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ABSTRACT

Parameter Efficient Transfer Learning (PETL) excels in downstream classifica-
tion fine-tuning with minimal computational overhead, demonstrating its poten-
tial within the pre-train and fine-tune paradigm. However, recent PETL methods
consistently struggle when fine-tuning for semantic segmentation tasks, limiting
their broader applicability. In this paper, we identify that fine-tuning for seman-
tic segmentation requires larger parameter adjustments due to shifts in semantic
perception granularity. Current PETL approaches are unable to effectively ac-
commodate these shifts, leading to significant performance degradation. To ad-
dress this, we introduce ProPETL, a novel approach that incorporates an additional
midstream adaptation to progressively align pre-trained models for segmentation
tasks. Through this process, ProPETL achieves state-of-the-art performance on
most segmentation benchmarks and, for the first time, surpasses full fine-tuning
on the challenging COCO-Stuff10k dataset. Furthermore, ProPETL demonstrates
strong generalization across various pre-trained models and scenarios, highlight-
ing its effectiveness and versatility for broader adoption in segmentation tasks.

1 INTRODUCTION

Parameter Efficient Transfer Learning (PETL) aims to leverage the representational knowledge from
large-scale pre-trained models (e.g., MAE He et al. (2022) and DINOv2 Oquab et al. (2023)) for
downstream tasks while minimizing computational costs. Recent studies Jia et al. (2022); Chen
et al. (2022); Hu et al. (2022) show that PETL can match or even surpass the performance of full
fine-tuning for downstream classification tasks, achieving this with less than one percent of the
parameters needing adjustment. This efficiency has motivated researchers to explore its application
across various computer vision scenarios Han et al. (2024).

However, existing PETL methods face performance bottlenecks when applied to semantic segmen-
tation Jia et al. (2022); Hu et al. (2022). Unlike classification tasks, semantic segmentation requires
the model to develop fine-grained perceptual capability to predict semantic labels for each pixel.
This shift in perceptual granularity complicates the fine-tuning process for segmentation. The dis-
crepancy is further illustrated in Fig. 1(a). Despite their superior results in classification tasks,
PETL methods consistently exhibit a performance gap compared to full fine-tuning across most seg-
mentation benchmarks. Consequently, full fine-tuning remains the preferred approach in current
segmentation efforts, limiting PETL’s broader adoption.

Upon examining the fine-tuning process for classification and segmentation, we identify two key
phenomena. First, transitioning from a classification pretrained model to a downstream segmen-
tation task requires extensive parameter adjustments during full fine-tuning, as indicated by the in-
creased mean Euclidean distance in Fig.1(b). Second, the limited tunable parameters in PETL hinder
its ability to capture semantically-aware changes when fine-tuning directly for segmentation. As il-
lustrated in Fig.1(c), the PETL method, AdaptFormer Chen et al. (2022), exhibits small adjustment
magnitudes across most regions of the feature maps, unlike the uniformly distributed adjustments
observed in full fine-tuning, resulting in a statistically right-skewed distribution. This trend is further
evident in the samples visualized in Fig. 1(d). These observations indicate that fine-tuning for seg-
mentation tasks demands both larger parameter adjustments and broader semantic changes to bridge
the perceptual granularity gap between pretrained models and downstream tasks. However, existing
PETL methods struggle with these shifts, leading to suboptimal segmentation performance.
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Figure 1: (a) Relative performance of PETL methods compared to full fine-tuning on image classifi-
cation [CLS] and semantic segmentation [SEG] tasks. (b) Euclidean distance between the parameter
vectors of the classification pre-trained model before and after full fine-tuning across different down-
stream tasks. The optimizer settings and the number of training iterations are aligned to minimize the
influence of training conditions and data volume. (c)Histogram showing the normalized Euclidean
distance between the feature map of the pre-trained model and the feature map after adaptation by
different methods. (d) A visualization from ADE20k, illustrating the normalized Euclidean distance
map after applying various adaptation methods.

These insights motivate us to develop a solution that retains PETL’s computational efficiency while
adapting to the significant changes in semantic perceptual granularity during fine-tuning. Inspired by
previous works Hsu et al. (2020); Dong et al. (2024b) that improve domain generalization through
a progressive paradigm, we introduce an additional phase, midstream adaptation, into the PETL
framework to progressively address semantic granularity differences. Achieving this involves two
major challenges. First, developing a strategy to bridge the semantic perception gap remains un-
derexplored. Unlike prior adaptations that address data domain changes Dong et al. (2024b), the
progressive adaptation for segmentation must effectively bridge the differences in semantic percep-
tual granularity between upstream and downstream tasks, requiring detailed analysis and modeling.
Second, it remains uncertain which level of supervision and specific perceptual granularity for in-
termediate tasks would most benefit progressive fine-tuning for segmentation. Identifying the most
effective intermediate task for enhancing segmentation perception remains an open question.

To address these challenges, we begin with analyzing two candidate progressive adaptation strate-
gies: Generalized Parametric Adaptation (GPA) and Decoupled Structured Adaptation (DSA). We
then conduct a comprehensive investigation into the impact of different intermediate tasks and em-
pirically determine the optimal selection. By integrating both approaches, we propose ProPETL, a
novel progressive PETL framework for segmentation adaptation. By effectively bridging the per-
ception gap between pre-trained representational knowledge and downstream segmentation tasks,
ProPETL significantly enhances performance while maintaining computational efficiency. Com-
pared to its counterparts, ProPETL substantially narrows the performance gap with full fine-tuning
on most benchmarks and, for the first time, surpasses full fine-tuning on the challenging COCO-
Stuff10k dataset, demonstrating its effectiveness.

Our contributions are summarized as follows:

1) We introduce ProPETL, an innovative framework for progressively adapting pre-trained models
to downstream semantic segmentation tasks through intermediate tasks.

2) We conduct an in-depth analysis and comprehensive comparison of candidate progressive adap-
tation strategies and intermediate tasks to facilitate the continuous migration of representational
knowledge from pre-trained models to segmentation tasks.

3) We achieve state-of-the-art segmentation fine-tuning performance across diverse benchmarks and
demonstrate robust generalizability across various pre-trained models and segmentation tasks.

2 RELATED WORK

2.1 PARAMETER EFFICIENT TRANSFER LEARNING

PETL aims to effectively fine-tune pre-trained models for downstream tasks with minimal parameter
updates. Recent approaches can be categorized into three main types: partial tuning, prompt-based,
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and adapter-based methods. Partial tuning methods strategically select a subset of the pre-trained
model for fine-tuning. For example, BitFit Zaken et al. (2022) updates only the bias terms of the
network while freezing other parameters, and SPT He et al. (2023) calculates a sensitivity metric
based on gradients to fine-tune the high-sensitivity parameters. Prompt-based methods incorporate
visual prompt tokens Jia et al. (2022) into the downstream inputs, which then undergo parameter
updates. Various prompt structures Das et al. (2023); Zhou et al. (2024) and parameter-efficient
strategies Han et al. (2023) are explored to further enhance performance. Adapter-based approaches
introduce additional lightweight adaptation networks rather than modifying inputs. AdaptFormer
Chen et al. (2022) and LoRand Yin et al. (2023) incorporate adaptation modules with bottleneck
structures and residual connections, while LoRA Hu et al. (2022) and RLRR Dong et al. (2024a)
employ learnable low-rank parameter bypasses to facilitate adaptation.

More recently, some efforts apply PETL methods to more complex tasks like segmentation Yin et al.
(2023) or to leverage stronger pre-trained models such as SAM Kirillov et al. (2023). However,
despite achieving promising results in fields like medical image segmentation Wu et al. (2023) and
camouflaged object detection Chen et al. (2023), a notable performance gap persists between PETL
and full fine-tuning in semantic segmentation tasks, particularly when compared to the successes
realized in image classification.

2.2 PROGRESSIVE DESIGN IN TRANSFER LEARNING

Progressive paradigm is a prevalent concept in transfer learning Rusu et al. (2016); Weinshall et al.
(2018), aimed at enhancing model performance by gradually adapting to the target domain. This
approach is particularly advantageous when there is a substantial gap between the source and target
domains Hsu et al. (2020), facilitating smoother transitions and more effective knowledge transfer.
For instance, Progressive Neural Networks Rusu et al. (2016) introduce new columns of neurons for
each new reinforcement learning task while keeping the parameters of the previous columns fixed.
In the field of domain adaptation, Hsu et al. (2020) generate intermediate domain data situated
between the source and target domains using CycleGAN Zhu et al. (2017), progressively addressing
domain adaptation challenges. Similarly, PPEA Dong et al. (2024b) designs a progressive training
framework tailored for depth estimation that utilizes external datasets to construct an easy-to-hard
pipeline, iteratively updating the adapter at various training stages.

Despite the success of these approaches in mitigating data-domain shifts, extending the progres-
sive paradigm from adaptation across similar tasks in different data domains to addressing the fine-
grained perceptual requirements of downstream segmentation remains unexplored.

3 METHOD

3.1 VANILLA PETL

Given a pre-trained model fθ(·) parameterized by θ. The goal of PETL is to efficiently adapt this
pre-trained model to a downstream task, yielding a model fθ,ϕ(·), where ϕ denotes the weights of
the adaptation module. During the adaptation process, with the training setD = {(xi,yi)}Ni=1 from
the downstream task, PETL freezes θ and only updates ϕ by optimizing the following objective:

ϕ∗ = argmin
ϕ

L (fθ,ϕ(·); D,ϕr) , (1)

where L(·) denotes the loss function for the downstream task and ϕr indicates random initialization
of the parameters in the adaptation module.

By fully leveraging the pre-training weights of the pre-trained model, PETL achieves the same or
even better performance than full fine-tuning by updating only ϕ. Since the number of parameters in
ϕ is only a small fraction of the total model parameters θ, PETL can significantly enhance computa-
tional efficiency and reduce the cost of the fine-tuning process while improving accuracy compared
to full fine-tuning. However, PETL encounters bottlenecks when applied to downstream semantic
segmentation tasks due to changes in perceptual granularity.
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Figure 2: Illustration of two progressive adaptation strategies. Left: Generalized Parametric Adap-
tation. Right: Decoupled Structured Adaptation. “FFN” indicates the Feed-Forward Network.

3.2 MIDSTREAM PROGRESSIVE ADAPTATION

To mitigate semantic granularity shifts, we divide the adaptation into two phases: midstream adap-
tation and downstream fine-tuning. By introducing these additional training phases, the adaptation
can be enhanced with supervision from intermediate tasks, thereby facilitating a better transition of
the pre-trained model into downstream tasks. For this purpose, we investigate two candidate pro-
gressive adaptation strategies: Generalized Parametric Adaptation (GPA) and Decoupled Structured
Adaptation (DSA), which are graphically illustrated in Fig. 2.

Generalized Parametric Adaptation is a straightforward progressive adaptation strategy that uti-
lizes enhanced supervision during the midstream phase to bridge perception gaps between the pre-
trained model and downstream tasks. Formally, during the midstream adaptation phase, the pre-
trained weights θ are frozen and only ϕ is updated by optimizing the following objective:

ϕm = argmin
ϕ

Lm
(
fθ,ϕ(·); Dm,ϕinit

)
, (2)

where Lm andDm denote the loss function and training data of the intermediate task, ϕinit denotes
the initial weights and ϕm indicates the optimized weights of ϕ. In the second training phase, GPA
begins to fit ϕ starting from ϕm using the downstream data and objective, formalized as:

ϕd = argmin
ϕ

L (fθ,ϕ(·);D,ϕm) . (3)

With the improved initialization from the midstream adaptation, ϕ tends to generalize better in the
downstream fine-tuning phase compared to vanilla PETL methods.

For the adaptation module, GPA introduces a bypass branch to the Feed-Forward Network (FFN)
layer. This bypass branch uses a bottleneck structure with a down-projection layer and an up-
projection layer, parameterized by Wdown ∈ RD×D

r and Wup ∈ RD
r ×D, respectively. D denotes

the channel dimension and r is the reduction factor for parameter efficiency. For the input feature z
of the FFN layer, the adapted feature z̃ is obtained by adding the output of the bypass branch to the
output of the FFN layer, formalized as:

z̃ = FFN(z) + ReLU(z ·Wdown) ·Wup. (4)

During midstream adaptation, GPA optimizes the parameters within the bypass branch according to
Eq. 2 and keeps the optimized parameters {Wm

down,W
m
up}. In downstream fine-tuning, GPA uses the

same structure as in the midstream adaptation phase (refer to Eq. 4) and initializes {Wdown,Wup}
with {Wm

down,W
m
up} and further optimizes them based on the downstream task loss.

Decoupled Structured Adaptation is another progressive adaptation strategy for PETL. Unlike
GPA, which updates the same adapter for both intermediate and downstream tasks, DSA splits the
adaptation parameters into two parts {ϕ,ψ}. During the midstream adaptation phase, only ϕ will
be optimized. In the downstream fine-tuning phase, ϕ is frozen, and optimization is focused solely
on ψ. By successively optimizing the following objective:

ϕm = argmin
ϕ

Lm
(
fθ,ϕ(·);Dm,ϕinit

)
, (5)

ψd = argmin
ψ

L
(
fθ,ϕ,ψ(·);D,ϕm,ψinit

)
, (6)

DSA thus obtains the optimized parameters ϕm and ψd during the two-phase training process.
The key difference between DSA and GPA lies in the decoupled weights. By freezing part of the
adaptation parameters ϕ after midstream adaptation, DSA is able to avoid the forgetting problem
that can occur during downstream fine-tuning in GPA. Refer to Section 4.3 for further analysis.
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Specifically, during the midstream adaptation, DSA introduces a bypass branch to the FFN layer,
which shares the same structure as in Eq. 4, and obtains the optimized parameters {Wm

down,W
m
up}

according to Eq 5. In the downstream fine-tuning stage, DSA first recovers the feature
·
z after

midstream adaptation by applying:
·
z = FFN(z) + ReLU(z ·Wdown) ·Wup, (7)

where the projection layer parameters {Wdown,Wup} are initialized with {Wm
down,W

m
up} and kept

frozen. To address potential task bias introduced during midstream adaptation, DSA concatenates
·
z with the original FFN output along the channel dimension, feeding them into a randomly ini-
tialized bypass branch parameterized by {Ŵdown ∈ R2D× 2D

r , Ŵup ∈ R 2D
r ×D}. This allows

{Ŵdown, Ŵup} to selectively integrate midstream information and progressively adapt intermediate
features for downstream tasks. DSA obtains the final adapted feature by adding the bypass branch
output to the FFN output and optimizes {Ŵdown, Ŵup} according to Eq. 6. The above process is
formalized as:

z̃ = FFN(z) + ReLU
([ ·
z,FFN(z)

]
· Ŵdown

)
· Ŵup, (8)

where [·, ·] indicates the channel concatenation operator.

3.3 INTERMEDIATE TASK DESIGNATION

In progressive transfer learning for semantic segmentation, the intermediate task is expected to en-
hance the model’s fine-grained perception to produce dense predictions for diverse classes, as re-
quired by downstream applications. Two key factors should be considered in this context, i.e.,
perception granularity and supervision diversity.

𝑯𝑯 × 𝑾𝑾

𝐻𝐻 × 𝑊𝑊

Building

𝜶𝜶 = 𝟎𝟎

𝜶𝜶 = 𝟏𝟏𝜶𝜶 = 𝟎𝟎.𝟓𝟓

1 × 1

𝐻𝐻
32×𝑊𝑊32

𝐻𝐻
64×𝑊𝑊64

𝟑𝟑𝟑𝟑 × 𝟑𝟑𝟑𝟑

𝟔𝟔𝟔𝟔 × 𝟔𝟔𝟔𝟔

�𝑦𝑦o

�𝑦𝑦m0.5 �𝑦𝑦m0.5 �𝑦𝑦o

0.5 �𝑦𝑦o + 0.5 �𝑦𝑦m

+

Figure 3: Illustration of FPG.

Perception Granularity. Unlike pre-trained tasks focused on
global perception for object-level classification, segmentation tasks
require much finer perception granularity to capture pixel-level se-
mantics. The intermediate task should help the model bridge this
shift in granularity. To achieve this, we design a transfer strategy
that converts the downstream training data with dense annotations
to support training at varying levels of perception granularity.

Specifically, for the ground truth dense annotation map y ∈ RH×W

from the downstream dataset D, where H and W indicate the
image height and width, we obtain its one-hot label vector ŷ ∈
RH×W×C , where C is the total number of categories inD. The per-
ception granularity transformation FPG(·) is performed by down-
sampling ŷ using pooling windows of size s× s with a stride of s, thereby generating annotations at
different levels of granularity by controlling s. For generating image-level labels, FPG(·) applies an
H ×W pooling window, producing a single label vector FPG(ŷ) ∈ RC for the entire input image.
For patch-level labels, FPG(·) sets s to match the patch size of the pre-trained transformer, result-
ing in FPG(ŷ) ∈ RH

s ×W
s ×C , which yields H

s × W
s label vectors, each corresponding to a distinct

patch region. Fig. 3 visualizes the output of FPG(ŷ) with varying pooling window size. Intuitively,
after applying FPG(·), the intermediate task requires the model to perform coarse-grained region
classification rather than classifying each input pixel individually.
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Figure 4: Illustration of FSD.

Supervision Diversity. In addition to shifts in perception gran-
ularity, downstream segmentation tasks require classification pre-
trained models to develop a broader semantic awareness beyond
recognizing a single dominant class. To address this gap, we incor-
porate semantic diversity modeling into the intermediate task design
by introducing supervision diversity transformation FSD(·).
To be specific, FSD(·) refines the pooling method utilized in FPG(·)
by employing max-pooling to generate one-hot labels ŷo and mean-
pooling to create many-hot labels ŷm, which reflect the semantic
density within a given region. To finely control supervision diver-
sity and inspired by label smoothing Szegedy et al. (2016), FSD(·)
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Figure 5: Illustration of the ProPETL framework. In the midstream phase, we generate the mid-
stream dataset via perception granularity and supervision diversity transformations and update the
adaptation module. In the downstream fine-tuning phase, we apply the decoupled structured adapta-
tion strategy and train both the adaptation module and segmentation head on the downstream dataset.

interpolates between ŷo and ŷm using the equation (1− α) ∗ ŷo + α ∗ ŷm, where α ∈ [0, 1] serves
as a smoothing factor. Fig. 4 illustrates the output of FSD(ŷ) with varying α when s = H × W .
By varying α, FSD(·) generates labels with different numbers of categories, thus modulating the
supervision diversity of the intermediate tasks.

By combining these two factors, we formulate intermediate tasks that require predicting the gener-
ated labels FSD ◦ FPG(ŷi) from input xi. This approach enhances the pre-trained model’s fine-
grained perception ability, helping it better adapt to downstream segmentation applications.

3.4 FRAMEWORK AND COMPLEXITY

Framework. The entire framework is illustrated in Fig. 5. The training process of ProPETL consists
of two phases: midstream adaptation and downstream fine-tuning.

In the midstream adaptation stage, we transform the downstream dataset D with respect to per-
ception granularity and supervision diversity to obtain an intermediate dataset Dm. To prevent
overfitting on the intermediate task, we use a two-layer MLP with a ReLU activation function as
the intermediate task head, following standard practices Chen et al. (2020a;b). We evaluate differ-
ent combinations of perception granularity and supervision diversity, and based on these empirical
studies, we employ image-level granularity (s = H × W ) and multi-label diversity (α = 1) for
midstream adaptation in our framework. The standard cross-entropy loss, denoted as Lm(·), is used
to optimize both the bypass branch and the intermediate task head. In the downstream fine-tuning
stage, ProPETL first processes adaptation module parameters according to the decoupled structured
adaptation strategy. Subsequently, the downstream segmentation head is randomly initialized, and
the learnable parameters are fine-tuned with the downstream dataset. For inference, the trained adap-
tation module, combined with the pre-trained backbone, extracts feature maps from input images,
which are then fed to the segmentation head to generate the final segmentation results.

Parametric Complexity. When employing GPA as the progressive adaptation strategy, the num-
ber of learnable parameters in the backbone network is O( 2LD2

r ), where L denotes the number of
backbone layers. In contrast, DSA increases the number of learnable parameters to O( 8LD2

r ) due
to the incorporation of additional structures. To maintain parameter consistency, we empirically set
the reduction factor r in DSA to be four times that used in GPA.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct a comprehensive evaluation of the proposed ProPETL for segmentation adap-
tation on benchmarks, including PASCAL VOC2012 Everingham et al. (2015), ADE20k Zhou et al.
(2019), COCO-Stuff10k Caesar et al. (2018), and CityScapes Cordts et al. (2016). 1) PASCAL
VOC2012 consists of 1,464 training images and 1,449 validation images spanning 21 categories.
It is widely adopted in object detection and semantic segmentation, making it a key benchmark for
tasks involving limited-scale data. 2) ADE20k includes 20,210 training images and 2,000 validation
images, making it one of the most comprehensive datasets for semantic segmentation with a wide

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparative results on four semantic segmentation datasets. The experiments utilize an
ImageNet-21k supervised pre-trained Swin-L as the backbone and UperNet as the segmentation
head. The best and second-best results are highlighted in bold and underline, respectively. The
symbol “∗” denotes the learnable parameters in the backbone.

VOC2012 ADE20k COCO-Stuff10k CityScapes Mean Learnable
Param.∗(M)Method mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc

Full fine-tuning 84.38 89.82 51.71 63.13 46.30 58.98 82.36 88.53 66.19 75.12 195.00
Freeze 83.32 89.16 47.51 59.74 42.36 54.39 75.54 82.91 62.18 71.55 0
BitFit 84.25 90.25 48.00 60.81 43.75 56.37 77.73 84.89 63.43 73.08 0.30
LoRand 84.09 90.32 48.08 59.31 43.96 56.41 76.88 83.89 63.25 72.48 3.59
RLRR 84.77 90.72 48.72 60.53 44.51 57.03 78.43 85.35 64.11 73.41 0.46
VPT 85.69 91.12 50.35 61.37 45.04 57.58 78.95 86.56 65.01 74.16 3.61
AdaptFormer 85.41 90.93 50.38 62.55 45.45 57.83 79.41 86.03 65.16 74.34 2.64
LoRA 85.36 91.34 50.45 62.91 45.03 57.81 80.54 87.23 65.35 74.82 4.55
ProPETL 86.11 92.08 51.05 63.61 46.48 58.69 81.67 88.23 66.33 75.65 3.30

range of data variances. 3) COCO-Stuff10k extends the COCO dataset Lin et al. (2014) with dense
annotations for semantic segmentation, including 9,000 training images and 1,000 validation images
across 172 categories. 4) CityScapes includes finely annotated images across 19 categories, with
2,975 for training and 500 for validation. It is widely used for evaluating urban scene understanding.

Implementation details. We employ AdamW Loshchilov & Hutter (2018) for optimization, with
β1 and β2 set to 0.9 and 0.999, respectively. A PolyLR scheduler is used to dynamically adjust the
learning rate during the training process. The batch size is set to 16 across all benchmarks, and
the iterations for downstream fine-tuning range from 40k to 160k, consistent with those in previous
works Xiao et al. (2018); Liu et al. (2021) for a fair comparison. For midstream adaptation, the
iterations are set to half of the corresponding downstream settings. To ensure parameter efficiency,
the reduction factor r is set to 12 in GPA and 48 in DSA.

Following the counterpart Yin et al. (2023), we utilize Swin-L Liu et al. (2021), pre-trained on
ImageNet-21K Deng et al. (2009), as the backbone, and UperNet Xiao et al. (2018) as the segmen-
tation framework. The mean intersection over union (mIoU) and mean accuracy (mAcc) on the
validation set across all benchmarks are used as metrics to provide a comprehensive comparison
with state-of-the-art methods. All experiments are implemented using MMSegmentation Contribu-
tors (2020) on NVIDIA A800 GPU.

4.2 COMPARISON WITH THE STATE-OF-THE-ARTS

We compare the proposed ProPETL with its counterparts on segmentation benchmarks, including
full fine-tuning, freeze (a.k.a. linear probing), and several typical PETL methods. The PETL coun-
terparts include partial tuning methods like Bias Zaken et al. (2022), prompt-based methods like
VPT Jia et al. (2022), and adapter-based methods such as AdaptFormer Chen et al. (2022), LoRand
Yin et al. (2023), LoRA Hu et al. (2022), and RLRR Dong et al. (2024a).

As illustrated in Table 1, ProPETL delivers highly competitive performance across all settings, sig-
nificantly surpassing PETL counterparts by a large margin in both metrics. Notably, on the chal-
lenging COCO-Stuff10k benchmark, it outperforms the previous state-of-the-art, AdaptFormer, by
1.03% mIoU. Additionally, ProPETL exceeds full fine-tuning while using only 1.7% of the param-
eters. To the best of our knowledge, this is the first time a PETL method has outperformed full
fine-tuning on this benchmark, demonstrating its superiority. On the most challenging benchmark,
ADE20K, the proposed method also delivers performance comparable to full fine-tuning and even
surpasses it in the mAcc metric, indicating its generalizability across various segmentation scenarios.

When considering parameter efficiency, it is worth noting that although LoRand, VPT, and LoRA
utilize a comparable amount of learnable parameters as ProPETL, their performances are signifi-
cantly inferior. This phenomenon demonstrates that the introduction of the progressive paradigm
effectively enhances the adaptation ability to manage the semantic perception granularity shift in
downstream segmentation tasks within PETL, while also maintaining computational efficiency.
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Figure 6: Ablation results of two progressive adaptation strategies. The dashed line represents the
result of the baseline approach, i.e. AdaptFormer. “I” and “P” denote that the perception granularity
of the intermediate task is image-level and patch-level, respectively. “S” and “M” indicate that the
supervision diversity of intermediate task is single-label and multi-label, respectively.

Table 2: Ablation study on the perception granularity of intermediate tasks using DSA during down-
stream fine-tuning. “s” denotes the pooling window size. The first line is the result of AdaptFormer.

Patch-level ←→ Image-level VOC2012 COCO-Stuff10k CityScapes

s = 32 s = 128 s = 640 mIoU mAcc mIoU mAcc mIoU mAcc

85.41 90.93 45.45 57.83 79.41 86.03

✓ 85.75 91.30 45.60 57.80 80.84 87.26
✓ 85.62 92.04 45.99 58.04 81.03 87.58

✓ 85.89 91.68 46.32 58.33 80.89 87.54

4.3 ABLATION STUDY
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Figure 7: Visualization of the loss
curves for the intermediate task.

Progressive Adaption Strategy. We conduct detailed ablation
studies on two typical progressive adaptation strategies with
representative intermediate tasks on the VOC2012, COCO-
Stuff10k and CityScapes benchmarks. The results are illus-
trated in Fig. 6. From Fig. 6, we observe that, compared
to the AdaptFormer baseline, the introduction of the progres-
sive paradigm significantly boosts performance in most set-
tings, demonstrating its effectiveness for semantic segmen-
tation adaptation. Moreover, DSA consistently outperforms
GPA across all settings, highlighting its superiority.

We further investigate this phenomenon and visualize the loss
function curve during training in Fig. 7. As shown in the fig-
ure, when training with downstream tasks, GPA tends to forget
a portion of the knowledge learned during the intermediate tasks, as indicated by the increasing loss
value of the intermediate task. In contrast, since DSA freezes parts of the adapter after midstream
adaptation, it continues to transfer effectively to the downstream task without degradation, thereby
delivering better performance. Based on these analysis, we employ DSA in our framework.

Intermediate Task Design. We conduct ablation studies to investigate the impact of perception
granularity and supervision diversity. To mitigate perturbations, we average results from experi-
ments with varying supervision diversities at each perception granularity level, and vice versa 1. As
shown in Table 2, the VOC2012 and COCO-Stuff10k datasets exhibit a preference for intermediate
task with image-level perception, while the CityScapes dataset favors more fine-grained intermedi-
ate tasks. This divergence can be attributed to the fact that VOC2012 and COCO-Stuff10k contain
a greater number of object-centric images; the image-level intermediate task necessitates perceiving
the objects existing in the image, thereby providing a basis for the downstream segmentation tasks.
Conversely, the images in CityScapes typically feature complete traffic scenes with relatively fixed

1Please refer to Table 13 in the Appendix for full results.
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Table 3: Ablation study on the supervision diversity of intermediate tasks using DSA during down-
stream fine-tuning. “α” represents the smoothing factor. The first line is the result of AdaptFormer.

Single label ←→ Multi label VOC2012 COCO-Stuff10k CityScapes

α = 0 α = 0.5 α = 1 mIoU mAcc mIoU mAcc mIoU mAcc

85.41 90.93 45.45 57.83 79.41 86.03

✓ 85.65 91.59 45.86 58.08 80.56 87.06
✓ 85.68 91.39 46.00 57.75 80.89 87.40

✓ 85.94 92.05 46.05 58.33 81.31 87.92

Table 4: Comparison of results using ViT-B/16
pre-trained by MAE in a self-supervised manner
as the backbone and UperNet as the segmenta-
tion head. The best results of the PETL method
are highlighted in bold.

COCO-Stuff10k CityScapes Param.
∗ (M)Method mIoU mAcc mIoU mAcc

Full ft. 39.64 51.64 80.87 87.79 87.02
Freeze 28.94 39.58 62.22 69.96 0
AdaptFormer 34.42 45.60 70.99 78.75 1.19
ProPETL 37.03 49.19 77.75 85.25 1.19

Table 5: Instance segmentation results using
ImageNet-21k supervised pre-trained Swin-L as
the backbone and Mask R-CNN as the seg-
mentation head. The best results of the PETL
method are highlighted in bold.

CityScapes Param.
∗ (M)

Method APbox APbox
50 APmask APmask

50

Full ft. 41.60 69.40 38.20 64.50 195.00
Freeze 9.60 21.70 8.80 18.80 0
AdaptFormer 23.10 45.80 21.50 42.00 2.65
ProPETL 30.00 58.50 29.30 54.00 2.65

semantic categories, limiting the diversity of image-level labels. Hence, fine-grained intermediate
tasks are preferred. When examining supervision diversity in Table 3, we observe that the multi-
label intermediate task consistently outperforms the single-label task. This advantage may stem
from the single-label task’s focus on perceiving only the most frequent semantic categories within
a region, thereby neglecting other important semantic information and complicating adaptation to
downstream pixel-level segmentation tasks.

Overall, the optimal performance is achieved when using a combination of image-level perception,
where the pooling window size is set equal to the input image size (640 × 640) and multi-label
supervision, with the smoothing factor α set to 1. Based on this empirical observation, we adopt this
combination in our framework.

4.4 GENERALIZATION EVALUATION.

To evaluate the generalization ability of the proposed ProPETL, we further evaluate it with different
pre-trained models and downstream tasks. In these comparisons, we consider AdaptFormer, one
of the state-of-the-art methods, as a counterpart since it shares a similar framework with ProPETL,
excluding the progressive paradigm. The results are illustrated in Tables 4 and 5.

As shown in Table 4, even when using a less powerful backbone such as ViT-B/16 Dosovitskiy
et al. (2020), which is self-supervised pre-trained by MAE He et al. (2022) on ImageNet-21k,
ProPETL still significantly outperforms its counterparts. Notably, on the challenging CityScapes
dataset, ProPETL surpasses AdaptFormer by a large margin of 7% mIoU, demonstrating its robust
generalization ability across different pre-trained models.

When addressing a more complex segmentation task, i.e., instance segmentation, we further calcu-
late the average precision on CityScapes, as shown in Table 5. The improvements are even more
pronounced in this context, with ProPETL substantially outperforming the counterparts, highlight-
ing its potential for broader application in other challenging computer vision tasks.
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5 CONCLUSION

In this paper, we propose ProPETL, a progressive PETL paradigm designed to adapt pre-trained
models to downstream segmentation tasks. By introducing an additional training phase in the fine-
tuning process, ProPETL successfully enhances fine-grained perception ability and improves per-
formance on downstream segmentation tasks. Various progressive strategies and intermediate task
designs are comprehensively explored to achieve optimal transfer effectiveness. Furthermore, ex-
tensive comparisons demonstrate that ProPETL delivers superior performance across benchmarks,
underscoring its effectiveness and superiority.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data: Ground truth
from computer games. In ECCV, 2016.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In CVPR, 2016.

Zhixiang Wei, Lin Chen, Yi Jin, Xiaoxiao Ma, Tianle Liu, Pengyang Ling, Ben Wang, Huaian Chen,
and Jinjin Zheng. Stronger fewer & superior: Harnessing vision foundation models for domain
generalized semantic segmentation. In CVPR, 2024.

Daphna Weinshall, Gad Cohen, and Dan Amir. Curriculum learning by transfer learning: Theory
and experiments with deep networks. In International conference on machine learning, pp. 5238–
5246. PMLR, 2018.

Junde Wu, Wei Ji, Yuanpei Liu, Huazhu Fu, Min Xu, Yanwu Xu, and Yueming Jin. Medical sam
adapter: Adapting segment anything model for medical image segmentation. arXiv preprint
arXiv:2304.12620, 2023.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
scene understanding. In Proceedings of the European conference on computer vision (ECCV), pp.
418–434, 2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dongshuo Yin, Yiran Yang, Zhechao Wang, Hongfeng Yu, Kaiwen Wei, and Xian Sun. 1% vs 100%:
Parameter-efficient low rank adapter for dense predictions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 20116–20126, 2023.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: simple parameter-efficient fine-tuning
for transformer-based masked language-models. In ACL, 2022.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ade20k dataset. IJCV, 2019.

Nan Zhou, Jiaxin Chen, and Di Huang. ivpt: Improving task-relevant information sharing in visual
prompt tuning by cross-layer dynamic connection. arXiv preprint arXiv:2404.05207, 2024.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In ICCV, 2017.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

In this section, we present an analysis of computational overhead, visualization results, and complete
ablation study results on intermediate task design. Additionally, we provide extended evaluations
using a broader range of pre-trained models and segmentation heads. Finally, we discuss the limita-
tions of our approach and potential directions for future work.

Computational Overhead. We assess the computational overhead and report the training time, in-
ference time, GFLOPs, GPU memory footprint for Full fine-tuning, VPT, LoRA, AdaptFormer and
ProPETL in Table 6. For a fair comparation, we adopt the Swin-L backbone and train all the methods
for 80,000 iterations on a single NVIDIA A800 GPU. As for the training time, the default ProPETL
setting requires 11 hours for midstream adaptation and 36 hours for downstream fine-tuning, totaling
47 hours, which is longer than AdaptFormer due to the introduce of additional midstream adapta-
tion phase. In terms of inference time, FLOPs, and GPU memory, ProPETL increases negligible
inference time (6 ms), computational workload (0.026 GFLOPs) and GPU memory footprint (4,180
MB) compared to AdaptFormer.

Table 6: Comparison of the computational overhead. “†” indicates the short training version. Note:
reparameterization for LoRA was not implemented.

Method Training time↓
(Hour)

Inference time↓
(Millisecond)

Workload ↓
(GFLOPs)

GPU Memory↓
(MB)

Param.↓
(M)

Full fine-tuning 41 182 623.310 94,198 195.00
VPT 96 210 872.222 135,498 3.61
LoRA 30 208 718.097 94,564 4.55
AdaptFormer 34 185 627.085 51,433 2.64
ProPETL 47 191 627.111 55,613 3.30
ProPETL† 29 191 627.111 55,613 3.30

The progressive training framework employed by ProPETL may raise concerns regarding its training
efficiency, as it necessitates additional training iterations during midstream adaptation. To address
this, we explore a short training variant where downstream fine-tuning iterations are halved. In
Table 6, this variant requires 11 hours for midstream adaptation and 18 hours for downstream fine-
tuning, totaling 29 hours. We further conduct a comparison between ProPETL and AdaptFormer
by controlling the number of iterations during downstream fine-tuning, ensuring that the total num-
ber of training iterations is aligned across both methods. As shown in Table 7, We find ProPETL
consistently outperforms AdaptFormer across varying training configurations. This indicates that
the performance improvements of ProPETL, as highlighted in Table 1, are not merely a result of
prolonged training but rather the effectiveness of its training approach.

Table 7: Ablation study on the training iterations. “†” indicates the short training version.

Method COCO-Stuff10k CityScapes Midstream
Adaptation

Downstream
Fine-tuning

Total
IterationsmIoU mAcc mIoU mAcc

AdaptFormer 45.45 57.83 79.41 86.03 N/A 80,000 80,000
ProPETL† 45.98 58.20 80.93 87.51 40,000 40,000 80,000

AdaptFormer 45.81 58.13 79.78 86.42 N/A 120,000 120,000
ProPETL 46.48 58.69 81.67 88.23 40,000 80,000 120,000

Pre-trained Models and Segmentation Heads. We evaluate the effectiveness of ProPETL across
various pre-trained models and segmentation heads. In the main body, we report results using
pre-trained Swin-transformer-large as the backbone. Additionally, Table 8 presents an analysis of
ProPETL on the VOC2012 dataset using different sizes of Swin Transformers. These results con-
sistently show that ProPETL outperforms both AdaptFormer and full fine-tuning, underscoring its
effectiveness even with smaller pre-trained models.

To assess ProPETL’s versatility across diverse pre-training paradigms, we extend the evaluation to
models with self-supervised pre-training. Specifically, Table 4 reports results using MAE, a self-
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supervised model based on the Masked Image Modeling (MIM) paradigm. Furthermore, we include
evaluations on MoCo-v3 Chen et al. (2021) (ViT-Base), a self-supervised model leveraging con-
trastive learning; SAM Kirillov et al. (2023), a model specifically pre-trained for mask segmenta-
tion; and DINOv2, a self-supervised model built upon an extended contrastive learning framework.
For segmentation heads, we evaluate the performance of Mask2Former Cheng et al. (2022), which
employs mask-based prediction strategies. As detailed in Tables 9 and 10, ProPETL consistently
outperforms AdaptFormer and the Freeze baseline when using MoCo-v3 and SAM backbones, al-
though it falls slightly behind full fine-tuning in certain scenarios. Notably, Table 11 shows that
when paired with DINOv2 as the backbone, ProPETL surpasses both full fine-tuning and Adapt-
Former, further highlighting its potential as a flexible and high-performing PETL framework.

Table 8: Comparative results on VOC2012 using different size of Swin-transformers with UperNet.

Swin-small Swin-base Swin-large

Method mIoU mAcc mIoU mAcc mIoU mAcc

Full fine-tuning 80.83 86.90 82.07 87.63 84.38 89.82
AdaptFormer 80.94 87.26 84.29 90.31 85.41 90.83
ProPETL 81.26 87.82 85.03 90.96 86.11 92.08

Table 9: Comparison of results using MoCov3
with UperNet. The best results of the PETL
method are highlighted in bold.

CityScapes Param.
∗ (M)Method mIoU mAcc

Full fine-tuning 64.58 73.26 85.84
Freeze 42.02 48.47 0
AdaptFormer 54.93 62.86 1.19
ProPETL 58.83 67.00 1.19

Table 10: Comparison of results using SAM
with Mask2Former. The best results of the
PETL method are highlighted in bold.

CityScapes Param.
∗ (M)Method mIoU mAcc

Full fine-tuning 82.38 89.96 305.58
Freeze 67.04 79.31 0
AdaptFormer 79.02 88.05 6.32
ProPETL 80.24 89.10 6.32

Table 11: Comparative results of using DINOv2 with Mask2Former.

VOC2012 CityScapes Param.
∗ (M)Method mIoU mAcc mIoU mAcc

Full fine-tuning 86.81 93.35 84.10 90.57 304.19
AdaptFormer 88.93 94.34 83.83 90.87 4.74
ProPETL 89.53 94.79 84.29 91.37 4.74

Cross-scenario Evaluation. We conducted cross-scenario evaluation of ProPETL under the domain
generalization setting and compared it against Full fine-tuning and AdaptFormer. We additionally
compare to ReinWei et al. (2024), which is a recent parameter efficient method for domain general-
ization semantic segmentation. For a fair comparation, we utilized the DINOv2Oquab et al. (2023)
+ Mask2FormerCheng et al. (2022) framework and adhered to the training and evaluation proto-
cols outlined in Wei et al. (2024). The evaluation was performed on the GTAV → CityScapes setup
Richter et al. (2016); Cordts et al. (2016). As shown in Table 12, ProPETL significantly outperforms
its counterparts, demonstrating its generalization ability under cross-scenario task.

Intermediate Task. In the main body of the paper, we present the ablation results of intermediate
tasks from the perspectives of perception granularity and supervision diversity. To mitigate pertur-
bations, we average results from experiments with varying supervision diversities at each perception
granularity level, and vice versa. Here, we provide the full results of intermediate tasks comprising
various combinations of perception granularity and supervision diversity on the VOC2012, COCO-
Stuff10k, and CityScapes datasets. The results are illustrated in Table 13. As shown in this table,
the combination of image-level perception and multi-label diversity yields the optimal performance,
leading us to adopt this configuration within our framework.
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Table 12: Domain generalization semantic segmentation results. ∗: results from Wei et al. (2024).

Method CityScapes (mIoU) Param. (M)

Full fine-tuning∗ 63.7 304.20
Freeze∗ 63.3 0
AdaptFormer∗ 64.9 3.17
Rein∗ 66.4 2.99
ProPETL 67.9 3.17

Table 13: Ablation study on the intermediate task using the DSA during downstream fine-tuning.
“s” indicates the size of the pooling window. By adjusting s, the perception granularity of the in-
termediate tasks ranges from patch-level (s = 32) to image-level (s = 640). “α” indicates the
smoothing factor, respectively. By adjusting α, the supervision diversity of intermediate tasks tran-
sitions from single label (α = 0) to multi label (α = 1). The first line is the result of AdaptFormer.

Perception Granularity Supervision Diversity VOC2012 COCO-Stuff10k CityScapes

s = 32 s = 128 s = 640 α = 0 α = 0.5 α = 1 mIoU mAcc mIoU mAcc mIoU mAcc

85.41 90.93 45.45 57.83 79.41 86.03

✓ ✓ 85.72 91.27 45.74 57.90 80.73 86.94
✓ ✓ 85.63 90.96 45.50 57.19 80.87 87.24
✓ ✓ 85.91 91.67 45.57 58.31 80.92 87.61

✓ ✓ 85.53 91.78 45.76 58.15 80.85 87.26
✓ ✓ 85.54 91.96 46.11 57.96 80.89 87.56
✓ ✓ 85.79 92.39 46.09 58.00 81.35 87.92

✓ ✓ 85.70 91.71 46.09 58.20 80.09 86.99
✓ ✓ 85.87 91.26 46.40 58.11 80.91 87.39
✓ ✓ 86.11 92.08 46.48 58.69 81.67 88.23

Visualizations. To further investigate the impact of the proposed ProPETL framework, we visu-
alize the comparisons of normalized Euclidean distance between the feature maps before and after
adaptation in Fig. 8. As illustrated in the figure, representative methods such as BitFit and Adapt-
Former tend to make localized adjustments, often overlooking broader perceptual regions. Con-
versely, LoRA generally implements globally consistent adjustments but may neglect challenging
areas, such as edges. The feature adjustment pattern observed in VPT resembles that of full fine-
tuning; however, it exhibits a messy adjustment, particularly in the last row of examples. ProPETL
demonstrates an adaptation pattern akin to full fine-tuning, effectively capturing semantic adjust-
ments with fine granularity while also focusing on critical edge regions. This highlights the efficacy
of the proposed progressive paradigm. In Fig. 9, we visualize several images and corresponding
segmentation results in the VOC2012 and ADE20k dataset. Compared to AdaptFormer, ProPETL
produces smoother segmentation contours (first row) and more complete object masks (second and
third rows). The last two rows illustrate failure cases where ProPETL struggles with segmentation
redundancies in challenging scenarios, such as object occlusion (fifth row) and regions with high
foreground-background similarity (last row).

Limitations and Future Works. While ProPETL demonstrates significant improvements in per-
formance, it has several limitations. On one hand, while the midstream adaptation phase enhances
fine-tuning performance, it does increase the overall computational cost of training. Exploring meth-
ods to shorten the global fine-tuning process and further improve fine-tuning efficiency remains an
open challenge. On the other hand, the current design of intermediate tasks primarily relies on
empirical studies. Developing dynamic approaches for designing intermediate tasks and generaliz-
ing ProPETL to accommodate a broader range of pretrained models and downstream scenarios are
promising directions for future research.
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Input Image Full fine-tuning BitFit AdaptFormer ProPETL (Ours)VPT LoRA

Figure 8: Visualization of the normalized Euclidean distance between the feature map before and
after model adaptation on the ADE20k dataset.

Input Image Full fine-tuning AdaptFormer ProPETL (Ours)Ground Truth

Figure 9: Visualization of the segmentation results on the VOC2012 and ADE20k dataset.
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