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Abstract

Neural activity exhibits low-dimensional organization across brain areas, behaviors, and
species. While prior work has shown that behaviors shape the geometry and topology of
neural manifolds, the structure of sensory representations remains less understood. In this
work, we use artificial neural networks to investigate the topology of neural representations
through continuous changes in visual features. We introduce MAPS (Manifolds of Artificial
Parametric Scenes), a dataset of objects rendered in 3D with systematic parameter sweeps
across hue, camera angle, lighting, and size. Each parameter defines a specific topology
(e.g., a ring or an interval), with combined parameters yielding product manifolds. We
show that, despite being trained on images without continuous transformations, pretrained
vision models capture the topology of our controlled input manifolds. We envision to
expand MAPS with additional objects and transformations, and to move beyond topology
toward analyzing the geometry of neural representations.
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1. Introduction

Neural population activity exhibits a fundamental organizing principle: it unfolds within
low-dimensional manifolds whose layout reflects task goals, input statistics, and inductive
biases (Perich et al., 2025). Striking examples include grid cells encoding spatial location on
a torus (Gardner et al., 2022), motor cortex activity forming behavioral manifolds (Brennan
and Proekt, 2019), and visual cortex exhibiting a 2-sphere topology for orientation process-
ing (Singh et al., 2008). While these studies demonstrate that neural systems can preserve
and exploit the topological structure of their input domain, whether low-dimensional man-
ifolds systematically organize sensory representations remains less understood.

Artificial neural networks (ANNs) offer a controlled testbed to explore the topological
structure of stimulus encoding, owing to their lower overall complexity in comparison to
brain circuits, the accessibility of neural activity and the much lower measurement noise.
Yet, systematic investigations of how models handle topological manipulations in stimulus
features remain limited, in part because existing parameterized datasets rely on primitive
shapes with limited semantic richness (Johnson et al., 2017; Higgins et al., 2017; Kim and
Mnih, 2018), or are restricted to low-resolution renderings (Gondal et al., 2019).

Here, we present MAPS (Manifolds of Artificial Parametric Scenes), a high-resolution
dataset of semantically meaningful ImageNet objects with systematic single-feature manip-
ulations. By varying individual properties, such as color, size, orientation, or lighting, while
holding all other features constant, we trace out how such manipulations map to trajectories
in the representational space of ANNs, investigating whether these feature variations are
encoded into smooth or rather fragmented structures.
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Figure 1: Overview of the MAPS dataset showcasing four feature manipulations: camera
angle (azimuthal angle), hue, light, size. Cyclic features (hue, camera angle) have
circular topology (S'), while bounded features (light, size) have interval topology

(I).

Our contributions: (i) we provide MAPS, a controlled dataset for probing representa-
tional topology in vision models; (ii) using topological data analysis on pretrained vision
models, we show that the activity patterns of early layers capture the input transformation
topology.

2. Dataset & Methods

2.1. MAPS dataset

To create MAPS, we imported 3D object models into Blender 4.5.1 (Blender Online Com-
munity, 2025) and rendered controlled image sets with systematic variations in hue, camera
angle, object size, and light intensity (Fig. 1). These transformations were scripted using
the Blender Python API and designed to isolate individual feature dimensions, avoiding the
confounds inherent in natural datasets (see Appendix A.1 for details).

Each transformation is associated with an underlying topology: hue shifts and camera
rotations correspond to circles (S!), while scaling and light intensity changes correspond
to intervals (I = [a,b] for a,b € R" and b > a). Composing transformations produces
a new manifold whose topology is given by the product of the individual manifolds. For
example, combining hue shifts and camera rotations yields a parameter space with topology
S! x St =1T?, i.e., a 2-torus.

2.2. Topological analysis in ANNs

We rendered images of the umbrella object under systematic feature transformations and
analysed activations after the first ReLU non-linearity from a ResNet-50 model pretrained
on ImageNet (He et al., 2016). Value ranges and sampling densities are shown in Appendix
Al
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Figure 2: Topological analysis of individual (a, b) and combined (c) camera angle and hue
manipulations in umbrella renderings. The model’s first ReLU activations are
projected using Isomap (first column). From a subsample of such point cloud, a
persistence diagram is computed (second column). Each layer is then character-
ized by their persistence diagram. Layer-wise topological similarity is computed
using Sliced Wasserstein distance, and a representation dissimilarity matrix is
built (third colum). For the product of camera and hue, 10,000 images were ren-
dered, from which 1000 were subsampled to efficiently compute the persistence
diagram.

Following Gardner et al. (2022), we projected neural activations onto the principal com-
ponents using PCA, here retaining 10 components. Next, we applied persistent homology
to characterize the topology of activation patterns (Chazal and Michel, 2021). For each
layer, we constructed a Vietoris—Rips complex and computed its homology to obtain the
topological features of the representations (Tralie et al., 2018; Bauer, 2021). To compare
persistent diagrams across layers, we used Sliced Wasserstein (SW) distance (Carriere et al.,
2017; Purvine et al., 2023). For single features, we calculated the SW distance between lay-
ers using a weighted average of the Hy and Hi features, while for their product manifold,
we used additionally Hs. For visualization, we used Isomap (Tenenbaum et al., 2000) on
the PCA-projected activations (20 neighbors).



3. Results & Analysis

In the following analyses, we focus on the umbrella object from the MAPS dataset. Figure 2
shows the representational topology for each manifold: (a) camera rotation (b) hue shift
and (c) the joint camera—hue transformation. For each case, we display low-dimensional
projections (first column) and the persistence diagrams from the first ReLU layer (second
column), and representational dissimilarity matrices (RDMs) measuring the Sliced Wasser-
stein distance between the persistence diagram of each layer (third column).

We observe that after the first ReLU activation, ResNet-50 captures the topology of the
parameter space, both for single-parameter manifolds and for their product. The persistence
diagrams reveal the correct topological signatures: single loops (H;) for individual hue and
camera angle transformations, and torus topology with two loops (Hp) and one void (Ha)
for their combination (Fig. 2, second column). However, the manifolds exhibit different
behaviors across the network hierarchy. For single feature manipulation, both camera angle
and hue maintain ring topology across all layers, although for hue the distance between the
first and last ReLU layers is smaller (Fig. 2, third column). The differences in SW distances
mainly arise from shifts in the birth—death scales of the loops rather than from structural
changes. For the product manifold of camera angle and hue, the torus topology emerges in
early layers but disappears in deeper layers, with only a residual topology preserved in the
final representations.

We performed the same analysis for additional parameters and also found a preserved
topology of the parameter space imprinted in the network activations on early layers (see
Appendix A.2).

Additionally, we evaluated the classification performance when varying hue, camera
angle, and their combination (see Appendix A.3).

4. Conclusion & Future Work

In this preliminary work, we introduced MAPS, a dataset that enables the investigation
of neural manifolds by systematically exploring object features of 3D objects in neural
networks. We showed how the dataset can be used to study the topology of image trans-
formations. Our exploratory results indicate that, despite ResNet-50 being trained only on
individual image instances, it captures continuous input transformations quite accurately.

Future work will include extending and comparing topological analyses across different
objects and models, as well as broadening the analysis to geometry and dimensionality of
representations. More broadly, this work demonstrates how controlled datasets combined
with topological analysis tools can provide insights on the fundamental principles of repre-
sentational structures in both artificial and biological neural systems. Moreover, this work
opens several promising avenues: the observed topological signatures in ANNs could inspire
new hypotheses about visual representations in the brain; the controlled stimuli of MAPS
could be leveraged to study models with explicit invariance and equivariance constraints;
and the dataset could be expanded with additional ImageNet classes and new transforma-
tions to explore how semantic diversity and invariance properties shape representational
topology.
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Appendix A.

A.1. MAPS dataset

We selected 10 object classes from ImageNet (Deng et al., 2009) and obtained the cor-
responding 3D models from Sketchfab (see Table 1 for object breakdown and author at-
tributions). Each object was placed in a simple scene in Blender 4.5.1 (Blender Online
Community, 2025) with a neutral background, camera, and light source. Images were ren-
dered at 224 x 224 pixel resolution to match the input size of pretrained vision models
(Figure 3).

Table 1: ImageNet objects used in MAPS, their Sketchfab author attribution, and the li-
cense type provided by the author.

ImageNet Index Class Sketchfab Author License
430 Basketball Blender Guru CC Attribution
504 Coffee Mug hungry_beagle CC Attribution
650 Microphone Aike CC Attribution
852 Tennis Ball Arman.Abgaryan CC Attribution
879 Umbrella CGV CC Attribution - Non Commercial
890 Volleyball  Jeremy E. Grayson CC Attribution
949 Strawberry gelmi.com.br CC Attribution
951 Lemon svnfbgr CC Attribution
953 Pineapple Nevena Knezevi¢ CC Attribution
954 Banana matousekfoto CC Attribution

Basketball Coffee Mug  Microphone Tennis Ball Umbrella
Volleyball Strawberry Lemon Pineapple Banana

Figure 3: 3D renderings of all objects in MAPS.

For each transformation parameter, we defined value ranges and linearly sampled points
within these ranges. For camera angle, we swept Ocamera € [0,7); for hue, Onue € [0, 7);
for light intensity, ygne € [0.1,2]; and for object size, xgize € [0.5,1]. For single-parameter



sweeps, we rendered 200 images using Blender’s Cycles engine, a path-tracing renderer that
simulates light for photorealistic images. For two-parameter sweeps (10,000 images), we
used Blender’s Eevee engine, a rasterization-based renderer optimized for real-time graphics,
which allowed us to scale to large sweeps. Table 2 details the parameter ranges, the sampling
densities, and the rendering engine.

Table 2: Sampling range and density for the manipulated parameters.

Parameter Value range # Sampled images Rendering engine
Camera angle [0, 27) 200 Cycles
Hue [0, 2m) 200 Cycles
Light intensity [0.1,2] 200 Cycles
Object size [0.5,1] 200 Cycles
Combined (two-param.) - 10 000 Eevee

A.2. Additional results on topological analysis of ANNs

We repeated the topological analysis steps from Section 2.2 to umbrella renderings for
light and size (Figure 4) and for hue and size (Figure 5), for individual and joint feature
manipulation.

For light and size, we observe a 1-D interval replicating the topology of their parameter
space, and a plane for their joint manipulation (Figure 4, first and second column). The
representational diagrams in these three cases show a block-like structure, possibly corre-
sponding to the different stages of ResNet-50 processing hierarchy (early convolution, then
four bottleneck stages) (Figure 4, third column).

We perform the same analysis for a joint manipulation of hue and size, and show the
results in Figure 5. The low-dimensional projection of the activations seem to form a cylin-
drical surface (Figure 5, first column), preserving the product topology of the parameter
spaces from hue and object size. The expected persistent diagram would consist of one
persistence H; feature, and one Hy component persisting to infinity. However, we find mul-
tiple persistent H; points (Figure 5, second column) suggesting a more complex underlying
structure. This may be due to sampling artifacts, as discretly sampling from the cylindrical
surface could create transient cycles before revealing the circular topology. Finally, in the
RDMSs, we observe a pattern of distances similar to those in camera and hue and also in
light and size, which reflects the different stages of the model.
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Figure 4: Topological analysis of individual (a, b) and combined (c) light and size ma-
nipulation in the umbrella renderings. The model’s first ReLLU activations are
projected using Isomap (first column). From a subsample of such point cloud,
a persistence diagram is computed (second column). Each layer is then charac-
terized by their persistence diagram. Pairwise distances between layers are com-
puted using Sliced Wasserstein distance, and a representation dissimilarity matrix
is built (third colum). For the light-size product, 10,000 images were rendered,
from which 1000 were subsampled for efficient computation of the persistence

diagram.
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Figure 5: Topological analysis of joint hue-size manipulations in umbrella renderings.
Columns are as for Figure 4. 10,000 images were rendered for the low-dimensional
visualization of the network activations, and 1000 were subsampled when com-

puting the persistence diagram.



A.3. Classification performance across the parameter space

We evaluate how single and joint feature manipulations affect classification performance by
extracting the prediction probabilities across our parameter space. Figure 6 shows clas-
sification accuracy for umbrella under joint feature manipulation using ResNet-50. The
model robustly maintains correct umbrella classification across most parameter combina-
tions, indicating realistic rendering quality. For joint light and size variations (right panel),
classification remains stable, except for a moderate accuracy drop at small sizes. However,
joint hue and camera angle manipulations (left panel) reveal systematic vulnerabilities: ac-
curacy drops significantly for red-to-orange hues and cyan colors, and when the object is
viewed from the sides (Ocamera = 7 and Gcamera ~ %) In these failure cases, the model
misclassifies umbrella as chambered nautilus, bathing cap, parachute, pinwheel, or banana.
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Figure 6: Classification accuracy heatmaps for umbrella across joint feature manipulation.
Left: camera angle vs. hue. Right: light intensity vs. object size.
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