CAPE: Corrective Actions from Precondition Errors
using Large Language Models

Shreyas Sundara Raman'*, Vanya Cohen?, David Paulius!, Ifrah Idrees', Eric Rosen',
Ray Mooney?, Stefanie Tellex'

Abstract— Extracting commonsense knowledge from a large
language model (LLM) offers a path to designing intelligent
robots. Existing approaches that leverage LLMs for planning
are unable to recover when an action fails and often resort to
retrying failed actions, without resolving the error’s underlying
cause. We propose a novel approach (CAPE) that attempts
to propose corrective actions to resolve precondition errors
during planning. CAPE improves the quality of generated plans
by leveraging few-shot reasoning from action preconditions.
Our approach enables embodied agents to execute more tasks
than baseline methods while ensuring semantic correctness and
minimizing re-prompting. In VirtualHome, CAPE generates
executable plans while improving a human-annotated plan
correctness metric from 28.89% to 49.63% over SayCan. Our
improvements transfer to a Boston Dynamics Spot robot initial-
ized with a set of skills (specified in language) and associated
preconditions, where CAPE improves the correctness metric
of the executed task plans by 76.49% compared to SayCan.
Our approach enables the robot to follow natural language
commands and robustly recover from failures, which baseline
approaches largely cannot resolve or address inefficiently.

I. INTRODUCTION

Generalized robots can assist humans by accomplishing
a diverse set of goals in varying environments. Many such
agents are equipped with a library of skills for primitive
action execution. Here, natural language can enable more
seamless human-robot interaction by leveraging these skill
libraries [1l]. Given a task description or command from a
human, a robot must be able to autonomously propose a
sequence of actions (from its skill repertoire) that realizes
the given task. Critical to such an application is the agent’s
ability to ground skills specified in language to their environ-
ment, reasoning about the state changes resulting from the
skill’s execution or the relevance of proposed actions towards
a task’s objective. For instance, if a robot is commanded
to “put away groceries”, it must ground the concept of
“groceries” to objects in its environment and decompose the
task of “putting away” to meaningful constituent skills from
its repertoire.

Thus, extracting actionable knowledge from LLMs re-
quires context about the agent’s embodiment and environ-
ment state. Related works that extract plans from LLMs
using prompting strategies assume access to extra informa-
tion such as: 1) predefined skills with preconditions [2]]
2)visual-language models that determine affordance from

Project Website: https://shreyas-s-raman.github.io/CAPE/
*Corresponding Author (Email: shreyas_sundara_raman@brown.edu)
IBrown University, Providence, RI, USA.

2The University of Texas at Austin, Austin, TX, USA.

observations like SayCan [2]], 3) descriptions of the agent’s
goal [3, 4] or 4) descriptions of observation and action
spaces for reasoning in text-based video games [3. 6]. These
approaches do not efficiently nor explicitly resolve failure
modes during planning: they either propose actions that
are not afforded execution in the environment (i.e. violate
preconditions, such as walking through a closed door), or
resort to exploring the entirety of an agent’s action library
to identify affordable actions [2]].

Following our previous work [7], we use precondition
errors to resolve action failure, which is motivated by the
vast body of research on planning algorithms and definitions
like PDDL [8]]. In these settings, robots are equipped with a
repertoire of skills, each requiring certain preconditions to be
satisfied in order to afford their execution. A key failure mode
in this setting is executing skills without satisfying their
preconditions. Using parametrized skills that are codified
into natural language, we leverage a LLM to generate a
sequence of actions for execution towards completing a
task. When a robot or agent fails to execute an action
due to precondition violation, we use a templated-prompting
strategy called CAPE (Corrective Actions from Precondition
Errors) to query the LLM for corrective actions (Figure [2).
Our prompts either specify that the action failed or provide
explanatory details about the cause of action failure, flexible
to the extent of knowledge accessible to the robot about its
skills or domain. This paper builds on our previous work [7]]
with more rigorous analysis, larger scale human evaluation,
additional (more competitive) baselines and experiments both
in simulation and real-world settings.

Our contributions are as follows: we introduce CAPE a
novel approach for LLM planning that generates corrective
actions to recover from failure, using prompts based on
precondition errors and few-shot learning. We detail how our
re-prompting strategy can be deployed on embodied systems
with both large and small skill repertoires using different re-
prompting methods. We also evaluate CAPE against several
baselines [3, 2] and ablations to show our method achieves
near-perfect plan executability and more semantically correct
plans for various tasks executed on a Boston Dynamics Spot
robot and a simulated agent in VirtualHome [9].

II. BACKGROUND

In-Context Learning: Brown et al. [10] introduced GPT-
3: a 175 billion parameter language model capable of few-
sho learning of novel tasks, including Q&A, arithmetic,
translation, and comprehension by prompting the LLM with

https://shreyas-s-raman.github.io/CAPE/
mailto:shreyas_sundara_raman@brown.edu

Grounded Plan Robot Execution

Grounded Plan (cont'd) Robot Execution

Task: Prepare everything needed for
2.IUnon 3 Marm day e
Step 1: Walk to shoes

Error: I am sitting down.

A correct step would be to:

Step 1: Stand up

Step 2% Walk to shoes

Step 1: Walk to shoes
Error: I am sitting down.

+ | Step 8: Pick up energy drink
t i Error: I am already holding the cap.
i il A correct step would be to:

t i step 8: Put cap on door

i il Error: T am not near the door.

A correct step would be to:

: i| step 8: Walk to door

Fig. 1.

A correct step would be to:
Step 8: Walk to door
-

Qualitative results of CAPE for robot execution of the task "prepare for a run". We highlight 2 cases where re-prompting with precondition error

information resolves action failures (left: resolving prerequisite for walking by standing; right: resolving one-armed manipulation constraint).

in-context task examples used for structural and syntactic
guidance. This approach offers several advantages over task
learning with fine-tuned pre-trained latent language repre-
sentations [11} (12} [13]] and zero-shot inference [14] due to
sample efficiency and task generalization. In-context learning
performs best when examples are relevant to the test task;
we retrieve in-context examples based on their semantic
similarity to the task [15} 3].

Open-Loop Plan Generation: CAPE extends the open-
loop framework of Huang et al. [3], which generates a plan
for a task zero-shot without feedback from the environment.
Given a query task Q (i.e. the target task), first, a high-
level example task 7 and its plan are chosen from a demon-
stration set as a contextual example of a free-form plan for
the Planning LLM; note that T is selected to maximizes
cosine similarity with the query task Q. The Planning LLM
auto-regressively generates actions for task Q in free-form
language via in-context learning. The Translation LLM then
utilizes a BERT-style LM (Sentence-BERT [16]) to embed
the generated free-form actions (a;) to the most semantically
(i.e., cosine-similar) action in the agent’s repertoire (ae).
Here, an admissible action refers to a language description
of an action in the agent’s skill repertoire. The chosen
admissible action (a.) is then appended to the unfinished
prompt to condition future auto-regressive step generation on
admissible actions. We investigate how to improve planning
in the closed-loop domain by leveraging precondition error
feedback as an auxiliary modality of information.

Affordance and Preconditions: Action preconditions and
effects are commonly adopted in robot planning domains,
such as those using PDDL [8] or STRIPS [17], where a
set of predefined skills are accessible to robots. Structured
affordance models factorize states into preconditions, which
define affordance by independent state components that must
be satisfied for execution. This can be formalized by the
options framework [[18]], where options O(s) over the state
space S form a set of temporally extended actions equivalent
to those in an agent’s skill repertoire. An initiation set of
an option Z(0) defines the states in which option execution
is afforded (akin to preconditions), while a termination
condition f3,(s) describes the terminal state of the skill. If
the current state fails to meet the initiation state of an option,
a precondition error arises. Environment states in these do-
mains can be factorized in a semantically meaningful manner
to evaluate the validity of preconditions for a skill, thus
enabling a skill’s affordance to be measured. Learning and
modeling preconditions have been largely studied in model-

based approaches that leverage symbolic planning [19, [20].
Our work investigates how these preconditions can be lever-
aged to improve planning using LLMs.

III. METHOD

Given a task specified in natural language, we use LLMs
for task planning. When an agent or robot fails skill execu-
tion, CAPE integrates precondition errors into a prompt that
aims to repair plans.

A. Plan Generation via Re-prompting

In control theory, a closed-loop system relies on feedback
from its outputs for adaptive control [21]. Similarly, CAPE
leverages error feedback in a closed-loop planning setup,
which allows it to correct a generated plan when any
action proposed by the LLM is not afforded execution,
by injecting precondition error information as corrective
prompts (see Figure [3). Certain errors require more context
about the agent’s state, action history and environment.
For instance, correcting an error in VirtualHome [9] such
as <character> (1) does not have a free hand
when executing "[GRAB] <obj> (1) [1]" requires
knowledge of what objects the agent previously grabbed or
is currently holding, as well as available adjacent objects
on which to drop the object the held object and free the
agent’s hands. We construct corrective prompts composed
of the following segments of information:

o Contextual Information: This includes relevant context
and action history upon action failure. We supply the
query task Q and the query steps up to the action that
has failed for context.

o Precondition Error Information: We optionally in-
clude details on the violated precondition in the prompt,
which is tailored based on the degree to which the agent
can assess precondition violations.

In order for the Translation LLM to ground the natural
utterance, we need to assume that the agent is equipped
with a skill repertoire of actions that are admissible to the
environment. Thus, preconditions only need to be defined
for each general parametrized skill. It is important to note
that the Planning LLM used by CAPE does not explicitly
know about the agent’s skills nor the preconditions for each
skill during the re-prompting process. Instead, we utilize the
preconditions (a set of logical propositions assessing a skill’s
affordance) defined for each parametrized skill in our skill
repertoire to obtain precondition errors by comparing with
the environment’s current state. The environment state and
precondition propositions are external to the LLM, but the

Few-shot Plan Generation

Task: Carry fruit to the kitchen
Step 1: Walk to home office

Step 2: Walk to dining room

Step 3: Walk to apple

Step 4: Grab apple

Step 5: Walk to dining table
Step 6: Put apple on dining table

Task: Organize pantry

Planning LLM

Match to Admissible Action

Step 1: Walk to pantry

Step 2: Look at pantry

Step 3: Walk to cereal

Step 4: Put cereal on pantry
Step 5: ...

Translation LLM

|

go_to("pantry")
look("pantry")
go_to("cereal™)

Validate Action in Environment
Step—1+—Watk—to—pantry
Step—2:—took—at—pantry
Step 3: Walk to cereal
Step 4: Put cereal on pantry
v
Environment

v

Precondition error!

Error: | am not holding cereal!
|

Re-prompt with Error Information

Step 1: Walk to pantry

Step 2: Look at pantry

Step 3: Walk to cereal

Step 4: Put cereal on pantry
Error: I am not holding cereal.
A correct step would be to:

|

Planning LLM

|

Step 4: Grab cereal

Add Corrective Action and Continue

Task: Carry fruit to the kitchen
Step 1: Walk to home office

Step 2: Walk to dining room

Step 3: Walk to apple

Step 4: Grab apple

Step 5: Walk to dining table
Step 6: Put apple on dining table

Task: Organize pantry
Step 1: Walk to pantry
Step 2: Look at pantry
Step 3: Walk to cereal
Step 4: Grab cereal

Step 1: Walk to pantry

place("cereal”, "pantry")
Step 2: ...

‘- .

Fig. 2. Overview of CAPE: To generate an executable plan, we select an in-context example task that is most semantically similar to the query task. The
Planning LLM generates a natural language description for the next step in the plan. The Translation LLM [16] grounds this description to an admissible
skill in the agent’s repertoire. If this action violates preconditions for the proposed skill, the precondition error information is formatted into a corrective
prompt, which along with the failed skill are provided to the LLM for corrective action proposal.

error information produced by them can then be integrated
into a corrective language prompt. As a result, there is a
significant layer of abstraction, where the Planning LLM has
to infer the cause of failures and environment mechanics
based only on the context provided by the corrective prompt
and the agent’s own action history in order to propose an
appropriate corrective action. The use of preconditions is
typical in planning domains where the robot or agent has
skills built on representations that define preconditions and
effects, e.g., PDDL [8], STRIPS [17] or LTL [22]. Since
preconditions are already defined in these representations,
appropriate language feedback can be integrated into the
precondition module with minimal extra effort.

Re-prompting Strategies: We re-prompt with varying de-
grees of precondition error detail in both zero-shot (Z)
and few-shot (F) approaches, and denote either setting by
P,where P = Z Vv F. This allows varying agent access to
precondition error information. Re-prompting strategies can
be categorized as follows:

o Re-prompting with Success Only (Z5): solely informs
the LLM that the current action failed (i.e., “Task
Failed™)[]

o Re-prompting with Implicit Cause (Z;): provides
more detail to the LLM with a prompt template con-
taining the name of the failed action and the object(s)
the agent interacted with (i.e., “I cannot <action>
<object>"). This requires the LLM to infer the cause
of error when proposing corrective actions.

« Re-prompting with Explicit Cause (Zg): states the
precondition violation that prevents action execution, in
addition to feedback provided by Z; (i.e., “I cannot
<action> <object> because <precondition
violation>").

Pr gives the most error feedback to the LLM. However,
Ps and P; only require a target object and skill associated
with the failed action, which the LLM proposes. Likewise, a
‘Ps prompt can work with visual-language model approaches

I'This is analogous to success detection used in Inner Monologue [4],
which was used to determine whether to re-execute failed actions since
low-level policy success is stochastic. However, our aim is to repair the
high-level plans generated by the LLM with corrective actions that arise
from a new distribution of actions using precondition feedback.

like SayCan [2], whereas P; and Pg can work with task and
motion planning approaches [20]]).

Scoring Grounded Actions: We use the scoring function
S (Equation [T)), a weighted combination of log probability
and cosine similarity, which is thresholded to determine the
feasibility of each proposed grounded step [3]]. Log probabil-
ity is defined as Pp(X;) := ni E?;llogpg(xi,j Zi<j), where
0 parameterizes the pretrained Planning LLM and X is a
generated step consisting of n tokens (z; 1, ..., ; »). Cosine
similarity is defined as C(f(a), f(ac)) %,
where f is the Translation LLM embedding function, a is the
predicted action, and a. is the admissible action for which
we estimate the distance with respect to:

Su = argmax [max C(f(@), f(a.) + 8- Po(@)], (1)

Qe

where [is a weighting coefficient. S,, prioritizes the quality
of natural language at the cost of semantic translation and
often results in mistranslations, which are prevalent when
C(f(a), f(ac)) dominates the sum as Py(a) is close to
0 and B is low or when Py(a) dominates the sum as
C(f(a), f(ae)) is close to 0 and S is large. Further, the mean
log probability term is unbounded, which makes finding
a score threshold more challenging. Hence, we propose a
novel scoring function S, (Equation [2) that considers the
squared geometric mean of C(f(a), f(a.)) and Py(a), to
produce a bounded non-negative (0,1) scoring function,
which prioritizes both language generation and semantic
translation objectives jointly, defined as:

C(f(a e 1 5
Sg = argmax [mgx (f(a)>f2(a’)) + .ePe(a)]
We report results using S,, with all re-prompting methods
and using S, with the re-prompting with explicit cause (Pg)
method.

2

B. Baseline: Plan Generation via Re-sampling

When a plan action is not executable, the closed-loop re-
sampling method does not use error feedback to generate
corrective prompts. Instead the approach iteratively evaluates
the top k admissible actions proposed by the Planning LLM
and grounded by the Translation LLM in reverse order of the
weighted sum of mean log probability and cosine similarity

In-context
Example

}

Agent

LLM: Planning + Action

; Translation
Task Task T
Command Plan
Corrective Environment
Prompt

Precondition Error

Fig. 3. CAPE uses a LLM to generate plans for tasks specified in natural
language. When the agent fails to execute a step, we re-prompt the LLM
with error information, utilizing the latent commonsense reasoning and few-
shot learning capabilities of the LLMs to overcome execution errors.

until an executable action is found. If none of the k re-
sampled admissible actions are executable, plan generation
terminates. This ablation assesses whether CAPE’s feedback
allows for more efficient corrections due to the utility of
precondition error information, rather than more attempts at
proposing corrective actions.

C. Baseline: Plan Generation with SayCan

We compare to SayCan [2] as a baseline method. When
generating every step, SayCan assigns a score for each action
in the agent’s repertoire and the action with the highest score
is executed. This score is the product of the log probability
and affordance for each action. This process is repeated
until the termination skill (done) is assigned the highest
score. Therea are two important adjustments in our SayCan
implementation for experiments in VirtualHome [9]:

o As there are over 50K possible object-action pairs in
VirtualHome, it is intractable to evaluate every admis-
sible skill for every step during planning. Instead the
LLM generates a prototype step. Using this we sub-
sample the 500 most semantically similar object-action
pairs (measured by cosine similarity) and at most 1000
object-action pairs containing the target object. This
forms a subset of < 1500 skills to iterate over and score.
Subsampling semantically similar skills and matching
to skills affecting the same objects ensures the <1500
subsampled skills also have the highest log probability
according to the LLM. In most cases, nearly all the
skills pertaining to a specific object are populated in the
set of 1000, and additional semantically similar skills
are added as part of the 500.

e A perfect affordance model is initially used, since
heuristic based precondition checks in VirtualHome
allow 0% affordance misclassification. However, as
Ahn et al. [2] mentions a 16% of planning failure at
minimum, where 35% of these failures originate from
errors related to the affordance model, we also present
a noisy ablation of SayCan with a 6% (16% x 35%)
random chance of misclassifying the oracle affordance,
i.e., false when actually true or true when actually false.

Similar to CAPE, SayCan assumes that language descriptions
of an agent’s skills are known and available during planning.
SayCan leverages a trained affordance model (value function)
to evaluate the executability of skills and can easily be

extended to check for or predict language-specified precon-
dition violations, similar to those leveraged in our method.

IV. EVALUATION

We test the hypothesis that corrective re-prompting can
increase the executability of LLM models for interpreting
language directed to robots while maintaining plan cor-
rectness. We focus on larger state-of-the-art LLMs, par-
ticularly those in OpenAl’s davinci-instruct line, for
their demonstrated capabilities in instruction-following and
planning tasks [10, 23|]. We evaluate eight approaches in
a zero-shot setting: the three baselines — Huang et al. [3]]
(Section [), the closed-loop re-sampling (Section [[II-BJ),
and SayCan [2] (Section — and CAPE with our
proposed ablations (Section [[lI-A). We refer to CAPE’s zero-
shot approaches as success only (Zg), implicit cause (Zj),
explicit cause (Zg), and explicit cause with scoring function
(Zg + Sy). We also evaluate CAPE with explicit cause re-
prompting in a few-shot setting (Fg), with and without
Sy, where we present the LLM with three examples of
precondition errors and corresponding corrective actions to
infer the appropriate corrective action for the target task.

A. Experimental Setup

We evaluate CAPE across seven scenes in Virtual-
Home [9]) and with a Boston Dynamics Spot robot (see
Figure using the metrics discussed in the following
section. Our objective is to show that corrective re-prompting
resolves unmet preconditions during planning and execution
by embodied agents and robots in a variety of settings; Virtu-
alHome provides a large skill sets with many objects, while
the robot environments focus on physical embodiment with
fewer objects and skills. For VirtualHome, we evaluate plans
generated for 100 household tasks (e.g., “make breakfast",
“browse the Internet"). To show that our method can be
extended to novel unstructured real-world environments, we
compare plans generated by CAPE with those generated by
the 3 baselines across 6 tasks for human-assistance and 2
scenes for each task.

B. Robot Demonstration

To demonstrate CAPE’s capability on unstructured real-
world tasks, we compare our re-prompting approaches
against all 3 baselines on the Boston Dynamics Spot, a
quadruped robot with a single 6-DOF arm. The demon-
strations use two novel scenes (a lab environment and a
kitchen) with structural variation in the maps and objects
in the environment. On average 9 household objects (e.g.,
phone, bed, coffee, etc.), each with five state attributes (e.g,
location, grabbed, open, turned on) are present in
each scene. We evaluate performance on 6 tasks: 1) Prepare
for a run on a warm day, 2) Put the phone on the night-
stand, 3) Iron a shirt, 4) Put mail in storage, 5) Organize
Pantry, and 6) Put away groceries. We assume the Spot
robot has access to a set of 14 parametrized skills (e.g.
stand up, walk to, pick up, put, touch, look at, open and
close) and the initialization states (preconditions) needed for

TABLE I
PERFORMANCE OF BASELINES AND CAPE ACROSS 100 TEST-SET TASK TYPES AND 7 SCENES IN VIRTUALHOME [9] (700 TOTAL).

Method % Correct %Exec.t %Aff.t %GST LCST Fleiss’ Kappat Steps| Corrections|
Baselines
Huang et al. [3] 38.15 72.52 87.72 95.54 20.80 0.47 7.21 N/A
Re-sampling 38.89 76.43 75.24 95.65 23.45 0.45 6.87 7.67
SayCan [2] (Perfect) 28.89 100.00 100.00 94.17 2298 0.33 7.56 N/A
SayCan [2] (Noisy) 22.59 97.33 99.89 94.68 19.43 0.46 5.97 N/A
CAPE: Zero-Shot (2)
Success Only (Zs) 41.11 97.57 90.46 9549 23.79 0.38 7.68 1.08
Implicit Cause (Z1) 42.22 97.86 90.05 95.64 23.20 0.51 7.48 0.93
Explicit Cause (Zg) 42.59 98.29 91.69 95.69 23.48 0.45 8.16 0.72
Explicit Cause (Zr + Sy) 48.52 98.57 91.28 96.23 23.30 0.35 8.81 1.31
CAPE: Few-Shot (F)
Explicit Cause (Fg) 47.04 98.57 92.29 96.05 24.20 0.41 8.69 0.89
Explicit Cause (Fg + Sy) 49.63 96.29 90.93 96.29 23.47 0.39 9.35 1.82
TABLE II

PERFORMANCE OF BASELINES AND CAPE ACROSS 6 TEST-SET TASKS AND 2 SCENES FOR HOUSEHOLD TASKS WITH ROBOT DEMO (12 TOTAL).

Method % CorrectT Y%Exec.t %Aff.t %GST LCST Fleiss’ Kappat Steps] Corrections]
Baselines

Huang et al. [3] 16.67 41.64 56.46 66.03 26.77 0.28 2.40 N/A
Re-sampling 13.33 75.00 47.98 67.33 32.92 0.71 4.60 13.19
SayCan [2] (Perfect) 28.33 83.33 83.33 68.02 41.13 0.26 6.80 N/A
SayCan [2] (Noisy) 16.67 66.67 79.13 67.54 38.36 0.22 6.80 N/A
CAPE: Zero-Shot (2)

Success Only (Zs) 18.33 75.00 43.05 66.02 3245 0.28 3.04 2.25
Implicit Cause (Z7) 20.00 75.00 52.37 66.25 32.44 0.32 3.14 1.83
Explicit Cause (Zg) 31.67 100.00 79.69 69.18 48.12 0.11 6.30 1.91
Explicit Cause (Zg + Sy) 23.33 100.00 79.04 69.85 46.68 0.12 6.30 1.73
CAPE: Few-Shot (F)

Explicit Cause (Fg) 45.00 100.00 81.36 7791 65.07 0.23 11.70 291
Explicit Cause (Fr + Sy) 50.00 100.00 80.70 7740 69.77 0.12 11.30 2.90

their execution. The robot first builds a semantic map from
images taken and waypoints set across the scene; visual-
language models (VLM) like (CLIP [24] and CLIPSeg [25])
are then used to ground admissible skills to spatial points
for navigation or grasping in the physical environment,
similar to approaches like NLMap-SayCan [26]. The robot’s
embodiment (a single arm), a limited skill repertoire and
extensibility to novel unstructured environments make this a
challenging setting for task completion. Figure [1| highlights
how corrective prompting enables successful completion of
the task "prepare for a run on a warm day". Re-prompting
enables the Spot to resolve precondition failures caused by
the robot’s initial state and due to its single-arm embodiment.
We provide demonstrations for additional tasks and scenes
in our supplementary video.

C. Human Evaluation

As in Huang et al. [3], we use human evaluation to deter-
mine the correctness of generated plans through the crowd-
sourcing platform ProliﬁcE] 50% of the total tasks across all
baselines and ablations were supplied to annotators. For each

2Prolific — https://www.prolific.co

task, five annotators evaluate the grounded plan in English to
determine whether it accomplishes the given task objective.
Each plan is generated in a randomly selected environment.

D. Evaluation Metrics

We adopt the % Executability and % Correctness metrics
from Huang et al. [3]. % Executability measures if all
grounded actions satisfy preconditions imposed by the envi-
ronment i.e. if the entire plan can be executed by the agent
as afforded to its environment and state. % Affordability
measures the average percentage of all plan steps that are
executable, after skipping non-executable steps, in cases
where the entire plan is not afforded execution (i.e. partial
executability).

% Correct is a human-annotated assessment of semantic
correctness and relevance of a grounded plan to the target
task. Assessing "quality" of natural language-based plans is
difficult and potentially ambiguous using only executability
i.e. an fully executable plan need not realize the task objec-
tive; thus, we conduct human evaluations where participants
assign a binary score reflecting whether a plan is correct
or incorrect. For a fairer representation of correctness, we

https://www.prolific.co

account for executability constraints (i.e., precondition er-
rors) by presenting human evaluators the plans up to the step
where they remain executable by the agent for all methods
(including baselines). Additionally, we report Fleiss’ Kappa
for % Correct inter-annotator agreement among participants
in a categorical labeling task for our human annotations.
This ranges from O to 1. Higher values indicate a stronger
agreement between annotators [27]].

Longest Common Subsequence (LCS) measures raw
string overlap between generated grounded programs and
the ground-truth programs as proposed by Puig et al. [9].
LCS serves as a proxy for correctness as human evaluations
more robustly measure plan semantics, i.e., human evalua-
tions are not constrained by the richness of interactions in
the embodied environment and variability of approaches to
complete a task. We also report the average number of Steps
and Corrections across tasks, which assess the total number
of steps and corrective re-prompts/re-samples, respectively,
needed to generate a plan. While these metrics are incidental
to the goal (i.e. minimizing these metrics does not necessarily
correlate to improved performance), they assess the rela-
tive efficiency of each prompting/sampling ablation towards
correcting skill execution. Finally, Scene-Graph Similarity
(% GS) reflects the percentage of state-object attributes that
match between the final states resulting from execution of
the generated grounded program (Gge,) and the ground-
truth human-written program (G4:). The number of matching
attributes are normalized over the union of objects in both
Ggen and Gg¢. This metric is invariant to differences in length
and ordering of steps between generated and ground-truth
plans, compared to a string-matching metric like LCS.

V. DISCUSSION

In VirtualHome [9], CAPE generates plans that outperform
competing methods (Table [I). Our method CAPE: Few-
Shot with Explicit Cause (Fr + S,) attains the highest
combined performance for plan % Correct (49.63%) and
Executability (96.29%). For % Correct, our method improves
on SayCan (Perfect) by 71.80% (absolute improvement of
20.74%) while maintaining comparable executability and
percentage of afforded steps, even though SayCan operates
in an oracle setting with 0% affordance misclassification.
For all methods in Virtual Home experiments, the Fleiss’
Kappa indicates moderate inter-annotator agreement for the
% Correct metric. The zero-shot ablations of our method
with varying specificity of error information outperform the
SayCan and Huang et al. [3] baselines demonstrating the
effectiveness of our method even without few-shot learning.
The results also show that increasing the specificity of
error information improves the performance of CAPE. Our
method’s plans are also higher quality while requiring fewer
Corrections than the Re-Sampling baseline, which indicates
the added utility of corrective actions from precondition error
information. Our method also outperforms SayCan across
nearly all metrics, even though SayCan implicitly assumes
additional environment feedback in the form of a trained
affordance model. Furthermore, our method significantly

reduces time complexity over SayCan, O(n) compared with
O(|s|™) respectively, where s is the skill repertoire and n the
number of plan steps, since SayCan iterates the entire skill
space before generating every step.

We present the results of the robot demonstration in Table-
Our method CAPE: Few-Shot with Explicit Cause
(Fg + Sg) attains the highest Executability (100%) due
to re-prompting with precondition errors. Our method also
shows improvement in combined performance for plan %
Correct (50%) and Executability (96.29%). For % Correct,
our method improves upon SayCan (Perfect) by 76.49% (ab-
solute improvement of 21.67%) while attaining comparable
percentage of afforded steps, even though SayCan operates
in an oracle setting and is guaranteed to produce executable
skills. SayCan usually fails because the affordance function
"funnels" (severely limits) the available actions, sometimes
leading plans into local optima i.e. afforded actions with
highest log-probability do not resolve precondition errors
that are critical to task completion and afforded actions that
do resolve these precondition do not have sufficient log-
probability. For all methods, the Fleiss’ Kappa indicates
modest inter-annotator agreement between annotators for the
% Correct metric, except for Re-Sampling where annotators
unanimously agree that the generated plans do not success-
fully complete the task.

VI. RELATED WORK

Large Language Models for Task Planning: Works that
are significantly related to our paper are Huang et al. [3],
SayCan [2], and Gramopadhye and Szafir [28]], which inte-
grate LLMs into an open-loop planning pipeline. Huang et al.
[3]] use a prompting strategy to derive step-by-step plans that
achieve the goal presented in a prompt. Our work extends
their approach by incorporating feedback from the environ-
ment as an auxiliary input to improve the executability of
derived plans.Gramopadhye and Szafir [28] also improves
upon the Huang et al. [3] by providing environmental context
to the LLM to generate contextually suitable plans.

Ahn et al. [2] introduces SayCan, a LLM-integrated
pipeline that proposes a sequence of actions to achieve
specific goals grounded to affordance with a predefined set of
robot-executable skills (all demonstrated by an expert) using
semantic similarity from language prompt. However, these
works only implicitly incorporate "feedback" by selecting
actions that are visually afforded in the current state. They
do not address action failure or failure recovery.

Visual & Language Feedback for Planning: Following
our prior work [7], recent works have shown the efficacy
of LLM-based autonomous agents in leveraging language
feedback for reasoning about errors [29} |30l [31} [32]]. Re-
flexion [31] converts scalar feedback (from heuristic-based
evaluators) into structured linguistic feedback with long-term
memory to improve decision making via trial-and-error; in
contrast, CAPE does not enable multiple trials nor access
retrospective feedback to re-plan from initialization. CAPE
only utilizes the agent’s current action history and does not
assume access to long-term feedback over multiple episodes.

Other works such as DoReMi [29], Zhang et al. [30] also
assume access to a set of primitive skills but combine VLMs
and LLMSs to detect action failures by monitoring properties
associated with constraints (either from planning domains or
proposed by LLM) for the skills being executed. DoReMi
[29] focuses on low-level failure recovery and assumes the
LLM has direct access to additional information (e.g., the
entire skill repertoire, skills’ constraints, task instructions)
whilst CAPE provides implicit feedback to the LLM for
specific skill preconditions. Zhang et al. [30] also use VLMs
to verify action affordances based on preconditions extracted
from PDDL and track updated environment state after skill
execution, which is provided to the LLM during next step
generation. Environment state information is stored external
to the agent in CAPE: the LLM used by CAPE does not
directly have access to the underlying state and only receives
implicit feedback in the form of re-prompts with which
the LLM has to infer the current state and propose an
appropriate next step. Additionally, both methods assume
VLMs have access to the global visual state during skill
execution in order to detect failures, which may not translate
naturally to the environments and embodiment types we
study, i.e., simulated and real-world agents that have partial
observability and use egocentric image feedback. REFLECT
[32] utilizes multi-modal feedback to extract a hierarchy of
events and visually informed scene graphs, which are then
used to explain failures during planning. However, assessing
object states from visual and auditory feedback requires pre-
defining audio labels and object state labels for visual/audio
grounding, also requiring a non-trivial amount of extra effort
in addition to pre-defining all skills.

Task and Motion Planning: In task and motion planning
(TAMP), robot planning and execution processes are decou-
pled in a hierarchical manner [33 20]. This involves the
integration of task planning, which aims to find a sequence
of actions that realize state transitions and goal state corre-
sponding to a high-level problem [34], and motion planning,
which aims to find physically consistent and collision-free
trajectories that realize the objectives of a task plan [35} 36].
Instead of relying on explicitly defined structures or symbols
as typically used in TAMP, LLMs can provide an agent or
robot with an implicit representation of action and language,
allowing it to interpret a task and identify key details (such
as objects or actions) that are related to the problem at hand.

Commonsense Knowledge in LLMs: Other works ex-
plore the degree to which large language models contain
commonsense world knowledge. The Winograd Schema
Challenge [37] and WinoGrande benchmark [38] evaluate
commonsense reasoning in word problems. The Winoground
dataset [39]] investigates commonsense reasoning in a re-
lated image caption disambiguation challenge. LLMs have
improved upon baseline methods for this task [10]] indicat-
ing that language model scale contributes to commonsense
reasoning performance. Our system supports the finding
that language models contain latent commonsense world
knowledge sufficient to improve plan executability given
precondition errors.

VII. CONCLUSION

We propose CAPE, a re-prompting strategy for LLM-
based planners, which injects contextual information in the
form of precondition errors, parsed from environment feed-
back, which substantially improves the executability and
correctness of LLM-generated plans and enables agents to
resolve action failure. Our experiments in VirtualHome [9]
and on the robot demonstration show that corrective prompt-
ing results in more semantically correct plans with fewer
precondition errors than those generated by baseline LLM-
planning frameworks (Huang et al. [3]] and SayCan [2]]) and
re-sampling. CAPE overcomes the computational intractabil-
ity of applying SayCan to environments with large numbers
of agent skills. CAPE enables more executable and correct
plans in less time, while exploring a narrower subset of the
skills and using far fewer interjections.

A. Limitations

CAPE achieves strong competitive performance over base-
line methods by leveraging a minimal but efficient archi-
tecture while only receiving implicit uni-modal (linguistic)
feedback from the environment. However, we acknowledge
several limitations of CAPE:

Relaxing precondition assumption: CAPE can be more
flexible by restricting the assumption that precondition
propositions with language feedback are known. Incorporat-
ing methods to automatically ground preconditions to binary
questions (like Zhang et al. [30]]) could allow CAPE to au-
tomatically detect or predict the cause of skill failures using
additional prompts; furthermore, utilizing LLMs to generate
preconditions for future actions (e.g., deriving grounded con-
straints using methods like the constraint generation module
in DoReMi [29]) could allow CAPE to scale efficiently to
larger action spaces and define parametrized dependencies or
constraints for skills that are not manually defined.

Open-Query Error Handling: Methods like RE-
FLECT [32] have shown that grounding feedback from mul-
tiple modalities enables LLMs to reason about causes of skill
failure. This approach reLeveraging a multi-modal approach
could allow CAPE to verify action affordances and generate
prompts in an open-query style for a wider range of error
types than the ones specified by the precondition definition.
Multi-modal feedback can even be used upon successful skill
execution to allow CAPE to update an internal structured
representation of the current environment state, which can be
used to determine the affordance of future actions without
having to encode all environment state transitions.

Correcting Low-level Control: Finally, CAPE does not
deal with determining the successful execution of low-level
skills, i.e., we instead abstract low-level control into a
repertoire of high-level skills that we assume to be perfectly
executed when planning at a high-level. Several works (such
as SayCan [2], NLMap-SayCan [26], Huang et al. [3] and
Inner Monologue [4]) make this assumption on high-level
skills, but enabling failure detection and recovery at the lower
control levels (like DoReMi [29]) would make CAPE a more
robust failure recovery system.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

REFERENCES

S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Ma-
tuszek, “Robots That Use Language ,” Annual Review
of Control, Robotics, and Autonomous Systems, vol. 3,
pp- 25-55, 2020.

M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes,
B. David, C. Finn, C. Fu, K. Gopalakrishnan, K. Haus-
man, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter,
A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey, S. Jesmonth,
N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H.
Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor,
J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Ser-
manet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke,
F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng,
“Do As I Can, Not As I Say: Grounding Language
in Robotic Affordances,” in Proceedings of The 6th
Conference on Robot Learning, ser. Proceedings of
Machine Learning Research, K. Liu, D. Kulic, and
J. Ichnowski, Eds., vol. 205. PMLR, 14-18 Dec 2022,
pp- 287-318.

W. Huang, P. Abbeel, D. Pathak, and I. Mordatch,
“Language models as zero-shot planners: Extracting
actionable knowledge for embodied agents,” in Inter-
national Conference on Machine Learning. PMLR,
2022, pp. 9118-9147.

W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Flo-
rence, A. Zeng, J. Tompson, I. Mordatch, Y. Chebotar,
P. Sermanet, T. Jackson, N. Brown, L. Luu, S. Levine,
K. Hausman, and b. ichter, “Inner Monologue: Em-
bodied Reasoning through Planning with Language
Models,” in Proceedings of The 6th Conference on
Robot Learning, ser. Proceedings of Machine Learning
Research, K. Liu, D. Kulic, and J. Ichnowski, Eds., vol.
205. PMLR, 14-18 Dec 2022, pp. 1769-1782.

S. Yao, R. Rao, M. Hausknecht, and K. Narasimhan,
“Keep CALM and explore: Language models for action
generation in text-based games,” in Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Association for Com-
putational Linguistics, Nov. 2020, pp. 8736-8754.

L. Singh, G. Singh, and A. Modi, “Pre-trained Language
Models as Prior Knowledge for Playing Text-based
Games,” in Proceedings of the 21st International Con-
ference on Autonomous Agents and Multiagent Systems,
2022, pp. 1729-1731.

S. S. Raman, V. Cohen, E. Rosen, 1. Idrees,
D. Paulius, and S. Tellex, “Planning With Large
Language Models Via Corrective Re-Prompting,”
in NeurlPS 2022 Foundation Models for Decision
Making Workshop, 2022. [Online]. Available: https:
//lopenreview.net/forum?id=cMDMRBe1TKs

D. McDermott, M. Ghallab, A. Howe, C. Knoblock,
A. Ram, M. Veloso, D. Weld, and D. Wilkins, “PDDL —
The Planning Domain Definition Language,” CVC TR-
98-003/DCS TR-1165, Yale Center for Computational
Vision and Control, Tech. Rep., 1998.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler,
and A. Torralba, “VirtualHome: Simulating Household
Activities via Programs,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2018, pp. 8494-8502.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D.
Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell et al., “Language Models are Few-Shot
Learners,” Advances in Neural Information Processing
Systems, vol. 33, pp. 1877-1901, 2020.

A. Radford, K. Narasimhan, T. Salimans, and
I. Sutskever, “Improving language understanding by
generative pre-training,” 2018.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding,” arXiv preprint
arXiv:1810.04805, 2018.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner,
C. Clark, K. Lee, and L. Zettlemoyer, in Proceedings of
the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). New
Orleans, Louisiana: Association for Computational Lin-
guistics, Jun. 2018, pp. 2227-2237.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
and I. Sutskever, “Language Models are Unsupervised
Multitask Learners,” OpenAl Blog, vol. 1, no. 8, p. 9,
2019.

J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and
W. Chen, “What Makes Good In-Context Examples
for GPT-3?7” in Proceedings of Deep Learning Inside
Out (DeeLlIO 2022): The 3rd Workshop on Knowledge
Extraction and Integration for Deep Learning Architec-
tures. Association for Computational Linguistics, May
2022, pp. 100-114.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,
“RoBERTa: A Robustly Optimized BERT Pretraining
Approach,” arXiv preprint arXiv:1907.11692, 2019.
R. E. Fikes and N. J. Nilsson, “STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving,” Artificial intelligence, vol. 2, no. 3-
4, pp- 189-208, 1971.

R. S. Sutton, D. Precup, and S. Singh, “Between MDPs
and semi-MDPs: A framework for temporal abstraction
in reinforcement learning,” Artificial Intelligence, vol.
112, no. 1-2, pp. 181-211, 1999.

G. Konidaris, L. P. Kaelbling, and T. Lozano-Pérez,
“From skills to symbols: Learning symbolic represen-
tations for abstract high-level planning,” Journal of
Artificial Intelligence Research, vol. 61, pp. 215-289,
2018.

C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Sil-
ver, L. P. Kaelbling, and T. Lozano-Pérez, “Integrated
task and motion planning,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 4, pp. 265—
293, 2021.

https://openreview.net/forum?id=cMDMRBe1TKs
https://openreview.net/forum?id=cMDMRBe1TKs

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

F. Golnaraghi and B. C. Kuo, Automatic Control Sys-
tems. McGraw-Hill Education, 2017.

A. Pnueli, “The temporal logic of programs,” in 18th
Annual Symposium on Foundations of Computer Sci-
ence (sfcs 1977). 1EEE, 1977, pp. 46-57.

D. Summers-Stay, C. Bonial, and C. Voss, “What can a
generative language model answer about a passage?” in
Proceedings of the 3rd Workshop on Machine Reading
for Question Answering. Association for Computa-
tional Linguistics, Nov. 2021, pp. 73-81.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
G. Krueger, and 1. Sutskever, “Learning Transferable
Visual Models From Natural Language Supervision,”
in Proceedings of the 38th International Conference
on Machine Learning, ser. Proceedings of Machine
Learning Research, M. Meila and T. Zhang, Eds., vol.
139. PMLR, 18-24 Jul 2021, pp. 8748-8763.

T. Liddecke and A. Ecker, “Image segmentation us-
ing text and image prompts,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2022, pp. 7086—7096.

B. Chen, F. Xia, B. Ichter, K. Rao, K. Gopalakrish-
nan, M. S. Ryoo, A. Stone, and D. Kappler, “Open-
vocabulary Queryable Scene Representations for Real
World Planning,” in 2023 IEEE International Confer-
ence on Robotics and Automation (ICRA), 2023, pp.
11509-11522.

J. R. Landis and G. G. Koch, “The measurement of
observer agreement for categorical data,” Biometrics,
vol. 33, no. 1, pp. 159-174, 1977.

M. Gramopadhye and D. Szafir, “Generating Exe-
cutable Action Plans with Environmentally-Aware Lan-
guage Models,” in 2023 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2023.
Y. Guo, Y.-J. Wang, L. Zha, Z. Jiang, and J. Chen,
“DoReMi: Grounding Language Model by Detecting
and Recovering from Plan-Execution Misalignment,”
arXiv preprint arXiv:2307.00329, 2023.

X. Zhang, Y. Ding, S. Amiri, H. Yang, A. Kaminski,
C. Esselink, and S. Zhang, “Grounding Classical Task
Planners via Vision-Language Models,” ICRA 2023
Workshop on Robot Execution Failures and Failure
Management Strategies, 2023.

N. Shinn, F. Cassano, B. Labash, A. Gopinath,
K. Narasimhan, and S. Yao, “Reflexion: Language
agents with verbal reinforcement learning,” arXiv
preprint arXiv:2303.11366, vol. 14, 2023.

Z. Liu, A. Bahety, and S. Song, “REFLECT: Sum-
marizing Robot Experiences for Failure Explanation
and Correction,” in 7th Annual Conference on Robot
Learning, 2023.

L. P. Kaelbling and T. Lozano-Pérez, ‘“Hierarchical
planning in the now,” in Workshops at the Twenty-
Fourth AAAI Conference on Artificial Intelligence,
2010.

M. Ghallab, D. Nau, and P. Traverso, Automated Plan-

[35]

[36]

[37]

[38]

[39]

ning and Acting. Cambridge University Press, 2016.

T. Lozano-Pérez and M. A. Wesley, “An Algorithm for
Planning Collision-Free Paths Among Polyhedral Ob-
stacles,” Communications of the ACM, vol. 22, no. 10,
pp- 560-570, 1979.

C. Dornhege, M. Gissler, M. Teschner, and B. Nebel,
“Integrating symbolic and geometric planning for mo-
bile manipulation,” in 2009 IEEE International Work-
shop on Safety, Security & Rescue Robotics (SSRR
2009). IEEE, 2009, pp. 1-6.

H. J. Levesque, E. Davis, and L. Morgenstern, “The
Winograd Schema Challenge,” in Proceedings of the
Thirteenth International Conference on Principles of
Knowledge Representation and Reasoning, ser. KR’12.
AAAI Press, 2012, pp. 552—561.

K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi,
“WinoGrande: An Adversarial Winograd Schema Chal-
lenge at Scale,” Commun. ACM, vol. 64, no. 9, p.
99-106, Sep 2021.

T. Thrush, R. Jiang, M. Bartolo, A. Singh, A. Williams,
D. Kiela, and C. Ross, “Winoground: Probing Vision
and Language Models for Visio-Linguistic Composi-
tionality,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
June 2022, pp. 5238-5248.

	Introduction
	Background
	Method
	Plan Generation via Re-prompting
	Baseline: Plan Generation via Re-sampling
	Baseline: Plan Generation with SayCan

	Evaluation
	Experimental Setup
	Robot Demonstration
	Human Evaluation
	Evaluation Metrics

	Discussion
	Related Work
	Conclusion
	Limitations

