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Abstract

Neural activity exhibits low-dimensional organization across brain areas, behaviors, and
species. While prior work has shown that behaviors shape the geometry and topology of
neural manifolds, the structure of sensory representations remains less understood. In this
work, we use artificial neural networks to investigate the topology of neural representations
through continuous changes in visual features. We introduce MAPS (Manifolds of Artificial
Parametric Scenes), a dataset of objects rendered in 3D with systematic parameter sweeps
across hue, camera angle, lighting, and size. Each parameter defines a specific topology
(e.g., a ring or an interval), with combined parameters yielding product manifolds. We
show that, despite being trained on images without continuous transformations, pretrained
vision models capture the topology of our controlled input manifolds. We envision to
expand MAPS with additional objects and transformations, and to move beyond topology
toward analyzing the geometry of neural representations.

Keywords: Neural representations, topology, pretrained vision models, datasets

1. Introduction

Neural population activity exhibits a fundamental organizing principle: it unfolds within
low-dimensional manifolds whose layout reflects task goals, input statistics, and inductive
biases (Perich et al., 2025). Examples include grid cells encoding spatial location on a torus
(Gardner et al., 2022), motor cortex activity forming behavioral manifolds (Brennan and
Proekt, 2019), and visual cortex exhibiting a 2-sphere topology for orientation processing
(Singh et al., 2008). While these studies demonstrate that neural systems can preserve the
topological structure of their input domain, the role such manifolds play in the organization
of sensory representations remains less understood.

Artificial neural networks (ANNs) provide a controlled testbed to probe the topological
structure of stimulus encoding, as they share key similarities with visual processing in
the brain (Kietzmann et al., 2019), while offering reduced complexity, direct access to
network activity and a lack of measurement noise. Yet, systematic investigations of how
models handle topological manipulations in stimulus features remain limited, in part because
existing parameterized datasets rely on primitive shapes with limited semantic richness
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Figure 1: Overview of the MAPS dataset showcasing four feature manipulations: camera
angle (azimuthal angle), hue, light, size. Cyclic features (hue, camera angle) have
circular topology (S1), while bounded features (light, size) have interval topology
(I).

(Johnson et al., 2017; Higgins et al., 2017; Kim and Mnih, 2018), or are restricted to low-
resolution renderings (Gondal et al., 2019).

Here, we present MAPS (Manifolds of Artificial Parametric Scenes), a high-resolution
dataset of semantically meaningful ImageNet objects with systematic single-feature manip-
ulations. By varying individual properties, such as color or size, while holding all other
features constant, we trace out how such manipulations map to manifolds in the represen-
tational space of ANNs, investigating whether input topology is reflected in the network
activations and how this topology evolves across the network hierarchy.

Our contributions: (i) we introduce MAPS, a high-resolution dataset of controlled stim-
uli for probing representational topology in vision models; (ii) using topological data analysis
in ResNet-50, we show that early-layer activity patterns may preserve topological structure
present in the input space.

2. Dataset & Methods

2.1. MAPS dataset

To create MAPS, we imported 3D object models into Blender 4.5.1 (Blender Online Com-
munity, 2025) and rendered controlled image sets with systematic variations in hue, camera
angle, object size, and light intensity (Fig. 1, see Appendix A.1 for details).

Each transformation corresponds to a specific underlying topology. Hue shifts and
camera rotations form circles (S1), while scaling and light intensity changes form intervals
(I = [a, b] for a, b ∈ R+ and b > a). The parameter space of composed transformations has
a topology given by the product of the individual manifolds. For instance, combining hue
shifts with camera rotations yields a parameter space with topology S1 × S1 = T2, i.e., a
2-torus.
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Figure 2: Topological analysis of individual (a, b) and joint (c) camera angle and hue
manipulations in umbrella renderings. The model’s first ReLU activations are
projected using Isomap (first column). From a subsample of such point cloud, a
persistence diagram is computed (second column). Each layer is then character-
ized by their persistence diagram. Layer-wise topological similarity is computed
using Sliced Wasserstein distance, and a representation dissimilarity matrix is
built (third colum). For c, 10,000 images were rendered, and 1000 subsampled.

2.2. Topological analysis in ANNs

We rendered images of the umbrella object under systematic feature transformations and
analysed activations after the first ReLU non-linearity from a ResNet-50 model pretrained
on ImageNet (He et al., 2016). Value ranges and sampling densities are in Appendix A.1.

Following Gardner et al. (2022), we projected neural activations onto 10 principal com-
ponents using PCA. We then applied persistent homology to characterize the topology of ac-
tivation patterns (Chazal and Michel, 2021). For each layer, we constructed a Vietoris–Rips
complex and computed its homology to obtain the topological features (Tralie et al., 2018;
Bauer, 2021). To compare persistent diagrams across layers, we used Sliced Wasserstein
(SW) distance (Carriere et al., 2017; Purvine et al., 2023), computing a weighted aver-
age of the H0 and H1 features for single transformations, and additionally including H2

for product manifolds. For visualization, we used Isomap (Tenenbaum et al., 2000) to the
PCA-projected activations (20 neighbors). Figure 4 in the Appendix A.2 shows an overview
of the process detailed in this section.
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3. Results & Analysis

Figure 2 shows the representational topology for three manifolds of the umbrella object from
MAPS: (a) camera rotation, (b) hue shift, and (c) their joint transformation. For each, we
display low-dimensional projections (first column), persistence diagrams from the first ReLU
layer (second column), and representational dissimilarity matrices (RDMs) measuring Sliced
Wasserstein distances between persistence diagrams across layers (third column).

Right after the first ReLU activation, ResNet-50 captures the parameter space topology
for both single-parameter and product manifolds. The persistence diagrams reveal correct
topological signatures: single loops (H1) for hue and camera transformations, and torus
topology with two loops (H1) and one void (H2) for their combination (Fig. 2, second
column). However, the manifolds behave differently across the network hierarchy. Both
camera and hue maintain low SW distance across layers, though hue shows smaller SW
distance between the first and last ReLU layers (Fig. 2, third column). These differences
arise primarily from shifts in the birth–death scales of the loops rather than structural
changes. For the camera-hue product manifold, torus topology emerges in early layers but
disappears in deeper layers, leaving only residual topology in the final representations.

Additional parameters show similar topology preservation in early layers (Appendix
A.2).Classification performance across parameter variations are in Appendix A.3.

4. Conclusion & Future Work

In this preliminary work, we introduced MAPS, a dataset that enables the investigation
of neural manifolds by systematically varying individual features of 3D objects. Unlike
existing datasets, which focus on disentanglement through sparse parameter sampling or
provide multi-view images at low resolution, MAPS densely samples the parameter spaces at
high resolution to capture continuous manifold structure. We demonstrated the usefulness
of MAPS for studying the topology of representations in ANNs. Our exploratory results
suggest that ResNet-50, despite being trained solely on isolated images, develops internal
representations that mirror key topological features of the input space.

MAPS has some limitations: it relies on synthetic scenes with reduced ecological com-
plexity and object diversity, and it varies only a small set of factors (e.g., hue, rotation,
lighting) that are typically coupled in natural vision. These simplifications may not fully
capture natural image statistics and can yield cleaner or simpler topological structures than
those found in real environments. Nevertheless, our preliminary results show that controlled
parametric datasets, combined with topological analysis, could reveal fundamental princi-
ples of representational structure in both artificial and biological neural systems. This work
opens several promising avenues: the observed topological signatures in ANNs could inspire
new hypotheses about visual representations in the brain; the controlled stimuli of MAPS
could be leveraged to study models with explicit invariance and equivariance constraints;
and the dataset could be expanded with additional ImageNet classes and new transforma-
tions to explore how semantic diversity and invariance properties shape representational
topology.
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Appendix A.

A.1. MAPS dataset

We selected 10 object classes from ImageNet (Deng et al., 2009) and obtained their 3D
models from Sketchfab (see Table 1). Because ImageNet includes both very specific and
general object categories, we focused on 10 accessible, widely recognizable objects. Each
object was placed in a simple scene in Blender 4.5.1 (Blender Online Community, 2025) with
a neutral background, camera, and light source. Images were rendered at 224 × 224 pixel
resolution to match the input size of pretrained vision models (Figure 3). Transformations
were scripted using the Blender Python API.

Table 1: ImageNet objects used in MAPS, their Sketchfab author attribution, and the li-
cense type provided by the author.

ImageNet Index Class Sketchfab Author License

430 Basketball Blender Guru CC Attribution
504 Coffee Mug hungry beagle CC Attribution
650 Microphone Aike CC Attribution
852 Tennis Ball Arman.Abgaryan CC Attribution
879 Umbrella CGV CC Attribution - Non Commercial
890 Volleyball Jeremy E. Grayson CC Attribution
949 Strawberry gelmi.com.br CC Attribution
951 Lemon svnfbgr CC Attribution
953 Pineapple Nevena Knežević CC Attribution
954 Banana matousekfoto CC Attribution

Basketball Coffee Mug Microphone Tennis Ball Umbrella

Volleyball Strawberry Lemon Pineapple Banana

Figure 3: 3D renderings of all objects in MAPS.

For each transformation parameter, we defined value ranges and linearly sampled points
within these ranges. For camera angle, we swept θcamera ∈ [0, 2π); for hue, θhue ∈ [0, 2π);
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for light intensity, xlight ∈ [0.1, 2]; and for object size, xsize ∈ [0.5, 1]. For single-parameter
sweeps, we rendered 200 images using Blender’s Cycles engine, a path-tracing renderer that
simulates light for photorealistic images. For two-parameter sweeps (10,000 images), we
used Blender’s Eevee engine, a rasterization-based renderer optimized for real-time graphics,
which allowed us to scale to large sweeps. Table 2 details the parameter ranges, the sampling
densities, and the rendering engine.

Table 2: Sampling range and density for the manipulated parameters.

Parameter Value range # Sampled images Rendering engine

Camera angle [0, 2π) 200 Cycles
Hue [0, 2π) 200 Cycles

Light intensity [0.1, 2] 200 Cycles
Object size [0.5, 1] 200 Cycles

Combined (two-param.) - 10 000 Eevee

A.2. Additional results on topological analysis of ANNs

We repeated the topological analysis steps from Section 2.2 to umbrella renderings for
light and size (Figure 5) and for hue and size (Figure 6), for individual and joint feature
manipulation. Figure 4 shows the step of the pipeline to extract the topology from neural
activations.

For light and size, we observe a 1-D interval replicating the topology of their parameter
space, and a plane for their joint manipulation (Figure 5, first and second column). The
representational diagrams in these three cases show a block-like structure, possibly corre-
sponding to the different stages of ResNet-50 processing hierarchy (early convolution, then
four bottleneck stages) (Figure 5, third column).

We perform the same analysis for a joint manipulation of hue and size, and show the
results in Figure 6. The low-dimensional projection of the activations seem to form a cylin-
drical surface (Figure 6, first column), preserving the product topology of the parameter
spaces from hue and object size. The expected persistent diagram would consist of one
persistence H1 feature, and one H0 component persisting to infinity. However, we find mul-
tiple persistent H1 points (Figure 6, second column) suggesting a more complex underlying
structure. This may be due to sampling artifacts, as discretly sampling from the cylindrical
surface could create transient cycles before revealing the circular topology. Finally, in the
RDMs, we observe a pattern of distances similar to those in camera and hue and also in
light and size, which reflects the different stages of the model.
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Figure 4: Pipeline to extract the topology of neural representations in ANNs.
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Figure 5: Topological analysis of individual (a, b) and combined (c) light and size ma-
nipulation in the umbrella renderings. The model’s first ReLU activations are
projected using Isomap (first column). From a subsample of such point cloud,
a persistence diagram is computed (second column). Each layer is then charac-
terized by their persistence diagram. Pairwise distances between layers are com-
puted using Sliced Wasserstein distance, and a representation dissimilarity matrix
is built (third colum). For the light-size product, 10,000 images were rendered,
from which 1000 were subsampled for efficient computation of the persistence
diagram.

Hue x Size

-

+

Figure 6: Topological analysis of joint hue-size manipulations in umbrella renderings.
Columns are as for Figure 5. 10,000 images were rendered for the low-dimensional
visualization of the network activations, and 1000 were subsampled when com-
puting the persistence diagram.
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A.3. Classification performance across the parameter space

We evaluate how single and joint feature manipulations affect classification performance by
extracting the prediction probabilities across our parameter space. Figure 7 shows clas-
sification accuracy for umbrella under joint feature manipulation using ResNet-50. The
model robustly maintains correct umbrella classification across most parameter combina-
tions, indicating realistic rendering quality. For joint light and size variations (right panel),
classification remains stable, except for a moderate accuracy drop at small sizes. However,
joint hue and camera angle manipulations (left panel) reveal systematic vulnerabilities: ac-
curacy drops significantly for red-to-orange hues and cyan colors, and when the object is
viewed from the sides (θcamera ≈ π and θcamera ≈ π

3 ). In these failure cases, the model
misclassifies umbrella as chambered nautilus, bathing cap, parachute, pinwheel, or banana.

Umbrella Umbrella
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ccuracy (U

m
brella)

A
ccuracy (U

m
brella)

Figure 7: Classification accuracy heatmaps for umbrella across joint feature manipulation.
Left: camera angle vs. hue. Right: light intensity vs. object size.
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