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Abstract

Large language models (LLMs) have im-001
pressive in-context learning ability. When002
prompted with a few examples of the same task,003
LLMs can solve new questions without task-004
specific training, demonstrating their ability of005
in-context learning. Recent studies revealed006
that the selection of contexts can significantly007
affect the LM’s answer quality. In this work,008
we propose Reward-Guided Example Selec-009
tion(ReGES), a novel method that learns to iter-010
atively select in-context examples conditioned011
on the input question from feedback. Given012
a task and an example set, we use the MCTS013
algorithm to select different in-context exam-014
ples, collect the LLM’s outputs, and evaluate015
their accuracies. Then, we leverage the offline016
RL algorithm to train a value function to esti-017
mate the reward from in-context learning. Dur-018
ing inference, we iteratively select a sequence019
of in-context examples for the given question020
based on the prediction of the value function.021
Our method substantially improves the perfor-022
mance of several LLMs (Vicuna, LLaMA-2,023
GPT3.5) on four benchmarks (GSM8K, Strat-024
egy QA, TREC, QNLI), and can be combined025
with in-context example retrieval method to026
give further improvement. When combined027
with BM25, ReGES achieves up to +6.6 ac-028
curacy improvement with an average of +2.25029
over strong baselines. Moreover, we observe030
consistent improvement while applying the in-031
context examples selected by our method to032
language models that are not used during the033
training phase, demonstrating its generalization034
ability.035

1 Introduction036

Recent Transformer-based (Vaswani et al., 2017)037

large language models (LLMs) show impressive038

ability in various language tasks. However, fur-039

ther improving off-the-shelf LLMs’ performance040

on specific tasks is still required in many practi-041

cal scenarios. One solution is to fine-tune LLMs042

with more training data, which could substantially 043

improve the model’s performance. However, this 044

approach is computationally expensive, sometimes 045

even infeasible, since some models are not avail- 046

able for fine-tuning. Gathering enough annotations 047

for fine-tuning is also expensive and sometimes 048

infeasible for low-resource tasks. 049

Another way to improve the model’s perfor- 050

mance is in-context learning (ICL) (Wang et al., 051

2023; Rubin et al., 2021; Fu et al., 2022). ICL 052

leverages LLMs’ ability to learn from only a few 053

examples in the prompt to solve new problems of 054

the same task without additional training. This 055

method enables fast and cheap adaptation of LLMs 056

to new tasks. However, the number of examples 057

that can be put into the prompt is limited by the 058

context lengths of the LLMs, and the performance 059

of ICL is usually inferior to fine-tuning approaches. 060

Some recent works (Rubin et al., 2021; Liu et al., 061

2021; Wu et al., 2022) have shown that different 062

choices of in-context examples can significantly af- 063

fect the output quality. When given good and care- 064

fully chosen contexts, an LLM’s performance can 065

match the performance of an LLM that is fine-tuned 066

with more data. On the other hand, when given bad 067

contexts, an LLM’s output may be almost random 068

(Zhao et al., 2021; Lu et al., 2021; Gao et al., 2020). 069

Therefore, it is crucial to select useful examples to 070

achieve a good ICL performance. 071

Existing work has employed a wide range of 072

methods to select good in-context samples for 073

ICL, including searching, heuristic-based (Fu et al., 074

2022; Wu et al., 2022), retrieval (Rubin et al., 2021; 075

Wang et al., 2023), and so on. Specifically, Ye et al. 076

(2023) model the correlations between the selected 077

examples, but the potentially complex semantic re- 078

lationship between examples remains unexplored. 079

Zhang et al. (2022) use offline reinforcement learn- 080

ing to train models that select examples iteratively. 081

However, they use a simple MLP for value predic- 082

tions. As a result, their state representation contains 083
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Figure 1: LLaMA2 13B performance significantly im-
proves after applying our method.

no semantic information about the selected exam-084

ples, which restricts their approach to classification085

tasks and smaller language models.086

In this paper, we propose Reward-Guided087

Example Selection (ReGES), an algorithm that088

iteratively adds useful examples to the context089

to achieve high-performance in-context learning.090

Specifically, we formulate the context selection091

problem as a sequential decision problem, where092

a state is the current context, which contains zero093

or more selected examples; an action is adding an094

example to the context. To solve this problem, we095

follow the following three steps. 1) We first gen-096

erate sequences of in-context examples for each097

question, get the LLM’s answers to the question098

conditioned on the examples, and evaluate the qual-099

ity of the answers. The samples are collected using100

the Monte-Carlo tree search (MCTS) algorithm101

to ensure that they contain enough high-quality102

example sequences that are useful for training in103

the following step. 2) We then leverage an offline104

RL method (Sutton and Barto, 2018; Levine et al.,105

2020) and a contrastive loss (Chen et al., 2020)106

to learn a value function to estimate the expected107

success rate for a given question and a sequence108

of examples. 3) Finally, during inference, given109

a new question, we iteratively call the value func-110

tion to predict the next most useful example and111

add it to the context, until the model selects a ter-112

minal action or reaches the maximum number of113

examples.114

To validate the effectiveness of our method, we 115

empirically evaluate our method on four datasets 116

(GSM8K, Strategy_QA, TREC, and QNLI) us- 117

ing three LLM families (Vicuna, LLaMA-2, and 118

GPT). Results show that our method consistently 119

improves the LLMs’ performance on various NLP 120

tasks. Furthermore, our method can be further im- 121

proved when combined with other retrieval-based 122

methods (i.e., BM25) to filter a subset of candidates 123

from a large candidate pool and rerank with our 124

value function. 125

Our contributions are summarized as follows: 126

• By formulating the example selection prob- 127

lem for in-context learning as a sequential 128

decision-making problem, we propose a new 129

method, Reward-Guided Example Selection 130

(ReGES), that iteratively selects examples to 131

maximize the reward of answering the ques- 132

tion; 133

• We propose an MCTS-based sampling method 134

to collect the LLM’s answer quality given dif- 135

ferent in-context examples, and subsequently 136

use an offline RL method to train the value 137

function to estimate the expected reward for a 138

question and a set of in-context examples; 139

• We show that our method consistently im- 140

proves LLM’s in-context learning perfor- 141

mance on different NLP tasks, from compara- 142

tively easy natural language inference to com- 143

plicated multi-step reasoning, and is general- 144

izable to other LLMs. 145

2 Related Work 146

In-Context Learning Large language models 147

are known to have impressive in-context learning 148

abilities. Recent LLMs, like GPT series (Brown 149

et al., 2020; OpenAI, 2023) and the LLaMA family 150

(Touvron et al., 2023a; Chiang et al., 2023), are able 151

to solve new questions without task-specific train- 152

ing when only prompted with a few examples of the 153

same task, which has motivated the research com- 154

munity to explore the area of in-context learning. 155

One possible direction is to interpret the mechanics 156

behind such ability, where (Xie et al., 2021) con- 157

sider in-context learning as implicit Bayesian infer- 158

ence, while (Dai et al., 2022) explain language mod- 159

els as meta-optimizers and understand in-context 160

learning as implicit finetuning. Another direction 161

is to improve in-context ability, which our work 162
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falls into by selecting a better set of in-context ex-163

amples.164

Example Selection There are some existing165

methods for selecting in-context examples. (Fu166

et al., 2022) design a heuristic criterion for tasks167

with chain-of-thought answers, by selecting the168

most complex samples (the ones with the most169

reasoning steps) as context, and empirically con-170

firm that this simple heuristic can improve the qual-171

ity of outputs in several reasoning datasets. (Ye172

et al., 2023) propose compositional exemplars for173

in-context learning, which leverage the determinan-174

tal point process (DPP) algorithm to select a diverse175

yet relevant set of examples using a contrastive loss.176

(Wu et al., 2022) propose a select-then-rank frame-177

work, where in the reranking phase, they prioritize178

the examples that make the LLM more confident.179

(Rubin et al., 2021) and (Wang et al., 2023) uses180

different methods to train a dense retriever, and181

use it to retrieve examples. (Zhang et al., 2022) use182

offline reinforcement learning to train an MLP scor-183

ing function for examples, and iteratively select the184

example with the highest score, but the simple de-185

sign of its model and state restricts its effectiveness186

within smaller LMs, and the performance improve-187

ment diminishes in GPT3. (Wang et al., 2023) also188

follows an iterative process for example selection.189

However, the main difference is that they iteratively190

train a dense retriever that selects useful examples.191

In each iteration, the retriever retrieves examples192

for the questions in the training set, uses them as193

input to the LLM, and evaluates the outputs’ qual-194

ity by their log-likelihood of generating the ground195

truth. This additional data is used to further train196

the retriever for the next iteration.197

3 Preliminary198

3.1 Background199

In-Context learning In-context learning is a200

learning approach that enables a model to learn201

from the input, without fine-tuning the model. For202

a given target question q that we want the LLM to203

answer, we provide a context c that contains help-204

ful information to answer q. We use E + q as the205

input to the LLM, where + denotes string concate-206

nation. The context E is comprised of zero or more207

examples, E = e0 + e1 + . . . , where ei denotes an208

example question-answer pair. The examples are209

selected from an example pool E available to the210

LLM, that is, ei ∈ E for all ei in E.211

Reinforcement learning In this paper, we con- 212

sider a sequential decision-making approach to ex- 213

ample selection. We formulate the example selec- 214

tion problem as a Markov decision process. Con- 215

cretely, a state is the target question that the LLM 216

needs to answer and a set of (zero or more) ex- 217

amples that we already selected from the example 218

pool; an action is the next example to select. The 219

reward is defined by the quality of the LLM output 220

using the selected examples as the context. The 221

goal of this sequential decision-making problem is 222

to select examples incrementally so that when the 223

selected examples are used as context, the LLM 224

generates a high-quality response. 225

3.2 Problem Formulation 226

We are now ready to formally define the example 227

selection problem in in-context learning that we 228

address in this paper. Given the target question 229

q, we want to optimally select examples from an 230

example set, and use them as context in the input 231

to the LLM in order to optimize the quality of the 232

output. Due to the context length of the LLM, 233

we consider selecting up to N examples as the 234

context, where N is a pre-defined parameter. The 235

output of the LLM is evaluated by a task-dependent 236

score function, denoted by S. The score function 237

is the LLM’s answer accuracy in most cases. The 238

objective of the example selection problem is to 239

find the best composition of examples from the 240

pool to maximize the score, that is, 241

argmax
e0,e1,...,eN∈E

S(LLM(e0 + e1 + · · ·+ eN + q)), 242

where LLM(e0 + e1 + · · · + eN + q) denotes 243

the LLM’s output given the corresponding input. 244

In this paper, we focus on a sequential decision- 245

making approach that selects e0, e1, . . . , eN se- 246

quentially. 247

4 Reward-Guided Example Selection 248

In this section, we describe our Reward-Guided 249

Example Selection algorithm (ReGES) that solves 250

the context selection problem in in-context learning. 251

The overall framework is shown in Figure 2. 252

4.1 Overview 253

As in-context learning’s performance can be af- 254

fected by the complex semantic relations between 255

the examples and the question, we use another lan- 256

guage model to capture the relations. Specifically, 257

we use a transformer encoder with an MLP head as 258
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Figure 2: The overall pipeline of ReGES. (Top) Training: We use MCTS to collect examples, use them as context,
and obtain feedback on the LLM’s output quality. We use the context-feedback pairs to train the value model.
(Bottom) Inference: Given a target question that the model needs to answer, our framework uses the value model to
iteratively select question-answer pairs from the example pool and add them to the context.

a value model to predict the quality of the output259

of an LLM using a sequence of examples as the260

context. We initialize our value model from FLAN-261

T5 large encoder since it uses relative positional262

embedding that supports a larger input length. For263

each text input I = e0 + e1 + · · · + eM + q, the264

value model gives a score S = V (I), which is265

the estimated quality of the model’s output given266

in-context examples e0 + e1 + · · · + eM and the267

question q.268

4.2 Training269

We train the model in an offline RL pipeline. We270

first generate the training data by collecting trajec-271

tories {Ii} and corresponding rewards {ri}. Here,272

the trajectories are lists of selected examples used273

as the context, and the rewards are the accuracies274

of the LLM’s outputs. The lengths of the trajecto-275

ries range from 1 to the maximum of the examples276

allowed, N . We could certainly generate the se-277

quences randomly. However, random examples are278

unlikely to help the LLM generate correct solutions,279

which makes most of the training data useless. We 280

instead use the Monta-Carlo tree search (MCTS) al- 281

gorithm to generate the trajectories, similar to Guo 282

et al. (2014). In this way, more trajectories with 283

higher rewards will be generated, and the training 284

data will be more balanced in terms of their re- 285

wards. Additionally, to make sure that trajectories 286

of different lengths are generated, the termination 287

action is always considered by the tree search algo- 288

rithm. This helps the value model understand the 289

effects of using different numbers of examples. 290

The MCTS algorithm keeps the average return
starting from the Ii by either continuing to select
examples or terminating immediately. We denote
the return by Ri. We want the value function to es-
timate Ri accurately. To train the value model, we
use a combination of two loss functions. First, to
estimate the return accurately, we employ a binary
cross-entropy (BCE) loss function as follows,

LBCE = −
[
Ri log

(
σ(V (Ii))

)
+(1−Ri) log

(
1−σ(V (Ii))

)]
.

Second, when we use the value model, it is crucial
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that the model makes the right decision on pre-
dicting the next useful example correctly given a
prefix of examples. In light of this observation, we
use an InfoNCE-based contrastive loss (Chen et al.,
2020) to make sure the value function distinguishes
good examples from bad ones. Specifically, we sort
all the trajectories in lexicographical order so that
adjacent trajectories share a common prefix. We
then split all the trajectories into batches. Within
a batch, we denote the trajectories and their re-
wards by (I, r). We regard the k examples with the
highest returns in this batch as positive examples
{(I+i , r+i )}ki=1, and others as negative examples.
Here, k is a predefined hyperparameter. We train
the value function using the following contrastive
loss:

Lcont = − log

∑k
i=1 e

V (I+i )∑N
i=1 e

V (Ii)
.

Finally, the loss function L we use to train the value
model is a weighted sum of the BCE loss and the
contrastive loss:

L = αLcont + LBCE .

4.3 Inference291

Given a question q and a LLM, we iteratively call292

our value model V to get the final selection. At293

each step during selection, suppose we have al-294

ready selected k examples e0, e1, · · · , ek in the pre-295

vious iterations, and candidate examples for this296

iteration are c1 · · · cm, the value model V will take297

Ii = e0 + e1 + · · ·+ ek + ci + q as input for each298

candidate ci, and outputs a score Si = V (Ii) on299

the success rate prediction of selecting ci as the300

next example. Then, we simply choose the exam-301

ple with the largest score as the next example in302

the context, ek+1, and continue to the next iteration303

until we select the terminal action [TERM] or reach304

the maximum number of examples allowed. In this305

way, the model can have full access to the question306

and the examples already selected, allowing it to307

give scores to the candidate examples conditioning308

on the current information.309

5 Experiments310

In this section, we empirically evaluate the effec-311

tiveness of ReGES with different LLMs and on312

various datasets, ranging from comparatively easy313

question-answering tasks to difficult multi-step rea-314

soning tasks. We show that ReGES outperforms315

the state-of-the-art in-context learning algorithms316

in most settings.317

5.1 Evaluation Setup 318

Datasets We consider four different datasets 319

(GSM8K, StrategyQA, TREC, QNLI) on four dif- 320

ferent tasks. Specifically, GSM8K (Cobbe et al., 321

2021) is a math reasoning dataset with step-by-step 322

answers required for chain-of-thought prompting 323

(Wei et al., 2022). StrategyQA (Geva et al., 2021) is 324

a commonsense reasoning dataset with supporting 325

facts as annotations provided for each reasoning 326

step, where we concatenate these facts with the 327

final answer as a CoT answer. TREC (Voorhees 328

and Tice, 2000) is a text classification dataset that 329

classifies text questions into 6 types according to 330

the topics. QNLI (Wang et al., 2018) is a natu- 331

ral language inference dataset where each example 332

asks whether the text is the correct answer to the 333

given question. 334

For GSM8K and StrategyQA, we test our 335

method with chain-of-thought by adding “Let’s 336

think step by step.” at the beginning of the 337

output (Kojima et al., 2022). For TREC and QNLI, 338

since there are no chain-of-thought answers pro- 339

vided, we simply concatenate the question and the 340

final answer as an example. Given that there is no 341

official validation set for the first three datasets, we 342

randomly select a subset of examples from the train- 343

ing set to form a validation split: 500 for GSM8K 344

and TREC, and 250 for StrategyQA. 345

Language Models We tested our ReGES algo- 346

rithm on three LLM families: Vicuna (Chiang et al., 347

2023), LLaMA-2 (Touvron et al., 2023b), and GPT 348

(Brown et al., 2020; OpenAI, 2023), with several 349

sizes and versions. More specifically, for Vicuna 350

models, we use 7B and 13B on v1.1 and 33B on 351

v1.3; for LLaMA-2, we tested over all three re- 352

leased sizes (7B, 13B, 70B); and for GPT models, 353

gpt-3.5-turbo-0613 is applied. For all experiments, 354

the value model is initialized from the Flan-T5 355

large’s encoder (Chung et al., 2022), an instruction 356

fine-tuned encoder with 340M parameters. 357

Baselines We compare ReGES with three base- 358

line algorithms: Random, BM25, and Dense Re- 359

trieval. For the Random baseline, we select exam- 360

ples uniformly randomly from the example pool. 361

We also run experiments with 5 random seeds and 362

compute the average results to reduce variance. 363

For Dense Retrieval baseline, we use the off-the- 364

shelf sentence transformer (all-MiniLM-L12-v2) 365

(Reimers and Gurevych, 2019) to compute the vec- 366

tor representation for text, and then retrieve the 367
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closest examples. For all the baselines, the number368

of examples we select for each question is set to369

be the same as the maximum number of examples370

allowed for our method.371

ReGES We tested our method under two settings,372

one randomly selects examples as the example373

pool (denoted as ReGES). We also consider fil-374

tering the example pool that is more relevant to375

the target question using BM25 (denoted as BM25376

+ ReGES). For all the datasets and the two set-377

tings, our value model is trained from the outputs of378

one LLM and then tested over all the other LLMs,379

demonstrating that the value function can be model-380

agnostic and used to help in-context learning on381

other LLMs. The LLM used to collect training382

data is slightly different: for GSM8K and Strategy383

QA, we use LLaMA-2 13B to collect the training384

data, since these datasets are more challenging and385

require chain-of-thought reasoning. For the rest386

of the datasets, we use Vicuna 13B. Also, the re-387

ward for the trajectories is the mean accuracy of388

8 generated answers for the GSM8K and Strategy389

QA since there could be multiple correct answers.390

For the other three datasets, we directly use the391

log-likelihood of generating the uniquely correct392

answer. More implementation details and hyperpa-393

rameters are provided in Appendix A.1.394

Model Method GSM8K SQA
LLaMA2 7B Random Examples 26.6 65.4

BM25 28.4 66.4
Dense Retrieval 30.2 68.8
ReGES 28.4 68
BM25 + ReGES 28.4 66.4

LLaMA2 13B Random Examples 40.1 71.2
BM25 40.2 69.6
Dense Retrieval 42.2 72.0
ReGES 41.4 68.0
BM25 + ReGES 43.2 73.6

LLaMA2 70B Random Examples 59.0 74.7
BM25 63.4 78.0
Dense Retrieval 60.4 78.0
ReGES 60.8 78.0
BM25 + ReGES 63.4 79.6

Table 1: Performance on LLaMA2 models For GSM8K
and StrategyQA when using greedy decoding. The best
result in each set of experiments is bolded. SQA is short
for StrategyQA.

5.2 Main results395

Table 1, 2 show the evaluation results on the series396

of LLMs where we collected feedback from. We397

observe that BM25 serves as an overall stronger398

baseline than Random, while still unable to show399

improvements in some cases. Dense Retrieval, 400

though retrieves examples according to representa- 401

tive sentence embeddings, does not show a consis- 402

tent improvement over BM25. As for our method, 403

we can see that our ReGES consistently improves 404

the performance compared with the correspond- 405

ing baseline, sometimes by a large margin. For all 406

reported methods, GSM8K and StrategyQA give 407

smaller improvements than TREC and QNLI in 408

general, potentially because these two tasks are 409

hard reasoning tasks that rely more on LLMs’ in- 410

trinsic reasoning ability and are hard to improve 411

through in-context learning. To get examples 412

demonstrating the hardness of GSM8K, see Ap- 413

pendix A.3. 414

Model Method TREC QNLI
Vicuna 7B Random Examples 50.6 59.1

BM25 74 63.2
Dense Retrieval 71.4 62.6
ReGES 63 61.1
BM25 + ReGES 77.6 69.4

Vicuna 13B Random Examples 65.08 70.28
BM25 81.8 71.4
Dense Retrieval 79.4 70
ReGES 78.8 75.2
BM25 + ReGES 88.4 74.6

Vicuna 33B Random Examples 72.48 70.62
BM25 87.8 74.2
Dense Retrieval 84 72.4
ReGES 78 73.8
BM25 + ReGES 86.6 77.7

Table 2: Performance on Vicuna models For TREC and
QNLI when using greedy decoding.

5.3 Generalization over LLMs 415

Our method is trained from feedback of only one 416

LLM for each dataset. In Table 3, we report the 417

performance of ReGES for all series LLMs and 418

all datasets. Even if trained from the feedback of 419

one LLM, then tested on other series of LLMs, 420

ReGES still shows a general improvement with 421

an average of +2.25 over BM25, suggesting that 422

ReGES learns a general strategy for selecting good 423

in-context examples, which can be transferred to 424

other LLMs without additional training. 425

6 Analysis 426

6.1 Effect of the Loss Function 427

Our loss function is the combination of two sep- 428

arate losses: an InfoNCE loss designed for con- 429

trastive learning, and a BCE regression loss for 430

predicting the reward. We design such a combined 431

loss function since we need our model to identify 432
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Model Method GSM8K StrategyQA TREC QNLI Avg
Vicuna 7B Random Examples 15.8 63.4 50.6 59.1 47.2

BM25 19.4 62.4 74.0 63.2 54.8
Dense Retrieval 19.2 62.8 71.4 62.6 54
ReGES 18.2 63.6 63.0 61.1 51.5
BM25 + ReGES 17.2 62 77.6 69.4 56.6

Vicuna 13B Random Examples 26.88 64.7 65.1 70.3 56.7
BM25 30.8 64.8 81.8 71.4 62.2
Dense Retrieval 30.4 64.4 79.4 70.0 61.2
ReGES 30.2 68.8 78.8 75.2 63.3
BM25 + ReGES 30.2 70.0 88.4 74.6 65.8

Vicuna 33B Random Examples 44.96 71.6 72.5 70.6 64.9
BM25 48.2 71.2 87.8 74.2 70.4
Dense Retrieval 48.0 71.6 84.0 72.4 69
ReGES 49.0 69.6 78.0 73.8 67.6
BM25 + ReGES 49.2 73.6 86.6 77.7 71.8

LLaMA2 7B Random Examples 26.6 65.4 60.5 71.3 55.9
BM25 28.4 66.4 72.4 71.5 59.7
Dense Retrieval 30.2 68.8 73.2 71.4 60.9
ReGES 28.4 68.0 72.6 77.8 61.7
BM25 + ReGES 28.4 66.4 76.8 77.6 62.3

LLaMA2 13B Random Examples 40.1 71.2 62.9 73.6 62.0
BM25 40.2 69.6 76.4 68.9 63.8
Dense Retrieval 42.2 72.0 75.6 70.8 65.2
ReGES 41.4 68.0 72.0 75.1 64.1
BM25 + ReGES 43.2 73.6 79.0 72.5 67.1

LLaMA2 70B Random Examples 59.0 74.7 67.4 82.1 70.8
BM25 63.4 78.0 82.8 77.8 75.5
Dense Retrieval 60.4 78.0 81.0 77.4 74.2
ReGES 60.8 78.0 77.0 83.8 74.9
BM25 + ReGES 63.4 79.6 85.6 82.3 77.7

GPT-3.5-turbo Random Examples 79.8 72.1 70.4 79.8 75.5
BM25 80.0 72.4 83.2 80.0 78.9
Dense Retrieval 79.0 73.2 79.6 80.4 78.1
ReGES 81.0 69.2 71.6 82.6 76.1
BM25 + ReGES 78.8 74.0 81.0 84.9 79.7

Table 3: Performance on transferred to different series of LLMs. ReGES improves over random and BM25
baselines under most cases, regardless of the evaluated LLM. The best result in each set of experiments is bolded.

the best examples as positive examples, while still433

being able to rank negative examples. We found434

that when only one loss is applied, the model can-435

not learn properly and returns outputs close to the436

baseline. Such ablation results, as shown in Table 4,437

indicate that both losses are necessary in order to438

learn from LLM’s feedback.439

Model BM25 BCE InfoNCE Both
Vicuna 7B 63.2 60.9 59.7 69.4
Vicuna 13B 71.4 68.33 70.9 74.6
Vicuna 33B 74.2 72.7 69.8 77.7
LLaMA2 7B 71.5 69.9 70.4 77.6
LLaMA2 13B 68.9 70.4 67 72.5
LLaMA2 70B 77.8 78.7 78.7 82.3
GPT-3.5-turbo 80 78.6 79.2 84.9

Table 4: QNLI Validation accuracy when trained under
different losses.

6.2 Scaling example pool size440

In our main results, we use an example pool size of441

32 for GSM8K and StrategyQA, and 64 for TREC442

and QNLI. To see how the example pool size af-443

fects the performance of our method, we evaluated 444

our method under different example pool sizes on 445

QNLI: 16, 64 (our main result), and 256, shown in 446

Figure 3 (left). Despite some fluctuations, a larger 447

pool size yields better results at the cost of more 448

computation during inference. One can choose a 449

proper pool size to strike a balance between perfor- 450

mance and inference cost. 451

6.3 Necessity of Iterative Selection 452

To validate the effectiveness of the iterative design, 453

we also evaluated our method with the iterative part 454

removed. More specifically, for each example, we 455

take the average accuracy of collected trajectories 456

containing the example as its score to the question. 457

Then, we similarly train the value model to learn 458

from these scores for each example-question pair. 459

Finally, during inference, we select those examples 460

with the highest predicted score from the trained 461

model as the context of the problem. As shown in 462

Figure 3 (right), the non-iterative variation is gener- 463
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Figure 3: Left: QNLI validation accuracy under different example pool sizes. Vicuna results are the mean of 3
vicuna models, and LLaMA2 results are similarly the mean of 3 LLaMA2 models. Right: QNLI with and without
iterative selection.

ally inferior to ReGES, indicating that the impacts464

of examples on the model’s output are not inde-465

pendent, therefore requiring considering selected466

examples jointly. Our iterative design exactly mod-467

els such joint influences. Therefore it outperforms468

baseline algorithms that consider examples inde-469

pendently.470

6.4 Performance Change after Randomly471

Reordering the Examples472

To examine the effect of the order of the examples473

that our method selected, we additionally tested474

a Shuffled setting of ReGES. Under this setting,475

we randomly permute the examples selected by476

ReGES before formatting these examples as con-477

text. The results are presented in Table 5. Al-478

though still better than the BM25 baseline overall,479

the performance improvement was reduced by a480

large margin for Vicuna models, while for other481

models the performance is still on par with our482

main method. This indicates that ReGES learns a483

model-specific good ordering, which is consistent484

with findings of (Lu et al., 2021), that LLMs have485

non-transferable preferences over the order of in-486

context examples, allowing us to have additional487

advantages compared with other methods due to488

the order awareness nature of our iterative design.489

7 Conclusion490

In this paper, we introduced a neural-based method491

to select examples iteratively for in-context learn-492

ing. This framework collects training data by call-493

ing a frozen LLM and then learns a transformer494

value model to give a score on current candidate495

examples conditioning on the target question and496

the selected examples in the context. During infer-497

Model BM25 + ReGES + Shuffled
Vicuna 7B 63.2 69.4 65.8
Vicuna 13B 71.4 74.6 72.8
Vicuna 33B 74.2 77.7 73.75
LLaMA2 7B 71.5 77.6 76.5
LLaMA2 13B 68.9 72.5 74.4
LLaMA2 70B 77.8 82.3 82.4
GPT-3.5-turbo 80 84.9 83.9

Table 5: Accuracy after random shuffling selected ex-
amples, compared with BM25 baseline and ReGES on
QNLI. Performance drops on Vicuna models, indicating
that our method learns the model-specific order prefer-
ences.

ence, we iteratively call the value model to select 498

the next example. We conduct comprehensive eval- 499

uations of our method with multiple LLMs and on 500

various datasets, showing that our method consis- 501

tently outperforms strong baselines. Our method 502

generalizes to other LLMs not used for collecting 503

train data, without the need to re-train value models 504

for different LLMs. 505

8 Limitations and Potential Risks 506

Currently, our method still requires a training set 507

for collecting feedback and splitting the example 508

pool. One possible future work is to explore the 509

effectiveness of our method under low-resource 510

conditions, where there are only limited labeled 511

data and requires a generalizable model trained 512

from other tasks. 513

In our main discussion, we did not delve into the 514

safety and ethical considerations of ReGES. It’s 515

important to acknowledge that, despite its effective- 516

ness, our method could entail potential risks such 517

as the amplification of biases and privacy concerns 518

(if the example pool contains such information). A 519

8



more thorough examination of these aspects is nec-520

essary to ensure responsible and secure application521

of our method.522
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A Appendix653

A.1 Inplementation Details654

The hyperparameter used for our main results is pre-655

sented in Table 6. Due to hardware limitations, we656

may not collect trajectories for all training samples,657

but we will still start training if the collecting pro-658

cess is almost complete. To ensure there are enough659

examples in the context, we force our method to660

select at least 5 examples during inference, while661

results show that this may be suboptimal since se-662

lecting fewer examples is better in some cases.663

A.2 Computation Cost664

Training cost All of our experiments are done on665

Nvidia V100 GPUs. For all datasets, value models666

are trained on 64 V100 GPUs for 6 hours, taking667

384 V100 GPU hours for each. For collecting data,668

the cost of different datasets varies due to different669

dataset sizes, lengths of one example, and other670

settings. Table 7 shows detailed information about671

the training cost on different datasets. Note that for672

GSM8K and StrategyQA we generate 8 answers673

and take the mean accuracy for each trajectory,674

so the computation cost on this part could be one675

magnitude lower if we instead only sample 1 for676

each.677

Inference speed The Inference cost of our678

method is independent of the size of LLM and679

the number of tokens needed to be generated. On680

GSM8K, inference time almost doubled on 13B681

models when applying our method, while for 70B682

models inference time only increased by ∼ 14%.683

We expect that under real cases our method is ap-684

plied to relatively large LLMs and generation tasks,685

where the increase in inference speed would be686

negligible.687

A.3 GSM8K failure cases688

Here we provide some examples that LLaMA2689

13B fails to answer correctly in GSM8K. In the690

first example, LLaMA2 goes wrong in arithmetic691

involving fractions. In the second and third exam-692

ples, LLaMA2 fails to figure out the correct process693

of solving the problem. We can see that, correctly694

answering GSM8K questions requires strong arith-695

metic ability and mathematical reasoning ability,696

which are hard to improve through in-context learn-697

ing.698
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GSM8K StrategyQA TREC QNLI
max #examples selected 5 6 8 8
example pool size 32 32 64 64
model used to collect feedback LLaMA2 13B LLaMA2 13B Vicuna 13B Vicuna 13B
#trajectories sampled 128 128 160 128
#answers generated for each trajectory 8 8
temperature used to collect feedback 0.5 0.5
MCTS exploration constant 0.25

√
2 0.25

√
2 0.25

√
2 0.25

√
2

value model MLP layer size 1024 1024 1024 1024
k in contrastive loss 4 4 4 4
batch size 64 64 64 64
max train steps 18000 18000 18000 18000
weight decay 0.004 0.004 0.004 0.004

Table 6: Detailed hyperparameters used in our experiment.

GSM8K StrategyQA TREC QNLI
#example used ∼ 5000 ∼ 2050 ∼ 5300 ∼ 35300

GPU time per example ∼ 6h ∼ 2.3h ∼ 30s ∼ 40s
GPU hours in total 30000 4700 45 390

Table 7: Computation costs of our method during collecting training data.

Question Generated Answer
TreQuan is throwing rocks in the river
and he notices that the bigger the rock,
the wider the splash. Pebbles make a
splash that is a 1/4 meter wide. Rocks
make a splash that is 1/2 a meter wide,
and boulders create a splash that is 2
meters wide. If he tosses 6 pebbles, 3
rocks, and 2 boulders, what is the total
width of the splashes he makes?

The pebbles make a splash that is 6 * 1/4 = 1 1/2 meters
wide. The rocks make a splash that is 3 * 1/2 = 3 meters
wide. The boulders make a splash that is 2 * 2 = 4 meters
wide. The total width of the splashes is 1 1/2 + 3 + 4 = 9
meters. The answer is 9

Julie, Letitia and Anton decided to have
dinner together at a nearby restaurant.
Julie orders $10 worth of food, Letitia
orders $20 worth of food, and Anton
orders $30 worth of food. How much
should each pay in tips if they want
to split a 20% tip for the whole meal
evenly?

First, we find the total cost of the meal by adding the
amounts that each person ordered: 10+20+30=60. Then
we divide this total by 3, as there are three people eating,
finding a per-person cost of 60/3=20. Then we find the total
tip amount for a 20% tip, by multiplying the per-person
cost by 20/100, finding 20*20/100=4 per person. Finally,
we divide the total tip amount by 3, as they want to split it
evenly, finding a per-person tip of 4/3=1.33. So each person
should pay 1.33 in tips. The answer is 1.33

Frankie’s parents let him have many
pets. He has six more snakes than he
has cats. He has one less parrot than
cats. Six of his pets have four legs. He
has 2 dogs. How many pets does he
have in total?

Let x be the number of cats he has. He has x + 6 snakes. He
has x - 1 parrot. The total number of pets is x + 6 + x - 1 =
2x + 5. He has 2 dogs. The total number of pets is 2x + 5 +
2 = 2(x+5) + 2. The answer is 2x + 7

Table 8: LLaMA2 13B failure cases on GSM8K.
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