (2022) use offline reinforcement learn-
ing to train models that select examples iteratively.
However, they use a simple MLP for value predic-
tions. As a result, their state representation contains
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Figure 1: LLaMA?2 13B performance significantly im-
proves after applying our method.

no semantic information about the selected exam-
ples, which restricts their approach to classification
tasks and smaller language models.

In this paper, we propose Reward-Guided
Example Selection (ReGES), an algorithm that
iteratively adds useful examples to the context
to achieve high-performance in-context learning.
Specifically, we formulate the context selection
problem as a sequential decision problem, where
a state is the current context, which contains zero
or more selected examples; an action is adding an
example to the context. To solve this problem, we
follow the following three steps. 1) We first gen-
erate sequences of in-context examples for each
question, get the LLM’s answers to the question
conditioned on the examples, and evaluate the qual-
ity of the answers. The samples are collected using
the Monte-Carlo tree search (MCTS) algorithm
to ensure that they contain enough high-quality
example sequences that are useful for training in
the following step. 2) We then leverage an offline
RL method (Sutton and Barto, 2018; Levine et al.,
2020) and a contrastive loss (Chen et al., 2020)
to learn a value function to estimate the expected
success rate for a given question and a sequence
of examples. 3) Finally, during inference, given
a new question, we iteratively call the value func-
tion to predict the next most useful example and
add it to the context, until the model selects a ter-
minal action or reaches the maximum number of
examples.

To validate the effectiveness of our method, we
empirically evaluate our method on four datasets
(GSMBK, Strategy_QA, TREC, and QNLI) us-
ing three LLM families (Vicuna, LLaMA-2, and
GPT). Results show that our method consistently
improves the LLMs’ performance on various NLP
tasks. Furthermore, our method can be further im-
proved when combined with other retrieval-based
methods (i.e., BM25) to filter a subset of candidates
from a large candidate pool and rerank with our
value function.

Our contributions are summarized as follows:

* By formulating the example selection prob-
lem for in-context learning as a sequential
decision-making problem, we propose a new
method, Reward-Guided Example Selection
(ReGES), that iteratively selects examples to
maximize the reward of answering the ques-
tion;

* We propose an MCTS-based sampling method
to collect the LLM’s answer quality given dif-
ferent in-context examples, and subsequently
use an offline RL method to train the value
function to estimate the expected reward for a
question and a set of in-context examples;

* We show that our method consistently im-
proves LLM’s in-context learning perfor-
mance on different NLP tasks, from compara-
tively easy natural language inference to com-
plicated multi-step reasoning, and is general-
izable to other LLMs.

2 Related Work

In-Context Learning Large language models
are known to have impressive in-context learning
abilities. Recent LLLMs, like GPT series (Brown
et al., 2020; OpenAl, 2023) and the LLaMA family
(Touvron et al., 2023a; Chiang et al., 2023), are able
to solve new questions without task-specific train-
ing when only prompted with a few examples of the
same task, which has motivated the research com-
munity to explore the area of in-context learning.
One possible direction is to interpret the mechanics
behind such ability, where (Xie et al., 2021) con-
sider in-context learning as implicit Bayesian infer-
ence, while (Dai et al., 2022) explain language mod-
els as meta-optimizers and understand in-context
learning as implicit finetuning. Another direction
is to improve in-context ability, which our work



falls into by selecting a better set of in-context ex-
amples.

Example Selection There are some existing
methods for selecting in-context examples. (Fu
et al., 2022) design a heuristic criterion for tasks
with chain-of-thought answers, by selecting the
most complex samples (the ones with the most
reasoning steps) as context, and empirically con-
firm that this simple heuristic can improve the qual-
ity of outputs in several reasoning datasets. (Ye
et al., 2023) propose compositional exemplars for
in-context learning, which leverage the determinan-
tal point process (DPP) algorithm to select a diverse
yet relevant set of examples using a contrastive loss.
(Wu et al., 2022) propose a select-then-rank frame-
work, where in the reranking phase, they prioritize
the examples that make the LLLM more confident.
(Rubin et al., 2021) and (Wang et al., 2023) uses
different methods to train a dense retriever, and
use it to retrieve examples. (Zhang et al., 2022) use
offline reinforcement learning to train an MLP scor-
ing function for examples, and iteratively select the
example with the highest score, but the simple de-
sign of its model and state restricts its effectiveness
within smaller LMs, and the performance improve-
ment diminishes in GPT3. (Wang et al., 2023) also
follows an iterative process for example selection.
However, the main difference is that they iteratively
train a dense retriever that selects useful examples.
In each iteration, the retriever retrieves examples
for the questions in the training set, uses them as
input to the LLM, and evaluates the outputs’ qual-
ity by their log-likelihood of generating the ground
truth. This additional data is used to further train
the retriever for the next iteration.

3 Preliminary

3.1 Background

In-Context learning In-context learning is a
learning approach that enables a model to learn
from the input, without fine-tuning the model. For
a given target question ¢ that we want the LLM to
answer, we provide a context c that contains help-
ful information to answer q. We use E + ¢ as the
input to the LLM, where + denotes string concate-
nation. The context F is comprised of zero or more
examples, ¥ = eg + e + . .., where e; denotes an
example question-answer pair. The examples are
selected from an example pool £ available to the
LLM, thatis, e; € £ forall e; in FE.

Reinforcement learning In this paper, we con-
sider a sequential decision-making approach to ex-
ample selection. We formulate the example selec-
tion problem as a Markov decision process. Con-
cretely, a state is the target question that the LLM
needs to answer and a set of (zero or more) ex-
amples that we already selected from the example
pool; an action is the next example to select. The
reward is defined by the quality of the LLM output
using the selected examples as the context. The
goal of this sequential decision-making problem is
to select examples incrementally so that when the
selected examples are used as context, the LLM
generates a high-quality response.

3.2 Problem Formulation

We are now ready to formally define the example
selection problem in in-context learning that we
address in this paper. Given the target question
q, we want to optimally select examples from an
example set, and use them as context in the input
to the LLM in order to optimize the quality of the
output. Due to the context length of the LLM,
we consider selecting up to [N examples as the
context, where N is a pre-defined parameter. The
output of the LLM is evaluated by a task-dependent
score function, denoted by S. The score function
is the LLM’s answer accuracy in most cases. The
objective of the example selection problem is to
find the best composition of examples from the
pool to maximize the score, that is,

argmax S(LLM(eo+e1+---+en+q)),
€0,€1,...,eNEE
where LLM (ey + €1 + -+ + eny + q) denotes
the LLM’s output given the corresponding input.
In this paper, we focus on a sequential decision-
making approach that selects eg,eq,...,en se-
quentially.

4 Reward-Guided Example Selection

In this section, we describe our Reward-Guided
Example Selection algorithm (ReGES) that solves
the context selection problem in in-context learning.
The overall framework is shown in Figure 2.

4.1 Overview

As in-context learning’s performance can be af-
fected by the complex semantic relations between
the examples and the question, we use another lan-
guage model to capture the relations. Specifically,
we use a transformer encoder with an MLP head as
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Figure 2: The overall pipeline of ReGES. (Top) Training: We use MCTS to collect examples, use them as context,
and obtain feedback on the LLM’s output quality. We use the context-feedback pairs to train the value model.
(Bottom) Inference: Given a target question that the model needs to answer, our framework uses the value model to
iteratively select question-answer pairs from the example pool and add them to the context.

a value model to predict the quality of the output
of an LLM using a sequence of examples as the
context. We initialize our value model from FLAN-
T5 large encoder since it uses relative positional
embedding that supports a larger input length. For
each textinput I = eg +e1 + --- + ey + ¢, the
value model gives a score S = V/(I), which is
the estimated quality of the model’s output given
in-context examples eg + e; + - - - 4+ ejs and the
question q.

4.2 Training

We train the model in an offline RL pipeline. We
first generate the training data by collecting trajec-
tories {I;} and corresponding rewards {r;}. Here,
the trajectories are lists of selected examples used
as the context, and the rewards are the accuracies
of the LLM’s outputs. The lengths of the trajecto-
ries range from 1 to the maximum of the examples
allowed, N. We could certainly generate the se-
quences randomly. However, random examples are
unlikely to help the LLM generate correct solutions,

which makes most of the training data useless. We
instead use the Monta-Carlo tree search (MCTYS) al-
gorithm to generate the trajectories, similar to Guo
et al. (2014). In this way, more trajectories with
higher rewards will be generated, and the training
data will be more balanced in terms of their re-
wards. Additionally, to make sure that trajectories
of different lengths are generated, the termination
action is always considered by the tree search algo-
rithm. This helps the value model understand the
effects of using different numbers of examples.
The MCTS algorithm keeps the average return
starting from the I; by either continuing to select
examples or terminating immediately. We denote
the return by R;. We want the value function to es-
timate R; accurately. To train the value model, we
use a combination of two loss functions. First, to
estimate the return accurately, we employ a binary
cross-entropy (BCE) loss function as follows,

Lpce = —|[Rilog (o(V (L)) +(1—R;)log (1—-o(V(I3)))].

Second, when we use the value model, it is crucial



that the model makes the right decision on pre-
dicting the next useful example correctly given a
prefix of examples. In light of this observation, we
use an InfoNCE-based contrastive loss (Chen et al.,
2020) to make sure the value function distinguishes
good examples from bad ones. Specifically, we sort
all the trajectories in lexicographical order so that
adjacent trajectories share a common prefix. We
then split all the trajectories into batches. Within
a batch, we denote the trajectories and their re-
wards by (I, 7). We regard the k£ examples with the
highest returns in this batch as positive examples
{(I;",7)}F_,, and others as negative examples.
Here, k is a predefined hyperparameter. We train
the value function using the following contrastive
loss:

Sk VU

Sy eV

Lcont = - log

Finally, the loss function L we use to train the value
model is a weighted sum of the BCE loss and the
contrastive loss:

L = aLcont + LpcE-

4.3 Inference

Given a question g and a LLM, we iteratively call
our value model V' to get the final selection. At
each step during selection, suppose we have al-
ready selected k examples eg, e1, - - - , e in the pre-
vious iterations, and candidate examples for this
iteration are c¢q - - - ¢, the value model V' will take
I =ey+e1+ -+ e+ c + qas input for each
candidate ¢;, and outputs a score S; = V (I;) on
the success rate prediction of selecting c; as the
next example. Then, we simply choose the exam-
ple with the largest score as the next example in
the context, ey 1, and continue to the next iteration
until we select the terminal action [TERM] or reach
the maximum number of examples allowed. In this
way, the model can have full access to the question
and the examples already selected, allowing it to
give scores to the candidate examples conditioning
on the current information.

5 Experiments

In this section, we empirically evaluate the effec-
tiveness of ReGES with different LLMs and on
various datasets, ranging from comparatively easy
question-answering tasks to difficult multi-step rea-
soning tasks. We show that ReGES outperforms
the state-of-the-art in-context learning algorithms
in most settings.

5.1 Evaluation Setup

Datasets We consider four different datasets
(GSMBK, StrategyQA, TREC, QNLI) on four dif-
ferent tasks. Specifically, GSM8K (Cobbe et al.,
2021) is a math reasoning dataset with step-by-step
answers required for chain-of-thought prompting
(Wei et al., 2022). StrategyQA (Gevaet al., 2021) is
a commonsense reasoning dataset with supporting
facts as annotations provided for each reasoning
step, where we concatenate these facts with the
final answer as a CoT answer. TREC (Voorhees
and Tice, 2000) is a text classification dataset that
classifies text questions into 6 types according to
the topics. QNLI (Wang et al., 2018) is a natu-
ral language inference dataset where each example
asks whether the text is the correct answer to the
given question.

For GSMS8K and StrategyQA, we test our
method with chain-of-thought by adding “Let’s
think step by step.” at the beginning of the
output (Kojima et al., 2022). For TREC and QNLI,
since there are no chain-of-thought answers pro-
vided, we simply concatenate the question and the
final answer as an example. Given that there is no
official validation set for the first three datasets, we
randomly select a subset of examples from the train-
ing set to form a validation split: 500 for GSM8K
and TREC, and 250 for StrategyQA.

Language Models We tested our ReGES algo-
rithm on three LLM families: Vicuna (Chiang et al.,
2023), LLaMA-2 (Touvron et al., 2023b), and GPT
(Brown et al., 2020; OpenAl, 2023), with several
sizes and versions. More specifically, for Vicuna
models, we use 7B and 13B on v1.1 and 33B on
v1.3; for LLaMA-2, we tested over all three re-
leased sizes (7B, 13B, 70B); and for GPT models,
gpt-3.5-turbo-0613 is applied. For all experiments,
the value model is initialized from the Flan-T5
large’s encoder (Chung et al., 2022), an instruction
fine-tuned encoder with 340M parameters.

Baselines We compare ReGES with three base-
line algorithms: Random, BM25, and Dense Re-
trieval. For the Random baseline, we select exam-
ples uniformly randomly from the example pool.
We also run experiments with 5 random seeds and
compute the average results to reduce variance.
For Dense Retrieval baseline, we use the off-the-
shelf sentence transformer (all-MiniLM-L12-v2)
(Reimers and Gurevych, 2019) to compute the vec-
tor representation for text, and then retrieve the



closest examples. For all the baselines, the number
of examples we select for each question is set to
be the same as the maximum number of examples
allowed for our method.

ReGES We tested our method under two settings,
one randomly selects examples as the example
pool (denoted as ReGES). We also consider fil-
tering the example pool that is more relevant to
the target question using BM25 (denoted as BM25
+ ReGES). For all the datasets and the two set-
tings, our value model is trained from the outputs of
one LLM and then tested over all the other LLMs,
demonstrating that the value function can be model-
agnostic and used to help in-context learning on
other LLMs. The LLM used to collect training
data is slightly different: for GSM8K and Strategy
QA, we use LLaMA-2 13B to collect the training
data, since these datasets are more challenging and
require chain-of-thought reasoning. For the rest
of the datasets, we use Vicuna 13B. Also, the re-
ward for the trajectories is the mean accuracy of
8 generated answers for the GSM8K and Strategy
QA since there could be multiple correct answers.
For the other three datasets, we directly use the
log-likelihood of generating the uniquely correct
answer. More implementation details and hyperpa-
rameters are provided in Appendix A.1.

Model Method GSMSK SQA
LLaMA2 7B Random Examples  26.6 65.4
BM25 28.4 66.4
Dense Retrieval 30.2 68.8
ReGES 28.4 68
BM25 + ReGES 28.4 66.4
LLaMA2 13B  Random Examples  40.1 71.2
BM25 40.2 69.6
Dense Retrieval 42.2 72.0
ReGES 414 68.0
BM25 + ReGES 43.2 73.6
LLaMA2 70B Random Examples 59.0 4.7
BM25 63.4 78.0
Dense Retrieval 60.4 78.0
ReGES 60.8 78.0
BM25 + ReGES 634 79.6

Table 1: Performance on LLaMA2 models For GSM8K
and StrategyQA when using greedy decoding. The best
result in each set of experiments is bolded. SQA is short
for StrategyQA.

5.2 Main results

Table 1, 2 show the evaluation results on the series
of LLMs where we collected feedback from. We
observe that BM25 serves as an overall stronger
baseline than Random, while still unable to show

improvements in some cases. Dense Retrieval,
though retrieves examples according to representa-
tive sentence embeddings, does not show a consis-
tent improvement over BM25. As for our method,
we can see that our ReGES consistently improves
the performance compared with the correspond-
ing baseline, sometimes by a large margin. For all
reported methods, GSM8K and StrategyQA give
smaller improvements than TREC and QNLI in
general, potentially because these two tasks are
hard reasoning tasks that rely more on LLMs’ in-
trinsic reasoning ability and are hard to improve
through in-context learning. To get examples
demonstrating the hardness of GSM8K, see Ap-
pendix A.3.

Model Method TREC QNLI
Vicuna 7B Random Examples  50.6 59.1
BM25 74 63.2
Dense Retrieval 71.4 62.6
ReGES 63 61.1
BM25 + ReGES 77.6 69.4
Vicuna 13B Random Examples  65.08 70.28
BM25 81.8 71.4
Dense Retrieval 79.4 70
ReGES 78.8 75.2
BM25 + ReGES 88.4 74.6
Vicuna 33B Random Examples  72.48 70.62
BM25 87.8 74.2
Dense Retrieval 84 72.4
ReGES 78 73.8
BM25 + ReGES 86.6 71.7

Table 2: Performance on Vicuna models For TREC and
QNLI when using greedy decoding.

5.3 Generalization over LLMs

Our method is trained from feedback of only one
LLM for each dataset. In Table 3, we report the
performance of ReGES for all series LLMs and
all datasets. Even if trained from the feedback of
one LLM, then tested on other series of LLMs,
ReGES still shows a general improvement with
an average of +2.25 over BM25, suggesting that
ReGES learns a general strategy for selecting good
in-context examples, which can be transferred to
other LLMs without additional training.

6 Analysis
6.1 Effect of the Loss Function

Our loss function is the combination of two sep-
arate losses: an InfoNCE loss designed for con-
trastive learning, and a BCE regression loss for
predicting the reward. We design such a combined
loss function since we need our model to identify



Model Method GSM8K StrategyQA TREC QNLI Avg
Vicuna 7B Random Examples 15.8 63.4 50.6 59.1 47.2
BM25 194 62.4 74.0 63.2 54.8
Dense Retrieval 19.2 62.8 71.4 62.6 54
ReGES 18.2 63.6 63.0 61.1 51.5
BM25 + ReGES 17.2 62 77.6 69.4 56.6
Vicuna 13B Random Examples  26.88 64.7 65.1 70.3 56.7
BM25 30.8 64.8 81.8 71.4 62.2
Dense Retrieval 30.4 64.4 79.4 70.0 61.2
ReGES 30.2 68.8 78.8 75.2 63.3
BM25 + ReGES 30.2 70.0 88.4 74.6 65.8
Vicuna 33B Random Examples  44.96 71.6 72.5 70.6 64.9
BM25 48.2 71.2 87.8 74.2 70.4
Dense Retrieval 48.0 71.6 84.0 72.4 69
ReGES 49.0 69.6 78.0 73.8 67.6
BM25 + ReGES 49.2 73.6 86.6 77.7 71.8
LLaMA2 7B Random Examples  26.6 65.4 60.5 71.3 55.9
BM25 28.4 66.4 72.4 71.5 59.7
Dense Retrieval 30.2 68.8 73.2 71.4 60.9
ReGES 28.4 68.0 72.6 77.8 61.7
BM25 + ReGES 28.4 66.4 76.8 77.6 62.3
LLaMA2 13B Random Examples  40.1 71.2 62.9 73.6 62.0
BM25 40.2 69.6 76.4 68.9 63.8
Dense Retrieval 42.2 72.0 75.6 70.8 65.2
ReGES 41.4 68.0 72.0 75.1 64.1
BM25 + ReGES 43.2 73.6 79.0 72.5 67.1
LLaMA270B  Random Examples 59.0 74.7 67.4 82.1 70.8
BM25 63.4 78.0 82.8 77.8 75.5
Dense Retrieval 60.4 78.0 81.0 774 74.2
ReGES 60.8 78.0 77.0 83.8 74.9
BM25 + ReGES 63.4 79.6 85.6 82.3 71.7
GPT-3.5-turbo  Random Examples  79.8 72.1 70.4 79.8 75.5
BM25 80.0 72.4 83.2 80.0 78.9
Dense Retrieval 79.0 73.2 79.6 80.4 78.1
ReGES 81.0 69.2 71.6 82.6 76.1
BM25 + ReGES 78.8 74.0 81.0 84.9 79.7

Table 3: Performance on transferred to different series of LLMs. ReGES improves over random and BM25
baselines under most cases, regardless of the evaluated LLM. The best result in each set of experiments is bolded.

the best examples as positive examples, while still
being able to rank negative examples. We found
that when only one loss is applied, the model can-
not learn properly and returns outputs close to the
baseline. Such ablation results, as shown in Table 4,
indicate that both losses are necessary in order to
learn from LLM’s feedback.

Model BM25 BCE InfoNCE Both
Vicuna 7B 63.2 60.9 59.7 69.4
Vicuna 13B 71.4 68.33 70.9 74.6
Vicuna 33B 74.2 72.7 69.8 7T
LLaMA2 7B 71.5 69.9 70.4 77.6
LLaMA2 13B 68.9 70.4 67 72.5
LLaMA2 70B 77.8 78.7 78.7 82.3
GPT-3.5-turbo 80 78.6 79.2 84.9

Table 4: QNLI Validation accuracy when trained under
different losses.

6.2 Scaling example pool size

In our main results, we use an example pool size of
32 for GSM8K and StrategyQA, and 64 for TREC
and QNLI. To see how the example pool size af-

fects the performance of our method, we evaluated
our method under different example pool sizes on
QNLI: 16, 64 (our main result), and 256, shown in
Figure 3 (left). Despite some fluctuations, a larger
pool size yields better results at the cost of more
computation during inference. One can choose a
proper pool size to strike a balance between perfor-
mance and inference cost.

6.3 Necessity of Iterative Selection

To validate the effectiveness of the iterative design,
we also evaluated our method with the iterative part
removed. More specifically, for each example, we
take the average accuracy of collected trajectories
containing the example as its score to the question.
Then, we similarly train the value model to learn
from these scores for each example-question pair.
Finally, during inference, we select those examples
with the highest predicted score from the trained
model as the context of the problem. As shown in
Figure 3 (right), the non-iterative variation is gener-
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Figure 3: Left: QNLI validation accuracy under different example pool sizes. Vicuna results are the mean of 3
vicuna models, and LLaMA?2 results are similarly the mean of 3 LLaMA?2 models. Right: QNLI with and without

iterative selection.

ally inferior to ReGES, indicating that the impacts
of examples on the model’s output are not inde-
pendent, therefore requiring considering selected
examples jointly. Our iterative design exactly mod-
els such joint influences. Therefore it outperforms
baseline algorithms that consider examples inde-
pendently.

6.4 Performance Change after Randomly
Reordering the Examples

To examine the effect of the order of the examples
that our method selected, we additionally tested
a Shuffled setting of ReGES. Under this setting,
we randomly permute the examples selected by
ReGES before formatting these examples as con-
text. The results are presented in Table 5. Al-
though still better than the BM?25 baseline overall,
the performance improvement was reduced by a
large margin for Vicuna models, while for other
models the performance is still on par with our
main method. This indicates that ReGES learns a
model-specific good ordering, which is consistent
with findings of (Lu et al., 2021), that LLMs have
non-transferable preferences over the order of in-
context examples, allowing us to have additional
advantages compared with other methods due to
the order awareness nature of our iterative design.

7 Conclusion

In this paper, we introduced a neural-based method
to select examples iteratively for in-context learn-
ing. This framework collects training data by call-
ing a frozen LLM and then learns a transformer
value model to give a score on current candidate
examples conditioning on the target question and
the selected examples in the context. During infer-

Model BM25 + ReGES + Shuffled
Vicuna 7B 63.2 69.4 65.8
Vicuna 13B 71.4 74.6 72.8
Vicuna 33B 74.2 7.7 73.75
LLaMA2 7B 71.5 77.6 76.5
LLaMA2 13B 68.9 72.5 74.4
LLaMA2 70B 77.8 82.3 82.4
GPT-3.5-turbo 80 84.9 83.9

Table 5: Accuracy after random shuffling selected ex-
amples, compared with BM25 baseline and ReGES on
QNLI. Performance drops on Vicuna models, indicating
that our method learns the model-specific order prefer-
ences.

ence, we iteratively call the value model to select
the next example. We conduct comprehensive eval-
uations of our method with multiple LLMs and on
various datasets, showing that our method consis-
tently outperforms strong baselines. Our method
generalizes to other LLLMs not used for collecting
train data, without the need to re-train value models
for different LLMs.

8 Limitations and Potential Risks

Currently, our method still requires a training set
for collecting feedback and splitting the example
pool. One possible future work is to explore the
effectiveness of our method under low-resource
conditions, where there are only limited labeled
data and requires a generalizable model trained
from other tasks.

In our main discussion, we did not delve into the
safety and ethical considerations of ReGES. It’s
important to acknowledge that, despite its effective-
ness, our method could entail potential risks such
as the amplification of biases and privacy concerns
(if the example pool contains such information). A



more thorough examination of these aspects is nec-
essary to ensure responsible and secure application
of our method.
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A Appendix

A.1 Inplementation Details

The hyperparameter used for our main results is pre-
sented in Table 6. Due to hardware limitations, we
may not collect trajectories for all training samples,
but we will still start training if the collecting pro-
cess is almost complete. To ensure there are enough
examples in the context, we force our method to
select at least 5 examples during inference, while
results show that this may be suboptimal since se-
lecting fewer examples is better in some cases.

A.2 Computation Cost

Training cost All of our experiments are done on
Nvidia V100 GPUs. For all datasets, value models
are trained on 64 V100 GPUs for 6 hours, taking
384 V100 GPU hours for each. For collecting data,
the cost of different datasets varies due to different
dataset sizes, lengths of one example, and other
settings. Table 7 shows detailed information about
the training cost on different datasets. Note that for
GSMBS8K and StrategyQA we generate 8 answers
and take the mean accuracy for each trajectory,
so the computation cost on this part could be one
magnitude lower if we instead only sample 1 for
each.

Inference speed The Inference cost of our
method is independent of the size of LLM and
the number of tokens needed to be generated. On
GSMS8K, inference time almost doubled on 13B
models when applying our method, while for 70B
models inference time only increased by ~ 14%.
We expect that under real cases our method is ap-
plied to relatively large LLMs and generation tasks,
where the increase in inference speed would be
negligible.

A.3 GSMSK failure cases

Here we provide some examples that LLaMA?2
13B fails to answer correctly in GSM8K. In the
first example, LLaMA2 goes wrong in arithmetic
involving fractions. In the second and third exam-
ples, LLaMAZ2 fails to figure out the correct process
of solving the problem. We can see that, correctly
answering GSM8K questions requires strong arith-
metic ability and mathematical reasoning ability,
which are hard to improve through in-context learn-
ing.
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GSMSK StrategyQA TREC QNLI
max #examples selected 5 6 8 8
example pool size 32 32 64 64
model used to collect feedback LLaMA2 13B | LLaMA2 13B | Vicuna 13B | Vicuna 13B
#trajectories sampled 128 128 160 128
#answers generated for each trajectory 8 8
temperature used to collect feedback 0.5 0.5
MCTS exploration constant 0.25v/2 0.25v/2 0.25v/2 0.25v/2
value model MLP layer size 1024 1024 1024 1024
k in contrastive loss 4 4 4 4
batch size 64 64 64 64
max train steps 18000 18000 18000 18000
weight decay 0.004 0.004 0.004 0.004
Table 6: Detailed hyperparameters used in our experiment.
GSMS8K | StrategyQA | TREC | QNLI

#example used ~ 5000 ~ 2050 ~ 5300 | ~ 35300

GPU time per example ~ 6h ~ 2.3h ~ 30s ~ 40s

GPU hours in total 30000 4700 45 390

Table 7: Computation costs of our method during collecting training data.

Question Generated Answer

TreQuan is throwing rocks in the river
and he notices that the bigger the rock,
the wider the splash. Pebbles make a
splash that is a 1/4 meter wide. Rocks
make a splash that is 1/2 a meter wide,
and boulders create a splash that is 2
meters wide. If he tosses 6 pebbles, 3
rocks, and 2 boulders, what is the total
width of the splashes he makes?

The pebbles make a splash that is 6 * 1/4 = 1 1/2 meters
wide. The rocks make a splash that is 3 * 1/2 = 3 meters
wide. The boulders make a splash that is 2 * 2 = 4 meters
wide. The total width of the splashesis 1 1/2+3 +4=9
meters. The answer is 9

Julie, Letitia and Anton decided to have

dinner together at a nearby restaurant.

Julie orders $10 worth of food, Letitia
orders $20 worth of food, and Anton
orders $30 worth of food. How much
should each pay in tips if they want
to split a 20% tip for the whole meal
evenly?

First, we find the total cost of the meal by adding the
amounts that each person ordered: 10+20+30=60. Then
we divide this total by 3, as there are three people eating,
finding a per-person cost of 60/3=20. Then we find the total
tip amount for a 20% tip, by multiplying the per-person
cost by 20/100, finding 20*20/100=4 per person. Finally,
we divide the total tip amount by 3, as they want to split it
evenly, finding a per-person tip of 4/3=1.33. So each person
should pay 1.33 in tips. The answer is 1.33

Frankie’s parents let him have many
pets. He has six more snakes than he
has cats. He has one less parrot than
cats. Six of his pets have four legs. He
has 2 dogs. How many pets does he
have in total?

Let x be the number of cats he has. He has x + 6 snakes. He
has x - 1 parrot. The total number of petsis x +6 +x-1=
2x + 5. He has 2 dogs. The total number of pets is 2x + 5 +
2 =2(x+5) + 2. The answer is 2x + 7

Table 8: LLaMA?2 13B failure cases on GSM8K.
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